Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Lars-Peter Clausen | 3247 | 41.09% | 6 | 12.50% |
Stefan Popa | 1566 | 19.82% | 8 | 16.67% |
Ramona Gradinariu | 1488 | 18.83% | 3 | 6.25% |
Nuno Sá | 1142 | 14.45% | 13 | 27.08% |
Alexandru Ardelean | 231 | 2.92% | 7 | 14.58% |
Andy Shevchenko | 125 | 1.58% | 3 | 6.25% |
Jonathan Cameron | 83 | 1.05% | 3 | 6.25% |
Venkat Prashanth B U | 8 | 0.10% | 1 | 2.08% |
Sachin Kamat | 7 | 0.09% | 1 | 2.08% |
Dan Carpenter | 2 | 0.03% | 1 | 2.08% |
Thomas Gleixner | 2 | 0.03% | 1 | 2.08% |
Dragos Bogdan | 1 | 0.01% | 1 | 2.08% |
Total | 7902 | 48 |
// SPDX-License-Identifier: GPL-2.0-only /* * ADIS16480 and similar IMUs driver * * Copyright 2012 Analog Devices Inc. */ #include <linux/clk.h> #include <linux/bitfield.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/math.h> #include <linux/device.h> #include <linux/kernel.h> #include <linux/spi/spi.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/lcm.h> #include <linux/property.h> #include <linux/swab.h> #include <linux/crc32.h> #include <linux/iio/iio.h> #include <linux/iio/buffer.h> #include <linux/iio/imu/adis.h> #include <linux/iio/trigger_consumer.h> #include <linux/debugfs.h> #define ADIS16480_PAGE_SIZE 0x80 #define ADIS16480_REG(page, reg) ((page) * ADIS16480_PAGE_SIZE + (reg)) #define ADIS16480_REG_PAGE_ID 0x00 /* Same address on each page */ #define ADIS16480_REG_SEQ_CNT ADIS16480_REG(0x00, 0x06) #define ADIS16480_REG_SYS_E_FLA ADIS16480_REG(0x00, 0x08) #define ADIS16480_REG_DIAG_STS ADIS16480_REG(0x00, 0x0A) #define ADIS16480_REG_ALM_STS ADIS16480_REG(0x00, 0x0C) #define ADIS16480_REG_TEMP_OUT ADIS16480_REG(0x00, 0x0E) #define ADIS16480_REG_X_GYRO_OUT ADIS16480_REG(0x00, 0x10) #define ADIS16480_REG_Y_GYRO_OUT ADIS16480_REG(0x00, 0x14) #define ADIS16480_REG_Z_GYRO_OUT ADIS16480_REG(0x00, 0x18) #define ADIS16480_REG_X_ACCEL_OUT ADIS16480_REG(0x00, 0x1C) #define ADIS16480_REG_Y_ACCEL_OUT ADIS16480_REG(0x00, 0x20) #define ADIS16480_REG_Z_ACCEL_OUT ADIS16480_REG(0x00, 0x24) #define ADIS16480_REG_X_MAGN_OUT ADIS16480_REG(0x00, 0x28) #define ADIS16480_REG_Y_MAGN_OUT ADIS16480_REG(0x00, 0x2A) #define ADIS16480_REG_Z_MAGN_OUT ADIS16480_REG(0x00, 0x2C) #define ADIS16480_REG_BAROM_OUT ADIS16480_REG(0x00, 0x2E) #define ADIS16480_REG_X_DELTAANG_OUT ADIS16480_REG(0x00, 0x40) #define ADIS16480_REG_Y_DELTAANG_OUT ADIS16480_REG(0x00, 0x44) #define ADIS16480_REG_Z_DELTAANG_OUT ADIS16480_REG(0x00, 0x48) #define ADIS16480_REG_X_DELTAVEL_OUT ADIS16480_REG(0x00, 0x4C) #define ADIS16480_REG_Y_DELTAVEL_OUT ADIS16480_REG(0x00, 0x50) #define ADIS16480_REG_Z_DELTAVEL_OUT ADIS16480_REG(0x00, 0x54) #define ADIS16480_REG_PROD_ID ADIS16480_REG(0x00, 0x7E) #define ADIS16480_REG_X_GYRO_SCALE ADIS16480_REG(0x02, 0x04) #define ADIS16480_REG_Y_GYRO_SCALE ADIS16480_REG(0x02, 0x06) #define ADIS16480_REG_Z_GYRO_SCALE ADIS16480_REG(0x02, 0x08) #define ADIS16480_REG_X_ACCEL_SCALE ADIS16480_REG(0x02, 0x0A) #define ADIS16480_REG_Y_ACCEL_SCALE ADIS16480_REG(0x02, 0x0C) #define ADIS16480_REG_Z_ACCEL_SCALE ADIS16480_REG(0x02, 0x0E) #define ADIS16480_REG_X_GYRO_BIAS ADIS16480_REG(0x02, 0x10) #define ADIS16480_REG_Y_GYRO_BIAS ADIS16480_REG(0x02, 0x14) #define ADIS16480_REG_Z_GYRO_BIAS ADIS16480_REG(0x02, 0x18) #define ADIS16480_REG_X_ACCEL_BIAS ADIS16480_REG(0x02, 0x1C) #define ADIS16480_REG_Y_ACCEL_BIAS ADIS16480_REG(0x02, 0x20) #define ADIS16480_REG_Z_ACCEL_BIAS ADIS16480_REG(0x02, 0x24) #define ADIS16480_REG_X_HARD_IRON ADIS16480_REG(0x02, 0x28) #define ADIS16480_REG_Y_HARD_IRON ADIS16480_REG(0x02, 0x2A) #define ADIS16480_REG_Z_HARD_IRON ADIS16480_REG(0x02, 0x2C) #define ADIS16480_REG_BAROM_BIAS ADIS16480_REG(0x02, 0x40) #define ADIS16480_REG_FLASH_CNT ADIS16480_REG(0x02, 0x7C) #define ADIS16480_REG_GLOB_CMD ADIS16480_REG(0x03, 0x02) #define ADIS16480_REG_FNCTIO_CTRL ADIS16480_REG(0x03, 0x06) #define ADIS16480_REG_GPIO_CTRL ADIS16480_REG(0x03, 0x08) #define ADIS16480_REG_CONFIG ADIS16480_REG(0x03, 0x0A) #define ADIS16480_REG_DEC_RATE ADIS16480_REG(0x03, 0x0C) #define ADIS16480_REG_SLP_CNT ADIS16480_REG(0x03, 0x10) #define ADIS16480_REG_FILTER_BNK0 ADIS16480_REG(0x03, 0x16) #define ADIS16480_REG_FILTER_BNK1 ADIS16480_REG(0x03, 0x18) #define ADIS16480_REG_ALM_CNFG0 ADIS16480_REG(0x03, 0x20) #define ADIS16480_REG_ALM_CNFG1 ADIS16480_REG(0x03, 0x22) #define ADIS16480_REG_ALM_CNFG2 ADIS16480_REG(0x03, 0x24) #define ADIS16480_REG_XG_ALM_MAGN ADIS16480_REG(0x03, 0x28) #define ADIS16480_REG_YG_ALM_MAGN ADIS16480_REG(0x03, 0x2A) #define ADIS16480_REG_ZG_ALM_MAGN ADIS16480_REG(0x03, 0x2C) #define ADIS16480_REG_XA_ALM_MAGN ADIS16480_REG(0x03, 0x2E) #define ADIS16480_REG_YA_ALM_MAGN ADIS16480_REG(0x03, 0x30) #define ADIS16480_REG_ZA_ALM_MAGN ADIS16480_REG(0x03, 0x32) #define ADIS16480_REG_XM_ALM_MAGN ADIS16480_REG(0x03, 0x34) #define ADIS16480_REG_YM_ALM_MAGN ADIS16480_REG(0x03, 0x36) #define ADIS16480_REG_ZM_ALM_MAGN ADIS16480_REG(0x03, 0x38) #define ADIS16480_REG_BR_ALM_MAGN ADIS16480_REG(0x03, 0x3A) #define ADIS16480_REG_FIRM_REV ADIS16480_REG(0x03, 0x78) #define ADIS16480_REG_FIRM_DM ADIS16480_REG(0x03, 0x7A) #define ADIS16480_REG_FIRM_Y ADIS16480_REG(0x03, 0x7C) /* * External clock scaling in PPS mode. * Available only for ADIS1649x devices */ #define ADIS16495_REG_SYNC_SCALE ADIS16480_REG(0x03, 0x10) #define ADIS16495_REG_BURST_CMD ADIS16480_REG(0x00, 0x7C) #define ADIS16495_GYRO_ACCEL_BURST_ID 0xA5A5 #define ADIS16545_DELTA_ANG_VEL_BURST_ID 0xC3C3 /* total number of segments in burst */ #define ADIS16495_BURST_MAX_DATA 20 #define ADIS16480_REG_SERIAL_NUM ADIS16480_REG(0x04, 0x20) /* Each filter coefficent bank spans two pages */ #define ADIS16480_FIR_COEF(page) (x < 60 ? ADIS16480_REG(page, (x) + 8) : \ ADIS16480_REG((page) + 1, (x) - 60 + 8)) #define ADIS16480_FIR_COEF_A(x) ADIS16480_FIR_COEF(0x05, (x)) #define ADIS16480_FIR_COEF_B(x) ADIS16480_FIR_COEF(0x07, (x)) #define ADIS16480_FIR_COEF_C(x) ADIS16480_FIR_COEF(0x09, (x)) #define ADIS16480_FIR_COEF_D(x) ADIS16480_FIR_COEF(0x0B, (x)) /* ADIS16480_REG_FNCTIO_CTRL */ #define ADIS16480_DRDY_SEL_MSK GENMASK(1, 0) #define ADIS16480_DRDY_SEL(x) FIELD_PREP(ADIS16480_DRDY_SEL_MSK, x) #define ADIS16480_DRDY_POL_MSK BIT(2) #define ADIS16480_DRDY_POL(x) FIELD_PREP(ADIS16480_DRDY_POL_MSK, x) #define ADIS16480_DRDY_EN_MSK BIT(3) #define ADIS16480_DRDY_EN(x) FIELD_PREP(ADIS16480_DRDY_EN_MSK, x) #define ADIS16480_SYNC_SEL_MSK GENMASK(5, 4) #define ADIS16480_SYNC_SEL(x) FIELD_PREP(ADIS16480_SYNC_SEL_MSK, x) #define ADIS16480_SYNC_EN_MSK BIT(7) #define ADIS16480_SYNC_EN(x) FIELD_PREP(ADIS16480_SYNC_EN_MSK, x) #define ADIS16480_SYNC_MODE_MSK BIT(8) #define ADIS16480_SYNC_MODE(x) FIELD_PREP(ADIS16480_SYNC_MODE_MSK, x) #define