Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Rui Miguel Silva | 4794 | 99.23% | 2 | 25.00% |
Jonathan Cameron | 26 | 0.54% | 4 | 50.00% |
Andy Shevchenko | 10 | 0.21% | 1 | 12.50% |
Mehdi Djait | 1 | 0.02% | 1 | 12.50% |
Total | 4831 | 8 |
// SPDX-License-Identifier: GPL-2.0 /* * Driver for NXP FXAS21002C Gyroscope - Core * * Copyright (C) 2019 Linaro Ltd. */ #include <linux/interrupt.h> #include <linux/module.h> #include <linux/pm.h> #include <linux/pm_runtime.h> #include <linux/property.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/iio/events.h> #include <linux/iio/iio.h> #include <linux/iio/buffer.h> #include <linux/iio/sysfs.h> #include <linux/iio/trigger.h> #include <linux/iio/trigger_consumer.h> #include <linux/iio/triggered_buffer.h> #include "fxas21002c.h" #define FXAS21002C_CHIP_ID_1 0xD6 #define FXAS21002C_CHIP_ID_2 0xD7 enum fxas21002c_mode_state { FXAS21002C_MODE_STANDBY, FXAS21002C_MODE_READY, FXAS21002C_MODE_ACTIVE, }; #define FXAS21002C_STANDBY_ACTIVE_TIME_MS 62 #define FXAS21002C_READY_ACTIVE_TIME_MS 7 #define FXAS21002C_ODR_LIST_MAX 10 #define FXAS21002C_SCALE_FRACTIONAL 32 #define FXAS21002C_RANGE_LIMIT_DOUBLE 2000 #define FXAS21002C_AXIS_TO_REG(axis) (FXAS21002C_REG_OUT_X_MSB + ((axis) * 2)) static const struct reg_field fxas21002c_reg_fields[] = { [F_DR_STATUS] = REG_FIELD(FXAS21002C_REG_STATUS, 0, 7), [F_OUT_X_MSB] = REG_FIELD(FXAS21002C_REG_OUT_X_MSB, 0, 7), [F_OUT_X_LSB] = REG_FIELD(FXAS21002C_REG_OUT_X_LSB, 0, 7), [F_OUT_Y_MSB] = REG_FIELD(FXAS21002C_REG_OUT_Y_MSB, 0, 7), [F_OUT_Y_LSB] = REG_FIELD(FXAS21002C_REG_OUT_Y_LSB, 0, 7), [F_OUT_Z_MSB] = REG_FIELD(FXAS21002C_REG_OUT_Z_MSB, 0, 7), [F_OUT_Z_LSB] = REG_FIELD(FXAS21002C_REG_OUT_Z_LSB, 0, 7), [F_ZYX_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 7, 7), [F_Z_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 6, 6), [F_Y_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 5, 5), [F_X_OW] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 4, 4), [F_ZYX_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 3, 3), [F_Z_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 2, 2), [F_Y_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 1, 1), [F_X_DR] = REG_FIELD(FXAS21002C_REG_DR_STATUS, 0, 0), [F_OVF] = REG_FIELD(FXAS21002C_REG_F_STATUS, 7, 7), [F_WMKF] = REG_FIELD(FXAS21002C_REG_F_STATUS, 6, 6), [F_CNT] = REG_FIELD(FXAS21002C_REG_F_STATUS, 0, 5), [F_MODE] = REG_FIELD(FXAS21002C_REG_F_SETUP, 6, 7), [F_WMRK] = REG_FIELD(FXAS21002C_REG_F_SETUP, 0, 5), [F_EVENT] = REG_FIELD(FXAS21002C_REG_F_EVENT, 5, 5), [FE_TIME] = REG_FIELD(FXAS21002C_REG_F_EVENT, 0, 4), [F_BOOTEND] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 3, 3), [F_SRC_FIFO] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 2, 2), [F_SRC_RT] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 1, 1), [F_SRC_DRDY] = REG_FIELD(FXAS21002C_REG_INT_SRC_FLAG, 0, 0), [F_WHO_AM_I] = REG_FIELD(FXAS21002C_REG_WHO_AM_I, 0, 7), [F_BW] = REG_FIELD(FXAS21002C_REG_CTRL0, 6, 7), [F_SPIW] = REG_FIELD(FXAS21002C_REG_CTRL0, 5, 5), [F_SEL] = REG_FIELD(FXAS21002C_REG_CTRL0, 3, 4), [F_HPF_EN] = REG_FIELD(FXAS21002C_REG_CTRL0, 2, 