Contributors: 22
Author Tokens Token Proportion Commits Commit Proportion
Eugen Hristev 6368 58.66% 17 23.61%
Ludovic Desroches 2180 20.08% 5 6.94%
Claudiu Beznea 1978 18.22% 18 25.00%
Alexandru Ardelean 190 1.75% 6 8.33%
Lars-Peter Clausen 23 0.21% 2 2.78%
Nuno Sá 23 0.21% 1 1.39%
Dan Carpenter 20 0.18% 2 2.78%
Jonathan Cameron 15 0.14% 5 6.94%
Peter Ujfalusi 12 0.11% 1 1.39%
Matti Vaittinen 8 0.07% 3 4.17%
Gwendal Grignou 7 0.06% 1 1.39%
Miquel Raynal 6 0.06% 1 1.39%
Marek Vašut 5 0.05% 1 1.39%
Kefeng Wang 4 0.04% 1 1.39%
Wang ShaoBo 4 0.04% 1 1.39%
Paul Cercueil 4 0.04% 1 1.39%
ye xingchen 2 0.02% 1 1.39%
Lee Jones 2 0.02% 1 1.39%
Uwe Kleine-König 2 0.02% 1 1.39%
Cheng Ziqiu 1 0.01% 1 1.39%
Thomas Gleixner 1 0.01% 1 1.39%
Mehdi Djait 1 0.01% 1 1.39%
Total 10856 72


// SPDX-License-Identifier: GPL-2.0-only
/*
 * Atmel ADC driver for SAMA5D2 devices and compatible.
 *
 * Copyright (C) 2015 Atmel,
 *               2015 Ludovic Desroches <ludovic.desroches@atmel.com>
 *		 2021 Microchip Technology, Inc. and its subsidiaries
 *		 2021 Eugen Hristev <eugen.hristev@microchip.com>
 */

#include <linux/bitops.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/module.h>
#include <linux/mod_devicetable.h>
#include <linux/platform_device.h>
#include <linux/property.h>
#include <linux/sched.h>
#include <linux/units.h>
#include <linux/wait.h>
#include <linux/iio/iio.h>
#include <linux/iio/sysfs.h>
#include <linux/iio/buffer.h>
#include <linux/iio/trigger.h>
#include <linux/iio/trigger_consumer.h>
#include <linux/iio/triggered_buffer.h>
#include <linux/nvmem-consumer.h>
#include <linux/pinctrl/consumer.h>
#include <linux/pm_runtime.h>
#include <linux/regulator/consumer.h>

#include <dt-bindings/iio/adc/at91-sama5d2_adc.h>

struct at91_adc_reg_layout {
/* Control Register */
	u16				CR;
/* Software Reset */
#define	AT91_SAMA5D2_CR_SWRST		BIT(0)
/* Start Conversion */
#define	AT91_SAMA5D2_CR_START		BIT(1)
/* Touchscreen Calibration */
#define	AT91_SAMA5D2_CR_TSCALIB		BIT(2)
/* Comparison Restart */
#define	AT91_SAMA5D2_CR_CMPRST		BIT(4)

/* Mode Register */
	u16				MR;
/* Trigger Selection */
#define	AT91_SAMA5D2_MR_TRGSEL(v)	((v) << 1)
/* ADTRG */
#define	AT91_SAMA5D2_MR_TRGSEL_TRIG0	0
/* TIOA0 */
#define	AT91_SAMA5D2_MR_TRGSEL_TRIG1	1
/* TIOA1 */
#define	AT91_SAMA5D2_MR_TRGSEL_TRIG2	2
/* TIOA2 */
#define	AT91_SAMA5D2_MR_TRGSEL_TRIG3	3
/* PWM event line 0 */
#define	AT91_SAMA5D2_MR_TRGSEL_TRIG4	4
/* PWM event line 1 */
#define	AT91_SAMA5D2_MR_TRGSEL_TRIG5	5
/* TIOA3 */
#define	AT91_SAMA5D2_MR_TRGSEL_TRIG6	6
/* RTCOUT0 */
#define	AT91_SAMA5D2_MR_TRGSEL_TRIG7	7
/* Sleep Mode */
#define	AT91_SAMA5D2_MR_SLEEP		BIT(5)
/* Fast Wake Up */
#define	AT91_SAMA5D2_MR_FWUP		BIT(6)
/* Prescaler Rate Selection */
#define	AT91_SAMA5D2_MR_PRESCAL(v)	((v) << AT91_SAMA5D2_MR_PRESCAL_OFFSET)
#define	AT91_SAMA5D2_MR_PRESCAL_OFFSET	8
#define	AT91_SAMA5D2_MR_PRESCAL_MAX	0xff
#define AT91_SAMA5D2_MR_PRESCAL_MASK	GENMASK(15, 8)
/* Startup Time */
#define	AT91_SAMA5D2_MR_STARTUP(v)	((v) << 16)
#define AT91_SAMA5D2_MR_STARTUP_MASK	GENMASK(19, 16)
/* Minimum startup time for temperature sensor */
#define AT91_SAMA5D2_MR_STARTUP_TS_MIN	(50)
/* Analog Change */
#define	AT91_SAMA5D2_MR_ANACH		BIT(23)
/* Tracking Time */
#define	AT91_SAMA5D2_MR_TRACKTIM(v)	((v) << 24)
#define	AT91_SAMA5D2_MR_TRACKTIM_TS	6
#define	AT91_SAMA5D2_MR_TRACKTIM_MAX	0xf
/* Transfer Time */
#define	AT91_SAMA5D2_MR_TRANSFER(v)	((v) << 28)
#define	AT91_SAMA5D2_MR_TRANSFER_MAX	0x3
/* Use Sequence Enable */
#define	AT91_SAMA5D2_MR_USEQ		BIT(31)

/* Channel Sequence Register 1 */
	u16				SEQR1;
/* Channel Sequence Register 2 */
	u16				SEQR2;
/* Channel Enable Register */
	u16				CHER;
/* Channel Disable Register */
	u16				CHDR;
/* Channel Status Register */
	u16				CHSR;
/* Last Converted Data Register */
	u16				LCDR;
/* Interrupt Enable Register */
	u16				IER;
/* Interrupt Enable Register - TS X measurement ready */
#define AT91_SAMA5D2_IER_XRDY   BIT(20)
/* Interrupt Enable Register - TS Y measurement ready */
#define AT91_SAMA5D2_IER_YRDY   BIT(21)
/* Interrupt Enable Register - TS pressure measurement ready */
#define AT91_SAMA5D2_IER_PRDY   BIT(22)
/* Interrupt Enable Register - Data ready */
#define AT91_SAMA5D2_IER_DRDY   BIT(24)
/* Interrupt Enable Register - general overrun error */
#define AT91_SAMA5D2_IER_GOVRE BIT(25)
/* Interrupt Enable Register - Pen detect */
#define AT91_SAMA5D2_IER_PEN    BIT(29)
/* Interrupt Enable Register - No pen detect */
#define AT91_SAMA5D2_IER_NOPEN  BIT(30)

/* Interrupt Disable Register */
	u16				IDR;
/* Interrupt Mask Register */
	u16				IMR;
/* Interrupt Status Register */
	u16				ISR;
/* End of Conversion Interrupt Enable Register */
	u16				EOC_IER;
/* End of Conversion Interrupt Disable Register */
	u16				EOC_IDR;
/* End of Conversion Interrupt Mask Register */
	u16				EOC_IMR;
/* End of Conversion Interrupt Status Register */
	u16				EOC_ISR;
/* Interrupt Status Register - Pen touching sense status */
#define AT91_SAMA5D2_ISR_PENS   BIT(31)
/* Last Channel Trigger Mode Register */
	u16				LCTMR;
/* Last Channel Compare Window Register */
	u16				LCCWR;
/* Overrun Status Register */
	u16				OVER;
/* Extended Mode Register */
	u16				EMR;
/* Extended Mode Register - Oversampling rate */
#define AT91_SAMA5D2_EMR_OSR(V, M)		(((V) << 16) & (M))
#define AT91_SAMA5D2_EMR_OSR_1SAMPLES		0
#define AT91_SAMA5D2_EMR_OSR_4SAMPLES		1
#define AT91_SAMA5D2_EMR_OSR_16SAMPLES		2
#define AT91_SAMA5D2_EMR_OSR_64SAMPLES		3
#define AT91_SAMA5D2_EMR_OSR_256SAMPLES		4

/* Extended Mode Register - TRACKX */
#define AT91_SAMA5D2_TRACKX_MASK		GENMASK(23, 22)
#define AT91_SAMA5D2_TRACKX(x)			(((x) << 22) & \
						 AT91_SAMA5D2_TRACKX_MASK)
/* TRACKX for temperature sensor. */
#define AT91_SAMA5D2_TRACKX_TS			(1)

/* Extended Mode Register - Averaging on single trigger event */
#define AT91_SAMA5D2_EMR_ASTE(V)		((V) << 20)

/* Compare Window Register */
	u16				CWR;
/* Channel Gain Register */
	u16				CGR;
/* Channel Offset Register */
	u16				COR;
/* Channel Offset Register differential offset - constant, not a register */
	u16				COR_diff_offset;
/* Analog Control Register */
	u16				ACR;
/* Analog Control Register - Pen detect sensitivity mask */
#define AT91_SAMA5D2_ACR_PENDETSENS_MASK        GENMASK(1, 0)
/* Analog Control Register - Source last channel */
#define AT91_SAMA5D2_ACR_SRCLCH		BIT(16)

/* Touchscreen Mode Register */
	u16				TSMR;
/* Touchscreen Mode Register - No touch mode */
#define AT91_SAMA5D2_TSMR_TSMODE_NONE           0
/* Touchscreen Mode Register - 4 wire screen, no pressure measurement */
#define AT91_SAMA5D2_TSMR_TSMODE_4WIRE_NO_PRESS 1
/* Touchscreen Mode Register - 4 wire screen, pressure measurement */
#define AT91_SAMA5D2_TSMR_TSMODE_4WIRE_PRESS    2
/* Touchscreen Mode Register - 5 wire screen */
#define AT91_SAMA5D2_TSMR_TSMODE_5WIRE          3
/* Touchscreen Mode Register - Average samples mask */
#define AT91_SAMA5D2_TSMR_TSAV_MASK             GENMASK(5, 4)
/* Touchscreen Mode Register - Average samples */
#define AT91_SAMA5D2_TSMR_TSAV(x)               ((x) << 4)
/* Touchscreen Mode Register - Touch/trigger frequency ratio mask */
#define AT91_SAMA5D2_TSMR_TSFREQ_MASK           GENMASK(11, 8)
/* Touchscreen Mode Register - Touch/trigger frequency ratio */
#define AT91_SAMA5D2_TSMR_TSFREQ(x)             ((x) << 8)
/* Touchscreen Mode Register - Pen Debounce Time mask */
#define AT91_SAMA5D2_TSMR_PENDBC_MASK           GENMASK(31, 28)
/* Touchscreen Mode Register - Pen Debounce Time */
#define AT91_SAMA5D2_TSMR_PENDBC(x)            ((x) << 28)
/* Touchscreen Mode Register - No DMA for touch measurements */
#define AT91_SAMA5D2_TSMR_NOTSDMA               BIT(22)
/* Touchscreen Mode Register - Disable pen detection */
#define AT91_SAMA5D2_TSMR_PENDET_DIS            (0 << 24)
/* Touchscreen Mode Register - Enable pen detection */
#define AT91_SAMA5D2_TSMR_PENDET_ENA            BIT(24)

/* Touchscreen X Position Register */
	u16				XPOSR;
/* Touchscreen Y Position Register */
	u16				YPOSR;
/* Touchscreen Pressure Register */
	u16				PRESSR;
/* Trigger Register */
	u16				TRGR;
/* Mask for TRGMOD field of TRGR register */
#define AT91_SAMA5D2_TRGR_TRGMOD_MASK GENMASK(2, 0)
/* No trigger, only software trigger can start conversions */
#define AT91_SAMA5D2_TRGR_TRGMOD_NO_TRIGGER 0
/* Trigger Mode external trigger rising edge */
#define AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_RISE 1
/* Trigger Mode external trigger falling edge */
#define AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_FALL 2
/* Trigger Mode external trigger any edge */
#define AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_ANY 3
/* Trigger Mode internal periodic */
#define AT91_SAMA5D2_TRGR_TRGMOD_PERIODIC 5
/* Trigger Mode - trigger period mask */
#define AT91_SAMA5D2_TRGR_TRGPER_MASK           GENMASK(31, 16)
/* Trigger Mode - trigger period */
#define AT91_SAMA5D2_TRGR_TRGPER(x)             ((x) << 16)

