Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jean-Baptiste Maneyrol | 4777 | 50.52% | 44 | 43.56% |
Ge Gao | 2875 | 30.40% | 1 | 0.99% |
Adriana Reus | 282 | 2.98% | 6 | 5.94% |
Matt Ranostay | 278 | 2.94% | 4 | 3.96% |
Baptiste Mansuy | 154 | 1.63% | 1 | 0.99% |
Brian Masney | 153 | 1.62% | 2 | 1.98% |
Martin Kelly | 133 | 1.41% | 2 | 1.98% |
Stephan Gerhold | 128 | 1.35% | 2 | 1.98% |
Crestez Dan Leonard | 126 | 1.33% | 3 | 2.97% |
Grégor Boirie | 81 | 0.86% | 2 | 1.98% |
Rohit Sarkar | 64 | 0.68% | 1 | 0.99% |
Lars-Peter Clausen | 57 | 0.60% | 2 | 1.98% |
Hermes Zhang | 50 | 0.53% | 1 | 0.99% |
Michael Srba | 47 | 0.50% | 1 | 0.99% |
Jonathan Cameron | 43 | 0.45% | 6 | 5.94% |
Randolph Maaßen | 41 | 0.43% | 1 | 0.99% |
Srinivas Pandruvada | 39 | 0.41% | 3 | 2.97% |
Steve Moskovchenko | 21 | 0.22% | 1 | 0.99% |
Atilla Filiz | 17 | 0.18% | 1 | 0.99% |
Douglas Fischer | 15 | 0.16% | 1 | 0.99% |
Sachin Kamat | 15 | 0.16% | 1 | 0.99% |
Andreas Kemnade | 14 | 0.15% | 1 | 0.99% |
Hans de Goede | 9 | 0.10% | 1 | 0.99% |
H. Nikolaus Schaller | 8 | 0.08% | 1 | 0.99% |
Krzysztof Kozlowski | 8 | 0.08% | 1 | 0.99% |
Su Hui | 4 | 0.04% | 2 | 1.98% |
Lee Jones | 4 | 0.04% | 1 | 0.99% |
Varka Bhadram | 3 | 0.03% | 1 | 0.99% |
Gustavo A. R. Silva | 2 | 0.02% | 1 | 0.99% |
Daniel Baluta | 2 | 0.02% | 2 | 1.98% |
Thomas Gleixner | 2 | 0.02% | 1 | 0.99% |
Michał Mirosław | 2 | 0.02% | 1 | 0.99% |
Fuqian Huang | 1 | 0.01% | 1 | 0.99% |
Andy Shevchenko | 1 | 0.01% | 1 | 0.99% |
Total | 9456 | 101 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2012 Invensense, Inc. */ #include <linux/module.h> #include <linux/slab.h> #include <linux/i2c.h> #include <linux/err.h> #include <linux/delay.h> #include <linux/sysfs.h> #include <linux/jiffies.h> #include <linux/irq.h> #include <linux/interrupt.h> #include <linux/acpi.h> #include <linux/platform_device.h> #include <linux/regulator/consumer.h> #include <linux/math64.h> #include <linux/minmax.h> #include <linux/pm.h> #include <linux/pm_runtime.h> #include <linux/property.h> #include <linux/iio/common/inv_sensors_timestamp.h> #include <linux/iio/iio.h> #include "inv_mpu_iio.h" #include "inv_mpu_magn.h" /* * this is the gyro scale translated from dynamic range plus/minus * {250, 500, 1000, 2000} to rad/s */ static const int gyro_scale_6050[] = {133090, 266181, 532362, 1064724}; /* * this is the accel scale translated from dynamic range plus/minus * {2, 4, 8, 16} to m/s^2 */ static const int accel_scale[] = {598, 1196, 2392, 4785}; static const struct inv_mpu6050_reg_map reg_set_icm20602 = { .sample_rate_div = INV_MPU6050_REG_SAMPLE_RATE_DIV, .lpf = INV_MPU6050_REG_CONFIG, .accel_lpf = INV_MPU6500_REG_ACCEL_CONFIG_2, .user_ctrl = INV_MPU6050_REG_USER_CTRL, .fifo_en = INV_MPU6050_REG_FIFO_EN, .gyro_config = INV_MPU6050_REG_GYRO_CONFIG, .accl_config = INV_MPU6050_REG_ACCEL_CONFIG, .fifo_count_h = INV_MPU6050_REG_FIFO_COUNT_H, .fifo_r_w = INV_MPU6050_REG_FIFO_R_W, .raw_gyro = INV_MPU6050_REG_RAW_GYRO, .raw_accl = INV_MPU6050_REG_RAW_ACCEL, .temperature = INV_MPU6050_REG_TEMPERATURE, .int_enable = INV_MPU6050_REG_INT_ENABLE, .int_status = INV_MPU6050_REG_INT_STATUS, .pwr_mgmt_1 = INV_MPU6050_REG_PWR_MGMT_1, .pwr_mgmt_2 = INV_MPU6050_REG_PWR_MGMT_2, .int_pin_cfg = INV_MPU6050_REG_INT_PIN_CFG, .accl_offset = INV_MPU6500_REG_ACCEL_OFFSET, .gyro_offset = INV_MPU6050_REG_GYRO_OFFSET, .i2c_if = INV_ICM20602_REG_I2C_IF, }; static const struct inv_mpu6050_reg_map reg_set_6500 = { .sample_rate_div = INV_MPU6050_REG_SAMPLE_RATE_DIV, .lpf = INV_MPU6050_REG_CONFIG, .accel_lpf = INV_MPU6500_REG_ACCEL_CONFIG_2, .user_ctrl = INV_MPU6050_REG_USER_CTRL, .fifo_en = INV_MPU6050_REG_FIFO_EN, .gyro_config = INV_MPU6050_REG_GYRO_CONFIG, .accl_config = INV_MPU6050_REG_ACCEL_CONFIG, .fifo_count_h = INV_MPU6050_REG_FIFO_COUNT_H, .fifo_r_w = INV_MPU6050_REG_FIFO_R_W, .raw_gyro = INV_MPU6050_REG_RAW_GYRO, .raw_accl = INV_MPU6050_REG_RAW_ACCEL, .temperature = INV_MPU6050_REG_TEMPERATURE, .int_enable = INV_MPU6050_REG_INT_ENABLE, .int_status = INV_MPU6050_REG_INT_STATUS, .pwr_mgmt_1 = INV_MPU6050_REG_PWR_MGMT_1, .pwr_mgmt_2 = INV_MPU6050_REG_PWR_MGMT_2, .int_pin_cfg = INV_MPU6050_REG_INT_PIN_CFG, .accl_offset = INV_MPU6500_REG_ACCEL_OFFSET, .gyro_offset = INV_MPU6050_REG_GYRO_OFFSET, .i2c_if = 0, }; static const struct inv_mpu6050_reg_map reg_set_6050 = { .sample_rate_div = INV_MPU6050_REG_SAMPLE_RATE_DIV, .lpf = INV_MPU6050_REG_CONFIG, .user_ctrl = INV_MPU6050_REG_USER_CTRL, .fifo_en = INV_MPU6050_REG_FIFO_EN, .gyro_config = INV_MPU6050_REG_GYRO_CONFIG, .accl_config = INV_MPU6050_REG_ACCEL_CONFIG, .fifo_count_h = INV_MPU6050_REG_FIFO_COUNT_H, .fifo_r_w = INV_MPU6050_REG_FIFO_R_W, .raw_gyro = INV_MPU6050_REG_RAW_GYRO, .raw_accl = INV_MPU6050_REG_RAW_ACCEL, .temperature = INV_MPU6050_REG_TEMPERATURE, .int_enable = INV_MPU6050_REG_INT_ENABLE, .pwr_mgmt_1 = INV_MPU6050_REG_PWR_MGMT_1, .pwr_mgmt_2 = INV_MPU6050_REG_PWR_MGMT_2, .int_pin_cfg = INV_MPU6050_REG_INT_PIN_CFG, .accl_offset = INV_MPU6050_REG_ACCEL_OFFSET, .gyro_offset = INV_MPU6050_REG_GYRO_OFFSET, .i2c_if = 0, }; static const struct inv_mpu6050_chip_config chip_config_6050 = { .clk = INV_CLK_INTERNAL, .fsr = INV_MPU6050_FSR_2000DPS, .lpf = INV_MPU6050_FILTER_20HZ, .divider = INV_MPU6050_FIFO_RATE_TO_DIVIDER(50), .gyro_en = true, .accl_en = true, .temp_en = true, .magn_en = false, .gyro_fifo_enable = false, .accl_fifo_enable = false, .temp_fifo_enable = false, .magn_fifo_enable = false, .accl_fs = INV_MPU6050_FS_02G, .user_ctrl = 0, }; static const struct inv_mpu6050_chip_config chip_config_6500 = { .clk = INV_CLK_PLL, .fsr = INV_MPU6050_FSR_2000DPS, .lpf = INV_MPU6050_FILTER_20HZ, .divider = INV_MPU6050_FIFO_RATE_TO_DIVIDER(50), .gyro_en = true, .accl_en = true, .temp_en = true, .magn_en = false, .gyro_fifo_enable = false, .accl_fifo_enable = false, .temp_fifo_enable = false, .magn_fifo_enable = false, .accl_fs = INV_MPU6050_FS_02G, .user_ctrl = 0, }; /* Indexed by enum inv_devices */ static const struct inv_mpu6050_hw hw_info[] = { { .whoami = INV_MPU6050_WHOAMI_VALUE, .name = "MPU6050", .reg = ®_set_6050, .config = &chip_config_6050, .fifo_size = 1024, .temp = {INV_MPU6050_TEMP_OFFSET, INV_MPU6050_TEMP_SCALE}, .startup_time = {INV_MPU6050_GYRO_STARTUP_TIME, INV_MPU6050_ACCEL_STARTUP_TIME}, }, { .whoami = INV_MPU6500_WHOAMI_VALUE, .name = "MPU6500", .reg = ®_set_6500, .config = &chip_config_6500, .fifo_size = 512, .temp = {INV_MPU6500_TEMP_OFFSET, INV_MPU6500_TEMP_SCALE}, .startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME}, }, { .whoami = INV_MPU6515_WHOAMI_VALUE, .name = "MPU6515", .reg = ®_set_6500, .config = &chip_config_6500, .fifo_size = 512, .temp = {INV_MPU6500_TEMP_OFFSET, INV_MPU6500_TEMP_SCALE}, .startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME}, }, { .whoami = INV_MPU6880_WHOAMI_VALUE, .name = "MPU6880", .reg = ®_set_6500, .config = &chip_config_6500, .fifo_size = 4096, .temp = {INV_MPU6500_TEMP_OFFSET, INV_MPU6500_TEMP_SCALE}, .startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME}, }, { .whoami = INV_MPU6000_WHOAMI_VALUE, .name = "MPU6000", .reg = ®_set_6050, .config = &chip_config_6050, .fifo_size = 1024, .temp = {INV_MPU6050_TEMP_OFFSET, INV_MPU6050_TEMP_SCALE}, .startup_time = {INV_MPU6050_GYRO_STARTUP_TIME, INV_MPU6050_ACCEL_STARTUP_TIME}, }, { .whoami = INV_MPU9150_WHOAMI_VALUE, .name = "MPU9150", .reg = ®_set_6050, .config = &chip_config_6050, .fifo_size = 