2), [F_FS] = REG_FIELD(FXAS21002C_REG_CTRL0, 0, 1), [F_ELE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 3, 3), [F_ZTEFE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 2, 2), [F_YTEFE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 1, 1), [F_XTEFE] = REG_FIELD(FXAS21002C_REG_RT_CFG, 0, 0), [F_EA] = REG_FIELD(FXAS21002C_REG_RT_SRC, 6, 6), [F_ZRT] = REG_FIELD(FXAS21002C_REG_RT_SRC, 5, 5), [F_ZRT_POL] = REG_FIELD(FXAS21002C_REG_RT_SRC, 4, 4), [F_YRT] = REG_FIELD(FXAS21002C_REG_RT_SRC, 3, 3), [F_YRT_POL] = REG_FIELD(FXAS21002C_REG_RT_SRC, 2, 2), [F_XRT] = REG_FIELD(FXAS21002C_REG_RT_SRC, 1, 1), [F_XRT_POL] = REG_FIELD(FXAS21002C_REG_RT_SRC, 0, 0), [F_DBCNTM] = REG_FIELD(FXAS21002C_REG_RT_THS, 7, 7), [F_THS] = REG_FIELD(FXAS21002C_REG_RT_SRC, 0, 6), [F_RT_COUNT] = REG_FIELD(FXAS21002C_REG_RT_COUNT, 0, 7), [F_TEMP] = REG_FIELD(FXAS21002C_REG_TEMP, 0, 7), [F_RST] = REG_FIELD(FXAS21002C_REG_CTRL1, 6, 6), [F_ST] = REG_FIELD(FXAS21002C_REG_CTRL1, 5, 5), [F_DR] = REG_FIELD(FXAS21002C_REG_CTRL1, 2, 4), [F_ACTIVE] = REG_FIELD(FXAS21002C_REG_CTRL1, 1, 1), [F_READY] = REG_FIELD(FXAS21002C_REG_CTRL1, 0, 0), [F_INT_CFG_FIFO] = REG_FIELD(FXAS21002C_REG_CTRL2, 7, 7), [F_INT_EN_FIFO] = REG_FIELD(FXAS21002C_REG_CTRL2, 6, 6), [F_INT_CFG_RT] = REG_FIELD(FXAS21002C_REG_CTRL2, 5, 5), [F_INT_EN_RT] = REG_FIELD(FXAS21002C_REG_CTRL2, 4, 4), [F_INT_CFG_DRDY] = REG_FIELD(FXAS21002C_REG_CTRL2, 3, 3), [F_INT_EN_DRDY] = REG_FIELD(FXAS21002C_REG_CTRL2, 2, 2), [F_IPOL] = REG_FIELD(FXAS21002C_REG_CTRL2, 1, 1), [F_PP_OD] = REG_FIELD(FXAS21002C_REG_CTRL2, 0, 0), [F_WRAPTOONE] = REG_FIELD(FXAS21002C_REG_CTRL3, 3, 3), [F_EXTCTRLEN] = REG_FIELD(FXAS21002C_REG_CTRL3, 2, 2), [F_FS_DOUBLE] = REG_FIELD(FXAS21002C_REG_CTRL3, 0, 0), }; static const int fxas21002c_odr_values[] = { 800, 400, 200, 100, 50, 25, 12, 12 }; /* * These values are taken from the low-pass filter cutoff frequency calculated * ODR * 0.lpf_values. So, for ODR = 800Hz with a lpf value = 0.32 * => LPF cutoff frequency = 800 * 0.32 = 256 Hz */ static const int fxas21002c_lpf_values[] = { 32, 16, 8 }; /* * These values are taken from the high-pass filter cutoff frequency calculated * ODR * 0.0hpf_values. So, for ODR = 800Hz with a hpf value = 0.018750 * => HPF cutoff frequency = 800 * 0.018750 = 15 Hz */ static const int fxas21002c_hpf_values[] = { 18750, 9625, 4875, 2475 }; static const int fxas21002c_range_values[] = { 4000, 2000, 1000, 500, 250 }; struct fxas21002c_data { u8 chip_id; enum fxas21002c_mode_state mode; enum fxas21002c_mode_state prev_mode; struct mutex lock; /* serialize data access */ struct regmap *regmap; struct regmap_field *regmap_fields[F_MAX_FIELDS]; struct iio_trigger *dready_trig; s64 timestamp; int irq; struct regulator *vdd; struct regulator *vddio; /* * DMA (thus cache coherency maintenance) may require the * transfer buffers live in their own cache lines. */ s16 buffer[8] __aligned(IIO_DMA_MINALIGN); }; enum fxas21002c_channel_index { CHANNEL_SCAN_INDEX_X, CHANNEL_SCAN_INDEX_Y, CHANNEL_SCAN_INDEX_Z, CHANNEL_SCAN_MAX, }; static int fxas21002c_odr_hz_from_value(struct fxas21002c_data *data, u8 value) { int odr_value_max = ARRAY_SIZE(fxas21002c_odr_values) - 1; value = min_t(u8, value, odr_value_max); return fxas21002c_odr_values[value]; } static int fxas21002c_odr_value_from_hz(struct fxas21002c_data *data, unsigned int hz) { int odr_table_size = ARRAY_SIZE(fxas21002c_odr_values); int i; for (i = 0; i < odr_table_size; i++) if (fxas21002c_odr_values[i] == hz) return i; return -EINVAL; } static int fxas21002c_lpf_bw_from_value(struct fxas21002c_data *data, u8 value) { int lpf_value_max = ARRAY_SIZE(fxas21002c_lpf_values) - 1; value = min_t(u8, value, lpf_value_max); return fxas21002c_lpf_values[value]; } static int fxas21002c_lpf_value_from_bw(struct fxas21002c_data *data, unsigned int hz) { int lpf_table_size = ARRAY_SIZE(fxas21002c_lpf_values); int i; for (i = 0; i < lpf_table_size; i++) if (fxas21002c_lpf_values[i] == hz) return i; return -EINVAL; } static int fxas21002c_hpf_sel_from_value(struct fxas21002c_data *data, u8 value) { int hpf_value_max = ARRAY_SIZE(fxas21002c_hpf_values) - 1; value = min_t(u8, value, hpf_value_max); return fxas21002c_hpf_values[value]; } static int fxas21002c_hpf_value_from_sel(struct fxas21002c_data *data, unsigned int hz) { int hpf_table_size = ARRAY_SIZE(fxas21002c_hpf_values); int i; for (i = 0; i < hpf_table_size; i++) if (fxas21002c_hpf_values[i] == hz) return i; return -EINVAL; } static int fxas21002c_range_fs_from_value(struct fxas21002c_data *data, u8 value) { int range_value_max = ARRAY_SIZE(fxas21002c_range_values) - 1; unsigned int fs_double; int ret; /* We need to check if FS_DOUBLE is enabled to offset the value */ ret = regmap_field_read(data->regmap_fields[F_FS_DOUBLE], &fs_double); if (ret < 0) return ret; if (!fs_double) value += 1; value = min_t(u8, value, range_value_max); return fxas21002c_range_values[value]; } static int fxas21002c_range_value_from_fs(struct fxas21002c_data *data, unsigned int range) { int range_table_size = ARRAY_SIZE(fxas21002c_range_values); bool found = false; int fs_double = 0; int ret; int i; for (i = 0; i < range_table_size; i++) if (fxas21002c_range_values[i] == range) { found = true; break; } if (!found) return -EINVAL; if (range > FXAS21002C_RANGE_LIMIT_DOUBLE) fs_double = 1; ret = regmap_field_write(data->regmap_fields[F_FS_DOUBLE], fs_double); if (ret < 0) return ret; return i; } static int fxas21002c_mode_get(struct fxas21002c_data *data) { unsigned int active; unsigned int ready; int ret; ret = regmap_field_read(data->regmap_fields[F_ACTIVE], &active); if (ret < 0) return ret; if (active) return FXAS21002C_MODE_ACTIVE; ret = regmap_field_read(data->regmap_fields[F_READY], &ready); if (ret < 0) return ret; if (ready) return FXAS21002C_MODE_READY; return FXAS21002C_MODE_STANDBY; } static int fxas21002c_mode_set(struct fxas21002c_data *data, enum fxas21002c_mode_state mode) { int ret; if (mode == data->mode) return 0; if (mode == FXAS21002C_MODE_READY) ret = regmap_field_write(data->regmap_fields[F_READY], 1); else ret = regmap_field_write(data->regmap_fields[F_READY], 0); if (ret < 0) return ret; if (mode == FXAS21002C_MODE_ACTIVE) ret = regmap_field_write(data->regmap_fields[F_ACTIVE], 1); else ret = regmap_field_write(data->regmap_fields[F_ACTIVE], 0); if (ret < 0) return ret; /* if going to active wait the setup times */ if (mode == FXAS21002C_MODE_ACTIVE && data->mode == FXAS21002C_MODE_STANDBY) msleep_interruptible(FXAS21002C_STANDBY_ACTIVE_TIME_MS); if (data->mode == FXAS21002C_MODE_READY) msleep_interruptible(FXAS21002C_READY_ACTIVE_TIME_MS); data->prev_mode = data->mode; data->mode = mode; return ret; } static int fxas21002c_write(struct fxas21002c_data *data, enum fxas21002c_fields field, int bits) { int actual_mode; int ret; mutex_lock(&data->lock); actual_mode = fxas21002c_mode_get(data); if (actual_mode < 0) { ret = actual_mode; goto out_unlock; } ret = fxas21002c_mode_set(data, FXAS21002C_MODE_READY); if (ret < 0) goto out_unlock; ret = regmap_field_write(data->regmap_fields[field], bits); if (ret < 0) goto out_unlock; ret = fxas21002c_mode_set(data, data->prev_mode); out_unlock: mutex_unlock(&data->lock); return ret; } static int fxas21002c_pm_get(struct fxas21002c_data *data) { return pm_runtime_resume_and_get(regmap_get_device(data->regmap)); } static int fxas21002c_pm_put(struct fxas21002c_data *data) { struct device *dev = regmap_get_device(data->regmap); pm_runtime_mark_last_busy(dev); return pm_runtime_put_autosuspend(dev); } static int fxas21002c_temp_get(struct fxas21002c_data *data, int *val) { struct device *dev = regmap_get_device(data->regmap); unsigned int temp; int ret; mutex_lock(&data->lock); ret = fxas21002c_pm_get(data); if (ret < 0) goto data_unlock; ret = regmap_field_read(data->regmap_fields[F_TEMP], &temp); if (ret < 0) { dev_err(dev, "failed to read temp: %d\n", ret); fxas21002c_pm_put(data); goto data_unlock; } *val = sign_extend32(temp, 7); ret = fxas21002c_pm_put(data); if (ret < 0) goto data_unlock; ret = IIO_VAL_INT; data_unlock: mutex_unlock(&data->lock); return ret; } static int fxas21002c_axis_get(struct fxas21002c_data *data, int index, int *val) { struct device *dev = regmap_get_device(data->regmap); __be16 axis_be; int ret; mutex_lock(&data->lock); ret = fxas21002c_pm_get(data); if (ret < 0) goto data_unlock; ret = regmap_bulk_read(data->regmap, FXAS21002C_AXIS_TO_REG(index), &axis_be, sizeof(axis_be)); if (ret < 0) { dev_err(dev, "failed to read axis: %d: %d\n", index, ret); fxas21002c_pm_put(data); goto data_unlock; } *val = sign_extend32(be16_to_cpu(axis_be), 15); ret = fxas21002c_pm_put(data); if (ret < 0) goto data_unlock; ret = IIO_VAL_INT; data_unlock: mutex_unlock(&data->lock); return ret; } static int fxas21002c_odr_get(struct fxas21002c_data *data, int *odr) { unsigned int odr_bits; int ret; mutex_lock(&data->lock); ret = regmap_field_read(data->regmap_fields[F_DR], &odr_bits); if (ret < 0) goto data_unlock; *odr = fxas21002c_odr_hz_from_value(data, odr_bits); ret = IIO_VAL_INT; data_unlock: mutex_unlock(&data->lock); return ret; } static int fxas21002c_odr_set(struct fxas21002c_data *data, int odr) { int odr_bits; odr_bits = fxas21002c_odr_value_from_hz(data, odr); if (odr_bits < 0) return odr_bits; return fxas21002c_write(data, F_DR, odr_bits); } static int fxas21002c_lpf_get(struct fxas21002c_data *data, int *val2) { unsigned int bw_bits; int