/* Correction Select Register */
	u16				COSR;
/* Correction Value Register */
	u16				CVR;
/* Channel Error Correction Register */
	u16				CECR;
/* Write Protection Mode Register */
	u16				WPMR;
/* Write Protection Status Register */
	u16				WPSR;
/* Version Register */
	u16				VERSION;
/* Temperature Sensor Mode Register */
	u16				TEMPMR;
/* Temperature Sensor Mode - Temperature sensor on */
#define AT91_SAMA5D2_TEMPMR_TEMPON	BIT(0)
};

static const struct at91_adc_reg_layout sama5d2_layout = {
	.CR =			0x00,
	.MR =			0x04,
	.SEQR1 =		0x08,
	.SEQR2 =		0x0c,
	.CHER =			0x10,
	.CHDR =			0x14,
	.CHSR =			0x18,
	.LCDR =			0x20,
	.IER =			0x24,
	.IDR =			0x28,
	.IMR =			0x2c,
	.ISR =			0x30,
	.LCTMR =		0x34,
	.LCCWR =		0x38,
	.OVER =			0x3c,
	.EMR =			0x40,
	.CWR =			0x44,
	.CGR =			0x48,
	.COR =			0x4c,
	.COR_diff_offset =	16,
	.ACR =			0x94,
	.TSMR =			0xb0,
	.XPOSR =		0xb4,
	.YPOSR =		0xb8,
	.PRESSR =		0xbc,
	.TRGR =			0xc0,
	.COSR =			0xd0,
	.CVR =			0xd4,
	.CECR =			0xd8,
	.WPMR =			0xe4,
	.WPSR =			0xe8,
	.VERSION =		0xfc,
};

static const struct at91_adc_reg_layout sama7g5_layout = {
	.CR =			0x00,
	.MR =			0x04,
	.SEQR1 =		0x08,
	.SEQR2 =		0x0c,
	.CHER =			0x10,
	.CHDR =			0x14,
	.CHSR =			0x18,
	.LCDR =			0x20,
	.IER =			0x24,
	.IDR =			0x28,
	.IMR =			0x2c,
	.ISR =			0x30,
	.EOC_IER =		0x34,
	.EOC_IDR =		0x38,
	.EOC_IMR =		0x3c,
	.EOC_ISR =		0x40,
	.TEMPMR =		0x44,
	.OVER =			0x4c,
	.EMR =			0x50,
	.CWR =			0x54,
	.COR =			0x5c,
	.COR_diff_offset =	0,
	.ACR =			0xe0,
	.TRGR =			0x100,
	.COSR =			0x104,
	.CVR =			0x108,
	.CECR =			0x10c,
	.WPMR =			0x118,
	.WPSR =			0x11c,
	.VERSION =		0x130,
};

#define AT91_SAMA5D2_TOUCH_SAMPLE_PERIOD_US          2000    /* 2ms */
#define AT91_SAMA5D2_TOUCH_PEN_DETECT_DEBOUNCE_US    200

#define AT91_SAMA5D2_XYZ_MASK		GENMASK(11, 0)

#define AT91_SAMA5D2_MAX_POS_BITS			12

#define AT91_HWFIFO_MAX_SIZE_STR	"128"
#define AT91_HWFIFO_MAX_SIZE		128

#define AT91_SAMA5D2_CHAN_SINGLE(index, num, addr)			\
	{								\
		.type = IIO_VOLTAGE,					\
		.channel = num,						\
		.address = addr,					\
		.scan_index = index,					\
		.scan_type = {						\
			.sign = 'u',					\
			.realbits = 14,					\
			.storagebits = 16,				\
		},							\
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),	\
		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\
				BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),	\
		.info_mask_shared_by_all_available =			\
				BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),	\
		.datasheet_name = "CH"#num,				\
		.indexed = 1,						\
	}

#define AT91_SAMA5D2_CHAN_DIFF(index, num, num2, addr)			\
	{								\
		.type = IIO_VOLTAGE,					\
		.differential = 1,					\
		.channel = num,						\
		.channel2 = num2,					\
		.address = addr,					\
		.scan_index = index,					\
		.scan_type = {						\
			.sign = 's',					\
			.realbits = 14,					\
			.storagebits = 16,				\
		},							\
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
		.info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE),	\
		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\
				BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),	\
		.info_mask_shared_by_all_available =			\
				BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),	\
		.datasheet_name = "CH"#num"-CH"#num2,			\
		.indexed = 1,						\
	}

#define AT91_SAMA5D2_CHAN_TOUCH(num, name, mod)				\
	{								\
		.type = IIO_POSITIONRELATIVE,				\
		.modified = 1,						\
		.channel = num,						\
		.channel2 = mod,					\
		.scan_index = num,					\
		.scan_type = {						\
			.sign = 'u',					\
			.realbits = 12,					\
			.storagebits = 16,				\
		},							\
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\
				BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),	\
		.info_mask_shared_by_all_available =			\
				BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),	\
		.datasheet_name = name,					\
	}
#define AT91_SAMA5D2_CHAN_PRESSURE(num, name)				\
	{								\
		.type = IIO_PRESSURE,					\
		.channel = num,						\
		.scan_index = num,					\
		.scan_type = {						\
			.sign = 'u',					\
			.realbits = 12,					\
			.storagebits = 16,				\
		},							\
		.info_mask_separate = BIT(IIO_CHAN_INFO_RAW),		\
		.info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ)|\
				BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),	\
		.info_mask_shared_by_all_available =			\
				BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),	\
		.datasheet_name = name,					\
	}

#define AT91_SAMA5D2_CHAN_TEMP(num, name, addr)				\
	{								\
		.type = IIO_TEMP,					\
		.channel = num,						\
		.address =  addr,					\
		.scan_index = num,					\
		.info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED),	\
		.info_mask_shared_by_all =				\
				BIT(IIO_CHAN_INFO_PROCESSED) |		\
				BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),	\
		.info_mask_shared_by_all_available =			\
				BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),	\
		.datasheet_name = name,					\
	}

#define at91_adc_readl(st, reg)						\
	readl_relaxed((st)->base + (st)->soc_info.platform->layout->reg)
#define at91_adc_read_chan(st, reg)					\
	readl_relaxed((st)->base + reg)
#define at91_adc_writel(st, reg, val)					\
	writel_relaxed(val, (st)->base + (st)->soc_info.platform->layout->reg)

/**
 * struct at91_adc_platform - at91-sama5d2 platform information struct
 * @layout:		pointer to the reg layout struct
 * @adc_channels:	pointer to an array of channels for registering in
 *			the iio subsystem
 * @nr_channels:	number of physical channels available
 * @touch_chan_x:	index of the touchscreen X channel
 * @touch_chan_y:	index of the touchscreen Y channel
 * @touch_chan_p:	index of the touchscreen P channel
 * @max_channels:	number of total channels
 * @max_index:		highest channel index (highest index may be higher
 *			than the total channel number)
 * @hw_trig_cnt:	number of possible hardware triggers
 * @osr_mask:		oversampling ratio bitmask on EMR register
 * @oversampling_avail:	available oversampling values
 * @oversampling_avail_no: number of available oversampling values
 * @chan_realbits:	realbits for registered channels
 * @temp_chan:		temperature channel index
 * @temp_sensor:	temperature sensor supported
 */
struct at91_adc_platform {
	const struct at91_adc_reg_layout	*layout;
	const struct iio_chan_spec		(*adc_channels)[];
	unsigned int				nr_channels;
	unsigned int				touch_chan_x;
	unsigned int				touch_chan_y;
	unsigned int				touch_chan_p;
	unsigned int				max_channels;
	unsigned int				max_index;
	unsigned int				hw_trig_cnt;
	unsigned int				osr_mask;
	unsigned int				oversampling_avail[5];
	unsigned int				oversampling_avail_no;
	unsigned int				chan_realbits;
	unsigned int				temp_chan;
	bool					temp_sensor;
};

/**
 * struct at91_adc_temp_sensor_clb - at91-sama5d2 temperature sensor
 * calibration data structure
 * @p1: P1 calibration temperature
 * @p4: P4 calibration voltage
 * @p6: P6 calibration voltage
 */
struct at91_adc_temp_sensor_clb {
	u32 p1;
	u32 p4;
	u32 p6;
};

/**
 * enum at91_adc_ts_clb_idx - calibration indexes in NVMEM buffer
 * @AT91_ADC_TS_CLB_IDX_P1: index for P1
 * @AT91_ADC_TS_CLB_IDX_P4: index for P4
 * @AT91_ADC_TS_CLB_IDX_P6: index for P6
 * @AT91_ADC_TS_CLB_IDX_MAX: max index for temperature calibration packet in OTP
 */
enum at91_adc_ts_clb_idx {
	AT91_ADC_TS_CLB_IDX_P1 = 2,
	AT91_ADC_TS_CLB_IDX_P4 = 5,
	AT91_ADC_TS_CLB_IDX_P6 = 7,
	AT91_ADC_TS_CLB_IDX_MAX = 19,
};

/* Temperature sensor calibration - Vtemp voltage sensitivity to temperature. */
#define AT91_ADC_TS_VTEMP_DT		(2080U)

/**
 * struct at91_adc_soc_info - at91-sama5d2 soc information struct
 * @startup_time:	device startup time
 * @min_sample_rate:	minimum sample rate in Hz
 * @max_sample_rate:	maximum sample rate in Hz
 * @platform:		pointer to the platform structure
 * @temp_sensor_clb:	temperature sensor calibration data structure
 */
struct at91_adc_soc_info {
	unsigned			startup_time;
	unsigned			min_sample_rate;
	unsigned			max_sample_rate;
	const struct at91_adc_platform	*platform;
	struct at91_adc_temp_sensor_clb	temp_sensor_clb;
};

struct at91_adc_trigger {
	char				*name;
	unsigned int			trgmod_value;
	unsigned int			edge_type;
	bool				hw_trig;
};

/**
 * struct at91_adc_dma - at91-sama5d2 dma information struct
 * @dma_chan:		the dma channel acquired
 * @rx_buf:		dma coherent allocated area
 * @rx_dma_buf:		dma handler for the buffer
 * @phys_addr:		physical address of the ADC base register
 * @buf_idx:		index inside the dma buffer where reading was last done
 * @rx_buf_sz:		size of buffer used by DMA operation
 * @watermark:		number of conversions to copy before DMA triggers irq
 * @dma_ts:		hold the start timestamp of dma operation
 */
struct at91_adc_dma {
	struct dma_chan			*dma_chan;
	u8				*rx_buf;
	dma_addr_t			rx_dma_buf;
	phys_addr_t			phys_addr;
	int				buf_idx;
	int				rx_buf_sz;
	int				watermark;
	s64				dma_ts;
};

/**
 * struct at91_adc_touch - at91-sama5d2 touchscreen information struct
 * @sample_period_val:		the value for periodic trigger interval
 * @touching:			is the pen touching the screen or not
 * @x_pos:			temporary placeholder for pressure computation
 * @channels_bitmask:		bitmask with the touchscreen channels enabled
 * @workq:			workqueue for buffer data pushing
 */
struct at91_adc_touch {
	u16				sample_period_val;
	bool				touching;
	u16				x_pos;
	unsigned long			channels_bitmask;
	struct work_struct		workq;
};

/**
 * struct at91_adc_temp - at91-sama5d2 temperature information structure
 * @sample_period_val:	sample period value
 * @saved_sample_rate:	saved sample rate
 * @saved_oversampling:	saved oversampling
 */
struct at91_adc_temp {
	u16				sample_period_val;
	u16				saved_sample_rate;
	u16				saved_oversampling;
};