1024, .temp = {INV_MPU6050_TEMP_OFFSET, INV_MPU6050_TEMP_SCALE}, .startup_time = {INV_MPU6050_GYRO_STARTUP_TIME, INV_MPU6050_ACCEL_STARTUP_TIME}, }, { .whoami = INV_MPU9250_WHOAMI_VALUE, .name = "MPU9250", .reg = ®_set_6500, .config = &chip_config_6500, .fifo_size = 512, .temp = {INV_MPU6500_TEMP_OFFSET, INV_MPU6500_TEMP_SCALE}, .startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME}, }, { .whoami = INV_MPU9255_WHOAMI_VALUE, .name = "MPU9255", .reg = ®_set_6500, .config = &chip_config_6500, .fifo_size = 512, .temp = {INV_MPU6500_TEMP_OFFSET, INV_MPU6500_TEMP_SCALE}, .startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME}, }, { .whoami = INV_ICM20608_WHOAMI_VALUE, .name = "ICM20608", .reg = ®_set_6500, .config = &chip_config_6500, .fifo_size = 512, .temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE}, .startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME}, }, { .whoami = INV_ICM20608D_WHOAMI_VALUE, .name = "ICM20608D", .reg = ®_set_6500, .config = &chip_config_6500, .fifo_size = 512, .temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE}, .startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME}, }, { .whoami = INV_ICM20609_WHOAMI_VALUE, .name = "ICM20609", .reg = ®_set_6500, .config = &chip_config_6500, .fifo_size = 4 * 1024, .temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE}, .startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME}, }, { .whoami = INV_ICM20689_WHOAMI_VALUE, .name = "ICM20689", .reg = ®_set_6500, .config = &chip_config_6500, .fifo_size = 4 * 1024, .temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE}, .startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME}, }, { .whoami = INV_ICM20600_WHOAMI_VALUE, .name = "ICM20600", .reg = ®_set_icm20602, .config = &chip_config_6500, .fifo_size = 1008, .temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE}, .startup_time = {INV_ICM20602_GYRO_STARTUP_TIME, INV_ICM20602_ACCEL_STARTUP_TIME}, }, { .whoami = INV_ICM20602_WHOAMI_VALUE, .name = "ICM20602", .reg = ®_set_icm20602, .config = &chip_config_6500, .fifo_size = 1008, .temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE}, .startup_time = {INV_ICM20602_GYRO_STARTUP_TIME, INV_ICM20602_ACCEL_STARTUP_TIME}, }, { .whoami = INV_ICM20690_WHOAMI_VALUE, .name = "ICM20690", .reg = ®_set_6500, .config = &chip_config_6500, .fifo_size = 1024, .temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE}, .startup_time = {INV_ICM20690_GYRO_STARTUP_TIME, INV_ICM20690_ACCEL_STARTUP_TIME}, }, { .whoami = INV_IAM20680_WHOAMI_VALUE, .name = "IAM20680", .reg = ®_set_6500, .config = &chip_config_6500, .fifo_size = 512, .temp = {INV_ICM20608_TEMP_OFFSET, INV_ICM20608_TEMP_SCALE}, .startup_time = {INV_MPU6500_GYRO_STARTUP_TIME, INV_MPU6500_ACCEL_STARTUP_TIME}, }, }; static int inv_mpu6050_pwr_mgmt_1_write(struct inv_mpu6050_state *st, bool sleep, bool cycle, int clock, int temp_dis) { u8 val; if (clock < 0) clock = st->chip_config.clk; if (temp_dis < 0) temp_dis = !st->chip_config.temp_en; val = clock & INV_MPU6050_BIT_CLK_MASK; if (temp_dis) val |= INV_MPU6050_BIT_TEMP_DIS; if (sleep) val |= INV_MPU6050_BIT_SLEEP; if (cycle) val |= INV_MPU6050_BIT_CYCLE; dev_dbg(regmap_get_device(st->map), "pwr_mgmt_1: 0x%x\n", val); return regmap_write(st->map, st->reg->pwr_mgmt_1, val); } static int inv_mpu6050_clock_switch(struct inv_mpu6050_state *st, unsigned int clock) { int ret; switch (st->chip_type) { case INV_MPU6050: case INV_MPU6000: case INV_MPU9150: /* old chips: switch clock manually */ ret = inv_mpu6050_pwr_mgmt_1_write(st, false, false, clock, -1); if (ret) return ret; st->chip_config.clk = clock; break; default: /* automatic clock switching, nothing to do */ break; } return 0; } int inv_mpu6050_switch_engine(struct inv_mpu6050_state *st, bool en, unsigned int mask) { unsigned int sleep, val; u8 pwr_mgmt2, user_ctrl; int ret; /* delete useless requests */ if (mask & INV_MPU6050_SENSOR_ACCL && en == st->chip_config.accl_en) mask &= ~INV_MPU6050_SENSOR_ACCL; if (mask & INV_MPU6050_SENSOR_GYRO && en == st->chip_config.gyro_en) mask &= ~INV_MPU6050_SENSOR_GYRO; if (mask & INV_MPU6050_SENSOR_TEMP && en == st->chip_config.temp_en) mask &= ~INV_MPU6050_SENSOR_TEMP; if (mask & INV_MPU6050_SENSOR_MAGN && en == st->chip_config.magn_en) mask &= ~INV_MPU6050_SENSOR_MAGN; if (mask & INV_MPU6050_SENSOR_WOM && en == st->chip_config.wom_en) mask &= ~INV_MPU6050_SENSOR_WOM; /* force accel on if WoM is on and not going off */ if (!en && (mask & INV_MPU6050_SENSOR_ACCL) && st->chip_config.wom_en && !(mask & INV_MPU6050_SENSOR_WOM)) mask &= ~INV_MPU6050_SENSOR_ACCL; if (mask == 0) return 0; /* turn on/off temperature sensor */ if (mask & INV_MPU6050_SENSOR_TEMP) { ret = inv_mpu6050_pwr_mgmt_1_write(st, false, false, -1, !en); if (ret) return ret; st->chip_config.temp_en = en; } /* update user_crtl for driving magnetometer */ if (mask & INV_MPU6050_SENSOR_MAGN) { user_ctrl = st->chip_config.user_ctrl; if (en) user_ctrl |= INV_MPU6050_BIT_I2C_MST_EN; else user_ctrl &= ~INV_MPU6050_BIT_I2C_MST_EN; ret = regmap_write(st->map, st->reg->user_ctrl, user_ctrl); if (ret) return ret; st->chip_config.user_ctrl = user_ctrl; st->chip_config.magn_en = en; } /* manage accel & gyro engines */ if (mask & (INV_MPU6050_SENSOR_ACCL | INV_MPU6050_SENSOR_GYRO)) { /* compute power management 2 current value */ pwr_mgmt2 = 0; if (!st->chip_config.accl_en) pwr_mgmt2 |= INV_MPU6050_BIT_PWR_ACCL_STBY; if (!st->chip_config.gyro_en) pwr_mgmt2 |= INV_MPU6050_BIT_PWR_GYRO_STBY; /* update to new requested value */ if (mask & INV_MPU6050_SENSOR_ACCL) { if (en) pwr_mgmt2 &= ~INV_MPU6050_BIT_PWR_ACCL_STBY; else pwr_mgmt2 |= INV_MPU6050_BIT_PWR_ACCL_STBY; } if (mask & INV_MPU6050_SENSOR_GYRO) { if (en) pwr_mgmt2 &= ~INV_MPU6050_BIT_PWR_GYRO_STBY; else pwr_mgmt2 |= INV_MPU6050_BIT_PWR_GYRO_STBY; } /* switch clock to internal when turning gyro off */ if (mask & INV_MPU6050_SENSOR_GYRO && !en) { ret = inv_mpu6050_clock_switch(st, INV_CLK_INTERNAL); if (ret) return ret; } /* update sensors engine */ dev_dbg(regmap_get_device(st->map), "pwr_mgmt_2: 0x%x\n", pwr_mgmt2); ret = regmap_write(st->map, st->reg->pwr_mgmt_2, pwr_mgmt2); if (ret) return ret; if (mask & INV_MPU6050_SENSOR_ACCL) st->chip_config.accl_en = en; if (mask & INV_MPU6050_SENSOR_GYRO) st->chip_config.gyro_en = en; /* compute required time to have sensors stabilized */ sleep = 0; if (en) { if (mask & INV_MPU6050_SENSOR_ACCL) { if (sleep < st->hw->startup_time.accel) sleep = st->hw->startup_time.accel; } if (mask & INV_MPU6050_SENSOR_GYRO) { if (sleep < st->hw->startup_time.gyro) sleep = st->hw->startup_time.gyro; } } else { if (mask & INV_MPU6050_SENSOR_GYRO) { if (sleep < INV_MPU6050_GYRO_DOWN_TIME) sleep = INV_MPU6050_GYRO_DOWN_TIME; } } if (sleep) msleep(sleep); /* switch clock to PLL when turning gyro on */ if (mask & INV_MPU6050_SENSOR_GYRO && en) { ret = inv_mpu6050_clock_switch(st, INV_CLK_PLL); if (ret) return ret; } } /* enable/disable accel intelligence control */ if (mask & INV_MPU6050_SENSOR_WOM) { val = en ? INV_MPU6500_BIT_ACCEL_INTEL_EN | INV_MPU6500_BIT_ACCEL_INTEL_MODE : 0; ret = regmap_write(st->map, INV_MPU6500_REG_ACCEL_INTEL_CTRL, val); if (ret) return ret; st->chip_config.wom_en = en; } return 0; } static int inv_mpu6050_set_power_itg(struct inv_mpu6050_state *st, bool power_on) { int result; result = inv_mpu6050_pwr_mgmt_1_write(st, !power_on, false, -1, -1); if (result) return