Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Anand Ashok Dumbre | 5850 | 96.73% | 1 | 7.14% |
Sean Anderson | 154 | 2.55% | 2 | 14.29% |
Robert Hancock | 19 | 0.31% | 3 | 21.43% |
Christophe Jaillet | 6 | 0.10% | 1 | 7.14% |
Jeff Johnson | 5 | 0.08% | 1 | 7.14% |
Jonathan Cameron | 4 | 0.07% | 1 | 7.14% |
James Clark | 3 | 0.05% | 1 | 7.14% |
Andy Shevchenko | 3 | 0.05% | 1 | 7.14% |
Marco Pagani | 2 | 0.03% | 1 | 7.14% |
Lv Ruyi | 1 | 0.02% | 1 | 7.14% |
Uwe Kleine-König | 1 | 0.02% | 1 | 7.14% |
Total | 6048 | 14 |
// SPDX-License-Identifier: GPL-2.0 /* * Xilinx AMS driver * * Copyright (C) 2021 Xilinx, Inc. * * Manish Narani <mnarani@xilinx.com> * Rajnikant Bhojani <rajnikant.bhojani@xilinx.com> */ #include <linux/bits.h> #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/devm-helpers.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/iopoll.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/mod_devicetable.h> #include <linux/overflow.h> #include <linux/platform_device.h> #include <linux/property.h> #include <linux/slab.h> #include <linux/iio/events.h> #include <linux/iio/iio.h> /* AMS registers definitions */ #define AMS_ISR_0 0x010 #define AMS_ISR_1 0x014 #define AMS_IER_0 0x020 #define AMS_IER_1 0x024 #define AMS_IDR_0 0x028 #define AMS_IDR_1 0x02C #define AMS_PS_CSTS 0x040 #define AMS_PL_CSTS 0x044 #define AMS_VCC_PSPLL0 0x060 #define AMS_VCC_PSPLL3 0x06C #define AMS_VCCINT 0x078 #define AMS_VCCBRAM 0x07C #define AMS_VCCAUX 0x080 #define AMS_PSDDRPLL 0x084 #define AMS_PSINTFPDDR 0x09C #define AMS_VCC_PSPLL0_CH 48 #define AMS_VCC_PSPLL3_CH 51 #define AMS_VCCINT_CH 54 #define AMS_VCCBRAM_CH 55 #define AMS_VCCAUX_CH 56 #define AMS_PSDDRPLL_CH 57 #define AMS_PSINTFPDDR_CH 63 #define AMS_REG_CONFIG0 0x100 #define AMS_REG_CONFIG1 0x104 #define AMS_REG_CONFIG3 0x10C #define AMS_REG_CONFIG4 0x110 #define AMS_REG_SEQ_CH0 0x120 #define AMS_REG_SEQ_CH1 0x124 #define AMS_REG_SEQ_CH2 0x118 #define AMS_VUSER0_MASK BIT(0) #define AMS_VUSER1_MASK BIT(1) #define AMS_VUSER2_MASK BIT(2) #define AMS_VUSER3_MASK BIT(3) #define AMS_TEMP 0x000 #define AMS_SUPPLY1 0x004 #define AMS_SUPPLY2 0x008 #define AMS_VP_VN 0x00C #define AMS_VREFP 0x010 #define AMS_VREFN 0x014 #define AMS_SUPPLY3 0x018 #define AMS_SUPPLY4 0x034 #define AMS_SUPPLY5 0x038 #define AMS_SUPPLY6 0x03C #define AMS_SUPPLY7 0x200 #define AMS_SUPPLY8 0x204 #define AMS_SUPPLY9 0x208 #define AMS_SUPPLY10 0x20C #define AMS_VCCAMS 0x210 #define AMS_TEMP_REMOTE 0x214 #define AMS_REG_VAUX(x) (0x40 + 4 * (x)) #define AMS_PS_RESET_VALUE 0xFFFF #define AMS_PL_RESET_VALUE 0xFFFF #define AMS_CONF0_CHANNEL_NUM_MASK GENMASK(6, 0) #define AMS_CONF1_SEQ_MASK GENMASK(15, 12) #define AMS_CONF1_SEQ_DEFAULT FIELD_PREP(AMS_CONF1_SEQ_MASK, 0) #define AMS_CONF1_SEQ_CONTINUOUS FIELD_PREP(AMS_CONF1_SEQ_MASK, 2) #define AMS_CONF1_SEQ_SINGLE_CHANNEL FIELD_PREP(AMS_CONF1_SEQ_MASK, 3) #define AMS_REG_SEQ0_MASK GENMASK(15, 0) #define AMS_REG_SEQ2_MASK GENMASK(21, 16) #define AMS_REG_SEQ1_MASK GENMASK_ULL(37, 22) #define AMS_PS_SEQ_MASK GENMASK(21, 0) #define AMS_PL_SEQ_MASK GENMASK_ULL(59, 22) #define AMS_ALARM_TEMP 0x140 #define AMS_ALARM_SUPPLY1 0x144 #define AMS_ALARM_SUPPLY2 0x148 #define AMS_ALARM_SUPPLY3 0x160 #define AMS_ALARM_SUPPLY4 0x164 #define AMS_ALARM_SUPPLY5 0x168 #define AMS_ALARM_SUPPLY6 0x16C #define AMS_ALARM_SUPPLY7 0x180 #define AMS_ALARM_SUPPLY8 0x184 #define AMS_ALARM_SUPPLY9 0x188 #define AMS_ALARM_SUPPLY10 0x18C #define AMS_ALARM_VCCAMS 0x190 #define AMS_ALARM_TEMP_REMOTE 0x194 #define AMS_ALARM_THRESHOLD_OFF_10 0x10 #define AMS_ALARM_THRESHOLD_OFF_20 0x20 #define AMS_ALARM_THR_DIRECT_MASK BIT(1) #define AMS_ALARM_THR_MIN 0x0000 #define AMS_ALARM_THR_MAX (BIT(16) - 1) #define AMS_ALARM_MASK GENMASK_ULL(63, 0) #define AMS_NO_OF_ALARMS 32 #define AMS_PL_ALARM_START 16 #define AMS_PL_ALARM_MASK GENMASK(31, 16) #define AMS_ISR0_ALARM_MASK GENMASK(31, 0) #define AMS_ISR1_ALARM_MASK (GENMASK(31, 29) | GENMASK(4, 0)) #define AMS_ISR1_EOC_MASK BIT(3) #define AMS_ISR1_INTR_MASK GENMASK_ULL(63, 32) #define AMS_ISR0_ALARM_2_TO_0_MASK GENMASK(2, 0) #define AMS_ISR0_ALARM_6_TO_3_MASK GENMASK(6, 3) #define AMS_ISR0_ALARM_12_TO_7_MASK GENMASK(13, 8) #define AMS_CONF1_ALARM_2_TO_0_MASK GENMASK(3, 1) #define AMS_CONF1_ALARM_6_TO_3_MASK GENMASK(11, 8) #define AMS_CONF1_ALARM_12_TO_7_MASK GENMASK(5, 0) #define AMS_REGCFG1_ALARM_MASK \ (AMS_CONF1_ALARM_2_TO_0_MASK | AMS_CONF1_ALARM_6_TO_3_MASK | BIT(0)) #define AMS_REGCFG3_ALARM_MASK AMS_CONF1_ALARM_12_TO_7_MASK #define AMS_PS_CSTS_PS_READY (BIT(27) | BIT(16)) #define AMS_PL_CSTS_ACCESS_MASK BIT(1) #define AMS_PL_MAX_FIXED_CHANNEL 10 #define AMS_PL_MAX_EXT_CHANNEL 20 #define AMS_INIT_POLL_TIME_US 200 #define AMS_INIT_TIMEOUT_US 10000 #define