/*
 * Buffer size requirements:
 * No channels * bytes_per_channel(2) + timestamp bytes (8)
 * Divided by 2 because we need half words.
 * We assume 32 channels for now, has to be increased if needed.
 * Nobody minds a buffer being too big.
 */
#define AT91_BUFFER_MAX_HWORDS ((32 * 2 + 8) / 2)

struct at91_adc_state {
	void __iomem			*base;
	int				irq;
	struct clk			*per_clk;
	struct regulator		*reg;
	struct regulator		*vref;
	int				vref_uv;
	unsigned int			current_sample_rate;
	struct iio_trigger		*trig;
	const struct at91_adc_trigger	*selected_trig;
	const struct iio_chan_spec	*chan;
	bool				conversion_done;
	u32				conversion_value;
	unsigned int			oversampling_ratio;
	struct at91_adc_soc_info	soc_info;
	wait_queue_head_t		wq_data_available;
	struct at91_adc_dma		dma_st;
	struct at91_adc_touch		touch_st;
	struct at91_adc_temp		temp_st;
	struct iio_dev			*indio_dev;
	struct device			*dev;
	/* Ensure naturally aligned timestamp */
	u16				buffer[AT91_BUFFER_MAX_HWORDS] __aligned(8);
	/*
	 * lock to prevent concurrent 'single conversion' requests through
	 * sysfs.
	 */
	struct mutex			lock;
};

static const struct at91_adc_trigger at91_adc_trigger_list[] = {
	{
		.name = "external_rising",
		.trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_RISE,
		.edge_type = IRQ_TYPE_EDGE_RISING,
		.hw_trig = true,
	},
	{
		.name = "external_falling",
		.trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_FALL,
		.edge_type = IRQ_TYPE_EDGE_FALLING,
		.hw_trig = true,
	},
	{
		.name = "external_any",
		.trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_EXT_TRIG_ANY,
		.edge_type = IRQ_TYPE_EDGE_BOTH,
		.hw_trig = true,
	},
	{
		.name = "software",
		.trgmod_value = AT91_SAMA5D2_TRGR_TRGMOD_NO_TRIGGER,
		.edge_type = IRQ_TYPE_NONE,
		.hw_trig = false,
	},
};

static const struct iio_chan_spec at91_sama5d2_adc_channels[] = {
	AT91_SAMA5D2_CHAN_SINGLE(0, 0, 0x50),
	AT91_SAMA5D2_CHAN_SINGLE(1, 1, 0x54),
	AT91_SAMA5D2_CHAN_SINGLE(2, 2, 0x58),
	AT91_SAMA5D2_CHAN_SINGLE(3, 3, 0x5c),
	AT91_SAMA5D2_CHAN_SINGLE(4, 4, 0x60),
	AT91_SAMA5D2_CHAN_SINGLE(5, 5, 0x64),
	AT91_SAMA5D2_CHAN_SINGLE(6, 6, 0x68),
	AT91_SAMA5D2_CHAN_SINGLE(7, 7, 0x6c),
	AT91_SAMA5D2_CHAN_SINGLE(8, 8, 0x70),
	AT91_SAMA5D2_CHAN_SINGLE(9, 9, 0x74),
	AT91_SAMA5D2_CHAN_SINGLE(10, 10, 0x78),
	AT91_SAMA5D2_CHAN_SINGLE(11, 11, 0x7c),
	/* original ABI has the differential channels with a gap in between */
	AT91_SAMA5D2_CHAN_DIFF(12, 0, 1, 0x50),
	AT91_SAMA5D2_CHAN_DIFF(14, 2, 3, 0x58),
	AT91_SAMA5D2_CHAN_DIFF(16, 4, 5, 0x60),
	AT91_SAMA5D2_CHAN_DIFF(18, 6, 7, 0x68),
	AT91_SAMA5D2_CHAN_DIFF(20, 8, 9, 0x70),
	AT91_SAMA5D2_CHAN_DIFF(22, 10, 11, 0x78),
	IIO_CHAN_SOFT_TIMESTAMP(23),
	AT91_SAMA5D2_CHAN_TOUCH(24, "x", IIO_MOD_X),
	AT91_SAMA5D2_CHAN_TOUCH(25, "y", IIO_MOD_Y),
	AT91_SAMA5D2_CHAN_PRESSURE(26, "pressure"),
};

static const struct iio_chan_spec at91_sama7g5_adc_channels[] = {
	AT91_SAMA5D2_CHAN_SINGLE(0, 0, 0x60),
	AT91_SAMA5D2_CHAN_SINGLE(1, 1, 0x64),
	AT91_SAMA5D2_CHAN_SINGLE(2, 2, 0x68),
	AT91_SAMA5D2_CHAN_SINGLE(3, 3, 0x6c),
	AT91_SAMA5D2_CHAN_SINGLE(4, 4, 0x70),
	AT91_SAMA5D2_CHAN_SINGLE(5, 5, 0x74),
	AT91_SAMA5D2_CHAN_SINGLE(6, 6, 0x78),
	AT91_SAMA5D2_CHAN_SINGLE(7, 7, 0x7c),
	AT91_SAMA5D2_CHAN_SINGLE(8, 8, 0x80),
	AT91_SAMA5D2_CHAN_SINGLE(9, 9, 0x84),
	AT91_SAMA5D2_CHAN_SINGLE(10, 10, 0x88),
	AT91_SAMA5D2_CHAN_SINGLE(11, 11, 0x8c),
	AT91_SAMA5D2_CHAN_SINGLE(12, 12, 0x90),
	AT91_SAMA5D2_CHAN_SINGLE(13, 13, 0x94),
	AT91_SAMA5D2_CHAN_SINGLE(14, 14, 0x98),
	AT91_SAMA5D2_CHAN_SINGLE(15, 15, 0x9c),
	AT91_SAMA5D2_CHAN_DIFF(16, 0, 1, 0x60),
	AT91_SAMA5D2_CHAN_DIFF(17, 2, 3, 0x68),
	AT91_SAMA5D2_CHAN_DIFF(18, 4, 5, 0x70),
	AT91_SAMA5D2_CHAN_DIFF(19, 6, 7, 0x78),
	AT91_SAMA5D2_CHAN_DIFF(20, 8, 9, 0x80),
	AT91_SAMA5D2_CHAN_DIFF(21, 10, 11, 0x88),
	AT91_SAMA5D2_CHAN_DIFF(22, 12, 13, 0x90),
	AT91_SAMA5D2_CHAN_DIFF(23, 14, 15, 0x98),
	IIO_CHAN_SOFT_TIMESTAMP(24),
	AT91_SAMA5D2_CHAN_TEMP(AT91_SAMA7G5_ADC_TEMP_CHANNEL, "temp", 0xdc),
};

static const struct at91_adc_platform sama5d2_platform = {
	.layout = &sama5d2_layout,
	.adc_channels = &at91_sama5d2_adc_channels,
#define AT91_SAMA5D2_SINGLE_CHAN_CNT 12
#define AT91_SAMA5D2_DIFF_CHAN_CNT 6
	.nr_channels = AT91_SAMA5D2_SINGLE_CHAN_CNT +
		       AT91_SAMA5D2_DIFF_CHAN_CNT,
#define AT91_SAMA5D2_TOUCH_X_CHAN_IDX	(AT91_SAMA5D2_SINGLE_CHAN_CNT + \
					AT91_SAMA5D2_DIFF_CHAN_CNT * 2)
	.touch_chan_x = AT91_SAMA5D2_TOUCH_X_CHAN_IDX,
#define AT91_SAMA5D2_TOUCH_Y_CHAN_IDX	(AT91_SAMA5D2_TOUCH_X_CHAN_IDX + 1)
	.touch_chan_y = AT91_SAMA5D2_TOUCH_Y_CHAN_IDX,
#define AT91_SAMA5D2_TOUCH_P_CHAN_IDX	(AT91_SAMA5D2_TOUCH_Y_CHAN_IDX + 1)
	.touch_chan_p = AT91_SAMA5D2_TOUCH_P_CHAN_IDX,
#define AT91_SAMA5D2_MAX_CHAN_IDX	AT91_SAMA5D2_TOUCH_P_CHAN_IDX
	.max_channels = ARRAY_SIZE(at91_sama5d2_adc_channels),
	.max_index = AT91_SAMA5D2_MAX_CHAN_IDX,
#define AT91_SAMA5D2_HW_TRIG_CNT	3
	.hw_trig_cnt = AT91_SAMA5D2_HW_TRIG_CNT,
	.osr_mask = GENMASK(17, 16),
	.oversampling_avail = { 1, 4, 16, },
	.oversampling_avail_no = 3,
	.chan_realbits = 14,
};

static const struct at91_adc_platform sama7g5_platform = {
	.layout = &sama7g5_layout,
	.adc_channels = &at91_sama7g5_adc_channels,
#define AT91_SAMA7G5_SINGLE_CHAN_CNT	16
#define AT91_SAMA7G5_DIFF_CHAN_CNT	8
#define AT91_SAMA7G5_TEMP_CHAN_CNT	1
	.nr_channels = AT91_SAMA7G5_SINGLE_CHAN_CNT +
		       AT91_SAMA7G5_DIFF_CHAN_CNT +
		       AT91_SAMA7G5_TEMP_CHAN_CNT,
#define AT91_SAMA7G5_MAX_CHAN_IDX	(AT91_SAMA7G5_SINGLE_CHAN_CNT + \
					AT91_SAMA7G5_DIFF_CHAN_CNT + \
					AT91_SAMA7G5_TEMP_CHAN_CNT)
	.max_channels = ARRAY_SIZE(at91_sama7g5_adc_channels),
	.max_index = AT91_SAMA7G5_MAX_CHAN_IDX,
#define AT91_SAMA7G5_HW_TRIG_CNT	3
	.hw_trig_cnt = AT91_SAMA7G5_HW_TRIG_CNT,
	.osr_mask = GENMASK(18, 16),
	.oversampling_avail = { 1, 4, 16, 64, 256, },
	.oversampling_avail_no = 5,
	.chan_realbits = 16,
	.temp_sensor = true,
	.temp_chan = AT91_SAMA7G5_ADC_TEMP_CHANNEL,
};

static int at91_adc_chan_xlate(struct iio_dev *indio_dev, int chan)
{
	int i;

	for (i = 0; i < indio_dev->num_channels; i++) {
		if (indio_dev->channels[i].scan_index == chan)
			return i;
	}
	return -EINVAL;
}

static inline struct iio_chan_spec const *
at91_adc_chan_get(struct iio_dev *indio_dev, int chan)
{
	int index = at91_adc_chan_xlate(indio_dev, chan);

	if (index < 0)
		return NULL;
	return indio_dev->channels + index;
}

static inline int at91_adc_fwnode_xlate(struct iio_dev *indio_dev,
					const struct fwnode_reference_args *iiospec)
{
	return at91_adc_chan_xlate(indio_dev, iiospec->args[0]);
}

static unsigned int at91_adc_active_scan_mask_to_reg(struct iio_dev *indio_dev)
{
	u32 mask = 0;
	u8 bit;
	struct at91_adc_state *st = iio_priv(indio_dev);

	for_each_set_bit(bit, indio_dev->active_scan_mask,
			 indio_dev->num_channels) {
		struct iio_chan_spec const *chan =
			 at91_adc_chan_get(indio_dev, bit);
		mask |= BIT(chan->channel);
	}

	return mask & GENMASK(st->soc_info.platform->nr_channels, 0);
}

static void at91_adc_cor(struct at91_adc_state *st,
			 struct iio_chan_spec const *chan)
{
	u32 cor, cur_cor;

	cor = BIT(chan->channel) | BIT(chan->channel2);

	cur_cor = at91_adc_readl(st, COR);
	cor <<= st->soc_info.platform->layout->COR_diff_offset;
	if (chan->differential)
		at91_adc_writel(st, COR, cur_cor | cor);
	else
		at91_adc_writel(st, COR, cur_cor & ~cor);
}

static void at91_adc_irq_status(struct at91_adc_state *st, u32 *status,
				u32 *eoc)
{
	*status = at91_adc_readl(st, ISR);
	if (st->soc_info.platform->layout->EOC_ISR)
		*eoc = at91_adc_readl(st, EOC_ISR);
	else
		*eoc = *status;
}

static void at91_adc_irq_mask(struct at91_adc_state *st, u32 *status, u32 *eoc)
{
	*status = at91_adc_readl(st, IMR);
	if (st->soc_info.platform->layout->EOC_IMR)
		*eoc = at91_adc_readl(st, EOC_IMR);
	else
		*eoc = *status;
}

static void at91_adc_eoc_dis(struct at91_adc_state *st, unsigned int channel)
{
	/*
	 * On some products having the EOC bits in a separate register,
	 * errata recommends not writing this register (EOC_IDR).
	 * On products having the EOC bits in the IDR register, it's fine to write it.
	 */
	if (!st->soc_info.platform->layout->EOC_IDR)
		at91_adc_writel(st, IDR, BIT(channel));
}

static void at91_adc_eoc_ena(struct at91_adc_state *st, unsigned int channel)
{
	if (!st->soc_info.platform->layout->EOC_IDR)
		at91_adc_writel(st, IER, BIT(channel));
	else
		at91_adc_writel(st, EOC_IER, BIT(channel));
}

static int at91_adc_config_emr(struct at91_adc_state *st,
			       u32 oversampling_ratio, u32 trackx)
{
	/* configure the extended mode register */
	unsigned int emr, osr;
	unsigned int osr_mask = st->soc_info.platform->osr_mask;
	int i, ret;