ret; mutex_lock(&data->lock); ret = regmap_field_read(data->regmap_fields[F_BW], &bw_bits); if (ret < 0) goto data_unlock; *val2 = fxas21002c_lpf_bw_from_value(data, bw_bits) * 10000; ret = IIO_VAL_INT_PLUS_MICRO; data_unlock: mutex_unlock(&data->lock); return ret; } static int fxas21002c_lpf_set(struct fxas21002c_data *data, int bw) { int bw_bits; int odr; int ret; bw_bits = fxas21002c_lpf_value_from_bw(data, bw); if (bw_bits < 0) return bw_bits; /* * From table 33 of the device spec, for ODR = 25Hz and 12.5 value 0.08 * is not allowed and for ODR = 12.5 value 0.16 is also not allowed */ ret = fxas21002c_odr_get(data, &odr); if (ret < 0) return -EINVAL; if ((odr == 25 && bw_bits > 0x01) || (odr == 12 && bw_bits > 0)) return -EINVAL; return fxas21002c_write(data, F_BW, bw_bits); } static int fxas21002c_hpf_get(struct fxas21002c_data *data, int *val2) { unsigned int sel_bits; int ret; mutex_lock(&data->lock); ret = regmap_field_read(data->regmap_fields[F_SEL], &sel_bits); if (ret < 0) goto data_unlock; *val2 = fxas21002c_hpf_sel_from_value(data, sel_bits); ret = IIO_VAL_INT_PLUS_MICRO; data_unlock: mutex_unlock(&data->lock); return ret; } static int fxas21002c_hpf_set(struct fxas21002c_data *data, int sel) { int sel_bits; sel_bits = fxas21002c_hpf_value_from_sel(data, sel); if (sel_bits < 0) return sel_bits; return fxas21002c_write(data, F_SEL, sel_bits); } static int fxas21002c_scale_get(struct fxas21002c_data *data, int *val) { int fs_bits; int scale; int ret; mutex_lock(&data->lock); ret = regmap_field_read(data->regmap_fields[F_FS], &fs_bits); if (ret < 0) goto data_unlock; scale = fxas21002c_range_fs_from_value(data, fs_bits); if (scale < 0) { ret = scale; goto data_unlock; } *val = scale; data_unlock: mutex_unlock(&data->lock); return ret; } static int fxas21002c_scale_set(struct fxas21002c_data *data, int range) { int fs_bits; fs_bits = fxas21002c_range_value_from_fs(data, range); if (fs_bits < 0) return fs_bits; return fxas21002c_write(data, F_FS, fs_bits); } static int fxas21002c_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct fxas21002c_data *data = iio_priv(indio_dev); int ret; switch (mask) { case IIO_CHAN_INFO_RAW: switch (chan->type) { case IIO_TEMP: return fxas21002c_temp_get(data, val); case IIO_ANGL_VEL: return fxas21002c_axis_get(data, chan->scan_index, val); default: return -EINVAL; } case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_ANGL_VEL: *val2 = FXAS21002C_SCALE_FRACTIONAL; ret = fxas21002c_scale_get(data, val); if (ret < 0) return ret; return IIO_VAL_FRACTIONAL; default: return -EINVAL; } case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: *val = 0; return fxas21002c_lpf_get(data, val2); case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY: *val = 0; return fxas21002c_hpf_get(data, val2); case IIO_CHAN_INFO_SAMP_FREQ: *val2 = 0; return fxas21002c_odr_get(data, val); default: return -EINVAL; } } static int fxas21002c_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct fxas21002c_data *data = iio_priv(indio_dev); int range; switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: if (val2) return -EINVAL; return