ADIS16545_BURST_DATA_SEL_0_CHN_MASK GENMASK(5, 0) #define ADIS16545_BURST_DATA_SEL_1_CHN_MASK GENMASK(16, 11) #define ADIS16545_BURST_DATA_SEL_MASK BIT(8) struct adis16480_chip_info { unsigned int num_channels; const struct iio_chan_spec *channels; unsigned int gyro_max_val; unsigned int gyro_max_scale; unsigned int accel_max_val; unsigned int accel_max_scale; unsigned int temp_scale; unsigned int deltang_max_val; unsigned int deltvel_max_val; unsigned int int_clk; unsigned int max_dec_rate; const unsigned int *filter_freqs; bool has_pps_clk_mode; bool has_sleep_cnt; bool has_burst_delta_data; const struct adis_data adis_data; }; enum adis16480_int_pin { ADIS16480_PIN_DIO1, ADIS16480_PIN_DIO2, ADIS16480_PIN_DIO3, ADIS16480_PIN_DIO4 }; enum adis16480_clock_mode { ADIS16480_CLK_SYNC, ADIS16480_CLK_PPS, ADIS16480_CLK_INT }; struct adis16480 { const struct adis16480_chip_info *chip_info; struct adis adis; struct clk *ext_clk; enum adis16480_clock_mode clk_mode; unsigned int clk_freq; u16 burst_id; /* Alignment needed for the timestamp */ __be16 data[ADIS16495_BURST_MAX_DATA] __aligned(8); }; static const char * const adis16480_int_pin_names[4] = { [ADIS16480_PIN_DIO1] = "DIO1", [ADIS16480_PIN_DIO2] = "DIO2", [ADIS16480_PIN_DIO3] = "DIO3", [ADIS16480_PIN_DIO4] = "DIO4", }; static bool low_rate_allow; module_param(low_rate_allow, bool, 0444); MODULE_PARM_DESC(low_rate_allow, "Allow IMU rates below the minimum advisable when external clk is used in PPS mode (default: N)"); #ifdef CONFIG_DEBUG_FS static ssize_t adis16480_show_firmware_revision(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct adis16480 *adis16480 = file->private_data; char buf[7]; size_t len; u16 rev; int ret; ret = adis_read_reg_16(&adis16480->adis, ADIS16480_REG_FIRM_REV, &rev); if (ret) return ret; len = scnprintf(buf, sizeof(buf), "%x.%x\n", rev >> 8, rev & 0xff); return simple_read_from_buffer(userbuf, count, ppos, buf, len); } static const struct file_operations adis16480_firmware_revision_fops = { .open = simple_open, .read = adis16480_show_firmware_revision, .llseek = default_llseek, .owner = THIS_MODULE, }; static ssize_t adis16480_show_firmware_date(struct file *file, char __user *userbuf, size_t count, loff_t *ppos) { struct adis16480 *adis16480 = file->private_data; u16 md, year; char buf[12]; size_t len; int ret; ret = adis_read_reg_16(&adis16480->adis, ADIS16480_REG_FIRM_Y, &year); if (ret) return ret; ret = adis_read_reg_16(&adis16480->adis, ADIS16480_REG_FIRM_DM, &md); if (ret) return ret; len = snprintf(buf, sizeof(buf), "%.2x-%.2x-%.4x\n", md >> 8, md & 0xff, year); return simple_read_from_buffer(userbuf, count, ppos, buf, len); } static const struct file_operations adis16480_firmware_date_fops = { .open = simple_open, .read = adis16480_show_firmware_date, .llseek = default_llseek, .owner = THIS_MODULE, }; static int adis16480_show_serial_number(void *arg, u64 *val) { struct adis16480 *adis16480 = arg; u16 serial; int ret; ret = adis_read_reg_16(&adis16480->adis, ADIS16480_REG_SERIAL_NUM, &serial); if (ret) return ret; *val = serial; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(adis16480_serial_number_fops, adis16480_show_serial_number, NULL, "0x%.4llx\n"); static int adis16480_show_product_id(void *arg, u64 *val) { struct adis16480 *adis16480 = arg; u16 prod_id; int ret; ret = adis_read_reg_16(&adis16480->adis, ADIS16480_REG_PROD_ID, &prod_id); if (ret) return ret; *val = prod_id; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(adis16480_product_id_fops, adis16480_show_product_id, NULL, "%llu\n"); static int adis16480_show_flash_count(void *arg, u64 *val) { struct adis16480 *adis16480 = arg; u32 flash_count; int ret; ret = adis_read_reg_32(&adis16480->adis, ADIS16480_REG_FLASH_CNT, &flash_count); if (ret) return ret; *val = flash_count; return 0; } DEFINE_DEBUGFS_ATTRIBUTE(adis16480_flash_count_fops, adis16480_show_flash_count, NULL, "%lld\n"); static int adis16480_debugfs_init(struct iio_dev *indio_dev) { struct adis16480 *adis16480 = iio_priv(indio_dev); struct dentry *d = iio_get_debugfs_dentry(indio_dev); debugfs_create_file_unsafe("firmware_revision", 0400, d, adis16480, &adis16480_firmware_revision_fops); debugfs_create_file_unsafe("firmware_date", 0400, d, adis16480, &adis16480_firmware_date_fops); debugfs_create_file_unsafe("serial_number", 0400, d, adis16480, &adis16480_serial_number_fops); debugfs_create_file_unsafe("product_id", 0400, d, adis16480, &adis16480_product_id_fops); debugfs_create_file_unsafe("flash_count", 0400, d, adis16480, &adis16480_flash_count_fops); return 0; } #else static int adis16480_debugfs_init(struct iio_dev *indio_dev) { return 0; } #endif static int adis16480_set_freq(struct iio_dev *indio_dev, int val, int val2) { struct adis16480 *st = iio_priv(indio_dev); unsigned int t, sample_rate = st->clk_freq; int ret; if (val < 0 || val2 < 0) return -EINVAL; t = val * 1000 + val2 / 1000; if (t == 0) return -EINVAL; adis_dev_auto_lock(&st->adis); /* * When using PPS mode, the input clock needs to be scaled so that we have an IMU * sample rate between (optimally) 4000 and 4250. After this, we can use the * decimation filter to lower the sampling rate in order to get what the user wants. * Optimally, the user sample rate is a multiple of both the IMU sample rate and * the input clock. Hence, calculating the sync_scale dynamically gives us better * chances of achieving a perfect/integer value for DEC_RATE. The math here is: * 1. lcm of the input clock and the desired output rate. * 2. get the highest multiple of the previous result lower than the adis max rate. * 3. The last result becomes the IMU sample rate. Use that to calculate SYNC_SCALE * and DEC_RATE (to get the user output rate) */ if (st->clk_mode == ADIS16480_CLK_PPS) { unsigned long scaled_rate = lcm(st->clk_freq, t); int sync_scale; /* * If lcm is bigger than the IMU maximum sampling rate there's no perfect * solution. In this case, we get the highest multiple of the input clock * lower than the IMU max sample rate. */ if (scaled_rate > st->chip_info->int_clk) scaled_rate = st->chip_info->int_clk / st->clk_freq * st->clk_freq; else scaled_rate = st->chip_info->int_clk / scaled_rate * scaled_rate; /* * This is not an hard requirement but it's not advised to run the IMU * with a sample rate lower than 4000Hz due to possible undersampling * issues. However, there are users that might really want to take the risk. * Hence, we provide a module parameter for them. If set, we allow sample * rates lower than 4KHz. By default, we won't allow this and we just roundup * the rate to the next multiple of the input clock bigger than 4KHz. This * is