result; if (power_on) usleep_range(INV_MPU6050_REG_UP_TIME_MIN, INV_MPU6050_REG_UP_TIME_MAX); return 0; } static int inv_mpu6050_set_gyro_fsr(struct inv_mpu6050_state *st, enum inv_mpu6050_fsr_e val) { unsigned int gyro_shift; u8 data; switch (st->chip_type) { case INV_ICM20690: gyro_shift = INV_ICM20690_GYRO_CONFIG_FSR_SHIFT; break; default: gyro_shift = INV_MPU6050_GYRO_CONFIG_FSR_SHIFT; break; } data = val << gyro_shift; return regmap_write(st->map, st->reg->gyro_config, data); } static int inv_mpu6050_set_accel_lpf_regs(struct inv_mpu6050_state *st, enum inv_mpu6050_filter_e val) { switch (st->chip_type) { case INV_MPU6050: case INV_MPU6000: case INV_MPU9150: /* old chips, nothing to do */ return 0; case INV_ICM20689: case INV_ICM20690: /* set FIFO size to maximum value */ val |= INV_ICM20689_BITS_FIFO_SIZE_MAX; break; default: break; } return regmap_write(st->map, st->reg->accel_lpf, val); } /* * inv_mpu6050_set_lpf_regs() - set low pass filter registers, chip dependent * * MPU60xx/MPU9150 use only 1 register for accelerometer + gyroscope * MPU6500 and above have a dedicated register for accelerometer */ static int inv_mpu6050_set_lpf_regs(struct inv_mpu6050_state *st, enum inv_mpu6050_filter_e val) { int result; result = regmap_write(st->map, st->reg->lpf, val); if (result) return result; /* set accel lpf */ return inv_mpu6050_set_accel_lpf_regs(st, val); } /* * inv_mpu6050_init_config() - Initialize hardware, disable FIFO. * * Initial configuration: * FSR: ± 2000DPS * DLPF: 20Hz * FIFO rate: 50Hz * Clock source: Gyro PLL */ static int inv_mpu6050_init_config(struct iio_dev *indio_dev) { int result; u8 d; struct inv_mpu6050_state *st = iio_priv(indio_dev); struct inv_sensors_timestamp_chip timestamp; result = inv_mpu6050_set_gyro_fsr(st, st->chip_config.fsr); if (result) return result; result = inv_mpu6050_set_lpf_regs(st, st->chip_config.lpf); if (result) return result; d = st->chip_config.divider; result = regmap_write(st->map, st->reg->sample_rate_div, d); if (result) return result; d = (st->chip_config.accl_fs << INV_MPU6050_ACCL_CONFIG_FSR_SHIFT); result = regmap_write(st->map, st->reg->accl_config, d); if (result) return result; result = regmap_write(st->map, st->reg->int_pin_cfg, st->irq_mask); if (result) return result; /* clock jitter is +/- 2% */ timestamp.clock_period = NSEC_PER_SEC / INV_MPU6050_INTERNAL_FREQ_HZ; timestamp.jitter = 20; timestamp.init_period = NSEC_PER_SEC / INV_MPU6050_DIVIDER_TO_FIFO_RATE(st->chip_config.divider); inv_sensors_timestamp_init(&st->timestamp, ×tamp); /* magn chip init, noop if not present in the chip */ result = inv_mpu_magn_probe(st); if (result) return result; return 0; } static int inv_mpu6050_sensor_set(struct inv_mpu6050_state *st, int reg, int axis, int val) { int ind; __be16 d = cpu_to_be16(val); ind = (axis - IIO_MOD_X) * 2; return regmap_bulk_write(st->map, reg + ind, &d, sizeof(d)); } static int inv_mpu6050_sensor_show(struct inv_mpu6050_state *st, int reg, int axis, int *val) { int ind, result; __be16 d; ind = (axis - IIO_MOD_X) * 2; result = regmap_bulk_read(st->map, reg + ind, &d, sizeof(d)); if (result) return result; *val = (short)be16_to_cpup(&d); return IIO_VAL_INT; } static int inv_mpu6050_read_channel_data(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val) { struct inv_mpu6050_state *st = iio_priv(indio_dev); struct device *pdev = regmap_get_device(st->map); unsigned int freq_hz, period_us, min_sleep_us, max_sleep_us; int result; int ret; /* compute sample period */ freq_hz = INV_MPU6050_DIVIDER_TO_FIFO_RATE(st->chip_config.divider); period_us = 1000000 / freq_hz; result = pm_runtime_resume_and_get(pdev); if (result) return result; switch (chan->type) { case IIO_ANGL_VEL: if (!st->chip_config.gyro_en) { result = inv_mpu6050_switch_engine(st, true, INV_MPU6050_SENSOR_GYRO); if (result) goto error_power_off; /* need to wait 2 periods to have first valid sample */ min_sleep_us = 2 * period_us; max_sleep_us = 2 * (period_us + period_us / 2); usleep_range(min_sleep_us, max_sleep_us); } ret = inv_mpu6050_sensor_show(st, st->reg->raw_gyro, chan->channel2, val); break; case IIO_ACCEL: if (!st->chip_config.accl_en) { result = inv_mpu6050_switch_engine(st, true, INV_MPU6050_SENSOR_ACCL); if (result) goto error_power_off; /* wait 1 period for first sample availability */ min_sleep_us = period_us; max_sleep_us = period_us + period_us / 2; usleep_range(min_sleep_us, max_sleep_us); } ret = inv_mpu6050_sensor_show(st, st->reg->raw_accl, chan->channel2, val); break; case IIO_TEMP: /* temperature sensor work only with accel and/or gyro */ if (!st->chip_config.accl_en && !st->chip_config.gyro_en) { result = -EBUSY; goto error_power_off; } if (!st->chip_config.temp_en) { result = inv_mpu6050_switch_engine(st, true, INV_MPU6050_SENSOR_TEMP); if (result) goto error_power_off; /* wait 1 period for first sample availability */ min_sleep_us = period_us; max_sleep_us = period_us + period_us / 2; usleep_range(min_sleep_us, max_sleep_us); } ret = inv_mpu6050_sensor_show(st, st->reg->temperature, IIO_MOD_X, val); break; case IIO_MAGN: if (!st->chip_config.magn_en) { result = inv_mpu6050_switch_engine(st, true, INV_MPU6050_SENSOR_MAGN); if (result) goto error_power_off; /* frequency is limited for magnetometer */ if (freq_hz > INV_MPU_MAGN_FREQ_HZ_MAX) { freq_hz = INV_MPU_MAGN_FREQ_HZ_MAX; period_us = 1000000 / freq_hz; } /* need to wait 2 periods to have first valid sample */ min_sleep_us = 2 * period_us; max_sleep_us = 2 * (period_us + period_us / 2); usleep_range(min_sleep_us, max_sleep_us); } ret = inv_mpu_magn_read(st, chan->channel2, val); break; default: ret = -EINVAL; break; } pm_runtime_mark_last_busy(pdev); pm_runtime_put_autosuspend(pdev); return ret; error_power_off: pm_runtime_put_autosuspend(pdev); return result; } static int inv_mpu6050_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int *val, int *val2, long mask) { struct inv_mpu6050_state *st = iio_priv(indio_dev); int ret = 0; switch (mask) { case IIO_CHAN_INFO_RAW: ret = iio_device_claim_direct_mode(indio_dev); if (ret) return ret; mutex_lock(&st->lock); ret = inv_mpu6050_read_channel_data(indio_dev, chan, val); mutex_unlock(&st->lock); iio_device_release_direct_mode(indio_dev); return ret; case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_ANGL_VEL: mutex_lock(&st->lock); *val = 0; *val2 = gyro_scale_6050[st->chip_config.fsr]; mutex_unlock(&st->lock); return IIO_VAL_INT_PLUS_NANO; case IIO_ACCEL: mutex_lock(&st->lock); *val = 0; *val2 = accel_scale[st->chip_config.accl_fs]; mutex_unlock(&st->lock); return IIO_VAL_INT_PLUS_MICRO; case IIO_TEMP: *val = st->hw->temp.scale / 1000000; *val2 = st->hw->temp.scale % 1000000; return IIO_VAL_INT_PLUS_MICRO; case IIO_MAGN: return inv_mpu_magn_get_scale(st, chan, val, val2); default: return -EINVAL; } case IIO_CHAN_INFO_OFFSET: switch (chan->type) { case IIO_TEMP: *val = st->hw->temp.offset; return IIO_VAL_INT; default: return -EINVAL; } case IIO_CHAN_INFO_CALIBBIAS: switch (chan->type) { case IIO_ANGL_VEL: mutex_lock(&st->lock); ret = inv_mpu6050_sensor_show(st, st->reg->gyro_offset, chan->channel2, val); mutex_unlock(&st->lock); return ret; case IIO_ACCEL: mutex_lock(&st->lock); ret = inv_mpu6050_sensor_show(st, st->reg->accl_offset, chan->channel2, val); mutex_unlock(&st->lock); return ret; default: return -EINVAL; } default: return -EINVAL; } } static int inv_mpu6050_write_gyro_scale(struct