AMS_UNMASK_TIMEOUT_MS 500 /* * Following scale and offset value is derived from * UG580 (v1.7) December 20, 2016 */ #define AMS_SUPPLY_SCALE_1VOLT_mV 1000 #define AMS_SUPPLY_SCALE_3VOLT_mV 3000 #define AMS_SUPPLY_SCALE_6VOLT_mV 6000 #define AMS_SUPPLY_SCALE_DIV_BIT 16 #define AMS_TEMP_SCALE 509314 #define AMS_TEMP_SCALE_DIV_BIT 16 #define AMS_TEMP_OFFSET -((280230LL << 16) / 509314) enum ams_alarm_bit { AMS_ALARM_BIT_TEMP = 0, AMS_ALARM_BIT_SUPPLY1 = 1, AMS_ALARM_BIT_SUPPLY2 = 2, AMS_ALARM_BIT_SUPPLY3 = 3, AMS_ALARM_BIT_SUPPLY4 = 4, AMS_ALARM_BIT_SUPPLY5 = 5, AMS_ALARM_BIT_SUPPLY6 = 6, AMS_ALARM_BIT_RESERVED = 7, AMS_ALARM_BIT_SUPPLY7 = 8, AMS_ALARM_BIT_SUPPLY8 = 9, AMS_ALARM_BIT_SUPPLY9 = 10, AMS_ALARM_BIT_SUPPLY10 = 11, AMS_ALARM_BIT_VCCAMS = 12, AMS_ALARM_BIT_TEMP_REMOTE = 13, }; enum ams_seq { AMS_SEQ_VCC_PSPLL = 0, AMS_SEQ_VCC_PSBATT = 1, AMS_SEQ_VCCINT = 2, AMS_SEQ_VCCBRAM = 3, AMS_SEQ_VCCAUX = 4, AMS_SEQ_PSDDRPLL = 5, AMS_SEQ_INTDDR = 6, }; enum ams_ps_pl_seq { AMS_SEQ_CALIB = 0, AMS_SEQ_RSVD_1 = 1, AMS_SEQ_RSVD_2 = 2, AMS_SEQ_TEST = 3, AMS_SEQ_RSVD_4 = 4, AMS_SEQ_SUPPLY4 = 5, AMS_SEQ_SUPPLY5 = 6, AMS_SEQ_SUPPLY6 = 7, AMS_SEQ_TEMP = 8, AMS_SEQ_SUPPLY2 = 9, AMS_SEQ_SUPPLY1 = 10, AMS_SEQ_VP_VN = 11, AMS_SEQ_VREFP = 12, AMS_SEQ_VREFN = 13, AMS_SEQ_SUPPLY3 = 14, AMS_SEQ_CURRENT_MON = 15, AMS_SEQ_SUPPLY7 = 16, AMS_SEQ_SUPPLY8 = 17, AMS_SEQ_SUPPLY9 = 18, AMS_SEQ_SUPPLY10 = 19, AMS_SEQ_VCCAMS = 20, AMS_SEQ_TEMP_REMOTE = 21, AMS_SEQ_MAX = 22 }; #define AMS_PS_SEQ_MAX AMS_SEQ_MAX #define AMS_SEQ(x) (AMS_SEQ_MAX + (x)) #define PS_SEQ(x) (x) #define PL_SEQ(x) (AMS_PS_SEQ_MAX + (x)) #define AMS_CTRL_SEQ_BASE (AMS_PS_SEQ_MAX * 3) #define AMS_CHAN_TEMP(_scan_index, _addr, _name) { \ .type = IIO_TEMP, \ .indexed = 1, \ .address = (_addr), \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_OFFSET), \ .event_spec = ams_temp_events, \ .scan_index = _scan_index, \ .num_event_specs = ARRAY_SIZE(ams_temp_events), \ .datasheet_name = _name, \ } #define AMS_CHAN_VOLTAGE(_scan_index, _addr, _alarm, _name) { \ .type = IIO_VOLTAGE, \ .indexed = 1, \ .address = (_addr), \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE), \ .event_spec = (_alarm) ? ams_voltage_events : NULL, \ .scan_index = _scan_index, \ .num_event_specs = (_alarm) ? ARRAY_SIZE(ams_voltage_events) : 0, \ .datasheet_name = _name, \ } #define AMS_PS_CHAN_TEMP(_scan_index, _addr, _name) \ AMS_CHAN_TEMP(PS_SEQ(_scan_index), _addr, _name) #define AMS_PS_CHAN_VOLTAGE(_scan_index, _addr, _name) \ AMS_CHAN_VOLTAGE(PS_SEQ(_scan_index), _addr, true, _name) #define AMS_PL_CHAN_TEMP(_scan_index, _addr, _name) \ AMS_CHAN_TEMP(PL_SEQ(_scan_index), _addr, _name) #define AMS_PL_CHAN_VOLTAGE(_scan_index, _addr, _alarm, _name) \ AMS_CHAN_VOLTAGE(PL_SEQ(_scan_index), _addr, _alarm, _name) #define AMS_PL_AUX_CHAN_VOLTAGE(_auxno) \ AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(_auxno)), AMS_REG_VAUX(_auxno), false, \ "VAUX" #_auxno) #define AMS_CTRL_CHAN_VOLTAGE(_scan_index, _addr, _name) \ AMS_CHAN_VOLTAGE(PL_SEQ(AMS_SEQ(AMS_SEQ(_scan_index))), _addr, false, \ _name) /** * struct ams - This structure contains necessary state for xilinx-ams to operate * @base: physical base address of device * @ps_base: physical base address of PS device * @pl_base: physical base address of PL device * @clk: clocks associated with the device * @dev: pointer to device struct * @lock: to handle multiple user interaction * @intr_lock: to protect interrupt mask values * @alarm_mask: alarm configuration * @current_masked_alarm: currently masked due to alarm * @intr_mask: interrupt configuration * @ams_unmask_work: re-enables event once the event condition disappears * */ struct ams { void __iomem *base; void __iomem *ps_base; void __iomem *pl_base; struct clk *clk; struct device *dev; struct mutex lock; spinlock_t intr_lock; unsigned int alarm_mask; unsigned int current_masked_alarm; u64 intr_mask; struct delayed_work ams_unmask_work; }; static inline void ams_ps_update_reg(struct ams *ams, unsigned int offset, u32 mask, u32 data) { u32 val, regval; val = readl(ams->ps_base + offset); regval = (val & ~mask) | (data & mask); writel(regval, ams->ps_base + offset); } static inline void ams_pl_update_reg(struct ams *ams, unsigned int offset, u32 mask, u32 data) { u32 val, regval; val = readl(ams->pl_base + offset); regval = (val & ~mask) | (data & mask); writel(regval, ams->pl_base + offset); } static void ams_update_intrmask(struct ams *ams, u64 mask, u64 val) { u32 regval; ams->intr_mask = (ams->intr_mask & ~mask) | (val & mask); regval = ~(ams->intr_mask | ams->current_masked_alarm); writel(regval, ams->base + AMS_IER_0); regval = ~(FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask)); writel(regval, ams->base + AMS_IER_1); regval = ams->intr_mask | ams->current_masked_alarm; writel(regval, ams->base + AMS_IDR_0); regval = FIELD_GET(AMS_ISR1_INTR_MASK, ams->intr_mask); writel(regval, ams->base + AMS_IDR_1); } static void ams_disable_all_alarms(struct ams *ams) { /* disable PS module alarm */ if (ams->ps_base) { ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, AMS_REGCFG1_ALARM_MASK); ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, AMS_REGCFG3_ALARM_MASK); } /* disable PL module alarm */ if (ams->pl_base) { ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, AMS_REGCFG1_ALARM_MASK); ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, AMS_REGCFG3_ALARM_MASK); } } static void ams_update_ps_alarm(struct ams *ams, unsigned long alarm_mask) { u32 cfg; u32 val; val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, alarm_mask); cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val)); val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, alarm_mask); cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val)); ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg); val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, alarm_mask); cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val)); ams_ps_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg); } static void ams_update_pl_alarm(struct ams *ams, unsigned long alarm_mask) { unsigned long pl_alarm_mask; u32 cfg; u32 val; pl_alarm_mask = FIELD_GET(AMS_PL_ALARM_MASK, alarm_mask); val = FIELD_GET(AMS_ISR0_ALARM_2_TO_0_MASK, pl_alarm_mask); cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_2_TO_0_MASK, val)); val = FIELD_GET(AMS_ISR0_ALARM_6_TO_3_MASK, pl_alarm_mask); cfg &= ~(FIELD_PREP(AMS_CONF1_ALARM_6_TO_3_MASK, val)); ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_REGCFG1_ALARM_MASK, cfg); val = FIELD_GET(AMS_ISR0_ALARM_12_TO_7_MASK, pl_alarm_mask); cfg = ~(FIELD_PREP(AMS_CONF1_ALARM_12_TO_7_MASK, val)); ams_pl_update_reg(ams, AMS_REG_CONFIG3, AMS_REGCFG3_ALARM_MASK, cfg); } static void ams_update_alarm(struct ams *ams, unsigned long alarm_mask) { unsigned long flags; if (ams->ps_base) ams_update_ps_alarm(ams, alarm_mask); if (ams->pl_base) ams_update_pl_alarm(ams, alarm_mask); spin_lock_irqsave(&ams->intr_lock, flags); ams_update_intrmask(ams, AMS_ISR0_ALARM_MASK, ~alarm_mask); spin_unlock_irqrestore(&ams->intr_lock, flags); } static void ams_enable_channel_sequence(struct iio_dev *indio_dev) { struct ams *ams = iio_priv(indio_dev); unsigned long long scan_mask; int i; u32 regval; /* * Enable channel sequence. First 22 bits of scan_mask represent * PS channels, and next remaining bits represent PL channels. */ /* Run calibration of PS & PL as part of the sequence */ scan_mask = BIT(0) | BIT(AMS_PS_SEQ_MAX); for (i = 0; i < indio_dev->num_channels; i++) { const struct iio_chan_spec *chan = &indio_dev->channels[i]; if (chan->scan_index < AMS_CTRL_SEQ_BASE) scan_mask |= BIT_ULL(chan->scan_index); } if (ams->ps_base) { /* put sysmon in a soft reset to change the sequence */ ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK, AMS_CONF1_SEQ_DEFAULT); /* configure basic channels */ regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask); writel(regval, ams->ps_base + AMS_REG_SEQ_CH0); regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask); writel(regval, ams->ps_base + AMS_REG_SEQ_CH2); /* set continuous sequence mode */ ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK, AMS_CONF1_SEQ_CONTINUOUS); } if (ams->pl_base) { /* put sysmon in a soft reset to change the sequence */ ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK, AMS_CONF1_SEQ_DEFAULT); /* configure basic channels */ scan_mask = FIELD_GET(AMS_PL_SEQ_MASK, scan_mask); regval = FIELD_GET(AMS_REG_SEQ0_MASK, scan_mask); writel(regval, ams->pl_base + AMS_REG_SEQ_CH0); regval = FIELD_GET(AMS_REG_SEQ1_MASK, scan_mask); writel(regval, ams->pl_base + AMS_REG_SEQ_CH1); regval = FIELD_GET(AMS_REG_SEQ2_MASK, scan_mask); writel(regval, ams->pl_base + AMS_REG_SEQ_CH2); /* set continuous sequence mode */ ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK, AMS_CONF1_SEQ_CONTINUOUS); } } static int ams_init_device(struct ams *ams) { u32 expect = AMS_PS_CSTS_PS_READY; u32 reg, value; int ret; /* reset AMS */ if (ams->ps_base) { writel(AMS_PS_RESET_VALUE, ams->ps_base + AMS_VP_VN); ret = readl_poll_timeout(ams->base + AMS_PS_CSTS, reg, (reg & expect), AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US); if (ret) return ret; /* put sysmon in a default state */ ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK, AMS_CONF1_SEQ_DEFAULT); } if (ams->pl_base) { value = readl(ams->base + AMS_PL_CSTS); if (value == 0) return 0; writel(AMS_PL_RESET_VALUE, ams->pl_base + AMS_VP_VN); /* put sysmon in a default state */ ams_pl_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK, AMS_CONF1_SEQ_DEFAULT); } ams_disable_all_alarms(ams); /* Disable interrupt */ ams_update_intrmask(ams, AMS_ALARM_MASK, AMS_ALARM_MASK); /* Clear any pending interrupt */ writel(AMS_ISR0_ALARM_MASK, ams->base + AMS_ISR_0); writel(AMS_ISR1_ALARM_MASK, ams->base + AMS_ISR_1); return 0; } static int ams_read_label(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, char *label) { return sysfs_emit(label, "%s\n", chan->datasheet_name); } static int ams_enable_single_channel(struct ams *ams, unsigned int offset) { u8 channel_num; switch (offset) { case AMS_VCC_PSPLL0: channel_num = AMS_VCC_PSPLL0_CH; break; case AMS_VCC_PSPLL3: channel_num = AMS_VCC_PSPLL3_CH; break; case AMS_VCCINT: channel_num = AMS_VCCINT_CH; break; case AMS_VCCBRAM: channel_num = AMS_VCCBRAM_CH; break; case AMS_VCCAUX: channel_num = AMS_VCCAUX_CH; break; case AMS_PSDDRPLL: channel_num = AMS_PSDDRPLL_CH; break; case AMS_PSINTFPDDR: channel_num = AMS_PSINTFPDDR_CH; break; default: return -EINVAL; } /* put sysmon in a soft reset to change the sequence */ ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK, AMS_CONF1_SEQ_DEFAULT); /* write the channel number */ ams_ps_update_reg(ams, AMS_REG_CONFIG0, AMS_CONF0_CHANNEL_NUM_MASK, channel_num); /* set single channel, sequencer off mode */ ams_ps_update_reg(ams, AMS_REG_CONFIG1, AMS_CONF1_SEQ_MASK, AMS_CONF1_SEQ_SINGLE_CHANNEL); return 0; } static int ams_read_vcc_reg(struct ams *ams, unsigned int offset, u32 *data) { u32 expect = AMS_ISR1_EOC_MASK; u32 reg; int ret; ret = ams_enable_single_channel(ams, offset); if (ret) return ret; /* clear end-of-conversion flag, wait for next conversion to complete */ writel(expect, ams->base + AMS_ISR_1); ret = readl_poll_timeout(ams->base + AMS_ISR_1, reg, (reg & expect), AMS_INIT_POLL_TIME_US, AMS_INIT_TIMEOUT_US); if (ret) return ret; *data = readl(ams->base + offset); return 0; } static int ams_get_ps_scale(int address) { int val; switch (address) { case AMS_SUPPLY1: case AMS_SUPPLY2: case AMS_SUPPLY3: case AMS_SUPPLY4: case AMS_SUPPLY9: case AMS_SUPPLY10: case AMS_VCCAMS: val = AMS_SUPPLY_SCALE_3VOLT_mV; break; case AMS_SUPPLY5: case AMS_SUPPLY6: case AMS_SUPPLY7: case AMS_SUPPLY8: val = AMS_SUPPLY_SCALE_6VOLT_mV; break; default: val = AMS_SUPPLY_SCALE_1VOLT_mV; break; } return val; } static int ams_get_pl_scale(struct ams *ams, int address) { int val, regval; switch (address) { case AMS_SUPPLY1: case AMS_SUPPLY2: case AMS_SUPPLY3: case AMS_SUPPLY4: case AMS_SUPPLY5: case AMS_SUPPLY6: case AMS_VCCAMS: case AMS_VREFP: case AMS_VREFN: val = AMS_SUPPLY_SCALE_3VOLT_mV; break; case AMS_SUPPLY7: regval = readl(ams->pl_base + AMS_REG_CONFIG4); if (FIELD_GET(AMS_VUSER0_MASK, regval)) val = AMS_SUPPLY_SCALE_6VOLT_mV; else val = AMS_SUPPLY_SCALE_3VOLT_mV; break; case AMS_SUPPLY8: regval = readl(ams->pl_base + AMS_REG_CONFIG4); if (FIELD_GET(AMS_VUSER1_MASK, regval)) val = AMS_SUPPLY_SCALE_6VOLT_mV; else val = AMS_SUPPLY_SCALE_3VOLT_mV; break; case AMS_SUPPLY9: regval = readl(ams->pl_base + AMS_REG_CONFIG4); if (FIELD_GET(AMS_VUSER2_MASK, regval)) val = AMS_SUPPLY_SCALE_6VOLT_mV; else val = AMS_SUPPLY_SCALE_3VOLT_mV; break; case AMS_SUPPLY10: regval = readl(ams->pl_base + AMS_REG_CONFIG4); if (FIELD_GET(AMS_VUSER3_MASK, regval)) val = AMS_SUPPLY_SCALE_6VOLT_mV; else val = AMS_SUPPLY_SCALE_3VOLT_mV; break; case AMS_VP_VN: case AMS_REG_VAUX(0) ... AMS_REG_VAUX(15): val = AMS_SUPPLY_SCALE_1VOLT_mV; break; default: val = AMS_SUPPLY_SCALE_1VOLT_mV; break; } return val; } static int ams_get_ctrl_scale(int address) { int val; switch (address) { case AMS_VCC_PSPLL0: case AMS_VCC_PSPLL3: case AMS_VCCINT: case AMS_VCCBRAM: case AMS_VCCAUX: case AMS_PSDDRPLL: case AMS_PSINTFPDDR: val = AMS_SUPPLY_SCALE_3VOLT_mV; break; default: val = AMS_SUPPLY_SCALE_1VOLT_mV; break; } return val; } static int ams_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct ams *ams = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_RAW: mutex_lock(&ams->lock); if (chan->scan_index >= AMS_CTRL_SEQ_BASE) { ret = ams_read_vcc_reg(ams, chan->address, val); if (ret) goto unlock_mutex; ams_enable_channel_sequence(indio_dev); } else if (chan->scan_index >= AMS_PS_SEQ_MAX) *val = readl(ams->pl_base + chan->address); else *val = readl(ams->ps_base + chan->address); ret = IIO_VAL_INT; unlock_mutex: mutex_unlock(&ams->lock); return ret; case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_VOLTAGE: if (chan->scan_index < AMS_PS_SEQ_MAX) *val = ams_get_ps_scale(chan->address); else if (chan->scan_index >= AMS_PS_SEQ_MAX && chan->scan_index < AMS_CTRL_SEQ_BASE) *val = ams_get_pl_scale(ams, chan->address); else *val = ams_get_ctrl_scale(chan->address); *val2 = AMS_SUPPLY_SCALE_DIV_BIT; return IIO_VAL_FRACTIONAL_LOG2; case IIO_TEMP: *val = AMS_TEMP_SCALE; *val2 = AMS_TEMP_SCALE_DIV_BIT; return IIO_VAL_FRACTIONAL_LOG2; default: return -EINVAL; } case IIO_CHAN_INFO_OFFSET: /* Only the temperature channel has an offset */ *val = AMS_TEMP_OFFSET; return IIO_VAL_INT; default: return -EINVAL; } } static int ams_get_alarm_offset(int scan_index, enum iio_event_direction dir) { int offset; if (scan_index >= AMS_PS_SEQ_MAX) scan_index -= AMS_PS_SEQ_MAX; if (dir == IIO_EV_DIR_FALLING) { if (scan_index < AMS_SEQ_SUPPLY7) offset = AMS_ALARM_THRESHOLD_OFF_10; else offset = AMS_ALARM_THRESHOLD_OFF_20; } else { offset = 0; } switch (scan_index) { case AMS_SEQ_TEMP: return AMS_ALARM_TEMP + offset; case AMS_SEQ_SUPPLY1: return AMS_ALARM_SUPPLY1 + offset; case AMS_SEQ_SUPPLY2: return AMS_ALARM_SUPPLY2 + offset; case AMS_SEQ_SUPPLY3: return AMS_ALARM_SUPPLY3 + offset; case AMS_SEQ_SUPPLY4: return AMS_ALARM_SUPPLY4 + offset; case AMS_SEQ_SUPPLY5: return AMS_ALARM_SUPPLY5 + offset; case AMS_SEQ_SUPPLY6: return AMS_ALARM_SUPPLY6 + offset; case AMS_SEQ_SUPPLY7: return AMS_ALARM_SUPPLY7 + offset; case AMS_SEQ_SUPPLY8: return AMS_ALARM_SUPPLY8 + offset; case AMS_SEQ_SUPPLY9: return AMS_ALARM_SUPPLY9 + offset; case AMS_SEQ_SUPPLY10: return AMS_ALARM_SUPPLY10 + offset; case AMS_SEQ_VCCAMS: return AMS_ALARM_VCCAMS + offset; case AMS_SEQ_TEMP_REMOTE: return AMS_ALARM_TEMP_REMOTE + offset; default: return 0; } } static const struct iio_chan_spec *ams_event_to_channel(struct iio_dev *dev, u32 event) { int scan_index = 0, i; if (event >= AMS_PL_ALARM_START) { event -= AMS_PL_ALARM_START; scan_index = AMS_PS_SEQ_MAX; } switch (event) { case AMS_ALARM_BIT_TEMP: scan_index += AMS_SEQ_TEMP; break; case AMS_ALARM_BIT_SUPPLY1: scan_index += AMS_SEQ_SUPPLY1; break; case AMS_ALARM_BIT_SUPPLY2: scan_index += AMS_SEQ_SUPPLY2; break; case AMS_ALARM_BIT_SUPPLY3: scan_index += AMS_SEQ_SUPPLY3; break; case AMS_ALARM_BIT_SUPPLY4: scan_index += AMS_SEQ_SUPPLY4; break; case AMS_ALARM_BIT_SUPPLY5: scan_index += AMS_SEQ_SUPPLY5; break; case AMS_ALARM_BIT_SUPPLY6: scan_index += AMS_SEQ_SUPPLY6; break; case AMS_ALARM_BIT_SUPPLY7: scan_index += AMS_SEQ_SUPPLY7; break; case AMS_ALARM_BIT_SUPPLY8: scan_index += AMS_SEQ_SUPPLY8; break; case AMS_ALARM_BIT_SUPPLY9: scan_index += AMS_SEQ_SUPPLY9; break; case AMS_ALARM_BIT_SUPPLY10: scan_index += AMS_SEQ_SUPPLY10; break; case AMS_ALARM_BIT_VCCAMS: scan_index += AMS_SEQ_VCCAMS; break; case AMS_ALARM_BIT_TEMP_REMOTE: scan_index += AMS_SEQ_TEMP_REMOTE; break; default: break; } for (i = 0; i < dev->num_channels; i++) if (dev->channels[i].scan_index == scan_index) break; return &dev->channels[i]; } static int ams_get_alarm_mask(int scan_index) { int bit = 0; if (scan_index >= AMS_PS_SEQ_MAX) { bit = AMS_PL_ALARM_START; scan_index -= AMS_PS_SEQ_MAX; } switch (scan_index) { case AMS_SEQ_TEMP: return BIT(AMS_ALARM_BIT_TEMP + bit); case AMS_SEQ_SUPPLY1: return BIT(AMS_ALARM_BIT_SUPPLY1 + bit); case AMS_SEQ_SUPPLY2: return BIT(AMS_ALARM_BIT_SUPPLY2 + bit); case AMS_SEQ_SUPPLY3: return BIT(AMS_ALARM_BIT_SUPPLY3 + bit); case AMS_SEQ_SUPPLY4: return BIT(AMS_ALARM_BIT_SUPPLY4 + bit); case AMS_SEQ_SUPPLY5: return BIT(AMS_ALARM_BIT_SUPPLY5 + bit); case AMS_SEQ_SUPPLY6: return BIT(AMS_ALARM_BIT_SUPPLY6 + bit); case AMS_SEQ_SUPPLY7: return BIT(AMS_ALARM_BIT_SUPPLY7 + bit); case AMS_SEQ_SUPPLY8: return BIT(AMS_ALARM_BIT_SUPPLY8 + bit); case AMS_SEQ_SUPPLY9: return BIT(AMS_ALARM_BIT_SUPPLY9 + bit); case AMS_SEQ_SUPPLY10: return BIT(AMS_ALARM_BIT_SUPPLY10 + bit); case AMS_SEQ_VCCAMS: return BIT(AMS_ALARM_BIT_VCCAMS + bit); case AMS_SEQ_TEMP_REMOTE: return BIT(AMS_ALARM_BIT_TEMP_REMOTE + bit); default: return 0; } } static int ams_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct ams *ams = iio_priv(indio_dev); return !!(ams->alarm_mask & ams_get_alarm_mask(chan->scan_index)); } static int ams_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, int state) { struct ams *ams = iio_priv(indio_dev); unsigned int alarm; alarm = ams_get_alarm_mask(chan->scan_index); mutex_lock(&ams->lock); if (state) ams->alarm_mask |= alarm; else ams->alarm_mask &= ~alarm; ams_update_alarm(ams, ams->alarm_mask); mutex_unlock(&ams->lock); return 0; } static int ams_read_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct ams *ams = iio_priv(indio_dev); unsigned int offset = ams_get_alarm_offset(chan->scan_index, dir); mutex_lock(&ams->lock); if (chan->scan_index >= AMS_PS_SEQ_MAX) *val = readl(ams->pl_base + offset); else *val = readl(ams->ps_base + offset); mutex_unlock(&ams->lock); return IIO_VAL_INT; } static int ams_write_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct ams *ams = iio_priv(indio_dev); unsigned int offset; mutex_lock(&ams->lock); /* Set temperature channel threshold to direct threshold */ if (chan->type == IIO_TEMP) { offset = ams_get_alarm_offset(chan->scan_index, IIO_EV_DIR_FALLING); if (chan->scan_index >= AMS_PS_SEQ_MAX) ams_pl_update_reg(ams, offset, AMS_ALARM_THR_DIRECT_MASK, AMS_ALARM_THR_DIRECT_MASK); else ams_ps_update_reg(ams, offset, AMS_ALARM_THR_DIRECT_MASK, AMS_ALARM_THR_DIRECT_MASK); } offset = ams_get_alarm_offset(chan->scan_index, dir); if (chan->scan_index >= AMS_PS_SEQ_MAX) writel(val, ams->pl_base + offset); else writel(val, ams->ps_base + offset); mutex_unlock(&ams->lock); return 0; } static void ams_handle_event(struct iio_dev *indio_dev, u32 event) { const struct iio_chan_spec *chan; chan = ams_event_to_channel(indio_dev, event); if (chan->type == IIO_TEMP) { /* * The temperature channel only supports over-temperature * events. */ iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(chan->type, chan->channel, IIO_EV_TYPE_THRESH, IIO_EV_DIR_RISING), iio_get_time_ns(indio_dev)); } else { /* * For other channels we don't know whether it is a upper or * lower threshold event. Userspace will have to check the * channel value if it wants to know. */ iio_push_event(indio_dev, IIO_UNMOD_EVENT_CODE(chan->type, chan->channel, IIO_EV_TYPE_THRESH, IIO_EV_DIR_EITHER), iio_get_time_ns(indio_dev)); } } static void ams_handle_events(struct iio_dev *indio_dev, unsigned long events) { unsigned int bit; for_each_set_bit(bit, &events, AMS_NO_OF_ALARMS) ams_handle_event(indio_dev, bit); } /** * ams_unmask_worker - ams alarm interrupt unmask worker * @work: work to be done * * The ZynqMP threshold interrupts are level sensitive. Since we can't make the * threshold condition go way from within the interrupt handler, this means as * soon as a threshold condition is present we would enter the interrupt handler * again and again. To work around this we mask all active threshold interrupts * in the interrupt handler and start a timer. In this timer we poll the * interrupt status and only if the interrupt is inactive we unmask it again. */ static void ams_unmask_worker(struct work_struct *work) { struct ams *ams = container_of(work, struct ams, ams_unmask_work.work); unsigned int status, unmask; spin_lock_irq(&ams->intr_lock); status = readl(ams->base + AMS_ISR_0); /* Clear those bits which are not active anymore */ unmask = (ams->current_masked_alarm ^ status) & ams->current_masked_alarm; /* Clear status of disabled alarm */ unmask |= ams->intr_mask; ams->current_masked_alarm &= status; /* Also clear those which are masked out anyway */ ams->current_masked_alarm &= ~ams->intr_mask; /* Clear the interrupts before we unmask them */ writel(unmask, ams->base + AMS_ISR_0); ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK); spin_unlock_irq(&ams->intr_lock); /* If still pending some alarm re-trigger the timer */ if (ams->current_masked_alarm) schedule_delayed_work(&ams->ams_unmask_work, msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS)); } static irqreturn_t ams_irq(int irq, void *data) { struct iio_dev *indio_dev = data; struct ams *ams = iio_priv(indio_dev); u32 isr0; spin_lock(&ams->intr_lock); isr0 = readl(ams->base + AMS_ISR_0); /* Only process alarms that are not masked */ isr0 &= ~((ams->intr_mask & AMS_ISR0_ALARM_MASK) | ams->current_masked_alarm); if (!isr0) { spin_unlock(&ams->intr_lock); return IRQ_NONE; } /* Clear interrupt */ writel(isr0, ams->base + AMS_ISR_0); /* Mask the alarm interrupts until cleared */ ams->current_masked_alarm |= isr0; ams_update_intrmask(ams, ~AMS_ALARM_MASK, ~AMS_ALARM_MASK); ams_handle_events(indio_dev, isr0); schedule_delayed_work(&ams->ams_unmask_work, msecs_to_jiffies(AMS_UNMASK_TIMEOUT_MS)); spin_unlock(&ams->intr_lock); return IRQ_HANDLED; } static const struct iio_event_spec ams_temp_events[] = { { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_VALUE), }, }; static const struct iio_event_spec ams_voltage_events[] = { { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_VALUE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_FALLING, .mask_separate = BIT(IIO_EV_INFO_VALUE), }, { .type = IIO_EV_TYPE_THRESH, .dir = IIO_EV_DIR_EITHER, .mask_separate = BIT(IIO_EV_INFO_ENABLE), }, }; static const struct iio_chan_spec