done like this as in some cases (when DEC_RATE is 0) might give * us the closest value to the one desired by the user... */ if (scaled_rate < 4000000 && !low_rate_allow) scaled_rate = roundup(4000000, st->clk_freq); sync_scale = scaled_rate / st->clk_freq; ret = __adis_write_reg_16(&st->adis, ADIS16495_REG_SYNC_SCALE, sync_scale); if (ret) return ret; sample_rate = scaled_rate; } t = DIV_ROUND_CLOSEST(sample_rate, t); if (t) t--; if (t > st->chip_info->max_dec_rate) t = st->chip_info->max_dec_rate; return __adis_write_reg_16(&st->adis, ADIS16480_REG_DEC_RATE, t); } static int adis16480_get_freq(struct iio_dev *indio_dev, int *val, int *val2) { struct adis16480 *st = iio_priv(indio_dev); uint16_t t; int ret; unsigned int freq, sample_rate = st->clk_freq; adis_dev_auto_lock(&st->adis); if (st->clk_mode == ADIS16480_CLK_PPS) { u16 sync_scale; ret = __adis_read_reg_16(&st->adis, ADIS16495_REG_SYNC_SCALE, &sync_scale); if (ret) return ret; sample_rate = st->clk_freq * sync_scale; } ret = __adis_read_reg_16(&st->adis, ADIS16480_REG_DEC_RATE, &t); if (ret) return ret; freq = DIV_ROUND_CLOSEST(sample_rate, (t + 1)); *val = freq / 1000; *val2 = (freq % 1000) * 1000; return IIO_VAL_INT_PLUS_MICRO; } enum { ADIS16480_SCAN_GYRO_X, ADIS16480_SCAN_GYRO_Y, ADIS16480_SCAN_GYRO_Z, ADIS16480_SCAN_ACCEL_X, ADIS16480_SCAN_ACCEL_Y, ADIS16480_SCAN_ACCEL_Z, ADIS16480_SCAN_MAGN_X, ADIS16480_SCAN_MAGN_Y, ADIS16480_SCAN_MAGN_Z, ADIS16480_SCAN_BARO, ADIS16480_SCAN_TEMP, ADIS16480_SCAN_DELTANG_X, ADIS16480_SCAN_DELTANG_Y, ADIS16480_SCAN_DELTANG_Z, ADIS16480_SCAN_DELTVEL_X, ADIS16480_SCAN_DELTVEL_Y, ADIS16480_SCAN_DELTVEL_Z, }; static const unsigned int adis16480_calibbias_regs[] = { [ADIS16480_SCAN_GYRO_X] = ADIS16480_REG_X_GYRO_BIAS, [ADIS16480_SCAN_GYRO_Y] = ADIS16480_REG_Y_GYRO_BIAS, [ADIS16480_SCAN_GYRO_Z] = ADIS16480_REG_Z_GYRO_BIAS, [ADIS16480_SCAN_ACCEL_X] = ADIS16480_REG_X_ACCEL_BIAS, [ADIS16480_SCAN_ACCEL_Y] = ADIS16480_REG_Y_ACCEL_BIAS, [ADIS16480_SCAN_ACCEL_Z] = ADIS16480_REG_Z_ACCEL_BIAS, [ADIS16480_SCAN_MAGN_X] = ADIS16480_REG_X_HARD_IRON, [ADIS16480_SCAN_MAGN_Y] = ADIS16480_REG_Y_HARD_IRON, [ADIS16480_SCAN_MAGN_Z] = ADIS16480_REG_Z_HARD_IRON, [ADIS16480_SCAN_BARO] = ADIS16480_REG_BAROM_BIAS, }; static const unsigned int adis16480_calibscale_regs[] = { [ADIS16480_SCAN_GYRO_X] = ADIS16480_REG_X_GYRO_SCALE, [ADIS16480_SCAN_GYRO_Y] = ADIS16480_REG_Y_GYRO_SCALE, [ADIS16480_SCAN_GYRO_Z] = ADIS16480_REG_Z_GYRO_SCALE, [ADIS16480_SCAN_ACCEL_X] = ADIS16480_REG_X_ACCEL_SCALE, [ADIS16480_SCAN_ACCEL_Y] = ADIS16480_REG_Y_ACCEL_SCALE, [ADIS16480_SCAN_ACCEL_Z] = ADIS16480_REG_Z_ACCEL_SCALE, }; static int adis16480_set_calibbias(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, int bias) { unsigned int reg = adis16480_calibbias_regs[chan->scan_index]; struct adis16480 *st = iio_priv(indio_dev); switch (chan->type) { case IIO_MAGN: case IIO_PRESSURE: if (bias < -0x8000 || bias >= 0x8000) return -EINVAL; return adis_write_reg_16(&st->adis, reg, bias); case IIO_ANGL_VEL: case IIO_ACCEL: return adis_write_reg_32(&st->adis, reg, bias); default: break; } return -EINVAL; } static int adis16480_get_calibbias(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, int *bias) { unsigned int reg = adis16480_calibbias_regs[chan->scan_index]; struct adis16480 *st = iio_priv(indio_dev); uint16_t val16; uint32_t val32; int ret; switch (chan->type) { case IIO_MAGN: case IIO_PRESSURE: ret = adis_read_reg_16(&st->adis, reg, &val16); if (ret == 0) *bias = sign_extend32(val16, 15); break; case IIO_ANGL_VEL: case IIO_ACCEL: ret = adis_read_reg_32(&st->adis, reg, &val32); if (ret == 0) *bias = sign_extend32(val32, 31); break; default: ret = -EINVAL; } if (ret) return ret; return IIO_VAL_INT; } static int adis16480_set_calibscale(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, int scale) { unsigned int reg = adis16480_calibscale_regs[chan->scan_index]; struct adis16480 *st = iio_priv(indio_dev); if (scale < -0x8000 || scale >= 0x8000) return -EINVAL; return adis_write_reg_16(&st->adis, reg, scale); } static int adis16480_get_calibscale(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, int *scale) { unsigned int reg = adis16480_calibscale_regs[chan->scan_index]; struct adis16480 *st = iio_priv(indio_dev); uint16_t val16; int ret; ret = adis_read_reg_16(&st->adis, reg, &val16); if (ret) return ret; *scale = sign_extend32(val16, 15); return IIO_VAL_INT; } static const unsigned int adis16480_def_filter_freqs[] = { 310, 55, 275, 63, }; static const unsigned int adis16495_def_filter_freqs[] = { 300, 100, 300, 100, }; static const unsigned int ad16480_filter_data[][2] = { [ADIS16480_SCAN_GYRO_X] = { ADIS16480_REG_FILTER_BNK0, 0 }, [ADIS16480_SCAN_GYRO_Y] = { ADIS16480_REG_FILTER_BNK0, 3 }, [ADIS16480_SCAN_GYRO_Z] = { ADIS16480_REG_FILTER_BNK0, 6 }, [ADIS16480_SCAN_ACCEL_X] = { ADIS16480_REG_FILTER_BNK0, 9 }, [ADIS16480_SCAN_ACCEL_Y] = { ADIS16480_REG_FILTER_BNK0, 12 }, [ADIS16480_SCAN_ACCEL_Z] = { ADIS16480_REG_FILTER_BNK1, 0 }, [ADIS16480_SCAN_MAGN_X] = { ADIS16480_REG_FILTER_BNK1, 3 }, [ADIS16480_SCAN_MAGN_Y] = { ADIS16480_REG_FILTER_BNK1, 6 }, [ADIS16480_SCAN_MAGN_Z] = { ADIS16480_REG_FILTER_BNK1, 9 }, }; static int adis16480_get_filter_freq(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, int *freq) { struct adis16480 *st = iio_priv(indio_dev); unsigned int enable_mask, offset, reg; uint16_t val; int ret; reg = ad16480_filter_data[chan->scan_index][0]; offset = ad16480_filter_data[chan->scan_index][1]; enable_mask = BIT(offset + 2); ret = adis_read_reg_16(&st->adis, reg, &val); if (ret) return ret; if (!(val & enable_mask)) *freq = 0; else *freq = st->chip_info->filter_freqs[(val >> offset) & 0x3]; return IIO_VAL_INT; } static int adis16480_set_filter_freq(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, unsigned int freq) { struct adis16480 *st = iio_priv(indio_dev); unsigned int enable_mask, offset, reg; unsigned int diff, best_diff; unsigned int i, best_freq; uint16_t val; int ret; reg = ad16480_filter_data[chan->scan_index][0]; offset = ad16480_filter_data[chan->scan_index][1]; enable_mask = BIT(offset + 2); adis_dev_auto_lock(&st->adis); ret = __adis_read_reg_16(&st->adis, reg, &val); if (ret) return ret; if (freq == 0) { val &= ~enable_mask; } else { best_freq = 0; best_diff = st->chip_info->filter_freqs[0]; for (i = 0; i < ARRAY_SIZE(adis16480_def_filter_freqs); i++) { if (st->chip_info->filter_freqs[i] >= freq) { diff = st->chip_info->filter_freqs[i] - freq; if (diff < best_diff) { best_diff = diff; best_freq = i; } } } val &= ~(0x3 << offset); val |= best_freq << offset; val |= enable_mask; } return __adis_write_reg_16(&st->adis, reg, val); } static