inv_mpu6050_state *st, int val, int val2) { int result, i; if (val != 0) return -EINVAL; for (i = 0; i < ARRAY_SIZE(gyro_scale_6050); ++i) { if (gyro_scale_6050[i] == val2) { result = inv_mpu6050_set_gyro_fsr(st, i); if (result) return result; st->chip_config.fsr = i; return 0; } } return -EINVAL; } static int inv_write_raw_get_fmt(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, long mask) { switch (mask) { case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_ANGL_VEL: return IIO_VAL_INT_PLUS_NANO; default: return IIO_VAL_INT_PLUS_MICRO; } default: return IIO_VAL_INT_PLUS_MICRO; } return -EINVAL; } static int inv_mpu6050_write_accel_scale(struct inv_mpu6050_state *st, int val, int val2) { int result, i; u8 d; if (val != 0) return -EINVAL; for (i = 0; i < ARRAY_SIZE(accel_scale); ++i) { if (accel_scale[i] == val2) { d = (i << INV_MPU6050_ACCL_CONFIG_FSR_SHIFT); result = regmap_write(st->map, st->reg->accl_config, d); if (result) return result; st->chip_config.accl_fs = i; return 0; } } return -EINVAL; } static int inv_mpu6050_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, int val, int val2, long mask) { struct inv_mpu6050_state *st = iio_priv(indio_dev); struct device *pdev = regmap_get_device(st->map); int result; /* * we should only update scale when the chip is disabled, i.e. * not running */ result = iio_device_claim_direct_mode(indio_dev); if (result) return result; mutex_lock(&st->lock); result = pm_runtime_resume_and_get(pdev); if (result) goto error_write_raw_unlock; switch (mask) { case IIO_CHAN_INFO_SCALE: switch (chan->type) { case IIO_ANGL_VEL: result = inv_mpu6050_write_gyro_scale(st, val, val2); break; case IIO_ACCEL: result = inv_mpu6050_write_accel_scale(st, val, val2); break; default: result = -EINVAL; break; } break; case IIO_CHAN_INFO_CALIBBIAS: switch (chan->type) { case IIO_ANGL_VEL: result = inv_mpu6050_sensor_set(st, st->reg->gyro_offset, chan->channel2, val); break; case IIO_ACCEL: result = inv_mpu6050_sensor_set(st, st->reg->accl_offset, chan->channel2, val); break; default: result = -EINVAL; break; } break; default: result = -EINVAL; break; } pm_runtime_mark_last_busy(pdev); pm_runtime_put_autosuspend(pdev); error_write_raw_unlock: mutex_unlock(&st->lock); iio_device_release_direct_mode(indio_dev); return result; } static u64 inv_mpu6050_convert_wom_to_roc(unsigned int threshold, unsigned int freq_div) { /* 4mg per LSB converted in m/s² in micro (1000000) */ const unsigned int convert = 4U * 9807U; u64 value; value = threshold * convert; /* compute the differential by multiplying by the frequency */ return div_u64(value * INV_MPU6050_INTERNAL_FREQ_HZ, freq_div); } static unsigned int inv_mpu6050_convert_roc_to_wom(u64 roc, unsigned int freq_div) { /* 4mg per LSB converted in m/s² in micro (1000000) */ const unsigned int convert = 4U * 9807U; u64 value; /* return 0 only if roc is 0 */ if (roc == 0) return 0; value = div_u64(roc * freq_div, convert * INV_MPU6050_INTERNAL_FREQ_HZ); /* limit value to 8 bits and prevent 0 */ return min(255, max(1, value)); } static int inv_mpu6050_set_wom_int(struct inv_mpu6050_state *st, bool on) { unsigned int reg_val, val; switch (st->chip_type) { case INV_MPU6050: case INV_MPU6500: case INV_MPU6515: case INV_MPU6880: case INV_MPU6000: case INV_MPU9150: case INV_MPU9250: case INV_MPU9255: reg_val = INV_MPU6500_BIT_WOM_INT_EN; break; default: reg_val = INV_ICM20608_BIT_WOM_INT_EN; break; } val = on ? reg_val : 0; return regmap_update_bits(st->map, st->reg->int_enable, reg_val, val); } static int inv_mpu6050_set_wom_threshold(struct inv_mpu6050_state *st, u64 value, unsigned int freq_div) { unsigned int threshold; int result; /* convert roc to wom threshold and convert back to handle clipping */ threshold = inv_mpu6050_convert_roc_to_wom(value, freq_div); value = inv_mpu6050_convert_wom_to_roc(threshold, freq_div); dev_dbg(regmap_get_device(st->map), "wom_threshold: 0x%x\n", threshold); switch (st->chip_type) { case INV_ICM20609: case INV_ICM20689: case INV_ICM20600: case INV_ICM20602: case INV_ICM20690: st->data[0] = threshold; st->data[1] = threshold; st->data[2] = threshold; result = regmap_bulk_write(st->map, INV_ICM20609_REG_ACCEL_WOM_X_THR, st->data, 3); break; default: result = regmap_write(st->map, INV_MPU6500_REG_WOM_THRESHOLD, threshold); break; } if (result) return result; st->chip_config.roc_threshold = value; return 0; } static int inv_mpu6050_set_lp_odr(struct inv_mpu6050_state *st, unsigned int freq_div, unsigned int *lp_div) { static const unsigned int freq_dividers[] = {2, 4, 8, 16, 32, 64, 128, 256}; static const unsigned int reg_values[] = { INV_MPU6050_LPOSC_500HZ, INV_MPU6050_LPOSC_250HZ, INV_MPU6050_LPOSC_125HZ, INV_MPU6050_LPOSC_62HZ, INV_MPU6050_LPOSC_31HZ, INV_MPU6050_LPOSC_16HZ, INV_MPU6050_LPOSC_8HZ, INV_MPU6050_LPOSC_4HZ, }; unsigned int val, i; switch (st->chip_type) { case INV_ICM20609: case INV_ICM20689: case INV_ICM20600: case INV_ICM20602: case INV_ICM20690: /* nothing to do */ *lp_div = INV_MPU6050_FREQ_DIVIDER(st); return 0; default: break; } /* found the nearest superior frequency divider */ i = ARRAY_SIZE(reg_values) - 1; val = reg_values[i]; *lp_div = freq_dividers[i]; for (i = 0; i < ARRAY_SIZE(freq_dividers); ++i) { if (freq_div <= freq_dividers[i]) { val = reg_values[i]; *lp_div = freq_dividers[i]; break; } } dev_dbg(regmap_get_device(st->map), "lp_odr: 0x%x\n", val); return regmap_write(st->map, INV_MPU6500_REG_LP_ODR, val); } static int inv_mpu6050_set_wom_lp(struct inv_mpu6050_state *st, bool on) { unsigned int lp_div; int result; if (on) { /* set low power ODR */ result = inv_mpu6050_set_lp_odr(st, INV_MPU6050_FREQ_DIVIDER(st), &lp_div); if (result) return result; /* disable accel low pass filter */ result = inv_mpu6050_set_accel_lpf_regs(st, INV_MPU6050_FILTER_NOLPF); if (result) return result; /* update wom threshold with new low-power frequency divider */ result = inv_mpu6050_set_wom_threshold(st, st->chip_config.roc_threshold, lp_div); if (result) return result; /* set cycle mode */ result = inv_mpu6050_pwr_mgmt_1_write(st, false, true, -1, -1); } else { /* disable cycle mode */ result = inv_mpu6050_pwr_mgmt_1_write(st, false, false, -1, -1); if (result) return result; /* restore wom threshold */ result = inv_mpu6050_set_wom_threshold(st, st->chip_config.roc_threshold, INV_MPU6050_FREQ_DIVIDER(st)); if (result) return result; /* restore accel low pass filter */ result = inv_mpu6050_set_accel_lpf_regs(st, st->chip_config.lpf); } return result; } static int inv_mpu6050_enable_wom(struct inv_mpu6050_state *st, bool en) { struct device *pdev = regmap_get_device(st->map); unsigned int mask; int result; if (en) { result = pm_runtime_resume_and_get(pdev); if (result) return result; mask = INV_MPU6050_SENSOR_ACCL | INV_MPU6050_SENSOR_WOM; result = inv_mpu6050_switch_engine(st, true, mask); if (result) goto error_suspend; result = inv_mpu6050_set_wom_int(st, true); if (result) goto error_suspend; } else { result = inv_mpu6050_set_wom_int(st, false); if (result) dev_err(pdev, "error %d disabling WoM interrupt bit", result); /* disable only WoM and let accel be disabled by autosuspend */ result = inv_mpu6050_switch_engine(st, false, INV_MPU6050_SENSOR_WOM); if (result) { dev_err(pdev, "error %d disabling WoM force off", result); /* force WoM off */ st->chip_config.wom_en = false; } pm_runtime_mark_last_busy(pdev); pm_runtime_put_autosuspend(pdev); } return result; error_suspend: pm_runtime_mark_last_busy(pdev); pm_runtime_put_autosuspend(pdev); return result; } static int inv_mpu6050_read_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir) { struct inv_mpu6050_state *st = iio_priv(indio_dev); /* support only WoM (accel roc rising) event */ if (chan->type != IIO_ACCEL || type != IIO_EV_TYPE_ROC || dir != IIO_EV_DIR_RISING) return -EINVAL; guard(mutex)(&st->lock); return st->chip_config.wom_en ? 