fxas21002c_odr_set(data, val); case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: if (val) return -EINVAL; val2 = val2 / 10000; return fxas21002c_lpf_set(data, val2); case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_ANGL_VEL: range = (((val * 1000 + val2 / 1000) * FXAS21002C_SCALE_FRACTIONAL) / 1000); return fxas21002c_scale_set(data, range); default: return -EINVAL; } case IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY: return fxas21002c_hpf_set(data, val2); default: return -EINVAL; } } static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("12.5 25 50 100 200 400 800"); static IIO_CONST_ATTR(in_anglvel_filter_low_pass_3db_frequency_available, "0.32 0.16 0.08"); static IIO_CONST_ATTR(in_anglvel_filter_high_pass_3db_frequency_available, "0.018750 0.009625 0.004875 0.002475"); static IIO_CONST_ATTR(in_anglvel_scale_available, "125.0 62.5 31.25 15.625 7.8125"); static struct attribute *fxas21002c_attributes[] = { &iio_const_attr_sampling_frequency_available.dev_attr.attr, &iio_const_attr_in_anglvel_filter_low_pass_3db_frequency_available.dev_attr.attr, &iio_const_attr_in_anglvel_filter_high_pass_3db_frequency_available.dev_attr.attr, &iio_const_attr_in_anglvel_scale_available.dev_attr.attr, NULL, }; static const struct attribute_group fxas21002c_attrs_group = { .attrs = fxas21002c_attributes, }; #define FXAS21002C_CHANNEL(_axis) { \ .type = IIO_ANGL_VEL, \ .modified = 1, \ .channel2 = IIO_MOD_##_axis, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) | \ BIT(IIO_CHAN_INFO_HIGH_PASS_FILTER_3DB_FREQUENCY) | \ BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .scan_index = CHANNEL_SCAN_INDEX_##_axis, \ .scan_type = { \ .sign = 's', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_BE, \ }, \ } static const struct iio_chan_spec fxas21002c_channels[] = { { .type = IIO_TEMP, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .scan_index = -1, }, FXAS21002C_CHANNEL(X), FXAS21002C_CHANNEL(Y), FXAS21002C_CHANNEL(Z), }; static const struct iio_info fxas21002c_info = { .attrs = &fxas21002c_attrs_group, .read_raw = &fxas21002c_read_raw, .write_raw = &fxas21002c_write_raw, }; static irqreturn_t fxas21002c_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct fxas21002c_data *data = iio_priv(indio_dev); int ret; mutex_lock(&data->lock); ret = regmap_bulk_read(data->regmap, FXAS21002C_REG_OUT_X_MSB, data->buffer, CHANNEL_SCAN_MAX * sizeof(s16)); if (ret < 0) goto out_unlock; iio_push_to_buffers_with_timestamp(indio_dev, data->buffer, data->timestamp); out_unlock: mutex_unlock(&data->lock); iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static int fxas21002c_chip_init(struct fxas21002c_data *data) { struct device *dev = regmap_get_device(data->regmap); unsigned int chip_id; int ret; ret = regmap_field_read(data->regmap_fields[F_WHO_AM_I], &chip_id); if (ret < 0) return ret; if (chip_id != FXAS21002C_CHIP_ID_1 && chip_id != FXAS21002C_CHIP_ID_2) { dev_err(dev, "chip id 0x%02x is not supported\n", chip_id); return -EINVAL; } data->chip_id = chip_id; ret = fxas21002c_mode_set(data, FXAS21002C_MODE_STANDBY); if (ret < 0) return ret; /* Set ODR to 200HZ as default */ ret = fxas21002c_odr_set(data, 200); if (ret < 0) dev_err(dev, "failed to set ODR: %d\n", ret); return ret; } static int fxas21002c_data_rdy_trigger_set_state(struct iio_trigger *trig, bool state) { struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig); struct fxas21002c_data *data = iio_priv(indio_dev); return regmap_field_write(data->regmap_fields[F_INT_EN_DRDY], state); } static const struct iio_trigger_ops fxas21002c_trigger_ops = { .set_trigger_state = &fxas21002c_data_rdy_trigger_set_state, }; static irqreturn_t fxas21002c_data_rdy_handler(int irq, void *private) { struct iio_dev *indio_dev = private; struct fxas21002c_data *data = iio_priv(indio_dev); data->timestamp = iio_get_time_ns(indio_dev); return IRQ_WAKE_THREAD; } static irqreturn_t fxas21002c_data_rdy_thread(int irq, void *private) { struct iio_dev *indio_dev = private; struct fxas21002c_data *data = iio_priv(indio_dev); unsigned int data_ready; int ret; ret = regmap_field_read(data->regmap_fields[F_SRC_DRDY], &data_ready); if (ret < 0) return IRQ_NONE; if (!data_ready) return IRQ_NONE; iio_trigger_poll_nested(data->dready_trig); return IRQ_HANDLED; } static int fxas21002c_trigger_probe(struct fxas21002c_data *data) { struct device *dev = regmap_get_device(data->regmap); struct iio_dev *indio_dev = dev_get_drvdata(dev); unsigned long irq_trig; bool irq_open_drain; int irq1; int ret; if (!data->irq) return 0; irq1 = fwnode_irq_get_byname(dev_fwnode(dev), "INT1"); if (irq1 == data->irq) { dev_info(dev, "using interrupt line INT1\n"); ret = regmap_field_write(data->regmap_fields[F_INT_CFG_DRDY], 1); if (ret < 0) return ret; } dev_info(dev, "using interrupt line INT2\n"); irq_open_drain = device_property_read_bool(dev, "drive-open-drain"); data->dready_trig = devm_iio_trigger_alloc(dev, "%s-dev%d", indio_dev->name, iio_device_id(indio_dev)); if (!data->dready_trig) return -ENOMEM; irq_trig = irqd_get_trigger_type(irq_get_irq_data(data->irq)); if (irq_trig == IRQF_TRIGGER_RISING) { ret = regmap_field_write(data->regmap_fields[F_IPOL], 1); if (ret < 0) return ret; } if (irq_open_drain) irq_trig |= IRQF_SHARED; ret = devm_request_threaded_irq(dev, data->irq, fxas21002c_data_rdy_handler, fxas21002c_data_rdy_thread, irq_trig, "fxas21002c_data_ready", indio_dev); if (ret < 0) return ret; data->dready_trig->ops = &fxas21002c_trigger_ops; iio_trigger_set_drvdata(data->dready_trig, indio_dev); return devm_iio_trigger_register(dev, data->dready_trig); } static int fxas21002c_power_enable(struct fxas21002c_data *data) { int ret; ret = regulator_enable(data->vdd); if (ret < 0) return ret; ret = regulator_enable(data->vddio); if (ret < 0) { regulator_disable(data->vdd); return ret; } return 0; } static void fxas21002c_power_disable(struct fxas21002c_data *data) { regulator_disable(data->vdd); regulator_disable(data->vddio); } static void fxas21002c_power_disable_action(void *_data) { struct fxas21002c_data *data = _data; fxas21002c_power_disable(data); } static int fxas21002c_regulators_get(struct fxas21002c_data *data) { struct device *dev = regmap_get_device(data->regmap); data->vdd = devm_regulator_get(dev->parent, "vdd"); if (IS_ERR(data->vdd)) return PTR_ERR(data->vdd); data->vddio = devm_regulator_get(dev->parent, "vddio"); return PTR_ERR_OR_ZERO(data->vddio); } int fxas21002c_core_probe(struct device *dev, struct regmap *regmap, int irq, const char *name) { struct fxas21002c_data *data; struct iio_dev *indio_dev; struct regmap_field *f; int i; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); dev_set_drvdata(dev, indio_dev); data->irq = irq; data->regmap = regmap; for (i = 0; i < F_MAX_FIELDS; i++) { f = devm_regmap_field_alloc(dev, data->regmap, fxas21002c_reg_fields[i]); if (IS_ERR(f)) return PTR_ERR(f); data->regmap_fields[i] = f; } mutex_init(&data->lock); ret = fxas21002c_regulators_get(data); if (ret < 0) return ret; ret = fxas21002c_power_enable(data); if (ret < 0) return ret; ret = devm_add_action_or_reset(dev, fxas21002c_power_disable_action, data); if (ret < 0) return ret; ret = fxas21002c_chip_init(data); if (ret < 0) return ret; indio_dev->channels = fxas21002c_channels; indio_dev->num_channels = ARRAY_SIZE(fxas21002c_channels); indio_dev->name = name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &fxas21002c_info; ret = fxas21002c_trigger_probe(data); if (ret < 0) return ret; ret = devm_iio_triggered_buffer_setup(dev, indio_dev, NULL, fxas21002c_trigger_handler, NULL); if (ret < 0) return ret; ret = pm_runtime_set_active(dev); if (ret) return ret; pm_runtime_enable(dev); pm_runtime_set_autosuspend_delay(dev, 2000); pm_runtime_use_autosuspend(dev); ret = iio_device_register(indio_dev); if (ret < 0) goto pm_disable; return 0; pm_disable: pm_runtime_disable(dev); pm_runtime_set_suspended(dev); return ret; } EXPORT_SYMBOL_NS_GPL(fxas21002c_core_probe, IIO_FXAS21002C); void fxas21002c_core_remove(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); iio_device_unregister(indio_dev); pm_runtime_disable(dev); pm_runtime_set_suspended(dev); } EXPORT_SYMBOL_NS_GPL(fxas21002c_core_remove, IIO_FXAS21002C); static int fxas21002c_suspend(struct device *dev) { struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev)); fxas21002c_mode_set(data, FXAS21002C_MODE_STANDBY); fxas21002c_power_disable(data); return 0; } static int fxas21002c_resume(struct device *dev) { struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev)); int ret; ret = fxas21002c_power_enable(data); if (ret < 0) return ret; return fxas21002c_mode_set(data, data->prev_mode); } static int fxas21002c_runtime_suspend(struct device *dev) { struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev)); return fxas21002c_mode_set(data, FXAS21002C_MODE_READY); } static int fxas21002c_runtime_resume(struct device *dev) { struct fxas21002c_data *data = iio_priv(dev_get_drvdata(dev)); return fxas21002c_mode_set(data, FXAS21002C_MODE_ACTIVE); } EXPORT_NS_GPL_DEV_PM_OPS(fxas21002c_pm_ops, IIO_FXAS21002C) = { SYSTEM_SLEEP_PM_OPS(fxas21002c_suspend, fxas21002c_resume) RUNTIME_PM_OPS(fxas21002c_runtime_suspend, fxas21002c_runtime_resume, NULL) }; MODULE_AUTHOR("Rui Miguel Silva <rui.silva@linaro.org>"); MODULE_LICENSE("GPL v2"); MODULE_DESCRIPTION("FXAS21002C Gyro driver");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1