int adis16480_read_raw(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, int *val, int *val2, long info) { struct adis16480 *st = iio_priv(indio_dev); unsigned int temp; switch (info) { case IIO_CHAN_INFO_RAW: return adis_single_conversion(indio_dev, chan, 0, val); case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_ANGL_VEL: *val = st->chip_info->gyro_max_scale; *val2 = st->chip_info->gyro_max_val; return IIO_VAL_FRACTIONAL; case IIO_ACCEL: *val = st->chip_info->accel_max_scale; *val2 = st->chip_info->accel_max_val; return IIO_VAL_FRACTIONAL; case IIO_MAGN: *val = 0; *val2 = 100; /* 0.0001 gauss */ return IIO_VAL_INT_PLUS_MICRO; case IIO_TEMP: /* * +85 degrees Celsius = temp_max_scale * +25 degrees Celsius = 0 * LSB, 25 degrees Celsius = 60 / temp_max_scale */ *val = st->chip_info->temp_scale / 1000; *val2 = (st->chip_info->temp_scale % 1000) * 1000; return IIO_VAL_INT_PLUS_MICRO; case IIO_PRESSURE: /* * max scale is 1310 mbar * max raw value is 32767 shifted for 32bits */ *val = 131; /* 1310mbar = 131 kPa */ *val2 = 32767 << 16; return IIO_VAL_FRACTIONAL; case IIO_DELTA_ANGL: *val = st->chip_info->deltang_max_val; *val2 = 31; return IIO_VAL_FRACTIONAL_LOG2; case IIO_DELTA_VELOCITY: *val = st->chip_info->deltvel_max_val; *val2 = 31; return IIO_VAL_FRACTIONAL_LOG2; default: return -EINVAL; } case IIO_CHAN_INFO_OFFSET: /* Only the temperature channel has a offset */ temp = 25 * 1000000LL; /* 25 degree Celsius = 0x0000 */ *val = DIV_ROUND_CLOSEST_ULL(temp, st->chip_info->temp_scale); return IIO_VAL_INT; case IIO_CHAN_INFO_CALIBBIAS: return adis16480_get_calibbias(indio_dev, chan, val); case IIO_CHAN_INFO_CALIBSCALE: return adis16480_get_calibscale(indio_dev, chan, val); case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: return adis16480_get_filter_freq(indio_dev, chan, val); case IIO_CHAN_INFO_SAMP_FREQ: return adis16480_get_freq(indio_dev, val, val2); default: return -EINVAL; } } static int adis16480_write_raw(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, int val, int val2, long info) { switch (info) { case IIO_CHAN_INFO_CALIBBIAS: return adis16480_set_calibbias(indio_dev, chan, val); case IIO_CHAN_INFO_CALIBSCALE: return adis16480_set_calibscale(indio_dev, chan, val); case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: return adis16480_set_filter_freq(indio_dev, chan, val); case IIO_CHAN_INFO_SAMP_FREQ: return adis16480_set_freq(indio_dev, val, val2); default: return -EINVAL; } } #define ADIS16480_MOD_CHANNEL(_type, _mod, _address, _si, _info_sep, _bits) \ { \ .type = (_type), \ .modified = 1, \ .channel2 = (_mod), \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_CALIBBIAS) | \ _info_sep, \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .address = (_address), \ .scan_index = (_si), \ .scan_type = { \ .sign = 's', \ .realbits = (_bits), \ .storagebits = (_bits), \ .endianness = IIO_BE, \ }, \ } #define ADIS16480_GYRO_CHANNEL(_mod) \ ADIS16480_MOD_CHANNEL(IIO_ANGL_VEL, IIO_MOD_ ## _mod, \ ADIS16480_REG_ ## _mod ## _GYRO_OUT, ADIS16480_SCAN_GYRO_ ## _mod, \ BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) | \ BIT(IIO_CHAN_INFO_CALIBSCALE), \ 32) #define ADIS16480_ACCEL_CHANNEL(_mod) \ ADIS16480_MOD_CHANNEL(IIO_ACCEL, IIO_MOD_ ## _mod, \ ADIS16480_REG_ ## _mod ## _ACCEL_OUT, ADIS16480_SCAN_ACCEL_ ## _mod, \ BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY) | \ BIT(IIO_CHAN_INFO_CALIBSCALE), \ 32) #define ADIS16480_DELTANG_CHANNEL(_mod) \ ADIS16480_MOD_CHANNEL(IIO_DELTA_ANGL, IIO_MOD_ ## _mod, \ ADIS16480_REG_ ## _mod ## _DELTAANG_OUT, ADIS16480_SCAN_DELTANG_ ## _mod, \ 0, 32) #define ADIS16480_DELTANG_CHANNEL_NO_SCAN(_mod) \ ADIS16480_MOD_CHANNEL(IIO_DELTA_ANGL, IIO_MOD_ ## _mod, \ ADIS16480_REG_ ## _mod ## _DELTAANG_OUT, -1, 0, 32) #define ADIS16480_DELTVEL_CHANNEL(_mod) \ ADIS16480_MOD_CHANNEL(IIO_DELTA_VELOCITY, IIO_MOD_ ## _mod, \ ADIS16480_REG_ ## _mod ## _DELTAVEL_OUT, ADIS16480_SCAN_DELTVEL_ ## _mod, \ 0, 32) #define ADIS16480_DELTVEL_CHANNEL_NO_SCAN(_mod) \ ADIS16480_MOD_CHANNEL(IIO_DELTA_VELOCITY, IIO_MOD_ ## _mod, \ ADIS16480_REG_ ## _mod ## _DELTAVEL_OUT, -1, 0, 32) #define ADIS16480_MAGN_CHANNEL(_mod) \ ADIS16480_MOD_CHANNEL(IIO_MAGN, IIO_MOD_ ## _mod, \ ADIS16480_REG_ ## _mod ## _MAGN_OUT, ADIS16480_SCAN_MAGN_ ## _mod, \ BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), \ 16) #define ADIS16480_PRESSURE_CHANNEL() \ { \ .type = IIO_PRESSURE, \ .indexed = 1, \ .channel = 0, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_CALIBBIAS) | \ BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .address = ADIS16480_REG_BAROM_OUT, \ .scan_index = ADIS16480_SCAN_BARO, \ .scan_type = { \ .sign = 's', \ .realbits = 32, \ .storagebits = 32, \ .endianness = IIO_BE, \ }, \ } #define ADIS16480_TEMP_CHANNEL() { \ .type = IIO_TEMP, \ .indexed = 1, \ .channel = 0, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_OFFSET), \ .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), \ .address = ADIS16480_REG_TEMP_OUT, \ .scan_index = ADIS16480_SCAN_TEMP, \ .scan_type = { \ .sign = 's', \ .realbits = 16, \ .storagebits = 16, \ .endianness = IIO_BE, \ }, \ } static const struct iio_chan_spec adis16480_channels[] = { ADIS16480_GYRO_CHANNEL(X), ADIS16480_GYRO_CHANNEL(Y), ADIS16480_GYRO_CHANNEL(Z), ADIS16480_ACCEL_CHANNEL(X), ADIS16480_ACCEL_CHANNEL(Y), ADIS16480_ACCEL_CHANNEL(Z), ADIS16480_MAGN_CHANNEL(X), ADIS16480_MAGN_CHANNEL(Y), ADIS16480_MAGN_CHANNEL(Z), ADIS16480_PRESSURE_CHANNEL(), ADIS16480_TEMP_CHANNEL(), IIO_CHAN_SOFT_TIMESTAMP(11), ADIS16480_DELTANG_CHANNEL_NO_SCAN(X), ADIS16480_DELTANG_CHANNEL_NO_SCAN(Y), ADIS16480_DELTANG_CHANNEL_NO_SCAN(Z), ADIS16480_DELTVEL_CHANNEL_NO_SCAN(X), ADIS16480_DELTVEL_CHANNEL_NO_SCAN(Y), ADIS16480_DELTVEL_CHANNEL_NO_SCAN(Z), }; static const struct iio_chan_spec adis16485_channels[] = { ADIS16480_GYRO_CHANNEL(X), ADIS16480_GYRO_CHANNEL(Y), ADIS16480_GYRO_CHANNEL(Z), ADIS16480_ACCEL_CHANNEL(X), ADIS16480_ACCEL_CHANNEL(Y), ADIS16480_ACCEL_CHANNEL(Z), ADIS16480_TEMP_CHANNEL(), IIO_CHAN_SOFT_TIMESTAMP(7), ADIS16480_DELTANG_CHANNEL_NO_SCAN(X), ADIS16480_DELTANG_CHANNEL_NO_SCAN(Y), ADIS16480_DELTANG_CHANNEL_NO_SCAN(Z), ADIS16480_DELTVEL_CHANNEL_NO_SCAN(X), ADIS16480_DELTVEL_CHANNEL_NO_SCAN(Y), ADIS16480_DELTVEL_CHANNEL_NO_SCAN(Z), }; static const struct iio_chan_spec adis16545_channels[] = { ADIS16480_GYRO_CHANNEL(X), ADIS16480_GYRO_CHANNEL(Y), ADIS16480_GYRO_CHANNEL(Z), ADIS16480_ACCEL_CHANNEL(X), ADIS16480_ACCEL_CHANNEL(Y), ADIS16480_ACCEL_CHANNEL(Z), ADIS16480_TEMP_CHANNEL(), ADIS16480_DELTANG_CHANNEL(X), ADIS16480_DELTANG_CHANNEL(Y), ADIS16480_DELTANG_CHANNEL(Z), ADIS16480_DELTVEL_CHANNEL(X), ADIS16480_DELTVEL_CHANNEL(Y), ADIS16480_DELTVEL_CHANNEL(Z), IIO_CHAN_SOFT_TIMESTAMP(17), }; enum