1 : 0; } static int inv_mpu6050_write_event_config(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, int state) { struct inv_mpu6050_state *st = iio_priv(indio_dev); int enable; /* support only WoM (accel roc rising) event */ if (chan->type != IIO_ACCEL || type != IIO_EV_TYPE_ROC || dir != IIO_EV_DIR_RISING) return -EINVAL; enable = !!state; guard(mutex)(&st->lock); if (st->chip_config.wom_en == enable) return 0; return inv_mpu6050_enable_wom(st, enable); } static int inv_mpu6050_read_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct inv_mpu6050_state *st = iio_priv(indio_dev); u32 rem; /* support only WoM (accel roc rising) event value */ if (chan->type != IIO_ACCEL || type != IIO_EV_TYPE_ROC || dir != IIO_EV_DIR_RISING || info != IIO_EV_INFO_VALUE) return -EINVAL; guard(mutex)(&st->lock); /* return value in micro */ *val = div_u64_rem(st->chip_config.roc_threshold, 1000000U, &rem); *val2 = rem; return IIO_VAL_INT_PLUS_MICRO; } static int inv_mpu6050_write_event_value(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct inv_mpu6050_state *st = iio_priv(indio_dev); struct device *pdev = regmap_get_device(st->map); u64 value; int result; /* support only WoM (accel roc rising) event value */ if (chan->type != IIO_ACCEL || type != IIO_EV_TYPE_ROC || dir != IIO_EV_DIR_RISING || info != IIO_EV_INFO_VALUE) return -EINVAL; if (val < 0 || val2 < 0) return -EINVAL; guard(mutex)(&st->lock); result = pm_runtime_resume_and_get(pdev); if (result) return result; value = (u64)val * 1000000ULL + (u64)val2; result = inv_mpu6050_set_wom_threshold(st, value, INV_MPU6050_FREQ_DIVIDER(st)); pm_runtime_mark_last_busy(pdev); pm_runtime_put_autosuspend(pdev); return result; } /* * inv_mpu6050_set_lpf() - set low pass filer based on fifo rate. * * Based on the Nyquist principle, the bandwidth of the low * pass filter must not exceed the signal sampling rate divided * by 2, or there would be aliasing. * This function basically search for the correct low pass * parameters based on the fifo rate, e.g, sampling frequency. * * lpf is set automatically when setting sampling rate to avoid any aliases. */ static int inv_mpu6050_set_lpf(struct inv_mpu6050_state *st, int rate) { static const int hz[] = {400, 200, 90, 40, 20, 10}; static const int d[] = { INV_MPU6050_FILTER_200HZ, INV_MPU6050_FILTER_100HZ, INV_MPU6050_FILTER_45HZ, INV_MPU6050_FILTER_20HZ, INV_MPU6050_FILTER_10HZ, INV_MPU6050_FILTER_5HZ }; int i, result; u8 data; data = INV_MPU6050_FILTER_5HZ; for (i = 0; i < ARRAY_SIZE(hz); ++i) { if (rate >= hz[i]) { data = d[i]; break; } } result = inv_mpu6050_set_lpf_regs(st, data); if (result) return result; st->chip_config.lpf = data; return 0; } /* * inv_mpu6050_fifo_rate_store() - Set fifo rate. */ static ssize_t inv_mpu6050_fifo_rate_store(struct device *dev, struct device_attribute *attr, const char *buf, size_t count) { int fifo_rate; u32 fifo_period; bool fifo_on; u8 d; int result; struct iio_dev *indio_dev = dev_to_iio_dev(dev); struct inv_mpu6050_state *st = iio_priv(indio_dev); struct device *pdev = regmap_get_device(st->map); if (kstrtoint(buf, 10, &fifo_rate)) return -EINVAL; if (fifo_rate < INV_MPU6050_MIN_FIFO_RATE || fifo_rate > INV_MPU6050_MAX_FIFO_RATE) return -EINVAL; /* compute the chip sample rate divider */ d = INV_MPU6050_FIFO_RATE_TO_DIVIDER(fifo_rate); /* compute back the fifo rate to handle truncation cases */ fifo_rate = INV_MPU6050_DIVIDER_TO_FIFO_RATE(d); fifo_period = NSEC_PER_SEC / fifo_rate; mutex_lock(&st->lock); if (d == st->chip_config.divider) { result = 0; goto fifo_rate_fail_unlock; } fifo_on = st->chip_config.accl_fifo_enable || st->chip_config.gyro_fifo_enable || st->chip_config.magn_fifo_enable; result = inv_sensors_timestamp_update_odr(&st->timestamp, fifo_period, fifo_on); if (result) goto fifo_rate_fail_unlock; result = pm_runtime_resume_and_get(pdev); if (result) goto fifo_rate_fail_unlock; result = regmap_write(st->map, st->reg->sample_rate_div, d); if (result) goto fifo_rate_fail_power_off; st->chip_config.divider = d; result = inv_mpu6050_set_lpf(st, fifo_rate); if (result) goto fifo_rate_fail_power_off; /* update rate for magn, noop if not present in chip */ result = inv_mpu_magn_set_rate(st, fifo_rate); if (result) goto fifo_rate_fail_power_off; /* update wom threshold since roc is dependent on sampling frequency */ result = inv_mpu6050_set_wom_threshold(st, st->chip_config.roc_threshold, INV_MPU6050_FREQ_DIVIDER(st)); if (result) goto fifo_rate_fail_power_off; pm_runtime_mark_last_busy(pdev); fifo_rate_fail_power_off: pm_runtime_put_autosuspend(pdev); fifo_rate_fail_unlock: mutex_unlock(&st->lock); if (result) return result; return count; } /* * inv_fifo_rate_show() - Get the current sampling rate. */ static ssize_t inv_fifo_rate_show(struct device *dev, struct device_attribute *attr, char *buf) { struct inv_mpu6050_state *st = iio_priv(dev_to_iio_dev(dev)); unsigned fifo_rate; mutex_lock(&st->lock); fifo_rate = INV_MPU6050_DIVIDER_TO_FIFO_RATE(st->chip_config.divider); mutex_unlock(&st->lock); return scnprintf(buf, PAGE_SIZE, "%u\n", fifo_rate); } /* * inv_attr_show() - calling this function will show current * parameters. * * Deprecated in favor of IIO mounting matrix API. * * See inv_get_mount_matrix() */ static ssize_t inv_attr_show(struct device *dev, struct device_attribute *attr, char *buf) { struct inv_mpu6050_state *st = iio_priv(dev_to_iio_dev(dev)); struct iio_dev_attr *this_attr = to_iio_dev_attr(attr); s8 *m; switch (this_attr->address) { /* * In MPU6050, the two matrix are the same because gyro and accel * are integrated in one chip */ case ATTR_GYRO_MATRIX: case ATTR_ACCL_MATRIX: m = st->plat_data.orientation; return scnprintf(buf, PAGE_SIZE, "%d, %d, %d; %d, %d, %d; %d, %d, %d\n", m[0], m[1], m[2], m[3], m[4], m[5], m[6], m[7], m[8]); default: return -EINVAL; } } /** * inv_mpu6050_validate_trigger() - validate_trigger callback for invensense * MPU6050 device. * @indio_dev: The IIO device * @trig: The new trigger * * Returns: 0 if the 'trig' matches the trigger registered by the MPU6050 * device, -EINVAL otherwise. */ static int inv_mpu6050_validate_trigger(struct iio_dev *indio_dev, struct iio_trigger *trig) { struct inv_mpu6050_state *st = iio_priv(indio_dev); if (st->trig != trig) return -EINVAL; return 0; } static const struct iio_mount_matrix * inv_get_mount_matrix(const struct iio_dev *indio_dev, const struct iio_chan_spec *chan) { struct inv_mpu6050_state *data = iio_priv(indio_dev); const struct iio_mount_matrix *matrix; if (chan->type == IIO_MAGN) matrix = &data->magn_orient; else matrix = &data->orientation; return matrix; } static const struct iio_chan_spec_ext_info inv_ext_info[] = { IIO_MOUNT_MATRIX(IIO_SHARED_BY_TYPE, inv_get_mount_matrix), { } }; static const struct iio_event_spec inv_wom_events[] = { { .type = IIO_EV_TYPE_ROC, .dir = IIO_EV_DIR_RISING, .mask_separate = BIT(IIO_EV_INFO_ENABLE) | BIT(IIO_EV_INFO_VALUE), }, }; #define INV_MPU6050_CHAN(_type, _channel2, _index) \ { \ .type = _type, \ .modified = 1, \ .channel2 = _channel2, \ .