	/* Check against supported oversampling values. */
	for (i = 0; i < st->soc_info.platform->oversampling_avail_no; i++) {
		if (oversampling_ratio == st->soc_info.platform->oversampling_avail[i])
			break;
	}
	if (i == st->soc_info.platform->oversampling_avail_no)
		return -EINVAL;

	/* select oversampling ratio from configuration */
	switch (oversampling_ratio) {
	case 1:
		osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_1SAMPLES,
					   osr_mask);
		break;
	case 4:
		osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_4SAMPLES,
					   osr_mask);
		break;
	case 16:
		osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_16SAMPLES,
					   osr_mask);
		break;
	case 64:
		osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_64SAMPLES,
					   osr_mask);
		break;
	case 256:
		osr = AT91_SAMA5D2_EMR_OSR(AT91_SAMA5D2_EMR_OSR_256SAMPLES,
					   osr_mask);
		break;
	}

	ret = pm_runtime_resume_and_get(st->dev);
	if (ret < 0)
		return ret;

	emr = at91_adc_readl(st, EMR);
	/* select oversampling per single trigger event */
	emr |= AT91_SAMA5D2_EMR_ASTE(1);
	/* delete leftover content if it's the case */
	emr &= ~(osr_mask | AT91_SAMA5D2_TRACKX_MASK);
	/* Update osr and trackx. */
	emr |= osr | AT91_SAMA5D2_TRACKX(trackx);
	at91_adc_writel(st, EMR, emr);

	pm_runtime_mark_last_busy(st->dev);
	pm_runtime_put_autosuspend(st->dev);

	st->oversampling_ratio = oversampling_ratio;

	return 0;
}

static int at91_adc_adjust_val_osr(struct at91_adc_state *st, int *val)
{
	int nbits, diff;

	if (st->oversampling_ratio == 1)
		nbits = 12;
	else if (st->oversampling_ratio == 4)
		nbits = 13;
	else if (st->oversampling_ratio == 16)
		nbits = 14;
	else if (st->oversampling_ratio == 64)
		nbits = 15;
	else if (st->oversampling_ratio == 256)
		nbits = 16;
	else
		/* Should not happen. */
		return -EINVAL;

	/*
	 * We have nbits of real data and channel is registered as
	 * st->soc_info.platform->chan_realbits, so shift left diff bits.
	 */
	diff = st->soc_info.platform->chan_realbits - nbits;
	*val <<= diff;

	return IIO_VAL_INT;
}

static void at91_adc_adjust_val_osr_array(struct at91_adc_state *st, void *buf,
					  int len)
{
	int i = 0, val;
	u16 *buf_u16 = (u16 *) buf;

	/*
	 * We are converting each two bytes (each sample).
	 * First convert the byte based array to u16, and convert each sample
	 * separately.
	 * Each value is two bytes in an array of chars, so to not shift
	 * more than we need, save the value separately.
	 * len is in bytes, so divide by two to get number of samples.
	 */
	while (i < len / 2) {
		val = buf_u16[i];
		at91_adc_adjust_val_osr(st, &val);
		buf_u16[i] = val;
		i++;
	}
}

static int at91_adc_configure_touch(struct at91_adc_state *st, bool state)
{
	u32 clk_khz = st->current_sample_rate / 1000;
	int i = 0, ret;
	u16 pendbc;
	u32 tsmr, acr;

	if (state) {
		ret = pm_runtime_resume_and_get(st->dev);
		if (ret < 0)
			return ret;
	} else {
		/* disabling touch IRQs and setting mode to no touch enabled */
		at91_adc_writel(st, IDR,
				AT91_SAMA5D2_IER_PEN | AT91_SAMA5D2_IER_NOPEN);
		at91_adc_writel(st, TSMR, 0);

		pm_runtime_mark_last_busy(st->dev);
		pm_runtime_put_autosuspend(st->dev);
		return 0;
	}
	/*
	 * debounce time is in microseconds, we need it in milliseconds to
	 * multiply with kilohertz, so, divide by 1000, but after the multiply.
	 * round up to make sure pendbc is at least 1
	 */
	pendbc = round_up(AT91_SAMA5D2_TOUCH_PEN_DETECT_DEBOUNCE_US *
			  clk_khz / 1000, 1);

	/* get the required exponent */
	while (pendbc >> i++)
		;

	pendbc = i;

	tsmr = AT91_SAMA5D2_TSMR_TSMODE_4WIRE_PRESS;

	tsmr |= AT91_SAMA5D2_TSMR_TSAV(2) & AT91_SAMA5D2_TSMR_TSAV_MASK;
	tsmr |= AT91_SAMA5D2_TSMR_PENDBC(pendbc) &
		AT91_SAMA5D2_TSMR_PENDBC_MASK;
	tsmr |= AT91_SAMA5D2_TSMR_NOTSDMA;
	tsmr |= AT91_SAMA5D2_TSMR_PENDET_ENA;
	tsmr |= AT91_SAMA5D2_TSMR_TSFREQ(2) & AT91_SAMA5D2_TSMR_TSFREQ_MASK;

	at91_adc_writel(st, TSMR, tsmr);

	acr =  at91_adc_readl(st, ACR);
	acr &= ~AT91_SAMA5D2_ACR_PENDETSENS_MASK;
	acr |= 0x02 & AT91_SAMA5D2_ACR_PENDETSENS_MASK;
	at91_adc_writel(st, ACR, acr);

	/* Sample Period Time = (TRGPER + 1) / ADCClock */
	st->touch_st.sample_period_val =
				 round_up((AT91_SAMA5D2_TOUCH_SAMPLE_PERIOD_US *
				 clk_khz / 1000) - 1, 1);
	/* enable pen detect IRQ */
	at91_adc_writel(st, IER, AT91_SAMA5D2_IER_PEN);

	return 0;
}

static u16 at91_adc_touch_pos(struct at91_adc_state *st, int reg)
{
	u32 val = 0;
	u32 scale, result, pos;

	/*
	 * to obtain the actual position we must divide by scale
	 * and multiply with max, where
	 * max = 2^AT91_SAMA5D2_MAX_POS_BITS - 1
	 */
	/* first half of register is the x or y, second half is the scale */
	if (reg == st->soc_info.platform->layout->XPOSR)
		val = at91_adc_readl(st, XPOSR);
	else if (reg == st->soc_info.platform->layout->YPOSR)
		val = at91_adc_readl(st, YPOSR);

	if (!val)
		dev_dbg(&st->indio_dev->dev, "pos is 0\n");

	pos = val & AT91_SAMA5D2_XYZ_MASK;
	result = (pos << AT91_SAMA5D2_MAX_POS_BITS) - pos;
	scale = (val >> 16) & AT91_SAMA5D2_XYZ_MASK;
	if (scale == 0) {
		dev_err(&st->indio_dev->dev, "scale is 0\n");
		return 0;
	}
	result /= scale;

	return result;
}

static u16 at91_adc_touch_x_pos(struct at91_adc_state *st)
{
	st->touch_st.x_pos = at91_adc_touch_pos(st, st->soc_info.platform->layout->XPOSR);
	return st->touch_st.x_pos;
}

static u16 at91_adc_touch_y_pos(struct at91_adc_state *st)
{
	return at91_adc_touch_pos(st, st->soc_info.platform->layout->YPOSR);
}

static u16 at91_adc_touch_pressure(struct at91_adc_state *st)
{
	u32 val;
	u32 z1, z2;
	u32 pres;
	u32 rxp = 1;
	u32 factor = 1000;

	/* calculate the pressure */
	val = at91_adc_readl(st, PRESSR);
	z1 = val & AT91_SAMA5D2_XYZ_MASK;
	z2 = (val >> 16) & AT91_SAMA5D2_XYZ_MASK;

	if (z1 != 0)
		pres = rxp * (st->touch_st.x_pos * factor / 1024) *
			(z2 * factor / z1 - factor) /
			factor;
	else
		pres = 0xFFFF;       /* no pen contact */

	/*
	 * The pressure from device grows down, minimum is 0xFFFF, maximum 0x0.
	 * We compute it this way, but let's return it in the expected way,
	 * growing from 0 to 0xFFFF.
	 */
	return 0xFFFF - pres;
}

static int at91_adc_read_position(struct at91_adc_state *st, int chan, u16 *val)
{
	*val = 0;
	if (!st->touch_st.touching)
		return -ENODATA;
	if (chan == st->soc_info.platform->touch_chan_x)
		*val = at91_adc_touch_x_pos(st);
	else if (chan == st->soc_info.platform->touch_chan_y)
		*val = at91_adc_touch_y_pos(st);
	else
		return -ENODATA;

	return IIO_VAL_INT;
}

static int at91_adc_read_pressure(struct at91_adc_state *st, int chan, u16 *val)
{
	*val = 0;
	if (!st->touch_st.touching)
		return -ENODATA;
	if (chan == st->soc_info.platform->touch_chan_p)
		*val = at91_adc_touch_pressure(st);
	else
		return -ENODATA;

	return IIO_VAL_INT;
}

static void at91_adc_configure_trigger_registers(struct at91_adc_state *st,
						 bool state)
{
	u32 status = at91_adc_readl(st, TRGR);

	/* clear TRGMOD */
	status &= ~AT91_SAMA5D2_TRGR_TRGMOD_MASK;

	if (state)
		status |= st->selected_trig->trgmod_value;

	/* set/unset hw trigger */
	at91_adc_writel(st, TRGR, status);
}

static int at91_adc_configure_trigger(struct iio_trigger *trig, bool state)
{
	struct iio_dev *indio = iio_trigger_get_drvdata(trig);
	struct at91_adc_state *st = iio_priv(indio);
	int ret;

	if (state) {
		ret = pm_runtime_resume_and_get(st->dev);
		if (ret < 0)
			return ret;
	}

	at91_adc_configure_trigger_registers(st, state);

	if (!state) {
		pm_runtime_mark_last_busy(st->dev);
		pm_runtime_put_autosuspend(st->dev);
	}

	return 0;
}

static void at91_adc_reenable_trigger(struct iio_trigger *trig)
{
	struct iio_dev *indio = iio_trigger_get_drvdata(trig);
	struct at91_adc_state *st = iio_priv(indio);

	/* if we are using DMA, we must not reenable irq after each trigger */
	if (st->dma_st.dma_chan)
		return;

	enable_irq(st->irq);

	/* Needed to ACK the DRDY interruption */
	at91_adc_readl(st, LCDR);
}

static const struct iio_trigger_ops at91_adc_trigger_ops = {
	.set_trigger_state = &at91_adc_configure_trigger,
	.reenable = &at91_adc_reenable_trigger,
	.validate_device = iio_trigger_validate_own_device,
};

static int at91_adc_dma_size_done(struct at91_adc_state *st)
{
	struct dma_tx_state state;
	enum dma_status status;
	int i, size;

	status = dmaengine_tx_status(st->dma_st.dma_chan,
				     st->dma_st.dma_chan->cookie,
				     &state);
	if (status != DMA_IN_PROGRESS)
		return 0;

	/* Transferred length is size in bytes from end of buffer */
	i = st->dma_st.rx_buf_sz - state.residue;

	/* Return available bytes */
	if (i >= st->dma_st.buf_idx)
		size = i - st->dma_st.buf_idx;
	else
		size = st->dma_st.rx_buf_sz + i - st->dma_st.buf_idx;
	return size;
}

static void at91_dma_buffer_done(void *data)
{
	struct iio_dev *indio_dev = data;

	iio_trigger_poll_nested(indio_dev->trig);
}

static int at91_adc_dma_start(struct iio_dev *indio_dev)
{
	struct at91_adc_state *st = iio_priv(indio_dev);
	struct dma_async_tx_descriptor *desc;
	dma_cookie_t cookie;
	int ret;
	u8 bit;

	if (!st->dma_st.dma_chan)
		return 0;

	/* we start a new DMA, so set buffer index to start */
	st->dma_st.buf_idx = 0;