ams_ps_channels[] = { AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP, "Temp_LPD"), AMS_PS_CHAN_TEMP(AMS_SEQ_TEMP_REMOTE, AMS_TEMP_REMOTE, "Temp_FPD"), AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1, "VCC_PSINTLP"), AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2, "VCC_PSINTFP"), AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3, "VCC_PSAUX"), AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4, "VCC_PSDDR"), AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5, "VCC_PSIO3"), AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6, "VCC_PSIO0"), AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7, "VCC_PSIO1"), AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8, "VCC_PSIO2"), AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9, "PS_MGTRAVCC"), AMS_PS_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10, "PS_MGTRAVTT"), AMS_PS_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS, "VCC_PSADC"), }; static const struct iio_chan_spec ams_pl_channels[] = { AMS_PL_CHAN_TEMP(AMS_SEQ_TEMP, AMS_TEMP, "Temp_PL"), AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY1, AMS_SUPPLY1, true, "VCCINT"), AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY2, AMS_SUPPLY2, true, "VCCAUX"), AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFP, AMS_VREFP, false, "VREFP"), AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VREFN, AMS_VREFN, false, "VREFN"), AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY3, AMS_SUPPLY3, true, "VCCBRAM"), AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY4, AMS_SUPPLY4, true, "VCC_PSINTLP"), AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY5, AMS_SUPPLY5, true, "VCC_PSINTFP"), AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY6, AMS_SUPPLY6, true, "VCC_PSAUX"), AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VCCAMS, AMS_VCCAMS, true, "VCCAMS"), AMS_PL_CHAN_VOLTAGE(AMS_SEQ_VP_VN, AMS_VP_VN, false, "VP_VN"), AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY7, AMS_SUPPLY7, true, "VUser0"), AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY8, AMS_SUPPLY8, true, "VUser1"), AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY9, AMS_SUPPLY9, true, "VUser2"), AMS_PL_CHAN_VOLTAGE(AMS_SEQ_SUPPLY10, AMS_SUPPLY10, true, "VUser3"), AMS_PL_AUX_CHAN_VOLTAGE(0), AMS_PL_AUX_CHAN_VOLTAGE(1), AMS_PL_AUX_CHAN_VOLTAGE(2), AMS_PL_AUX_CHAN_VOLTAGE(3), AMS_PL_AUX_CHAN_VOLTAGE(4), AMS_PL_AUX_CHAN_VOLTAGE(5), AMS_PL_AUX_CHAN_VOLTAGE(6), AMS_PL_AUX_CHAN_VOLTAGE(7), AMS_PL_AUX_CHAN_VOLTAGE(8), AMS_PL_AUX_CHAN_VOLTAGE(9), AMS_PL_AUX_CHAN_VOLTAGE(10), AMS_PL_AUX_CHAN_VOLTAGE(11), AMS_PL_AUX_CHAN_VOLTAGE(12), AMS_PL_AUX_CHAN_VOLTAGE(13), AMS_PL_AUX_CHAN_VOLTAGE(14), AMS_PL_AUX_CHAN_VOLTAGE(15), }; static const struct iio_chan_spec ams_ctrl_channels[] = { AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSPLL, AMS_VCC_PSPLL0, "VCC_PSPLL"), AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCC_PSBATT, AMS_VCC_PSPLL3, "VCC_PSBATT"), AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCINT, AMS_VCCINT, "VCCINT"), AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCBRAM, AMS_VCCBRAM, "VCCBRAM"), AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_VCCAUX, AMS_VCCAUX, "VCCAUX"), AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_PSDDRPLL, AMS_PSDDRPLL, "VCC_PSDDR_PLL"), AMS_CTRL_CHAN_VOLTAGE(AMS_SEQ_INTDDR, AMS_PSINTFPDDR, "VCC_PSINTFP_DDR"), }; static int ams_get_ext_chan(struct fwnode_handle *chan_node, struct iio_chan_spec *channels, int num_channels) { struct iio_chan_spec *chan; struct fwnode_handle *child; unsigned int reg, ext_chan; int ret; fwnode_for_each_child_node(chan_node, child) { ret = fwnode_property_read_u32(child, "reg", ®); if (ret || reg > AMS_PL_MAX_EXT_CHANNEL + 30) continue; chan = &channels[num_channels]; ext_chan = reg + AMS_PL_MAX_FIXED_CHANNEL - 30; memcpy(chan, &ams_pl_channels[ext_chan], sizeof(*channels)); if (fwnode_property_read_bool(child, "xlnx,bipolar")) chan->scan_type.sign = 's'; num_channels++; } return num_channels; } static void ams_iounmap_ps(void *data) { struct ams *ams = data; iounmap(ams->ps_base); } static void ams_iounmap_pl(void *data) { struct ams *ams = data; iounmap(ams->pl_base); } static int ams_init_module(struct iio_dev *indio_dev, struct fwnode_handle *fwnode, struct iio_chan_spec *channels) { struct device *dev = indio_dev->dev.parent; struct ams *ams = iio_priv(indio_dev); int num_channels = 0; int ret; if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams-ps")) { ams->ps_base = fwnode_iomap(fwnode, 0); if (!ams->ps_base) return -ENXIO; ret = devm_add_action_or_reset(dev, ams_iounmap_ps, ams); if (ret < 0) return ret; /* add PS channels to iio device channels */ memcpy(channels, ams_ps_channels, sizeof(ams_ps_channels)); num_channels = ARRAY_SIZE(ams_ps_channels); } else if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams-pl")) { ams->pl_base = fwnode_iomap(fwnode, 0); if (!ams->pl_base) return -ENXIO; ret = devm_add_action_or_reset(dev, ams_iounmap_pl, ams); if (ret < 0) return ret; /* Copy only first 10 fix channels */ memcpy(channels, ams_pl_channels, AMS_PL_MAX_FIXED_CHANNEL * sizeof(*channels)); num_channels += AMS_PL_MAX_FIXED_CHANNEL; num_channels = ams_get_ext_chan(fwnode, channels, num_channels); } else if (fwnode_device_is_compatible(fwnode, "xlnx,zynqmp-ams")) { /* add AMS channels to iio device channels */ memcpy(channels, ams_ctrl_channels, sizeof(ams_ctrl_channels)); num_channels += ARRAY_SIZE(ams_ctrl_channels); } else { return -EINVAL; } return num_channels; } static int ams_parse_firmware(struct iio_dev *indio_dev) { struct ams *ams = iio_priv(indio_dev); struct iio_chan_spec *ams_channels, *dev_channels; struct device *dev = indio_dev->dev.parent; struct fwnode_handle *child = NULL; struct fwnode_handle *fwnode = dev_fwnode(dev); size_t ams_size; int ret, ch_cnt = 0, i, rising_off, falling_off; unsigned int num_channels = 0; ams_size = ARRAY_SIZE(ams_ps_channels) + ARRAY_SIZE(ams_pl_channels) + ARRAY_SIZE(ams_ctrl_channels); /* Initialize buffer for channel specification */ ams_channels = devm_kcalloc(dev, ams_size, sizeof(*ams_channels), GFP_KERNEL); if (!ams_channels) return -ENOMEM; if (fwnode_device_is_available(fwnode)) { ret = ams_init_module(indio_dev, fwnode, ams_channels); if (ret < 0) return ret; num_channels += ret; } fwnode_for_each_child_node(fwnode, child) { if (fwnode_device_is_available(child)) { ret = ams_init_module(indio_dev, child, ams_channels + num_channels); if (ret < 0) { fwnode_handle_put(child); return ret; } num_channels += ret; } } for (i = 0; i < num_channels; i++) { ams_channels[i].channel = ch_cnt++; if (ams_channels[i].scan_index < AMS_CTRL_SEQ_BASE) { /* set threshold to max and min for each channel */ falling_off = ams_get_alarm_offset(ams_channels[i].scan_index, IIO_EV_DIR_FALLING); rising_off = ams_get_alarm_offset(ams_channels[i].scan_index, IIO_EV_DIR_RISING); if (ams_channels[i].scan_index >= AMS_PS_SEQ_MAX) { writel(AMS_ALARM_THR_MIN, ams->pl_base + falling_off); writel(AMS_ALARM_THR_MAX, ams->pl_base + rising_off); } else { writel(AMS_ALARM_THR_MIN, ams->ps_base + falling_off); writel(AMS_ALARM_THR_MAX, ams->ps_base + rising_off); } } } dev_channels = devm_krealloc_array(dev, ams_channels, num_channels, sizeof(*dev_channels), GFP_KERNEL); if (!dev_channels) return -ENOMEM; indio_dev->channels = dev_channels; indio_dev->num_channels = num_channels; return 0; } static const struct iio_info iio_ams_info = { .read_label = ams_read_label, .read_raw = &ams_read_raw, .read_event_config = &ams_read_event_config, .write_event_config = &ams_write_event_config, .read_event_value = &ams_read_event_value, .write_event_value = &ams_write_event_value, }; static const struct of_device_id ams_of_match_table[] = { { .compatible = "xlnx,zynqmp-ams" }, { } }; MODULE_DEVICE_TABLE(of, ams_of_match_table); static int ams_probe(struct platform_device *pdev) { struct iio_dev *indio_dev; struct ams *ams; int ret; int irq; indio_dev = devm_iio_device_alloc(&pdev->dev, sizeof(*ams)); if (!indio_dev) return -ENOMEM; ams = iio_priv(indio_dev); mutex_init(&ams->lock); spin_lock_init(&ams->intr_lock); indio_dev->name = "xilinx-ams"; indio_dev->info = &iio_ams_info; indio_dev->modes = INDIO_DIRECT_MODE; ams->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(ams->base)) return PTR_ERR(ams->base); ams->clk = devm_clk_get_enabled(&pdev->dev, NULL); if (IS_ERR(ams->clk)) return PTR_ERR(ams->clk); ret = devm_delayed_work_autocancel(&pdev->dev, &ams->ams_unmask_work, ams_unmask_worker); if (ret < 0) return ret; ret = ams_parse_firmware(indio_dev); if (ret) return dev_err_probe(&pdev->dev, ret, "failure in parsing DT\n"); ret = ams_init_device(ams); if (ret) return dev_err_probe(&pdev->dev, ret, "failed to initialize AMS\n"); ams_enable_channel_sequence(indio_dev); irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = devm_request_irq(&pdev->dev, irq, &ams_irq, 0, "ams-irq", indio_dev); if (ret < 0) return dev_err_probe(&pdev->dev, ret, "failed to register interrupt\n"); platform_set_drvdata(pdev, indio_dev); return devm_iio_device_register(&pdev->dev, indio_dev); } static int ams_suspend(struct device *dev) { struct ams *ams = iio_priv(dev_get_drvdata(dev)); clk_disable_unprepare(ams->clk); return 0; } static int ams_resume(struct device *dev) { struct ams *ams = iio_priv(dev_get_drvdata(dev)); return clk_prepare_enable(ams->clk); } static DEFINE_SIMPLE_DEV_PM_OPS(ams_pm_ops, ams_suspend, ams_resume); static struct platform_driver ams_driver = { .probe = ams_probe, .driver = { .name = "xilinx-ams", .pm = pm_sleep_ptr(&ams_pm_ops), .of_match_table = ams_of_match_table, }, }; module_platform_driver(ams_driver); MODULE_DESCRIPTION("Xilinx AMS driver"); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Xilinx, Inc.");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1