adis16480_variant { ADIS16375, ADIS16480, ADIS16485, ADIS16488, ADIS16490, ADIS16495_1, ADIS16495_2, ADIS16495_3, ADIS16497_1, ADIS16497_2, ADIS16497_3, ADIS16545_1, ADIS16545_2, ADIS16545_3, ADIS16547_1, ADIS16547_2, ADIS16547_3 }; #define ADIS16480_DIAG_STAT_XGYRO_FAIL 0 #define ADIS16480_DIAG_STAT_YGYRO_FAIL 1 #define ADIS16480_DIAG_STAT_ZGYRO_FAIL 2 #define ADIS16480_DIAG_STAT_XACCL_FAIL 3 #define ADIS16480_DIAG_STAT_YACCL_FAIL 4 #define ADIS16480_DIAG_STAT_ZACCL_FAIL 5 #define ADIS16480_DIAG_STAT_XMAGN_FAIL 8 #define ADIS16480_DIAG_STAT_YMAGN_FAIL 9 #define ADIS16480_DIAG_STAT_ZMAGN_FAIL 10 #define ADIS16480_DIAG_STAT_BARO_FAIL 11 static const char * const adis16480_status_error_msgs[] = { [ADIS16480_DIAG_STAT_XGYRO_FAIL] = "X-axis gyroscope self-test failure", [ADIS16480_DIAG_STAT_YGYRO_FAIL] = "Y-axis gyroscope self-test failure", [ADIS16480_DIAG_STAT_ZGYRO_FAIL] = "Z-axis gyroscope self-test failure", [ADIS16480_DIAG_STAT_XACCL_FAIL] = "X-axis accelerometer self-test failure", [ADIS16480_DIAG_STAT_YACCL_FAIL] = "Y-axis accelerometer self-test failure", [ADIS16480_DIAG_STAT_ZACCL_FAIL] = "Z-axis accelerometer self-test failure", [ADIS16480_DIAG_STAT_XMAGN_FAIL] = "X-axis magnetometer self-test failure", [ADIS16480_DIAG_STAT_YMAGN_FAIL] = "Y-axis magnetometer self-test failure", [ADIS16480_DIAG_STAT_ZMAGN_FAIL] = "Z-axis magnetometer self-test failure", [ADIS16480_DIAG_STAT_BARO_FAIL] = "Barometer self-test failure", }; static int adis16480_enable_irq(struct adis *adis, bool enable); #define ADIS16480_DATA(_prod_id, _timeouts, _burst_len, _burst_max_speed) \ { \ .diag_stat_reg = ADIS16480_REG_DIAG_STS, \ .glob_cmd_reg = ADIS16480_REG_GLOB_CMD, \ .prod_id_reg = ADIS16480_REG_PROD_ID, \ .prod_id = (_prod_id), \ .has_paging = true, \ .read_delay = 5, \ .write_delay = 5, \ .self_test_mask = BIT(1), \ .self_test_reg = ADIS16480_REG_GLOB_CMD, \ .status_error_msgs = adis16480_status_error_msgs, \ .status_error_mask = BIT(ADIS16480_DIAG_STAT_XGYRO_FAIL) | \ BIT(ADIS16480_DIAG_STAT_YGYRO_FAIL) | \ BIT(ADIS16480_DIAG_STAT_ZGYRO_FAIL) | \ BIT(ADIS16480_DIAG_STAT_XACCL_FAIL) | \ BIT(ADIS16480_DIAG_STAT_YACCL_FAIL) | \ BIT(ADIS16480_DIAG_STAT_ZACCL_FAIL) | \ BIT(ADIS16480_DIAG_STAT_XMAGN_FAIL) | \ BIT(ADIS16480_DIAG_STAT_YMAGN_FAIL) | \ BIT(ADIS16480_DIAG_STAT_ZMAGN_FAIL) | \ BIT(ADIS16480_DIAG_STAT_BARO_FAIL), \ .enable_irq = adis16480_enable_irq, \ .timeouts = (_timeouts), \ .burst_reg_cmd = ADIS16495_REG_BURST_CMD, \ .burst_len = (_burst_len), \ .burst_max_speed_hz = _burst_max_speed \ } static const struct adis_timeout adis16485_timeouts = { .reset_ms = 560, .sw_reset_ms = 120, .self_test_ms = 12, }; static const struct adis_timeout adis16480_timeouts = { .reset_ms = 560, .sw_reset_ms = 560, .self_test_ms = 12, }; static const struct adis_timeout adis16495_timeouts = { .reset_ms = 170, .sw_reset_ms = 130, .self_test_ms = 40, }; static const struct adis_timeout adis16495_1_timeouts = { .reset_ms = 250, .sw_reset_ms = 210, .self_test_ms = 20, }; static const struct adis_timeout adis16545_timeouts = { .reset_ms = 315, .sw_reset_ms = 270, .self_test_ms = 35, }; static const struct adis16480_chip_info adis16480_chip_info[] = { [ADIS16375] = { .channels = adis16485_channels, .num_channels = ARRAY_SIZE(adis16485_channels), /* * Typically we do IIO_RAD_TO_DEGREE in the denominator, which * is exactly the same as IIO_DEGREE_TO_RAD in numerator, since * it gives better approximation. However, in this case we * cannot do it since it would not fit in a 32bit variable. */ .gyro_max_val = 22887 << 16, .gyro_max_scale = IIO_DEGREE_TO_RAD(300), .accel_max_val = IIO_M_S_2_TO_G(21973 << 16), .accel_max_scale = 18, .temp_scale = 5650, /* 5.65 milli degree Celsius */ .deltang_max_val = IIO_DEGREE_TO_RAD(180), .deltvel_max_val = 100, .int_clk = 2460000, .max_dec_rate = 2048, .has_sleep_cnt = true, .filter_freqs = adis16480_def_filter_freqs, .adis_data = ADIS16480_DATA(16375, &adis16485_timeouts, 0, 0), }, [ADIS16480] = { .channels = adis16480_channels, .num_channels = ARRAY_SIZE(adis16480_channels), .gyro_max_val = 22500 << 16, .gyro_max_scale = IIO_DEGREE_TO_RAD(450), .accel_max_val = IIO_M_S_2_TO_G(12500 << 16), .accel_max_scale = 10, .temp_scale = 5650, /* 5.65 milli degree Celsius */ .deltang_max_val = IIO_DEGREE_TO_RAD(720), .deltvel_max_val = 200, .int_clk = 2460000, .max_dec_rate = 2048, .has_sleep_cnt = true, .filter_freqs = adis16480_def_filter_freqs, .adis_data = ADIS16480_DATA(16480, &adis16480_timeouts, 0, 0), }, [ADIS16485] = { .channels = adis16485_channels, .num_channels = ARRAY_SIZE(adis16485_channels), .gyro_max_val = 22500 << 16, .gyro_max_scale = IIO_DEGREE_TO_RAD(450), .accel_max_val = IIO_M_S_2_TO_G(20000 << 16), .accel_max_scale = 5, .temp_scale = 5650, /* 5.65 milli degree Celsius */ .deltang_max_val = IIO_DEGREE_TO_RAD(720), .deltvel_max_val = 50, .int_clk = 2460000, .max_dec_rate = 2048, .has_sleep_cnt = true, .filter_freqs = adis16480_def_filter_freqs, .adis_data = ADIS16480_DATA(16485, &adis16485_timeouts, 0, 0), }, [ADIS16488] = { .channels = adis16480_channels, .num_channels = ARRAY_SIZE(adis16480_channels), .gyro_max_val = 22500 << 16, .gyro_max_scale = IIO_DEGREE_TO_RAD(450), .accel_max_val = IIO_M_S_2_TO_G(22500 << 16), .accel_max_scale = 18, .temp_scale = 5650, /* 5.65 milli degree Celsius */ .deltang_max_val = IIO_DEGREE_TO_RAD(720), .deltvel_max_val = 200, .int_clk = 2460000, .max_dec_rate = 2048, .has_sleep_cnt = true, .filter_freqs = adis16480_def_filter_freqs, .adis_data = ADIS16480_DATA(16488, &adis16485_timeouts, 0, 0), }, [ADIS16490] = { .channels = adis16485_channels, .num_channels = ARRAY_SIZE(adis16485_channels), .gyro_max_val = 20000 << 16, .gyro_max_scale = IIO_DEGREE_TO_RAD(100), .accel_max_val = IIO_M_S_2_TO_G(16000 << 16), .accel_max_scale = 8, .temp_scale = 14285, /* 14.285 milli degree Celsius */ .deltang_max_val = IIO_DEGREE_TO_RAD(720), .deltvel_max_val = 200, .int_clk = 4250000, .max_dec_rate = 4250, .filter_freqs = adis16495_def_filter_freqs, .has_pps_clk_mode = true, .adis_data = ADIS16480_DATA(16490, &adis16495_timeouts, 0, 0), }, [ADIS16495_1] = { .channels = adis16485_channels, .num_channels = ARRAY_SIZE(adis16485_channels), .gyro_max_val = 20000 << 16, .gyro_max_scale = IIO_DEGREE_TO_RAD(125), .accel_max_val = IIO_M_S_2_TO_G(32000 << 16), .accel_max_scale = 8, .temp_scale = 12500, /* 12.5 milli degree Celsius */ .deltang_max_val = IIO_DEGREE_TO_RAD(360), .deltvel_max_val = 100, .int_clk = 4250000, .max_dec_rate = 4250, .filter_freqs = adis16495_def_filter_freqs, .has_pps_clk_mode = true, /* 20 elements of 