	/*
	 * compute buffer size w.r.t. watermark and enabled channels.
	 * scan_bytes is aligned so we need an exact size for DMA
	 */
	st->dma_st.rx_buf_sz = 0;

	for_each_set_bit(bit, indio_dev->active_scan_mask,
			 indio_dev->num_channels) {
		struct iio_chan_spec const *chan =
					 at91_adc_chan_get(indio_dev, bit);

		if (!chan)
			continue;

		st->dma_st.rx_buf_sz += chan->scan_type.storagebits / 8;
	}
	st->dma_st.rx_buf_sz *= st->dma_st.watermark;

	/* Prepare a DMA cyclic transaction */
	desc = dmaengine_prep_dma_cyclic(st->dma_st.dma_chan,
					 st->dma_st.rx_dma_buf,
					 st->dma_st.rx_buf_sz,
					 st->dma_st.rx_buf_sz / 2,
					 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT);

	if (!desc) {
		dev_err(&indio_dev->dev, "cannot prepare DMA cyclic\n");
		return -EBUSY;
	}

	desc->callback = at91_dma_buffer_done;
	desc->callback_param = indio_dev;

	cookie = dmaengine_submit(desc);
	ret = dma_submit_error(cookie);
	if (ret) {
		dev_err(&indio_dev->dev, "cannot submit DMA cyclic\n");
		dmaengine_terminate_async(st->dma_st.dma_chan);
		return ret;
	}

	/* enable general overrun error signaling */
	at91_adc_writel(st, IER, AT91_SAMA5D2_IER_GOVRE);
	/* Issue pending DMA requests */
	dma_async_issue_pending(st->dma_st.dma_chan);

	/* consider current time as DMA start time for timestamps */
	st->dma_st.dma_ts = iio_get_time_ns(indio_dev);

	dev_dbg(&indio_dev->dev, "DMA cyclic started\n");

	return 0;
}

static bool at91_adc_buffer_check_use_irq(struct iio_dev *indio,
					  struct at91_adc_state *st)
{
	/* if using DMA, we do not use our own IRQ (we use DMA-controller) */
	if (st->dma_st.dma_chan)
		return false;
	/* if the trigger is not ours, then it has its own IRQ */
	if (iio_trigger_validate_own_device(indio->trig, indio))
		return false;
	return true;
}

static bool at91_adc_current_chan_is_touch(struct iio_dev *indio_dev)
{
	struct at91_adc_state *st = iio_priv(indio_dev);

	return !!bitmap_subset(indio_dev->active_scan_mask,
			       &st->touch_st.channels_bitmask,
			       st->soc_info.platform->max_index + 1);
}

static int at91_adc_buffer_prepare(struct iio_dev *indio_dev)
{
	int ret;
	u8 bit;
	struct at91_adc_state *st = iio_priv(indio_dev);

	/* check if we are enabling triggered buffer or the touchscreen */
	if (at91_adc_current_chan_is_touch(indio_dev))
		return at91_adc_configure_touch(st, true);

	/* if we are not in triggered mode, we cannot enable the buffer. */
	if (!(iio_device_get_current_mode(indio_dev) & INDIO_ALL_TRIGGERED_MODES))
		return -EINVAL;

	ret = pm_runtime_resume_and_get(st->dev);
	if (ret < 0)
		return ret;

	/* we continue with the triggered buffer */
	ret = at91_adc_dma_start(indio_dev);
	if (ret) {
		dev_err(&indio_dev->dev, "buffer prepare failed\n");
		goto pm_runtime_put;
	}

	for_each_set_bit(bit, indio_dev->active_scan_mask,
			 indio_dev->num_channels) {
		struct iio_chan_spec const *chan =
					at91_adc_chan_get(indio_dev, bit);
		if (!chan)
			continue;
		/* these channel types cannot be handled by this trigger */
		if (chan->type == IIO_POSITIONRELATIVE ||
		    chan->type == IIO_PRESSURE ||
		    chan->type == IIO_TEMP)
			continue;

		at91_adc_cor(st, chan);

		at91_adc_writel(st, CHER, BIT(chan->channel));
	}

	if (at91_adc_buffer_check_use_irq(indio_dev, st))
		at91_adc_writel(st, IER, AT91_SAMA5D2_IER_DRDY);

pm_runtime_put:
	pm_runtime_mark_last_busy(st->dev);
	pm_runtime_put_autosuspend(st->dev);
	return ret;
}

static int at91_adc_buffer_postdisable(struct iio_dev *indio_dev)
{
	struct at91_adc_state *st = iio_priv(indio_dev);
	int ret;
	u8 bit;

	/* check if we are disabling triggered buffer or the touchscreen */
	if (at91_adc_current_chan_is_touch(indio_dev))
		return at91_adc_configure_touch(st, false);

	/* if we are not in triggered mode, nothing to do here */
	if (!(iio_device_get_current_mode(indio_dev) & INDIO_ALL_TRIGGERED_MODES))
		return -EINVAL;

	ret = pm_runtime_resume_and_get(st->dev);
	if (ret < 0)
		return ret;

	/*
	 * For each enable channel we must disable it in hardware.
	 * In the case of DMA, we must read the last converted value
	 * to clear EOC status and not get a possible interrupt later.
	 * This value is being read by DMA from LCDR anyway, so it's not lost.
	 */
	for_each_set_bit(bit, indio_dev->active_scan_mask,
			 indio_dev->num_channels) {
		struct iio_chan_spec const *chan =
					at91_adc_chan_get(indio_dev, bit);

		if (!chan)
			continue;
		/* these channel types are virtual, no need to do anything */
		if (chan->type == IIO_POSITIONRELATIVE ||
		    chan->type == IIO_PRESSURE ||
		    chan->type == IIO_TEMP)
			continue;

		at91_adc_writel(st, CHDR, BIT(chan->channel));

		if (st->dma_st.dma_chan)
			at91_adc_read_chan(st, chan->address);
	}

	if (at91_adc_buffer_check_use_irq(indio_dev, st))
		at91_adc_writel(st, IDR, AT91_SAMA5D2_IER_DRDY);

	/* read overflow register to clear possible overflow status */
	at91_adc_readl(st, OVER);

	/* if we are using DMA we must clear registers and end DMA */
	if (st->dma_st.dma_chan)
		dmaengine_terminate_sync(st->dma_st.dma_chan);

	pm_runtime_mark_last_busy(st->dev);
	pm_runtime_put_autosuspend(st->dev);

	return 0;
}

static const struct iio_buffer_setup_ops at91_buffer_setup_ops = {
	.postdisable = &at91_adc_buffer_postdisable,
};

static struct iio_trigger *at91_adc_allocate_trigger(struct iio_dev *indio,
						     char *trigger_name)
{
	struct iio_trigger *trig;
	int ret;

	trig = devm_iio_trigger_alloc(&indio->dev, "%s-dev%d-%s", indio->name,
				iio_device_id(indio), trigger_name);
	if (!trig)
		return ERR_PTR(-ENOMEM);

	trig->dev.parent = indio->dev.parent;
	iio_trigger_set_drvdata(trig, indio);
	trig->ops = &at91_adc_trigger_ops;

	ret = devm_iio_trigger_register(&indio->dev, trig);
	if (ret)
		return ERR_PTR(ret);

	return trig;
}

static void at91_adc_trigger_handler_nodma(struct iio_dev *indio_dev,
					   struct iio_poll_func *pf)
{
	struct at91_adc_state *st = iio_priv(indio_dev);
	int i = 0;
	int val;
	u8 bit;
	u32 mask = at91_adc_active_scan_mask_to_reg(indio_dev);
	unsigned int timeout = 50;
	u32 status, imr, eoc = 0, eoc_imr;

	/*
	 * Check if the conversion is ready. If not, wait a little bit, and
	 * in case of timeout exit with an error.
	 */
	while (((eoc & mask) != mask) && timeout) {
		at91_adc_irq_status(st, &status, &eoc);
		at91_adc_irq_mask(st, &imr, &eoc_imr);
		usleep_range(50, 100);
		timeout--;
	}

	/* Cannot read data, not ready. Continue without reporting data */
	if (!timeout)
		return;

	for_each_set_bit(bit, indio_dev->active_scan_mask,
			 indio_dev->num_channels) {
		struct iio_chan_spec const *chan =
					at91_adc_chan_get(indio_dev, bit);

		if (!chan)
			continue;
		/*
		 * Our external trigger only supports the voltage channels.
		 * In case someone requested a different type of channel
		 * just put zeroes to buffer.
		 * This should not happen because we check the scan mode
		 * and scan mask when we enable the buffer, and we don't allow
		 * the buffer to start with a mixed mask (voltage and something
		 * else).
		 * Thus, emit a warning.
		 */
		if (chan->type == IIO_VOLTAGE) {
			val = at91_adc_read_chan(st, chan->address);
			at91_adc_adjust_val_osr(st, &val);
			st->buffer[i] = val;
		} else {
			st->buffer[i] = 0;
			WARN(true, "This trigger cannot handle this type of channel");
		}
		i++;
	}
	iio_push_to_buffers_with_timestamp(indio_dev, st->buffer,
					   pf->timestamp);
}

static void at91_adc_trigger_handler_dma(struct iio_dev *indio_dev)
{
	struct at91_adc_state *st = iio_priv(indio_dev);
	int transferred_len = at91_adc_dma_size_done(st);
	s64 ns = iio_get_time_ns(indio_dev);
	s64 interval;
	int sample_index = 0, sample_count, sample_size;

	u32 status = at91_adc_readl(st, ISR);
	/* if we reached this point, we cannot sample faster */
	if (status & AT91_SAMA5D2_IER_GOVRE)
		pr_info_ratelimited("%s: conversion overrun detected\n",
				    indio_dev->name);

	sample_size = div_s64(st->dma_st.rx_buf_sz, st->dma_st.watermark);

	sample_count = div_s64(transferred_len, sample_size);

	/*
	 * interval between samples is total time since last transfer handling
	 * divided by the number of samples (total size divided by sample size)
	 */
	interval = div_s64((ns - st->dma_st.dma_ts), sample_count);

	while (transferred_len >= sample_size) {
		/*
		 * for all the values in the current sample,
		 * adjust the values inside the buffer for oversampling
		 */
		at91_adc_adjust_val_osr_array(st,
					&st->dma_st.rx_buf[st->dma_st.buf_idx],
					sample_size);

		iio_push_to_buffers_with_timestamp(indio_dev,
				(st->dma_st.rx_buf + st->dma_st.buf_idx),
				(st->dma_st.dma_ts + interval * sample_index));
		/* adjust remaining length */
		transferred_len -= sample_size;
		/* adjust buffer index */
		st->dma_st.buf_idx += sample_size;
		/* in case of reaching end of buffer, reset index */
		if (st->dma_st.buf_idx >= st->dma_st.rx_buf_sz)
			st->dma_st.buf_idx = 0;
		sample_index++;
	}
	/* adjust saved time for next transfer handling */
	st->dma_st.dma_ts = iio_get_time_ns(indio_dev);
}

static irqreturn_t at91_adc_trigger_handler(int irq, void *p)
{
	struct iio_poll_func *pf = p;
	struct iio_dev *indio_dev = pf->indio_dev;
	struct at91_adc_state *st = iio_priv(indio_dev);

	/*
	 * If it's not our trigger, start a conversion now, as we are
	 * actually polling the trigger now.
	 */
	if (iio_trigger_validate_own_device(indio_dev->trig, indio_dev))
		at91_adc_writel(st, CR, AT91_SAMA5D2_CR_START);

	if (st->dma_st.dma_chan)
		at91_adc_trigger_handler_dma(indio_dev);
	else
		at91_adc_trigger_handler_nodma(indio_dev, pf);

	iio_trigger_notify_done(indio_dev->trig);

	return IRQ_HANDLED;
}

static unsigned at91_adc_startup_time(unsigned startup_time_min,
				      unsigned adc_clk_khz)
{
	static const unsigned int startup_lookup[] = {
		  0,   8,  16,  24,
		 64,  80,  96, 112,
		512, 576, 640, 704,
		768, 832, 896, 960
		};
	unsigned ticks_min, i;