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SCALE), \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | \ BIT(IIO_CHAN_INFO_CALIBBIAS), \ .scan_index = _index, \ .scan_type = { \ .sign = 's', \ .realbits = 16, \ .storagebits = 16, \ .shift = 0, \ .endianness = IIO_BE, \ }, \ .ext_info = inv_ext_info, \ } #define INV_MPU6050_TEMP_CHAN(_index) \ { \ .type = IIO_TEMP, \ .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) \ | BIT(IIO_CHAN_INFO_OFFSET) \ | BIT(IIO_CHAN_INFO_SCALE), \ .scan_index = _index, \ .scan_type = { \ .sign = 's', \ .realbits = 16, \ .storagebits = 16, \ .shift = 0, \ .endianness = IIO_BE, \ }, \ } #define INV_MPU6050_EVENT_CHAN(_type, _channel2, _events, _events_nb) \ { \ .type = _type, \ .modified = 1, \ .channel2 = _channel2, \ .event_spec = _events, \ .num_event_specs = _events_nb, \ .scan_index = -1, \ } static const struct iio_chan_spec inv_mpu6050_channels[] = { IIO_CHAN_SOFT_TIMESTAMP(INV_MPU6050_SCAN_TIMESTAMP), INV_MPU6050_TEMP_CHAN(INV_MPU6050_SCAN_TEMP), INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_X, INV_MPU6050_SCAN_GYRO_X), INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Y, INV_MPU6050_SCAN_GYRO_Y), INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Z, INV_MPU6050_SCAN_GYRO_Z), INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_X, INV_MPU6050_SCAN_ACCL_X), INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Y, INV_MPU6050_SCAN_ACCL_Y), INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Z, INV_MPU6050_SCAN_ACCL_Z), }; static const struct iio_chan_spec inv_mpu6500_channels[] = { IIO_CHAN_SOFT_TIMESTAMP(INV_MPU6050_SCAN_TIMESTAMP), INV_MPU6050_TEMP_CHAN(INV_MPU6050_SCAN_TEMP), INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_X, INV_MPU6050_SCAN_GYRO_X), INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Y, INV_MPU6050_SCAN_GYRO_Y), INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Z, INV_MPU6050_SCAN_GYRO_Z), INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_X, INV_MPU6050_SCAN_ACCL_X), INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Y, INV_MPU6050_SCAN_ACCL_Y), INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Z, INV_MPU6050_SCAN_ACCL_Z), INV_MPU6050_EVENT_CHAN(IIO_ACCEL, IIO_MOD_X_OR_Y_OR_Z, inv_wom_events, ARRAY_SIZE(inv_wom_events)), }; #define INV_MPU6050_SCAN_MASK_3AXIS_ACCEL \ (BIT(INV_MPU6050_SCAN_ACCL_X) \ | BIT(INV_MPU6050_SCAN_ACCL_Y) \ | BIT(INV_MPU6050_SCAN_ACCL_Z)) #define INV_MPU6050_SCAN_MASK_3AXIS_GYRO \ (BIT(INV_MPU6050_SCAN_GYRO_X) \ | BIT(INV_MPU6050_SCAN_GYRO_Y) \ | BIT(INV_MPU6050_SCAN_GYRO_Z)) #define INV_MPU6050_SCAN_MASK_TEMP (BIT(INV_MPU6050_SCAN_TEMP)) static const unsigned long inv_mpu_scan_masks[] = { /* 3-axis accel */ INV_MPU6050_SCAN_MASK_3AXIS_ACCEL, INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_TEMP, /* 3-axis gyro */ INV_MPU6050_SCAN_MASK_3AXIS_GYRO, INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU6050_SCAN_MASK_TEMP, /* 6-axis accel + gyro */ INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO, INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU6050_SCAN_MASK_TEMP, 0, }; #define INV_MPU9X50_MAGN_CHAN(_chan2, _bits, _index) \ { \ .type = IIO_MAGN, \ .modified = 1, \ .channel2 = _chan2, \ .info_mask_separate = BIT(IIO_CHAN_INFO_SCALE) | \ BIT(IIO_CHAN_INFO_RAW), \ .scan_index = _index, \ .scan_type = { \ .sign = 's', \ .realbits = _bits, \ .storagebits = 16, \ .shift = 0, \ .endianness = IIO_BE, \ }, \ .ext_info = inv_ext_info, \ } static const struct iio_chan_spec inv_mpu9150_channels[] = { IIO_CHAN_SOFT_TIMESTAMP(INV_MPU9X50_SCAN_TIMESTAMP), INV_MPU6050_TEMP_CHAN(INV_MPU6050_SCAN_TEMP), INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_X, INV_MPU6050_SCAN_GYRO_X), INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Y, INV_MPU6050_SCAN_GYRO_Y), INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Z, INV_MPU6050_SCAN_GYRO_Z), INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_X, INV_MPU6050_SCAN_ACCL_X), INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Y, INV_MPU6050_SCAN_ACCL_Y), INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Z, INV_MPU6050_SCAN_ACCL_Z), /* Magnetometer resolution is 13 bits */ INV_MPU9X50_MAGN_CHAN(IIO_MOD_X, 13, INV_MPU9X50_SCAN_MAGN_X), INV_MPU9X50_MAGN_CHAN(IIO_MOD_Y, 13, INV_MPU9X50_SCAN_MAGN_Y), INV_MPU9X50_MAGN_CHAN(IIO_MOD_Z, 13, INV_MPU9X50_SCAN_MAGN_Z), }; static const struct iio_chan_spec inv_mpu9250_channels[] = { IIO_CHAN_SOFT_TIMESTAMP(INV_MPU9X50_SCAN_TIMESTAMP), INV_MPU6050_TEMP_CHAN(INV_MPU6050_SCAN_TEMP), INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_X, INV_MPU6050_SCAN_GYRO_X), INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Y, INV_MPU6050_SCAN_GYRO_Y), INV_MPU6050_CHAN(IIO_ANGL_VEL, IIO_MOD_Z, INV_MPU6050_SCAN_GYRO_Z), INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_X, INV_MPU6050_SCAN_ACCL_X), INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Y, INV_MPU6050_SCAN_ACCL_Y), INV_MPU6050_CHAN(IIO_ACCEL, IIO_MOD_Z, INV_MPU6050_SCAN_ACCL_Z), /* Magnetometer resolution is 16 bits */ INV_MPU9X50_MAGN_CHAN(IIO_MOD_X, 16, INV_MPU9X50_SCAN_MAGN_X), INV_MPU9X50_MAGN_CHAN(IIO_MOD_Y, 16, INV_MPU9X50_SCAN_MAGN_Y), INV_MPU9X50_MAGN_CHAN(IIO_MOD_Z, 16, INV_MPU9X50_SCAN_MAGN_Z), }; #define INV_MPU9X50_SCAN_MASK_3AXIS_MAGN \ (BIT(INV_MPU9X50_SCAN_MAGN_X) \ | BIT(INV_MPU9X50_SCAN_MAGN_Y) \ | BIT(INV_MPU9X50_SCAN_MAGN_Z)) static const unsigned long inv_mpu9x50_scan_masks[] = { /* 3-axis accel */ INV_MPU6050_SCAN_MASK_3AXIS_ACCEL, INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_TEMP, /* 3-axis gyro */ INV_MPU6050_SCAN_MASK_3AXIS_GYRO, INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU6050_SCAN_MASK_TEMP, /* 3-axis magn */ INV_MPU9X50_SCAN_MASK_3AXIS_MAGN, INV_MPU9X50_SCAN_MASK_3AXIS_MAGN | INV_MPU6050_SCAN_MASK_TEMP, /* 6-axis accel + gyro */ INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO, INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU6050_SCAN_MASK_TEMP, /* 6-axis accel + magn */ INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU9X50_SCAN_MASK_3AXIS_MAGN, INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU9X50_SCAN_MASK_3AXIS_MAGN | INV_MPU6050_SCAN_MASK_TEMP, /* 6-axis gyro + magn */ INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU9X50_SCAN_MASK_3AXIS_MAGN, INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU9X50_SCAN_MASK_3AXIS_MAGN | INV_MPU6050_SCAN_MASK_TEMP, /* 9-axis accel + gyro + magn */ INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU9X50_SCAN_MASK_3AXIS_MAGN, INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU9X50_SCAN_MASK_3AXIS_MAGN | INV_MPU6050_SCAN_MASK_TEMP, 0, }; static const unsigned long inv_icm20602_scan_masks[] = { /* 3-axis accel + temp (mandatory) */ INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_TEMP, /* 3-axis gyro + temp (mandatory) */ INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU6050_SCAN_MASK_TEMP, /* 6-axis accel + gyro + temp (mandatory) */ INV_MPU6050_SCAN_MASK_3AXIS_ACCEL | INV_MPU6050_SCAN_MASK_3AXIS_GYRO | INV_MPU6050_SCAN_MASK_TEMP, 0, }; /* * The user can choose any frequency between INV_MPU6050_MIN_FIFO_RATE and * INV_MPU6050_MAX_FIFO_RATE, but only these frequencies are matched by the * low-pass filter. Specifically, each of these sampling rates are about twice * the bandwidth of a corresponding