16bits */ .adis_data = ADIS16480_DATA(16495, &adis16495_1_timeouts, ADIS16495_BURST_MAX_DATA * 2, 6000000), }, [ADIS16495_2] = { .channels = adis16485_channels, .num_channels = ARRAY_SIZE(adis16485_channels), .gyro_max_val = 18000 << 16, .gyro_max_scale = IIO_DEGREE_TO_RAD(450), .accel_max_val = IIO_M_S_2_TO_G(32000 << 16), .accel_max_scale = 8, .temp_scale = 12500, /* 12.5 milli degree Celsius */ .deltang_max_val = IIO_DEGREE_TO_RAD(720), .deltvel_max_val = 100, .int_clk = 4250000, .max_dec_rate = 4250, .filter_freqs = adis16495_def_filter_freqs, .has_pps_clk_mode = true, /* 20 elements of 16bits */ .adis_data = ADIS16480_DATA(16495, &adis16495_1_timeouts, ADIS16495_BURST_MAX_DATA * 2, 6000000), }, [ADIS16495_3] = { .channels = adis16485_channels, .num_channels = ARRAY_SIZE(adis16485_channels), .gyro_max_val = 20000 << 16, .gyro_max_scale = IIO_DEGREE_TO_RAD(2000), .accel_max_val = IIO_M_S_2_TO_G(32000 << 16), .accel_max_scale = 8, .temp_scale = 12500, /* 12.5 milli degree Celsius */ .deltang_max_val = IIO_DEGREE_TO_RAD(2160), .deltvel_max_val = 100, .int_clk = 4250000, .max_dec_rate = 4250, .filter_freqs = adis16495_def_filter_freqs, .has_pps_clk_mode = true, /* 20 elements of 16bits */ .adis_data = ADIS16480_DATA(16495, &adis16495_1_timeouts, ADIS16495_BURST_MAX_DATA * 2, 6000000), }, [ADIS16497_1] = { .channels = adis16485_channels, .num_channels = ARRAY_SIZE(adis16485_channels), .gyro_max_val = 20000 << 16, .gyro_max_scale = IIO_DEGREE_TO_RAD(125), .accel_max_val = IIO_M_S_2_TO_G(32000 << 16), .accel_max_scale = 40, .temp_scale = 12500, /* 12.5 milli degree Celsius */ .deltang_max_val = IIO_DEGREE_TO_RAD(360), .deltvel_max_val = 400, .int_clk = 4250000, .max_dec_rate = 4250, .filter_freqs = adis16495_def_filter_freqs, .has_pps_clk_mode = true, /* 20 elements of 16bits */ .adis_data = ADIS16480_DATA(16497, &adis16495_1_timeouts, ADIS16495_BURST_MAX_DATA * 2, 6000000), }, [ADIS16497_2] = { .channels = adis16485_channels, .num_channels = ARRAY_SIZE(adis16485_channels), .gyro_max_val = 18000 << 16, .gyro_max_scale = IIO_DEGREE_TO_RAD(450), .accel_max_val = IIO_M_S_2_TO_G(32000 << 16), .accel_max_scale = 40, .temp_scale = 12500, /* 12.5 milli degree Celsius */ .deltang_max_val = IIO_DEGREE_TO_RAD(720), .deltvel_max_val = 400, .int_clk = 4250000, .max_dec_rate = 4250, .filter_freqs = adis16495_def_filter_freqs, .has_pps_clk_mode = true, /* 20 elements of 16bits */ .adis_data = ADIS16480_DATA(16497, &adis16495_1_timeouts, ADIS16495_BURST_MAX_DATA * 2, 6000000), }, [ADIS16497_3] = { .channels = adis16485_channels, .num_channels = ARRAY_SIZE(adis16485_channels), .gyro_max_val = 20000 << 16, .gyro_max_scale = IIO_DEGREE_TO_RAD(2000), .accel_max_val = IIO_M_S_2_TO_G(32000 << 16), .accel_max_scale = 40, .temp_scale = 12500, /* 12.5 milli degree Celsius */ .deltang_max_val = IIO_DEGREE_TO_RAD(2160), .deltvel_max_val = 400, .int_clk = 4250000, .max_dec_rate = 4250, .filter_freqs = adis16495_def_filter_freqs, .has_pps_clk_mode = true, /* 20 elements of 16bits */ .adis_data = ADIS16480_DATA(16497, &adis16495_1_timeouts, ADIS16495_BURST_MAX_DATA * 2, 6000000), }, [ADIS16545_1] = { .channels = adis16545_channels, .num_channels = ARRAY_SIZE(adis16545_channels), .gyro_max_val = 20000 << 16, .gyro_max_scale = IIO_DEGREE_TO_RAD(125), .accel_max_val = IIO_M_S_2_TO_G(32000 << 16), .accel_max_scale = 8, .temp_scale = 7000, /* 7 milli degree Celsius */ .deltang_max_val = IIO_DEGREE_TO_RAD(360), .deltvel_max_val = 100, .int_clk = 4250000, .max_dec_rate = 4250, .filter_freqs = adis16495_def_filter_freqs, .has_pps_clk_mode = true, .has_burst_delta_data = true, /* 20 elements of 16bits */ .adis_data = ADIS16480_DATA(16545, &adis16545_timeouts, ADIS16495_BURST_MAX_DATA * 2, 6500000), }, [ADIS16545_2] = { .channels = adis16545_channels, .num_channels = ARRAY_SIZE(adis16545_channels), .gyro_max_val = 18000 << 16, .gyro_max_scale = IIO_DEGREE_TO_RAD(450), .accel_max_val = IIO_M_S_2_TO_G(32000 << 16), .accel_max_scale = 8, .temp_scale = 7000, /* 7 milli degree Celsius */ .deltang_max_val = IIO_DEGREE_TO_RAD(720), .deltvel_max_val = 100, .int_clk = 4250000, .max_dec_rate = 4250, .filter_freqs = adis16495_def_filter_freqs, .has_pps_clk_mode = true, .has_burst_delta_data = true, /* 20 elements of 16bits */ .adis_data = ADIS16480_DATA(16545, &adis16545_timeouts, ADIS16495_BURST_MAX_DATA * 2, 6500000), }, [ADIS16545_3] = { .channels = adis16545_channels, .num_channels = ARRAY_SIZE(adis16545_channels), .gyro_max_val = 20000 << 16, .gyro_max_scale = IIO_DEGREE_TO_RAD(2000), .accel_max_val = IIO_M_S_2_TO_G(32000 << 16), .accel_max_scale = 8, .temp_scale = 7000, /* 7 milli degree Celsius */ .deltang_max_val = IIO_DEGREE_TO_RAD(2160), .deltvel_max_val = 100, .int_clk = 4250000, .max_dec_rate = 4250, .filter_freqs = adis16495_def_filter_freqs, .has_pps_clk_mode = true, .has_burst_delta_data = true, /* 20 elements of 16bits */ .adis_data = ADIS16480_DATA(16545, &adis16545_timeouts, ADIS16495_BURST_MAX_DATA * 2, 6500000), }, [ADIS16547_1] = { .channels = adis16545_channels, .num_channels = ARRAY_SIZE(adis16545_channels), .gyro_max_val = 20000 << 16, .gyro_max_scale = IIO_DEGREE_TO_RAD(125), .accel_max_val = IIO_M_S_2_TO_G(32000 << 16), .accel_max_scale = 40, .temp_scale = 7000, /* 7 milli degree Celsius */ .deltang_max_val = IIO_DEGREE_TO_RAD(360), .deltvel_max_val = 400, .int_clk = 4250000, .max_dec_rate = 4250, .filter_freqs = adis16495_def_filter_freqs, .has_pps_clk_mode = true, .has_burst_delta_data = true, /* 20 elements of 16bits */ .adis_data = ADIS16480_DATA(16547, &adis16545_timeouts, ADIS16495_BURST_MAX_DATA * 2, 6500000), }, [ADIS16547_2] = { .channels = adis16545_channels, .num_channels = ARRAY_SIZE(adis16545_channels), .gyro_max_val = 18000 << 16, .gyro_max_scale = IIO_DEGREE_TO_RAD(450), .accel_max_val = IIO_M_S_2_TO_G(32000 << 16), .accel_max_scale = 40, .temp_scale = 7000, /* 7 milli degree Celsius */ .deltang_max_val = IIO_DEGREE_TO_RAD(720), .deltvel_max_val = 400, .int_clk = 4250000, .max_dec_rate = 4250, .filter_freqs = adis16495_def_filter_freqs, .has_pps_clk_mode = true, .has_burst_delta_data = true, /* 20 elements of 16bits */ .adis_data = ADIS16480_DATA(16547, &adis16545_timeouts, ADIS16495_BURST_MAX_DATA * 2, 6500000), }, [ADIS16547_3] = { .channels = adis16545_channels, .num_channels = ARRAY_SIZE(adis16545_channels), .gyro_max_val = 20000 << 16, .gyro_max_scale = IIO_DEGREE_TO_RAD(2000), .accel_max_val = IIO_M_S_2_TO_G(32000 << 16), .accel_max_scale = 40, .temp_scale = 7000, /* 7 milli degree Celsius */ .deltang_max_val = IIO_DEGREE_TO_RAD(2160), .deltvel_max_val = 400, .int_clk = 4250000, .max_dec_rate = 4250, .filter_freqs = adis16495_def_filter_freqs, .has_pps_clk_mode = true, .has_burst_delta_data = true, /* 20 elements of 16bits */ .adis_data = ADIS16480_DATA(16547, &adis16545_timeouts, ADIS16495_BURST_MAX_DATA * 2, 6500000), }, }; static bool adis16480_validate_crc(const u16 *buf, const u8 n_elem, const u32 crc) { u32 crc_calc; u16 crc_buf[15]; int j; for (j = 0; j < n_elem; j++) crc_buf[j] = swab16(buf[j]); crc_calc = crc32(~0, crc_buf, n_elem * 2); crc_calc ^= ~0; return (crc == crc_calc); } static irqreturn_t adis16480_trigger_handler(int irq, void *p) { struct iio_poll_func *pf = p; struct iio_dev *indio_dev = pf->indio_dev; struct adis16480 *st = iio_priv(indio_dev); struct adis *adis = &st->adis; struct device *dev = &adis->spi->dev; int ret, bit, offset, i = 0, buff_offset = 0; __be16 *buffer; u32 crc; bool valid; adis_dev_auto_scoped_lock(adis) { if (adis->current_page != 0) { adis->tx[0] = ADIS_WRITE_REG(ADIS_REG_PAGE_ID); adis->tx[1] = 0; ret = spi_write(adis->spi, adis->tx, 2); if (ret) { dev_err(dev, "Failed to change device page: %d\n", ret); goto irq_done; } adis->current_page = 0; } ret = spi_sync(adis->spi, &adis->msg); if (ret) { dev_err(dev, "Failed to read data: %d\n", ret); goto irq_done; } } /* * After making the burst request, the response can have one or two * 16-bit responses containing the BURST_ID depending on the sclk. If * clk > 3.6MHz, then we will have two BURST_ID in a row. If clk < 3MHZ, * we have only one. To manage that variation, we use the transition from the * BURST_ID to the SYS_E_FLAG register, which will not be equal to 0xA5A5/0xC3C3. * If we not find this variation in the first 4 segments, then the data should * not be valid. */ buffer = adis->buffer; for (offset = 0; offset < 4; offset++) { u16 curr = be16_to_cpu(buffer[offset]); u16 next = be16_to_cpu(buffer[offset + 1]); if (curr == st->burst_id && next != st->burst_id) { offset++; break; } } if (offset == 4) { dev_err(dev, "Invalid burst data\n"); goto irq_done; } crc = be16_to_cpu(buffer[offset + 16]) << 16 | be16_to_cpu(buffer[offset + 15]); valid = adis16480_validate_crc((u16 *)&buffer[offset], 15, crc); if (!valid) { dev_err(dev, "Invalid crc\n"); goto irq_done; } for_each_set_bit(bit, indio_dev->active_scan_mask, indio_dev->masklength) { /* * When burst mode is used, temperature is the first data * channel in the sequence, but the temperature scan index * is 10. */ switch (bit) { case ADIS16480_SCAN_TEMP: st->data[i++] = buffer[offset + 1]; /* * The temperature channel has 16-bit storage size. * We need to perform the padding to have the buffer * elements naturally aligned in case there are any * 32-bit storage size channels enabled which are added * in the buffer after the temprature data. In case * there is no data being added after the temperature * data, the padding is harmless. */ st->data[i++] = 0; break; case ADIS16480_SCAN_DELTANG_X ... ADIS16480_SCAN_DELTVEL_Z: buff_offset = ADIS16480_SCAN_DELTANG_X; fallthrough; case ADIS16480_SCAN_GYRO_X ... ADIS16480_SCAN_ACCEL_Z: /* The lower register data is sequenced first */ st->data[i++] = buffer[2 * (bit - buff_offset) + offset + 3]; st->data[i++] = buffer[2 * (bit - buff_offset) + offset + 2]; break; } } iio_push_to_buffers_with_timestamp(indio_dev, st->data, pf->timestamp); irq_done: iio_trigger_notify_done(indio_dev->trig); return IRQ_HANDLED; } static const unsigned long adis16545_channel_masks[] = { ADIS16545_BURST_DATA_SEL_0_CHN_MASK | BIT(ADIS16480_SCAN_TEMP) | BIT(17), ADIS16545_BURST_DATA_SEL_1_CHN_MASK | BIT(ADIS16480_SCAN_TEMP) | BIT(17), 0, }; static int adis16480_update_scan_mode(struct iio_dev *indio_dev, const unsigned long *scan_mask) { u16 en; int ret; struct adis16480 *st = iio_priv(indio_dev); if (st->chip_info->has_burst_delta_data) { if (*scan_mask & ADIS16545_BURST_DATA_SEL_0_CHN_MASK) { en = FIELD_PREP(ADIS16545_BURST_DATA_SEL_MASK, 0); st->burst_id = ADIS16495_GYRO_ACCEL_BURST_ID; } else { en = FIELD_PREP(ADIS16545_BURST_DATA_SEL_MASK, 1); st->burst_id = ADIS16545_DELTA_ANG_VEL_BURST_ID; } ret = __adis_update_bits(&st->adis, ADIS16480_REG_CONFIG, ADIS16545_BURST_DATA_SEL_MASK, en); if (ret) return ret; } return adis_update_scan_mode(indio_dev, scan_mask); } static const struct iio_info adis16480_info = { .read_raw = &adis16480_read_raw, .write_raw = &adis16480_write_raw, .update_scan_mode = &adis16480_update_scan_mode, .debugfs_reg_access = adis_debugfs_reg_access, }; static int adis16480_stop_device(struct iio_dev *indio_dev) { struct adis16480 *st = iio_priv(indio_dev); struct device *dev = &st->adis.spi->dev; int ret; ret = adis_write_reg_16(&st->adis, ADIS16480_REG_SLP_CNT, BIT(9)); if (ret) dev_err(dev, "Could not power down device: %d\n", ret); return ret; } static int adis16480_enable_irq(struct adis *adis, bool enable) { uint16_t val; int ret; ret = __adis_read_reg_16(adis, ADIS16480_REG_FNCTIO_CTRL, &val); if (ret) return ret; val &= ~ADIS16480_DRDY_EN_MSK; val |= ADIS16480_DRDY_EN(enable); return __adis_write_reg_16(adis, ADIS16480_REG_FNCTIO_CTRL, val); } static int adis16480_config_irq_pin(struct adis16480 *st) { struct device *dev = &st->adis.spi->dev; struct fwnode_handle *fwnode = dev_fwnode(dev); enum adis16480_int_pin pin; unsigned int irq_type; uint16_t val; int i, irq = 0; /* Disable data ready since the default after reset is on */ val = ADIS16480_DRDY_EN(0); /* * Get the interrupt from the devicetre by reading the interrupt-names * property. If it is not specified, use DIO1 pin as default. * According to the datasheet, the factory default assigns DIO2 as data * ready signal. However, in the previous versions of the driver, DIO1 * pin was used. So, we should leave it as is since some devices might * be expecting the interrupt on the wrong physical pin. */ pin = ADIS16480_PIN_DIO1; for (i = 0; i < ARRAY_SIZE(adis16480_int_pin_names); i++) { irq = fwnode_irq_get_byname(fwnode, adis16480_int_pin_names[i]); if (irq > 0) { pin = i; break; } } val |= ADIS16480_DRDY_SEL(pin); /* * Get the interrupt line behaviour. The data ready polarity can be * configured as positive or negative, corresponding to * IRQ_TYPE_EDGE_RISING or IRQ_TYPE_EDGE_FALLING respectively. */ irq_type = irq_get_trigger_type(st->adis.spi->irq); if (irq_type == IRQ_TYPE_EDGE_RISING) { /* Default */ val |= ADIS16480_DRDY_POL(1); } else if (irq_type == IRQ_TYPE_EDGE_FALLING) { val |= ADIS16480_DRDY_POL(0); } else { dev_err(dev, "Invalid interrupt type 0x%x specified\n", irq_type); return -EINVAL; } /* Write the data ready configuration to the FNCTIO_CTRL register */ return adis_write_reg_16(&st->adis, ADIS16480_REG_FNCTIO_CTRL, val); } static int adis16480_fw_get_ext_clk_pin(struct adis16480 *st) { struct device *dev = &st->adis.spi->dev; const char *ext_clk_pin; enum adis16480_int_pin pin; int i; pin = ADIS16480_PIN_DIO2; if (device_property_read_string(dev, "adi,ext-clk-pin", &ext_clk_pin)) goto clk_input_not_found; for (i = 0; i < ARRAY_SIZE(adis16480_int_pin_names); i++) { if (strcasecmp(ext_clk_pin, adis16480_int_pin_names[i]) == 0) return i; } clk_input_not_found: dev_info(dev, "clk input line not specified, using DIO2\n"); return pin; } static int adis16480_ext_clk_config(struct adis16480 *st, bool enable) { struct device *dev = &st->adis.spi->dev; unsigned int mode, mask; enum adis16480_int_pin pin; uint16_t val; int ret; ret = adis_read_reg_16(&st->adis, ADIS16480_REG_FNCTIO_CTRL, &val); if (ret) return ret; pin = adis16480_fw_get_ext_clk_pin(st); /* * Each DIOx pin supports only one function at a time. When a single pin * has two assignments, the enable bit for a lower priority function * automatically resets to zero (disabling the lower priority function). */ if (pin == ADIS16480_DRDY_SEL(val)) dev_warn(dev, "DIO%x pin supports only one function at a time\n", pin + 1); mode = ADIS16480_SYNC_EN(enable) | ADIS16480_SYNC_SEL(pin); mask = ADIS16480_SYNC_EN_MSK | ADIS16480_SYNC_SEL_MSK; /* Only ADIS1649x devices support pps ext clock mode */ if (st->chip_info->has_pps_clk_mode) { mode |= ADIS16480_SYNC_MODE(st->clk_mode); mask |= ADIS16480_SYNC_MODE_MSK; } val &= ~mask; val |= mode; ret = adis_write_reg_16(&st->adis, ADIS16480_REG_FNCTIO_CTRL, val); if (ret) return ret; return clk_prepare_enable(st->ext_clk); } static int adis16480_get_ext_clocks(struct adis16480 *st) { struct device *dev = &st->adis.spi->dev; st->ext_clk = devm_clk_get_optional(dev, "sync"); if (IS_ERR(st->ext_clk)) return dev_err_probe(dev, PTR_ERR(st->ext_clk), "failed to get ext clk\n"); if (st->ext_clk) { st->clk_mode = ADIS16480_CLK_SYNC; return 0; } if (st->chip_info->has_pps_clk_mode) { st->ext_clk = devm_clk_get_optional(dev, "pps"); if (IS_ERR(st->ext_clk)) return dev_err_probe(dev, PTR_ERR(st->ext_clk), "failed to get ext clk\n"); if (st->ext_clk) { st->clk_mode = ADIS16480_CLK_PPS; return 0; } } st->clk_mode = ADIS16480_CLK_INT; return 0; } static void adis16480_stop(void *data) { adis16480_stop_device(data); } static void adis16480_clk_disable(void *data) { clk_disable_unprepare(data); } static int adis16480_probe(struct spi_device *spi) { const struct spi_device_id *id = spi_get_device_id(spi); const struct adis_data *adis16480_data; irq_handler_t trigger_handler = NULL; struct device *dev = &spi->dev; struct iio_dev *indio_dev; struct adis16480 *st; int ret; indio_dev = devm_iio_device_alloc(dev, sizeof(*st)); if (indio_dev == NULL) return -ENOMEM; st = iio_priv(indio_dev); st->chip_info = &adis16480_chip_info[id->driver_data]; indio_dev->name = spi_get_device_id(spi)->name; indio_dev->channels = st->chip_info->channels; indio_dev->num_channels = st->chip_info->num_channels; if (st->chip_info->has_burst_delta_data) indio_dev->available_scan_masks = adis16545_channel_masks; indio_dev->info = &adis16480_info; indio_dev->modes = INDIO_DIRECT_MODE; adis16480_data = &st->chip_info->adis_data; ret = adis_init(&st->adis, indio_dev, spi, adis16480_data); if (ret) return ret; ret = __adis_initial_startup(&st->adis); if (ret) return ret; /* * By default, use burst id for gyroscope and accelerometer data. * This is the only option for devices which do not offer delta angle * and delta velocity burst readings. */ st->burst_id = ADIS16495_GYRO_ACCEL_BURST_ID; if (st->chip_info->has_sleep_cnt) { ret = devm_add_action_or_reset(dev, adis16480_stop, indio_dev); if (ret) return ret; } ret = adis16480_config_irq_pin(st); if (ret) return ret; ret = adis16480_get_ext_clocks(st); if (ret) return ret; if (st->ext_clk) { ret = adis16480_ext_clk_config(st, true); if (ret) return ret; ret = devm_add_action_or_reset(dev, adis16480_clk_disable, st->ext_clk); if (ret) return ret; st->clk_freq = clk_get_rate(st->ext_clk); st->clk_freq *= 1000; /* micro */ if (st->clk_mode == ADIS16480_CLK_PPS) { u16 sync_scale; /* * In PPS mode, the IMU sample rate is the clk_freq * sync_scale. Hence, * default the IMU sample rate to the highest multiple of the input clock * lower than the IMU max sample rate. The internal sample rate is the * max... */ sync_scale = st->chip_info->int_clk / st->clk_freq; ret = __adis_write_reg_16(&st->adis, ADIS16495_REG_SYNC_SCALE, sync_scale); if (ret) return ret; } } else { st->clk_freq = st->chip_info->int_clk; } /* Only use our trigger handler if burst mode is supported */ if (adis16480_data->burst_len) trigger_handler = adis16480_trigger_handler; ret = devm_adis_setup_buffer_and_trigger(&st->adis, indio_dev, trigger_handler); if (ret) return ret; ret = devm_iio_device_register(dev, indio_dev); if (ret) return ret; adis16480_debugfs_init(indio_dev); return 0; } static const struct spi_device_id adis16480_ids[] = { { "adis16375", ADIS16375 }, { "adis16480", ADIS16480 }, { "adis16485", ADIS16485 }, { "adis16488", ADIS16488 }, { "adis16490", ADIS16490 }, { "adis16495-1", ADIS16495_1 }, { "adis16495-2", ADIS16495_2 }, { "adis16495-3", ADIS16495_3 }, { "adis16497-1", ADIS16497_1 }, { "adis16497-2", ADIS16497_2 }, { "adis16497-3", ADIS16497_3 }, { "adis16545-1", ADIS16545_1 }, { "adis16545-2", ADIS16545_2 }, { "adis16545-3", ADIS16545_3 }, { "adis16547-1", ADIS16547_1 }, { "adis16547-2", ADIS16547_2 }, { "adis16547-3", ADIS16547_3 }, { } }; MODULE_DEVICE_TABLE(spi, adis16480_ids); static const struct of_device_id adis16480_of_match[] = { { .compatible = "adi,adis16375" }, { .compatible = "adi,adis16480" }, { .compatible = "adi,adis16485" }, { .compatible = "adi,adis16488" }, { .compatible = "adi,adis16490" }, { .compatible = "adi,adis16495-1" }, { .compatible = "adi,adis16495-2" }, { .compatible = "adi,adis16495-3" }, { .compatible = "adi,adis16497-1" }, { .compatible = "adi,adis16497-2" }, { .compatible = "adi,adis16497-3" }, { .compatible = "adi,adis16545-1" }, { .compatible = "adi,adis16545-2" }, { .compatible = "adi,adis16545-3" }, { .compatible = "adi,adis16547-1" }, { .compatible = "adi,adis16547-2" }, { .compatible = "adi,adis16547-3" }, { }, }; MODULE_DEVICE_TABLE(of, adis16480_of_match); static struct spi_driver adis16480_driver = { .driver = { .name = "adis16480", .of_match_table = adis16480_of_match, }, .id_table = adis16480_ids, .probe = adis16480_probe, }; module_spi_driver(adis16480_driver); MODULE_AUTHOR("Lars-Peter Clausen <lars@metafoo.de>"); MODULE_DESCRIPTION("Analog Devices ADIS16480 IMU driver"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(IIO_ADISLIB);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1