	/*
	 * Since the adc frequency is checked before, there is no reason
	 * to not meet the startup time constraint.
	 */

	ticks_min = startup_time_min * adc_clk_khz / 1000;
	for (i = 0; i < ARRAY_SIZE(startup_lookup); i++)
		if (startup_lookup[i] > ticks_min)
			break;

	return i;
}

static void at91_adc_setup_samp_freq(struct iio_dev *indio_dev, unsigned freq,
				     unsigned int startup_time,
				     unsigned int tracktim)
{
	struct at91_adc_state *st = iio_priv(indio_dev);
	unsigned f_per, prescal, startup, mr;
	int ret;

	f_per = clk_get_rate(st->per_clk);
	prescal = (f_per / (2 * freq)) - 1;

	startup = at91_adc_startup_time(startup_time, freq / 1000);

	ret = pm_runtime_resume_and_get(st->dev);
	if (ret < 0)
		return;

	mr = at91_adc_readl(st, MR);
	mr &= ~(AT91_SAMA5D2_MR_STARTUP_MASK | AT91_SAMA5D2_MR_PRESCAL_MASK);
	mr |= AT91_SAMA5D2_MR_STARTUP(startup);
	mr |= AT91_SAMA5D2_MR_PRESCAL(prescal);
	mr |= AT91_SAMA5D2_MR_TRACKTIM(tracktim);
	at91_adc_writel(st, MR, mr);

	pm_runtime_mark_last_busy(st->dev);
	pm_runtime_put_autosuspend(st->dev);

	dev_dbg(&indio_dev->dev, "freq: %u, startup: %u, prescal: %u, tracktim=%u\n",
		freq, startup, prescal, tracktim);
	st->current_sample_rate = freq;
}

static inline unsigned at91_adc_get_sample_freq(struct at91_adc_state *st)
{
	return st->current_sample_rate;
}

static void at91_adc_touch_data_handler(struct iio_dev *indio_dev)
{
	struct at91_adc_state *st = iio_priv(indio_dev);
	u8 bit;
	u16 val;
	int i = 0;

	for_each_set_bit(bit, indio_dev->active_scan_mask,
			 st->soc_info.platform->max_index + 1) {
		struct iio_chan_spec const *chan =
					 at91_adc_chan_get(indio_dev, bit);

		if (chan->type == IIO_POSITIONRELATIVE)
			at91_adc_read_position(st, chan->channel, &val);
		else if (chan->type == IIO_PRESSURE)
			at91_adc_read_pressure(st, chan->channel, &val);
		else
			continue;
		st->buffer[i] = val;
		i++;
	}
	/*
	 * Schedule work to push to buffers.
	 * This is intended to push to the callback buffer that another driver
	 * registered. We are still in a handler from our IRQ. If we push
	 * directly, it means the other driver has it's callback called
	 * from our IRQ context. Which is something we better avoid.
	 * Let's schedule it after our IRQ is completed.
	 */
	schedule_work(&st->touch_st.workq);
}

static void at91_adc_pen_detect_interrupt(struct at91_adc_state *st)
{
	at91_adc_writel(st, IDR, AT91_SAMA5D2_IER_PEN);
	at91_adc_writel(st, IER, AT91_SAMA5D2_IER_NOPEN |
			AT91_SAMA5D2_IER_XRDY | AT91_SAMA5D2_IER_YRDY |
			AT91_SAMA5D2_IER_PRDY);
	at91_adc_writel(st, TRGR, AT91_SAMA5D2_TRGR_TRGMOD_PERIODIC |
			AT91_SAMA5D2_TRGR_TRGPER(st->touch_st.sample_period_val));
	st->touch_st.touching = true;
}

static void at91_adc_no_pen_detect_interrupt(struct iio_dev *indio_dev)
{
	struct at91_adc_state *st = iio_priv(indio_dev);

	at91_adc_writel(st, TRGR, AT91_SAMA5D2_TRGR_TRGMOD_NO_TRIGGER);
	at91_adc_writel(st, IDR, AT91_SAMA5D2_IER_NOPEN |
			AT91_SAMA5D2_IER_XRDY | AT91_SAMA5D2_IER_YRDY |
			AT91_SAMA5D2_IER_PRDY);
	st->touch_st.touching = false;

	at91_adc_touch_data_handler(indio_dev);

	at91_adc_writel(st, IER, AT91_SAMA5D2_IER_PEN);
}

static void at91_adc_workq_handler(struct work_struct *workq)
{
	struct at91_adc_touch *touch_st = container_of(workq,
					struct at91_adc_touch, workq);
	struct at91_adc_state *st = container_of(touch_st,
					struct at91_adc_state, touch_st);
	struct iio_dev *indio_dev = st->indio_dev;

	iio_push_to_buffers(indio_dev, st->buffer);
}

static irqreturn_t at91_adc_interrupt(int irq, void *private)
{
	struct iio_dev *indio = private;
	struct at91_adc_state *st = iio_priv(indio);
	u32 status, eoc, imr, eoc_imr;
	u32 rdy_mask = AT91_SAMA5D2_IER_XRDY | AT91_SAMA5D2_IER_YRDY |
			AT91_SAMA5D2_IER_PRDY;

	at91_adc_irq_status(st, &status, &eoc);
	at91_adc_irq_mask(st, &imr, &eoc_imr);

	if (!(status & imr) && !(eoc & eoc_imr))
		return IRQ_NONE;
	if (status & AT91_SAMA5D2_IER_PEN) {
		/* pen detected IRQ */
		at91_adc_pen_detect_interrupt(st);
	} else if ((status & AT91_SAMA5D2_IER_NOPEN)) {
		/* nopen detected IRQ */
		at91_adc_no_pen_detect_interrupt(indio);
	} else if ((status & AT91_SAMA5D2_ISR_PENS) &&
		   ((status & rdy_mask) == rdy_mask)) {
		/* periodic trigger IRQ - during pen sense */
		at91_adc_touch_data_handler(indio);
	} else if (status & AT91_SAMA5D2_ISR_PENS) {
		/*
		 * touching, but the measurements are not ready yet.
		 * read and ignore.
		 */
		status = at91_adc_readl(st, XPOSR);
		status = at91_adc_readl(st, YPOSR);
		status = at91_adc_readl(st, PRESSR);
	} else if (iio_buffer_enabled(indio) &&
		   (status & AT91_SAMA5D2_IER_DRDY)) {
		/* triggered buffer without DMA */
		disable_irq_nosync(irq);
		iio_trigger_poll(indio->trig);
	} else if (iio_buffer_enabled(indio) && st->dma_st.dma_chan) {
		/* triggered buffer with DMA - should not happen */
		disable_irq_nosync(irq);
		WARN(true, "Unexpected irq occurred\n");
	} else if (!iio_buffer_enabled(indio)) {
		/* software requested conversion */
		st->conversion_value = at91_adc_read_chan(st, st->chan->address);
		st->conversion_done = true;
		wake_up_interruptible(&st->wq_data_available);
	}
	return IRQ_HANDLED;
}

/* This needs to be called with direct mode claimed and st->lock locked. */
static int at91_adc_read_info_raw(struct iio_dev *indio_dev,
				  struct iio_chan_spec const *chan, int *val)
{
	struct at91_adc_state *st = iio_priv(indio_dev);
	u16 tmp_val;
	int ret;

	ret = pm_runtime_resume_and_get(st->dev);
	if (ret < 0)
		return ret;

	/*
	 * Keep in mind that we cannot use software trigger or touchscreen
	 * if external trigger is enabled
	 */
	if (chan->type == IIO_POSITIONRELATIVE) {
		ret = at91_adc_read_position(st, chan->channel,
					     &tmp_val);
		*val = tmp_val;
		if (ret > 0)
			ret = at91_adc_adjust_val_osr(st, val);

		goto pm_runtime_put;
	}
	if (chan->type == IIO_PRESSURE) {
		ret = at91_adc_read_pressure(st, chan->channel,
					     &tmp_val);
		*val = tmp_val;
		if (ret > 0)
			ret = at91_adc_adjust_val_osr(st, val);

		goto pm_runtime_put;
	}

	/* in this case we have a voltage or temperature channel */

	st->chan = chan;

	at91_adc_cor(st, chan);
	at91_adc_writel(st, CHER, BIT(chan->channel));
	/*
	 * TEMPMR.TEMPON needs to update after CHER otherwise if none
	 * of the channels are enabled and TEMPMR.TEMPON = 1 will
	 * trigger DRDY interruption while preparing for temperature read.
	 */
	if (chan->type == IIO_TEMP)
		at91_adc_writel(st, TEMPMR, AT91_SAMA5D2_TEMPMR_TEMPON);
	at91_adc_eoc_ena(st, chan->channel);
	at91_adc_writel(st, CR, AT91_SAMA5D2_CR_START);

	ret = wait_event_interruptible_timeout(st->wq_data_available,
					       st->conversion_done,
					       msecs_to_jiffies(1000));
	if (ret == 0)
		ret = -ETIMEDOUT;

	if (ret > 0) {
		*val = st->conversion_value;
		ret = at91_adc_adjust_val_osr(st, val);
		if (chan->scan_type.sign == 's')
			*val = sign_extend32(*val,
					     chan->scan_type.realbits - 1);
		st->conversion_done = false;
	}

	at91_adc_eoc_dis(st, st->chan->channel);
	if (chan->type == IIO_TEMP)
		at91_adc_writel(st, TEMPMR, 0U);
	at91_adc_writel(st, CHDR, BIT(chan->channel));

	/* Needed to ACK the DRDY interruption */
	at91_adc_readl(st, LCDR);

pm_runtime_put:
	pm_runtime_mark_last_busy(st->dev);
	pm_runtime_put_autosuspend(st->dev);
	return ret;
}

static int at91_adc_read_info_locked(struct iio_dev *indio_dev,
				     struct iio_chan_spec const *chan, int *val)
{
	struct at91_adc_state *st = iio_priv(indio_dev);
	int ret;

	ret = iio_device_claim_direct_mode(indio_dev);
	if (ret)
		return ret;

	mutex_lock(&st->lock);
	ret = at91_adc_read_info_raw(indio_dev, chan, val);
	mutex_unlock(&st->lock);

	iio_device_release_direct_mode(indio_dev);

	return ret;
}

static void at91_adc_temp_sensor_configure(struct at91_adc_state *st,
					   bool start)
{
	u32 sample_rate, oversampling_ratio;
	u32 startup_time, tracktim, trackx;

	if (start) {
		/*
		 * Configure the sensor for best accuracy: 10MHz frequency,
		 * oversampling rate of 256, tracktim=0xf and trackx=1.
		 */
		sample_rate = 10 * MEGA;
		oversampling_ratio = 256;
		startup_time = AT91_SAMA5D2_MR_STARTUP_TS_MIN;
		tracktim = AT91_SAMA5D2_MR_TRACKTIM_TS;
		trackx = AT91_SAMA5D2_TRACKX_TS;

		st->temp_st.saved_sample_rate = st->current_sample_rate;
		st->temp_st.saved_oversampling = st->oversampling_ratio;
	} else {
		/* Go back to previous settings. */
		sample_rate = st->temp_st.saved_sample_rate;
		oversampling_ratio = st->temp_st.saved_oversampling;
		startup_time = st->soc_info.startup_time;
		tracktim = 0;
		trackx = 0;
	}

	at91_adc_setup_samp_freq(st->indio_dev, sample_rate, startup_time,
				 tracktim);
	at91_adc_config_emr(st, oversampling_ratio, trackx);
}

static int at91_adc_read_temp(struct iio_dev *indio_dev,
			      struct iio_chan_spec const *chan, int *val)
{
	struct at91_adc_state *st = iio_priv(indio_dev);
	struct at91_adc_temp_sensor_clb *clb = &st->soc_info.temp_sensor_clb;
	u64 div1, div2;
	u32 tmp;
	int ret, vbg, vtemp;

	ret = iio_device_claim_direct_mode(indio_dev);
	if (ret)
		return ret;
	mutex_lock(&st->lock);

	ret = pm_runtime_resume_and_get(st->dev);
	if (ret < 0)
		goto unlock;

	at91_adc_temp_sensor_configure(st, true);

	/* Read VBG. */
	tmp = at91_adc_readl(st, ACR);
	tmp |= AT91_SAMA5D2_ACR_SRCLCH;
	at91_adc_writel(st, ACR, tmp);
	ret = at91_adc_read_info_raw(indio_dev, chan, &vbg);
	if (ret < 0)
		goto restore_config;

	/* Read VTEMP. */
	tmp &= ~AT91_SAMA5D2_ACR_SRCLCH;
	at91_adc_writel(st, ACR, tmp);
	ret = at91_adc_read_info_raw(indio_dev, chan, &vtemp);

restore_config:
	/* Revert previous settings. */
	at91_adc_temp_sensor_configure(st, false);
	pm_runtime_mark_last_busy(st->dev);
	pm_runtime_put_autosuspend(st->dev);
unlock:
	mutex_unlock(&st->lock);
	iio_device_release_direct_mode(indio_dev);
	if (ret < 0)
		return ret;