low-pass filter, which should eliminate * aliasing following the Nyquist principle. By picking a frequency different * from these, the user risks aliasing effects. */ static IIO_CONST_ATTR_SAMP_FREQ_AVAIL("10 20 50 100 200 500"); static IIO_CONST_ATTR(in_anglvel_scale_available, "0.000133090 0.000266181 0.000532362 0.001064724"); static IIO_CONST_ATTR(in_accel_scale_available, "0.000598 0.001196 0.002392 0.004785"); static IIO_DEV_ATTR_SAMP_FREQ(S_IRUGO | S_IWUSR, inv_fifo_rate_show, inv_mpu6050_fifo_rate_store); /* Deprecated: kept for userspace backward compatibility. */ static IIO_DEVICE_ATTR(in_gyro_matrix, S_IRUGO, inv_attr_show, NULL, ATTR_GYRO_MATRIX); static IIO_DEVICE_ATTR(in_accel_matrix, S_IRUGO, inv_attr_show, NULL, ATTR_ACCL_MATRIX); static struct attribute *inv_attributes[] = { &iio_dev_attr_in_gyro_matrix.dev_attr.attr, /* deprecated */ &iio_dev_attr_in_accel_matrix.dev_attr.attr, /* deprecated */ &iio_dev_attr_sampling_frequency.dev_attr.attr, &iio_const_attr_sampling_frequency_available.dev_attr.attr, &iio_const_attr_in_accel_scale_available.dev_attr.attr, &iio_const_attr_in_anglvel_scale_available.dev_attr.attr, NULL, }; static const struct attribute_group inv_attribute_group = { .attrs = inv_attributes }; static int inv_mpu6050_reg_access(struct iio_dev *indio_dev, unsigned int reg, unsigned int writeval, unsigned int *readval) { struct inv_mpu6050_state *st = iio_priv(indio_dev); int ret; mutex_lock(&st->lock); if (readval) ret = regmap_read(st->map, reg, readval); else ret = regmap_write(st->map, reg, writeval); mutex_unlock(&st->lock); return ret; } static const struct iio_info mpu_info = { .read_raw = &inv_mpu6050_read_raw, .write_raw = &inv_mpu6050_write_raw, .write_raw_get_fmt = &inv_write_raw_get_fmt, .attrs = &inv_attribute_group, .read_event_config = inv_mpu6050_read_event_config, .write_event_config = inv_mpu6050_write_event_config, .read_event_value = inv_mpu6050_read_event_value, .write_event_value = inv_mpu6050_write_event_value, .validate_trigger = inv_mpu6050_validate_trigger, .debugfs_reg_access = &inv_mpu6050_reg_access, }; /* * inv_check_and_setup_chip() - check and setup chip. */ static int inv_check_and_setup_chip(struct inv_mpu6050_state *st) { int result; unsigned int regval, mask; int i; st->hw = &hw_info[st->chip_type]; st->reg = hw_info[st->chip_type].reg; memcpy(&st->chip_config, hw_info[st->chip_type].config, sizeof(st->chip_config)); st->data = devm_kzalloc(regmap_get_device(st->map), st->hw->fifo_size, GFP_KERNEL); if (st->data == NULL) return -ENOMEM; /* check chip self-identification */ result = regmap_read(st->map, INV_MPU6050_REG_WHOAMI, ®val); if (result) return result; if (regval != st->hw->whoami) { /* check whoami against all possible values */ for (i = 0; i < INV_NUM_PARTS; ++i) { if (regval == hw_info[i].whoami) { dev_warn(regmap_get_device(st->map), "whoami mismatch got 0x%02x (%s) expected 0x%02x (%s)\n", regval, hw_info[i].name, st->hw->whoami, st->hw->name); break; } } if (i >= INV_NUM_PARTS) { dev_err(regmap_get_device(st->map), "invalid whoami 0x%02x expected 0x%02x (%s)\n", regval, st->hw->whoami, st->hw->name); return -ENODEV; } } /* reset to make sure previous state are not there */ result = regmap_write(st->map, st->reg->pwr_mgmt_1, INV_MPU6050_BIT_H_RESET); if (result) return result; msleep(INV_MPU6050_POWER_UP_TIME); switch (st->chip_type) { case INV_MPU6000: case INV_MPU6500: case INV_MPU6515: case INV_MPU6880: case INV_MPU9250: case INV_MPU9255: /* reset signal path (required for spi connection) */ regval = INV_MPU6050_BIT_TEMP_RST | INV_MPU6050_BIT_ACCEL_RST | INV_MPU6050_BIT_GYRO_RST; result = regmap_write(st->map, INV_MPU6050_REG_SIGNAL_PATH_RESET, regval); if (result) return result; msleep(INV_MPU6050_POWER_UP_TIME); break; default: break; } /* * Turn power on. After reset, the sleep bit could be on * or off depending on the OTP settings. Turning power on * make it in a definite state as well as making the hardware * state align with the software state */ result = inv_mpu6050_set_power_itg(st, true); if (result) return result; mask = INV_MPU6050_SENSOR_ACCL | INV_MPU6050_SENSOR_GYRO | INV_MPU6050_SENSOR_TEMP | INV_MPU6050_SENSOR_MAGN; result = inv_mpu6050_switch_engine(st, false, mask); if (result) goto error_power_off; return 0; error_power_off: inv_mpu6050_set_power_itg(st, false); return result; } static int inv_mpu_core_enable_regulator_vddio(struct inv_mpu6050_state *st) { int result; result = regulator_enable(st->vddio_supply); if (result) { dev_err(regmap_get_device(st->map), "Failed to enable vddio regulator: %d\n", result); } else { /* Give the device a little bit of time to start up. */ usleep_range(3000, 5000); } return result; } static int inv_mpu_core_disable_regulator_vddio(struct inv_mpu6050_state *st) { int result; result = regulator_disable(st->vddio_supply); if (result) dev_err(regmap_get_device(st->map), "Failed to disable vddio regulator: %d\n", result); return result; } static void inv_mpu_core_disable_regulator_action(void *_data) { struct inv_mpu6050_state *st = _data; int result; result = regulator_disable(st->vdd_supply); if (result) dev_err(regmap_get_device(st->map), "Failed to disable vdd regulator: %d\n", result); inv_mpu_core_disable_regulator_vddio(st); } static void inv_mpu_pm_disable(void *data) { struct device *dev = data; pm_runtime_disable(dev); } int inv_mpu_core_probe(struct regmap *regmap, int irq, const char *name, int (*inv_mpu_bus_setup)(struct iio_dev *), int chip_type) { struct inv_mpu6050_state *st; struct iio_dev *indio_dev; struct inv_mpu6050_platform_data *pdata; struct device *dev = regmap_get_device(regmap); int result; struct irq_data *desc; int irq_type; indio_dev = devm_iio_device_alloc(dev, sizeof(*st)); if (!indio_dev) return -ENOMEM; BUILD_BUG_ON(ARRAY_SIZE(hw_info) != INV_NUM_PARTS); if (chip_type < 0 || chip_type >= INV_NUM_PARTS) { dev_err(dev, "Bad invensense chip_type=%d name=%s\n", chip_type, name); return -ENODEV; } st = iio_priv(indio_dev); mutex_init(&st->lock); st->chip_type = chip_type; st->irq = irq; st->map = regmap; st->level_shifter = device_property_read_bool(dev, "invensense,level-shifter"); pdata = dev_get_platdata(dev); if (!pdata) { result = iio_read_mount_matrix(dev, &st->orientation); if (result) { dev_err(dev, "Failed to retrieve mounting matrix %d\n", result); return result; } } else { st->plat_data = *pdata; } if (irq > 0) { desc = irq_get_irq_data(irq); if (!desc) { dev_err(dev, "Could not find IRQ %d\n", irq); return -EINVAL; } irq_type = irqd_get_trigger_type(desc); if (!irq_type) irq_type = IRQF_TRIGGER_RISING; } else { /* Doesn't really matter, use the default */ irq_type = IRQF_TRIGGER_RISING; } if (irq_type & IRQF_TRIGGER_RISING) // rising or both-edge st->irq_mask = INV_MPU6050_ACTIVE_HIGH; else if (irq_type == IRQF_TRIGGER_FALLING) st->irq_mask = INV_MPU6050_ACTIVE_LOW; else if (irq_type == IRQF_TRIGGER_HIGH) st->irq_mask = INV_MPU6050_ACTIVE_HIGH | INV_MPU6050_LATCH_INT_EN; else if (irq_type == IRQF_TRIGGER_LOW) st->irq_mask = INV_MPU6050_ACTIVE_LOW | INV_MPU6050_LATCH_INT_EN; else { dev_err(dev, "Invalid interrupt type 0x%x specified\n", irq_type); return -EINVAL; } device_set_wakeup_capable(dev, true); st->vdd_supply = devm_regulator_get(dev, "vdd"); if (IS_ERR(st->vdd_supply)) return dev_err_probe(dev, PTR_ERR(st->vdd_supply), "Failed to get vdd regulator\n"); st->vddio_supply = devm_regulator_get(dev, "vddio"); if (IS_ERR(st->vddio_supply)) return dev_err_probe(dev, PTR_ERR(st->vddio_supply), "Failed to get vddio regulator\n"); result = regulator_enable(st->vdd_supply); if (result) { dev_err(dev, "Failed to enable vdd regulator: %d\n", result); return result; } msleep(INV_MPU6050_POWER_UP_TIME); result = inv_mpu_core_enable_regulator_vddio(st); if (result) { regulator_disable(st->vdd_supply); return result; } result = devm_add_action_or_reset(dev, inv_mpu_core_disable_regulator_action, st); if (result) { dev_err(dev, "Failed to setup regulator cleanup action %d\n", result); return result; } /* fill magnetometer orientation */ result = inv_mpu_magn_set_orient(st); if (result) return result; /* power is turned on inside check chip type*/ result = inv_check_and_setup_chip(st); if (result) return result; result = inv_mpu6050_init_config(indio_dev); if (result) { dev_err(dev, "Could not initialize device.