	/*
	 * Temp[milli] = p1[milli] + (vtemp * clb->p6 - clb->p4 * vbg)/
	 *			     (vbg * AT91_ADC_TS_VTEMP_DT)
	 */
	div1 = DIV_ROUND_CLOSEST_ULL(((u64)vtemp * clb->p6), vbg);
	div1 = DIV_ROUND_CLOSEST_ULL((div1 * 1000), AT91_ADC_TS_VTEMP_DT);
	div2 = DIV_ROUND_CLOSEST_ULL((u64)clb->p4, AT91_ADC_TS_VTEMP_DT);
	div2 *= 1000;
	*val = clb->p1 + (int)div1 - (int)div2;

	return ret;
}

static int at91_adc_read_raw(struct iio_dev *indio_dev,
			     struct iio_chan_spec const *chan,
			     int *val, int *val2, long mask)
{
	struct at91_adc_state *st = iio_priv(indio_dev);

	switch (mask) {
	case IIO_CHAN_INFO_RAW:
		return at91_adc_read_info_locked(indio_dev, chan, val);

	case IIO_CHAN_INFO_SCALE:
		*val = st->vref_uv / 1000;
		if (chan->differential)
			*val *= 2;
		*val2 = chan->scan_type.realbits;
		return IIO_VAL_FRACTIONAL_LOG2;

	case IIO_CHAN_INFO_PROCESSED:
		if (chan->type != IIO_TEMP)
			return -EINVAL;
		return at91_adc_read_temp(indio_dev, chan, val);

	case IIO_CHAN_INFO_SAMP_FREQ:
		*val = at91_adc_get_sample_freq(st);
		return IIO_VAL_INT;

	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
		*val = st->oversampling_ratio;
		return IIO_VAL_INT;

	default:
		return -EINVAL;
	}
}

static int at91_adc_write_raw(struct iio_dev *indio_dev,
			      struct iio_chan_spec const *chan,
			      int val, int val2, long mask)
{
	struct at91_adc_state *st = iio_priv(indio_dev);
	int ret;

	switch (mask) {
	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
		/* if no change, optimize out */
		if (val == st->oversampling_ratio)
			return 0;

		ret = iio_device_claim_direct_mode(indio_dev);
		if (ret)
			return ret;
		mutex_lock(&st->lock);
		/* update ratio */
		ret = at91_adc_config_emr(st, val, 0);
		mutex_unlock(&st->lock);
		iio_device_release_direct_mode(indio_dev);
		return ret;
	case IIO_CHAN_INFO_SAMP_FREQ:
		if (val < st->soc_info.min_sample_rate ||
		    val > st->soc_info.max_sample_rate)
			return -EINVAL;

		ret = iio_device_claim_direct_mode(indio_dev);
		if (ret)
			return ret;
		mutex_lock(&st->lock);
		at91_adc_setup_samp_freq(indio_dev, val,
					 st->soc_info.startup_time, 0);
		mutex_unlock(&st->lock);
		iio_device_release_direct_mode(indio_dev);
		return 0;
	default:
		return -EINVAL;
	}
}

static int at91_adc_read_avail(struct iio_dev *indio_dev,
			       struct iio_chan_spec const *chan,
			       const int **vals, int *type, int *length,
			       long mask)
{
	struct at91_adc_state *st = iio_priv(indio_dev);

	switch (mask) {
	case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
		*vals = (int *)st->soc_info.platform->oversampling_avail;
		*type = IIO_VAL_INT;
		*length = st->soc_info.platform->oversampling_avail_no;
		return IIO_AVAIL_LIST;
	default:
		return -EINVAL;
	}
}

static void at91_adc_dma_init(struct at91_adc_state *st)
{
	struct device *dev = &st->indio_dev->dev;
	struct dma_slave_config config = {0};
	/* we have 2 bytes for each channel */
	unsigned int sample_size = st->soc_info.platform->nr_channels * 2;
	/*
	 * We make the buffer double the size of the fifo,
	 * such that DMA uses one half of the buffer (full fifo size)
	 * and the software uses the other half to read/write.
	 */
	unsigned int pages = DIV_ROUND_UP(AT91_HWFIFO_MAX_SIZE *
					  sample_size * 2, PAGE_SIZE);

	if (st->dma_st.dma_chan)
		return;

	st->dma_st.dma_chan = dma_request_chan(dev, "rx");
	if (IS_ERR(st->dma_st.dma_chan))  {
		dev_info(dev, "can't get DMA channel\n");
		st->dma_st.dma_chan = NULL;
		goto dma_exit;
	}

	st->dma_st.rx_buf = dma_alloc_coherent(st->dma_st.dma_chan->device->dev,
					       pages * PAGE_SIZE,
					       &st->dma_st.rx_dma_buf,
					       GFP_KERNEL);
	if (!st->dma_st.rx_buf) {
		dev_info(dev, "can't allocate coherent DMA area\n");
		goto dma_chan_disable;
	}

	/* Configure DMA channel to read data register */
	config.direction = DMA_DEV_TO_MEM;
	config.src_addr = (phys_addr_t)(st->dma_st.phys_addr
			  + st->soc_info.platform->layout->LCDR);
	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
	config.src_maxburst = 1;
	config.dst_maxburst = 1;

	if (dmaengine_slave_config(st->dma_st.dma_chan, &config)) {
		dev_info(dev, "can't configure DMA slave\n");
		goto dma_free_area;
	}

	dev_info(dev, "using %s for rx DMA transfers\n",
		 dma_chan_name(st->dma_st.dma_chan));

	return;

dma_free_area:
	dma_free_coherent(st->dma_st.dma_chan->device->dev, pages * PAGE_SIZE,
			  st->dma_st.rx_buf, st->dma_st.rx_dma_buf);
dma_chan_disable:
	dma_release_channel(st->dma_st.dma_chan);
	st->dma_st.dma_chan = NULL;
dma_exit:
	dev_info(dev, "continuing without DMA support\n");
}

static void at91_adc_dma_disable(struct at91_adc_state *st)
{
	struct device *dev = &st->indio_dev->dev;
	/* we have 2 bytes for each channel */
	unsigned int sample_size = st->soc_info.platform->nr_channels * 2;
	unsigned int pages = DIV_ROUND_UP(AT91_HWFIFO_MAX_SIZE *
					  sample_size * 2, PAGE_SIZE);

	/* if we are not using DMA, just return */
	if (!st->dma_st.dma_chan)
		return;

	/* wait for all transactions to be terminated first*/
	dmaengine_terminate_sync(st->dma_st.dma_chan);

	dma_free_coherent(st->dma_st.dma_chan->device->dev, pages * PAGE_SIZE,
			  st->dma_st.rx_buf, st->dma_st.rx_dma_buf);
	dma_release_channel(st->dma_st.dma_chan);
	st->dma_st.dma_chan = NULL;

	dev_info(dev, "continuing without DMA support\n");
}

static int at91_adc_set_watermark(struct iio_dev *indio_dev, unsigned int val)
{
	struct at91_adc_state *st = iio_priv(indio_dev);
	int ret;

	if (val > AT91_HWFIFO_MAX_SIZE)
		val = AT91_HWFIFO_MAX_SIZE;

	if (!st->selected_trig->hw_trig) {
		dev_dbg(&indio_dev->dev, "we need hw trigger for DMA\n");
		return 0;
	}

	dev_dbg(&indio_dev->dev, "new watermark is %u\n", val);
	st->dma_st.watermark = val;

	/*
	 * The logic here is: if we have watermark 1, it means we do
	 * each conversion with it's own IRQ, thus we don't need DMA.
	 * If the watermark is higher, we do DMA to do all the transfers in bulk
	 */

	if (val == 1)
		at91_adc_dma_disable(st);
	else if (val > 1)
		at91_adc_dma_init(st);

	/*
	 * We can start the DMA only after setting the watermark and
	 * having the DMA initialization completed
	 */
	ret = at91_adc_buffer_prepare(indio_dev);
	if (ret)
		at91_adc_dma_disable(st);

	return ret;
}

static int at91_adc_update_scan_mode(struct iio_dev *indio_dev,
				     const unsigned long *scan_mask)
{
	struct at91_adc_state *st = iio_priv(indio_dev);

	if (bitmap_subset(scan_mask, &st->touch_st.channels_bitmask,
			  st->soc_info.platform->max_index + 1))
		return 0;
	/*
	 * if the new bitmap is a combination of touchscreen and regular
	 * channels, then we are not fine
	 */
	if (bitmap_intersects(&st->touch_st.channels_bitmask, scan_mask,
			      st->soc_info.platform->max_index + 1))
		return -EINVAL;
	return 0;
}

static void at91_adc_hw_init(struct iio_dev *indio_dev)
{
	struct at91_adc_state *st = iio_priv(indio_dev);

	at91_adc_writel(st, CR, AT91_SAMA5D2_CR_SWRST);
	if (st->soc_info.platform->layout->EOC_IDR)
		at91_adc_writel(st, EOC_IDR, 0xffffffff);
	at91_adc_writel(st, IDR, 0xffffffff);
	/*
	 * Transfer field must be set to 2 according to the datasheet and
	 * allows different analog settings for each channel.
	 */
	at91_adc_writel(st, MR,
			AT91_SAMA5D2_MR_TRANSFER(2) | AT91_SAMA5D2_MR_ANACH);

	at91_adc_setup_samp_freq(indio_dev, st->soc_info.min_sample_rate,
				 st->soc_info.startup_time, 0);

	/* configure extended mode register */
	at91_adc_config_emr(st, st->oversampling_ratio, 0);
}

static ssize_t at91_adc_get_fifo_state(struct device *dev,
				       struct device_attribute *attr, char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct at91_adc_state *st = iio_priv(indio_dev);

	return sysfs_emit(buf, "%d\n", !!st->dma_st.dma_chan);
}

static ssize_t at91_adc_get_watermark(struct device *dev,
				      struct device_attribute *attr, char *buf)
{
	struct iio_dev *indio_dev = dev_to_iio_dev(dev);
	struct at91_adc_state *st = iio_priv(indio_dev);

	return sysfs_emit(buf, "%d\n", st->dma_st.watermark);
}

static IIO_DEVICE_ATTR(hwfifo_enabled, 0444,
		       at91_adc_get_fifo_state, NULL, 0);
static IIO_DEVICE_ATTR(hwfifo_watermark, 0444,
		       at91_adc_get_watermark, NULL, 0);

IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_min, "2");
IIO_STATIC_CONST_DEVICE_ATTR(hwfifo_watermark_max, AT91_HWFIFO_MAX_SIZE_STR);

static const struct iio_dev_attr *at91_adc_fifo_attributes[] = {
	&iio_dev_attr_hwfifo_watermark_min,
	&iio_dev_attr_hwfifo_watermark_max,
	&iio_dev_attr_hwfifo_watermark,
	&iio_dev_attr_hwfifo_enabled,
	NULL,
};

static const struct iio_info at91_adc_info = {
	.read_avail = &at91_adc_read_avail,
	.read_raw = &at91_adc_read_raw,
	.write_raw = &at91_adc_write_raw,
	.update_scan_mode = &at91_adc_update_scan_mode,
	.fwnode_xlate = &at91_adc_fwnode_xlate,
	.hwfifo_set_watermark = &at91_adc_set_watermark,
};

static int at91_adc_buffer_and_trigger_init(struct device *dev,
					    struct iio_dev *indio)
{
	struct at91_adc_state *st = iio_priv(indio);
	const struct iio_dev_attr **fifo_attrs;
	int ret;

	if (st->selected_trig->hw_trig)
		fifo_attrs = at91_adc_fifo_attributes;
	else
		fifo_attrs = NULL;

	ret = devm_iio_triggered_buffer_setup_ext(&indio->dev, indio,
		&iio_pollfunc_store_time, &at91_adc_trigger_handler,
		IIO_BUFFER_DIRECTION_IN, &at91_buffer_setup_ops, fifo_attrs);
	if (ret < 0) {
		dev_err(dev, "couldn't initialize the buffer.\n");
		return ret;
	}

	if (!st->selected_trig->hw_trig)
		return 0;

	st->trig = at91_adc_allocate_trigger(indio, st->selected_trig->name);
	if (IS_ERR(st->trig)) {
		dev_err(dev, "could not allocate trigger\n");
		return PTR_ERR(st->trig);
	}

	/*
	 * Initially the iio buffer has a length of 2 and
	 * a watermark of 1
	 */
	st->dma_st.watermark = 1;

	return 0;
}

static int at91_adc_temp_sensor_init(struct at91_adc_state *st,
				     struct device *dev)
{
	struct at91_adc_temp_sensor_clb *clb = &st->soc_info.temp_sensor_clb;
	struct nvmem_cell *temp_calib;
	u32 *buf;
	size_t len;
	int ret = 0;

	if (!st->soc_info.platform->temp_sensor)
		return 0;

	/* Get the calibration data from NVMEM. */
	temp_calib = devm_nvmem_cell_get(dev, "temperature_calib");
	if (IS_ERR(temp_calib)) {
		ret = PTR_ERR(temp_calib);
		if (ret != -ENOENT)
			dev_err(dev, "Failed to get temperature_calib cell!\n");
		return ret;
	}

	buf = nvmem_cell_read(temp_calib, &len);
	if (IS_ERR(buf)) {
		dev_err(dev, "Failed to read calibration data!\n");
		return PTR_ERR(buf);
	}
	if (len < AT91_ADC_TS_CLB_IDX_MAX * 4) {
		dev_err(dev, "Invalid calibration data!\n");
		ret = -EINVAL;
		goto free_buf;
	}

	/* Store calibration data for later use. */
	clb->p1 = buf[AT91_ADC_TS_CLB_IDX_P1];
	clb->p4 = buf[AT91_ADC_TS_CLB_IDX_P4];
	clb->p6 = buf[AT91_ADC_TS_CLB_IDX_P6];

	/*
	 * We prepare here the conversion to milli to avoid doing it on hotpath.
	 */
	clb->p1 = clb->p1 * 1000;

free_buf:
	kfree(buf);
	return ret;
}

static int at91_adc_probe(struct platform_device *pdev)
{
	struct device *dev = &pdev->dev;
	struct iio_dev *indio_dev;
	struct at91_adc_state *st;
	struct resource	*res;
	int ret, i, num_channels;
	u32 edge_type = IRQ_TYPE_NONE;

	indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*st));
	if (!indio_dev)
		return -ENOMEM;

	st = iio_priv(indio_dev);
	st->indio_dev = indio_dev;

	st->soc_info.platform = device_get_match_data(dev);

	ret = at91_adc_temp_sensor_init(st, &pdev->dev);
	/* Don't register temperature channel if initialization failed. */
	if (ret)
		num_channels = st->soc_info.platform->max_channels - 1;
	else
		num_channels = st->soc_info.platform->max_channels;

	indio_dev->name = dev_name(&pdev->dev);
	indio_dev->modes = INDIO_DIRECT_MODE | INDIO_BUFFER_SOFTWARE;
	indio_dev->info = &at91_adc_info;
	indio_dev->channels = *st->soc_info.platform->adc_channels;
	indio_dev->num_channels = num_channels;

	bitmap_set(&st->touch_st.channels_bitmask,
		   st->soc_info.platform->touch_chan_x, 1);
	bitmap_set(&st->touch_st.channels_bitmask,
		   st->soc_info.platform->touch_chan_y, 1);
	bitmap_set(&st->touch_st.channels_bitmask,
		   st->soc_info.platform->touch_chan_p, 1);

	st->oversampling_ratio = 1;

	ret = device_property_read_u32(dev, "atmel,min-sample-rate-hz",
				       &st->soc_info.min_sample_rate);
	if (ret) {
		dev_err(&pdev->dev,
			"invalid or missing value for atmel,min-sample-rate-hz\n");
		return ret;
	}

	ret = device_property_read_u32(dev, "atmel,max-sample-rate-hz",
				       &st->soc_info.max_sample_rate);
	if (ret) {
		dev_err(&pdev->dev,
			"invalid or missing value for atmel,max-sample-rate-hz\n");
		return ret;
	}

	ret = device_property_read_u32(dev, "atmel,startup-time-ms",
				       &st->soc_info.startup_time);
	if (ret) {
		dev_err(&pdev->dev,
			"invalid or missing value for atmel,startup-time-ms\n");
		return ret;
	}

	ret = device_property_read_u32(dev, "atmel,trigger-edge-type",
				       &edge_type);
	if (ret) {
		dev_dbg(&pdev->dev,
			"atmel,trigger-edge-type not specified, only software trigger available\n");
	}

	st->selected_trig = NULL;

	/* find the right trigger, or no trigger at all */
	for (i = 0; i < st->soc_info.platform->hw_trig_cnt + 1; i++)
		if (at91_adc_trigger_list[i].edge_type == edge_type) {
			st->selected_trig = &at91_adc_trigger_list[i];
			break;
		}

	if (!st->selected_trig) {
		dev_err(&pdev->dev, "invalid external trigger edge value\n");
		return -EINVAL;
	}

	init_waitqueue_head(&st->wq_data_available);
	mutex_init(&st->lock);
	INIT_WORK(&st->touch_st.workq, at91_adc_workq_handler);

	st->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
	if (IS_ERR(st->base))
		return PTR_ERR(st->base);

	/* if we plan to use DMA, we need the physical address of the regs */
	st->dma_st.phys_addr = res->start;

	st->irq = platform_get_irq(pdev, 0);
	if (st->irq < 0)
		return st->irq;

	st->per_clk = devm_clk_get(&pdev->dev, "adc_clk");
	if (IS_ERR(st->per_clk))
		return PTR_ERR(st->per_clk);

	st->reg = devm_regulator_get(&pdev->dev, "vddana");
	if (IS_ERR(st->reg))
		return PTR_ERR(st->reg);

	st->vref = devm_regulator_get(&pdev->dev, "vref");
	if (IS_ERR(st->vref))
		return PTR_ERR(st->vref);

	ret = devm_request_irq(&pdev->dev, st->irq, at91_adc_interrupt, 0,
			       pdev->dev.driver->name, indio_dev);
	if (ret)
		return ret;

	ret = regulator_enable(st->reg);
	if (ret)
		return ret;

	ret = regulator_enable(st->vref);
	if (ret)
		goto reg_disable;

	st->vref_uv = regulator_get_voltage(st->vref);
	if (st->vref_uv <= 0) {
		ret = -EINVAL;
		goto vref_disable;
	}

	ret = clk_prepare_enable(st->per_clk);
	if (ret)
		goto vref_disable;

	platform_set_drvdata(pdev, indio_dev);
	st->dev = &pdev->dev;
	pm_runtime_set_autosuspend_delay(st->dev, 500);
	pm_runtime_use_autosuspend(st->dev);
	pm_runtime_set_active(st->dev);
	pm_runtime_enable(st->dev);
	pm_runtime_get_noresume(st->dev);

	at91_adc_hw_init(indio_dev);

	ret = at91_adc_buffer_and_trigger_init(&pdev->dev, indio_dev);
	if (ret < 0)
		goto err_pm_disable;

	if (dma_coerce_mask_and_coherent(&indio_dev->dev, DMA_BIT_MASK(32)))
		dev_info(&pdev->dev, "cannot set DMA mask to 32-bit\n");

	ret = iio_device_register(indio_dev);
	if (ret < 0)
		goto dma_disable;

	if (st->selected_trig->hw_trig)
		dev_info(&pdev->dev, "setting up trigger as %s\n",
			 st->selected_trig->name);

	dev_info(&pdev->dev, "version: %x\n",
		 readl_relaxed(st->base + st->soc_info.platform->layout->VERSION));

	pm_runtime_mark_last_busy(st->dev);
	pm_runtime_put_autosuspend(st->dev);

	return 0;

dma_disable:
	at91_adc_dma_disable(st);
err_pm_disable:
	pm_runtime_put_noidle(st->dev);
	pm_runtime_disable(st->dev);
	pm_runtime_set_suspended(st->dev);
	pm_runtime_dont_use_autosuspend(st->dev);
	clk_disable_unprepare(st->per_clk);
vref_disable:
	regulator_disable(st->vref);
reg_disable:
	regulator_disable(st->reg);
	return ret;
}

static void at91_adc_remove(struct platform_device *pdev)
{
	struct iio_dev *indio_dev = platform_get_drvdata(pdev);
	struct at91_adc_state *st = iio_priv(indio_dev);

	iio_device_unregister(indio_dev);

	at91_adc_dma_disable(st);

	pm_runtime_disable(st->dev);
	pm_runtime_set_suspended(st->dev);
	clk_disable_unprepare(st->per_clk);

	regulator_disable(st->vref);
	regulator_disable(st->reg);
}

static int at91_adc_suspend(struct device *dev)
{
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
	struct at91_adc_state *st = iio_priv(indio_dev);
	int ret;

	ret = pm_runtime_resume_and_get(st->dev);
	if (ret < 0)
		return ret;

	if (iio_buffer_enabled(indio_dev))
		at91_adc_buffer_postdisable(indio_dev);

	/*
	 * Do a sofware reset of the ADC before we go to suspend.
	 * this will ensure that all pins are free from being muxed by the ADC
	 * and can be used by for other devices.
	 * Otherwise, ADC will hog them and we can't go to suspend mode.
	 */
	at91_adc_writel(st, CR, AT91_SAMA5D2_CR_SWRST);

	pm_runtime_mark_last_busy(st->dev);
	pm_runtime_put_noidle(st->dev);
	clk_disable_unprepare(st->per_clk);
	regulator_disable(st->vref);
	regulator_disable(st->reg);

	return pinctrl_pm_select_sleep_state(dev);
}

static int at91_adc_resume(struct device *dev)
{
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
	struct at91_adc_state *st = iio_priv(indio_dev);
	int ret;

	ret = pinctrl_pm_select_default_state(dev);
	if (ret)
		goto resume_failed;

	ret = regulator_enable(st->reg);
	if (ret)
		goto resume_failed;

	ret = regulator_enable(st->vref);
	if (ret)
		goto reg_disable_resume;

	ret = clk_prepare_enable(st->per_clk);
	if (ret)
		goto vref_disable_resume;

	pm_runtime_get_noresume(st->dev);

	at91_adc_hw_init(indio_dev);

	/* reconfiguring trigger hardware state */
	if (iio_buffer_enabled(indio_dev)) {
		ret = at91_adc_buffer_prepare(indio_dev);
		if (ret)
			goto pm_runtime_put;

		at91_adc_configure_trigger_registers(st, true);
	}

	pm_runtime_mark_last_busy(st->dev);
	pm_runtime_put_autosuspend(st->dev);

	return 0;

pm_runtime_put:
	pm_runtime_mark_last_busy(st->dev);
	pm_runtime_put_noidle(st->dev);
	clk_disable_unprepare(st->per_clk);
vref_disable_resume:
	regulator_disable(st->vref);
reg_disable_resume:
	regulator_disable(st->reg);
resume_failed:
	dev_err(&indio_dev->dev, "failed to resume\n");
	return ret;
}

static int at91_adc_runtime_suspend(struct device *dev)
{
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
	struct at91_adc_state *st = iio_priv(indio_dev);

	clk_disable(st->per_clk);

	return 0;
}

static int at91_adc_runtime_resume(struct device *dev)
{
	struct iio_dev *indio_dev = dev_get_drvdata(dev);
	struct at91_adc_state *st = iio_priv(indio_dev);

	return clk_enable(st->per_clk);
}

static const struct dev_pm_ops at91_adc_pm_ops = {
	SYSTEM_SLEEP_PM_OPS(at91_adc_suspend, at91_adc_resume)
	RUNTIME_PM_OPS(at91_adc_runtime_suspend, at91_adc_runtime_resume,
		       NULL)
};

static const struct of_device_id at91_adc_dt_match[] = {
	{
		.compatible = "atmel,sama5d2-adc",
		.data = (const void *)&sama5d2_platform,
	}, {
		.compatible = "microchip,sama7g5-adc",
		.data = (const void *)&sama7g5_platform,
	}, {
		/* sentinel */
	}
};
MODULE_DEVICE_TABLE(of, at91_adc_dt_match);

static struct platform_driver at91_adc_driver = {
	.probe = at91_adc_probe,
	.remove_new = at91_adc_remove,
	.driver = {
		.name = "at91-sama5d2_adc",
		.of_match_table = at91_adc_dt_match,
		.pm = pm_ptr(&at91_adc_pm_ops),
	},
};
module_platform_driver(at91_adc_driver)

MODULE_AUTHOR("Ludovic Desroches <ludovic.desroches@microchip.com>");
MODULE_AUTHOR("Eugen Hristev <eugen.hristev@microchip.com");
MODULE_DESCRIPTION("Atmel AT91 SAMA5D2 ADC");
MODULE_LICENSE("GPL v2");