\n"); goto error_power_off; } dev_set_drvdata(dev, indio_dev); /* name will be NULL when enumerated via ACPI */ if (name) indio_dev->name = name; else indio_dev->name = dev_name(dev); /* requires parent device set in indio_dev */ if (inv_mpu_bus_setup) { result = inv_mpu_bus_setup(indio_dev); if (result) goto error_power_off; } /* chip init is done, turning on runtime power management */ result = pm_runtime_set_active(dev); if (result) goto error_power_off; pm_runtime_get_noresume(dev); pm_runtime_enable(dev); pm_runtime_set_autosuspend_delay(dev, INV_MPU6050_SUSPEND_DELAY_MS); pm_runtime_use_autosuspend(dev); pm_runtime_put(dev); result = devm_add_action_or_reset(dev, inv_mpu_pm_disable, dev); if (result) return result; switch (chip_type) { case INV_MPU6000: case INV_MPU6050: indio_dev->channels = inv_mpu6050_channels; indio_dev->num_channels = ARRAY_SIZE(inv_mpu6050_channels); indio_dev->available_scan_masks = inv_mpu_scan_masks; break; case INV_MPU9150: indio_dev->channels = inv_mpu9150_channels; indio_dev->num_channels = ARRAY_SIZE(inv_mpu9150_channels); indio_dev->available_scan_masks = inv_mpu9x50_scan_masks; break; case INV_MPU9250: case INV_MPU9255: indio_dev->channels = inv_mpu9250_channels; indio_dev->num_channels = ARRAY_SIZE(inv_mpu9250_channels); indio_dev->available_scan_masks = inv_mpu9x50_scan_masks; break; case INV_ICM20600: case INV_ICM20602: indio_dev->channels = inv_mpu6500_channels; indio_dev->num_channels = ARRAY_SIZE(inv_mpu6500_channels); indio_dev->available_scan_masks = inv_icm20602_scan_masks; break; default: indio_dev->channels = inv_mpu6500_channels; indio_dev->num_channels = ARRAY_SIZE(inv_mpu6500_channels); indio_dev->available_scan_masks = inv_mpu_scan_masks; break; } /* * Use magnetometer inside the chip only if there is no i2c * auxiliary device in use. Otherwise Going back to 6-axis only. */ if (st->magn_disabled) { switch (chip_type) { case INV_MPU9150: indio_dev->channels = inv_mpu6050_channels; indio_dev->num_channels = ARRAY_SIZE(inv_mpu6050_channels); indio_dev->available_scan_masks = inv_mpu_scan_masks; break; default: indio_dev->channels = inv_mpu6500_channels; indio_dev->num_channels = ARRAY_SIZE(inv_mpu6500_channels); indio_dev->available_scan_masks = inv_mpu_scan_masks; break; } } indio_dev->info = &mpu_info; if (irq > 0) { /* * The driver currently only supports buffered capture with its * own trigger. So no IRQ, no trigger, no buffer */ result = devm_iio_triggered_buffer_setup(dev, indio_dev, iio_pollfunc_store_time, inv_mpu6050_read_fifo, NULL); if (result) { dev_err(dev, "configure buffer fail %d\n", result); return result; } result = inv_mpu6050_probe_trigger(indio_dev, irq_type); if (result) { dev_err(dev, "trigger probe fail %d\n", result); return result; } } result = devm_iio_device_register(dev, indio_dev); if (result) { dev_err(dev, "IIO register fail %d\n", result); return result; } return 0; error_power_off: inv_mpu6050_set_power_itg(st, false); return result; } EXPORT_SYMBOL_NS_GPL(inv_mpu_core_probe, IIO_MPU6050); static int inv_mpu_resume(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct inv_mpu6050_state *st = iio_priv(indio_dev); bool wakeup; int result; guard(mutex)(&st->lock); wakeup = device_may_wakeup(dev) && st->chip_config.wom_en; if (wakeup) { enable_irq(st->irq); disable_irq_wake(st->irq); result = inv_mpu6050_set_wom_lp(st, false); if (result) return result; } else { result = inv_mpu_core_enable_regulator_vddio(st); if (result) return result; result = inv_mpu6050_set_power_itg(st, true); if (result) return result; } pm_runtime_disable(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); result = inv_mpu6050_switch_engine(st, true, st->suspended_sensors); if (result) return result; if (st->chip_config.wom_en && !wakeup) { result = inv_mpu6050_set_wom_int(st, true); if (result) return result; } if (iio_buffer_enabled(indio_dev)) result = inv_mpu6050_prepare_fifo(st, true); return result; } static int inv_mpu_suspend(struct device *dev) { struct iio_dev *indio_dev = dev_get_drvdata(dev); struct inv_mpu6050_state *st = iio_priv(indio_dev); bool wakeup; int result; guard(mutex)(&st->lock); st->suspended_sensors = 0; if (pm_runtime_suspended(dev)) return 0; if (iio_buffer_enabled(indio_dev)) { result = inv_mpu6050_prepare_fifo(st, false); if (result) return result; } wakeup = device_may_wakeup(dev) && st->chip_config.wom_en; if (st->chip_config.wom_en && !wakeup) { result = inv_mpu6050_set_wom_int(st, false); if (result) return result; } if (st->chip_config.accl_en && !wakeup) st->suspended_sensors |= INV_MPU6050_SENSOR_ACCL; if (st->chip_config.gyro_en) st->suspended_sensors |= INV_MPU6050_SENSOR_GYRO; if (st->chip_config.temp_en) st->suspended_sensors |= INV_MPU6050_SENSOR_TEMP; if (st->chip_config.magn_en) st->suspended_sensors |= INV_MPU6050_SENSOR_MAGN; if (st->chip_config.wom_en && !wakeup) st->suspended_sensors |= INV_MPU6050_SENSOR_WOM; result = inv_mpu6050_switch_engine(st, false, st->suspended_sensors); if (result) return result; if (wakeup) { result = inv_mpu6050_set_wom_lp(st, true); if (result) return result; enable_irq_wake(st->irq); disable_irq(st->irq); } else { result = inv_mpu6050_set_power_itg(st, false); if (result) return result; inv_mpu_core_disable_regulator_vddio(st); } return 0; } static int inv_mpu_runtime_suspend(struct device *dev) { struct inv_mpu6050_state *st = iio_priv(dev_get_drvdata(dev)); unsigned int sensors; int ret; mutex_lock(&st->lock); sensors = INV_MPU6050_SENSOR_ACCL | INV_MPU6050_SENSOR_GYRO | INV_MPU6050_SENSOR_TEMP | INV_MPU6050_SENSOR_MAGN | INV_MPU6050_SENSOR_WOM; ret = inv_mpu6050_switch_engine(st, false, sensors); if (ret) goto out_unlock; ret = inv_mpu6050_set_power_itg(st, false); if (ret) goto out_unlock; inv_mpu_core_disable_regulator_vddio(st); out_unlock: mutex_unlock(&st->lock); return ret; } static int inv_mpu_runtime_resume(struct device *dev) { struct inv_mpu6050_state *st = iio_priv(dev_get_drvdata(dev)); int ret; ret = inv_mpu_core_enable_regulator_vddio(st); if (ret) return ret; return inv_mpu6050_set_power_itg(st, true); } EXPORT_NS_GPL_DEV_PM_OPS(inv_mpu_pmops, IIO_MPU6050) = { SYSTEM_SLEEP_PM_OPS(inv_mpu_suspend, inv_mpu_resume) RUNTIME_PM_OPS(inv_mpu_runtime_suspend, inv_mpu_runtime_resume, NULL) }; MODULE_AUTHOR("Invensense Corporation"); MODULE_DESCRIPTION("Invensense device MPU6050 driver"); MODULE_LICENSE("GPL"); MODULE_IMPORT_NS(IIO_INV_SENSORS_TIMESTAMP);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1