Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Gwendal Grignou | 3575 | 98.21% | 5 | 50.00% |
Jonathan Cameron | 62 | 1.70% | 2 | 20.00% |
Uwe Kleine-König | 1 | 0.03% | 1 | 10.00% |
Trevor Gamblin | 1 | 0.03% | 1 | 10.00% |
Jongpil Jung | 1 | 0.03% | 1 | 10.00% |
Total | 3640 | 10 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright 2021 Google LLC. * * Driver for Semtech's SX9360 capacitive proximity/button solution. * Based on SX9360 driver and copy of datasheet at: * https://edit.wpgdadawant.com/uploads/news_file/program/2019/30184/tech_files/program_30184_suggest_other_file.pdf */ #include <linux/acpi.h> #include <linux/bits.h> #include <linux/bitfield.h> #include <linux/delay.h> #include <linux/i2c.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/log2.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/pm.h> #include <linux/property.h> #include <linux/regmap.h> #include <linux/iio/iio.h> #include "sx_common.h" /* Nominal Oscillator Frequency. */ #define SX9360_FOSC_MHZ 4 #define SX9360_FOSC_HZ (SX9360_FOSC_MHZ * 1000000) /* Register definitions. */ #define SX9360_REG_IRQ_SRC SX_COMMON_REG_IRQ_SRC #define SX9360_REG_STAT 0x01 #define SX9360_REG_STAT_COMPSTAT_MASK GENMASK(2, 1) #define SX9360_REG_IRQ_MSK 0x02 #define SX9360_CONVDONE_IRQ BIT(0) #define SX9360_FAR_IRQ BIT(2) #define SX9360_CLOSE_IRQ BIT(3) #define SX9360_REG_IRQ_CFG 0x03 #define SX9360_REG_GNRL_CTRL0 0x10 #define SX9360_REG_GNRL_CTRL0_PHEN_MASK GENMASK(1, 0) #define SX9360_REG_GNRL_CTRL1 0x11 #define SX9360_REG_GNRL_CTRL1_SCANPERIOD_MASK GENMASK(2, 0) #define SX9360_REG_GNRL_CTRL2 0x12 #define SX9360_REG_GNRL_CTRL2_PERIOD_102MS 0x32 #define SX9360_REG_GNRL_REG_2_PERIOD_MS(_r) \ (((_r) * 8192) / (SX9360_FOSC_HZ / 1000)) #define SX9360_REG_GNRL_FREQ_2_REG(_f) (((_f) * 8192) / SX9360_FOSC_HZ) #define SX9360_REG_GNRL_REG_2_FREQ(_r) (SX9360_FOSC_HZ / ((_r) * 8192)) #define SX9360_REG_AFE_CTRL1 0x21 #define SX9360_REG_AFE_CTRL1_RESFILTIN_MASK GENMASK(3, 0) #define SX9360_REG_AFE_CTRL1_RESFILTIN_0OHMS 0 #define SX9360_REG_AFE_PARAM0_PHR 0x22 #define SX9360_REG_AFE_PARAM1_PHR 0x23 #define SX9360_REG_AFE_PARAM0_PHM 0x24 #define SX9360_REG_AFE_PARAM0_RSVD 0x08 #define SX9360_REG_AFE_PARAM0_RESOLUTION_MASK GENMASK(2, 0) #define SX9360_REG_AFE_PARAM0_RESOLUTION_128 0x02 #define SX9360_REG_AFE_PARAM1_PHM 0x25 #define SX9360_REG_AFE_PARAM1_AGAIN_PHM_6PF 0x40 #define SX9360_REG_AFE_PARAM1_FREQ_83_33HZ 0x06 #define SX9360_REG_PROX_CTRL0_PHR 0x40 #define SX9360_REG_PROX_CTRL0_PHM 0x41 #define SX9360_REG_PROX_CTRL0_GAIN_MASK GENMASK(5, 3) #define SX9360_REG_PROX_CTRL0_GAIN_1 0x80 #define SX9360_REG_PROX_CTRL0_RAWFILT_MASK GENMASK(2, 0) #define SX9360_REG_PROX_CTRL0_RAWFILT_1P50 0x01 #define SX9360_REG_PROX_CTRL1 0x42 #define SX9360_REG_PROX_CTRL1_AVGNEG_THRESH_MASK GENMASK(5, 3) #define SX9360_REG_PROX_CTRL1_AVGNEG_THRESH_16K 0x20 #define SX9360_REG_PROX_CTRL2 0x43 #define SX9360_REG_PROX_CTRL2_AVGDEB_MASK GENMASK(7, 6) #define SX9360_REG_PROX_CTRL2_AVGDEB_2SAMPLES 0x40 #define SX9360_REG_PROX_CTRL2_AVGPOS_THRESH_16K 0x20 #define SX9360_REG_PROX_CTRL3 0x44 #define SX9360_REG_PROX_CTRL3_AVGNEG_FILT_MASK GENMASK(5, 3) #define SX9360_REG_PROX_CTRL3_AVGNEG_FILT_2 0x08 #define SX9360_REG_PROX_CTRL3_AVGPOS_FILT_MASK GENMASK(2, 0) #define SX9360_REG_PROX_CTRL3_AVGPOS_FILT_256 0x04 #define SX9360_REG_PROX_CTRL4 0x45 #define SX9360_REG_PROX_CTRL4_HYST_MASK GENMASK(5, 4) #define SX9360_REG_PROX_CTRL4_CLOSE_DEBOUNCE_MASK GENMASK(3, 2) #define SX9360_REG_PROX_CTRL4_FAR_DEBOUNCE_MASK GENMASK(1, 0) #define SX9360_REG_PROX_CTRL5 0x46 #define SX9360_REG_PROX_CTRL5_PROXTHRESH_32 0x08 #define SX9360_REG_REF_CORR0 0x60 #define SX9360_REG_REF_CORR1 0x61 #define SX9360_REG_USEFUL_PHR_MSB 0x90 #define SX9360_REG_USEFUL_PHR_LSB 0x91 #define SX9360_REG_OFFSET_PMR_MSB 0x92 #define SX9360_REG_OFFSET_PMR_LSB 0x93 #define SX9360_REG_USEFUL_PHM_MSB 0x94 #define SX9360_REG_USEFUL_PHM_LSB 0x95 #define SX9360_REG_AVG_PHM_MSB 0x96 #define SX9360_REG_AVG_PHM_LSB 0x97 #define SX9360_REG_DIFF_PHM_MSB 0x98 #define SX9360_REG_DIFF_PHM_LSB 0x99 #define SX9360_REG_OFFSET_PHM_MSB 0x9a #define SX9360_REG_OFFSET_PHM_LSB 0x9b #define SX9360_REG_USE_FILTER_MSB 0x9a #define SX9360_REG_USE_FILTER_LSB 0x9b #define SX9360_REG_RESET 0xcf /* Write this to REG_RESET to do a soft reset. */ #define SX9360_SOFT_RESET 0xde #define SX9360_REG_WHOAMI 0xfa #define SX9360_WHOAMI_VALUE 0x60 #define SX9360_REG_REVISION 0xfe /* 2 channels, Phase Reference and Measurement. */ #define SX9360_NUM_CHANNELS 2 static const struct iio_chan_spec sx9360_channels[] = { { .type = IIO_PROXIMITY, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_HARDWAREGAIN), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), .info_mask_separate_available = BIT(IIO_CHAN_INFO_HARDWAREGAIN), .info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ), .indexed = 1, .address = SX9360_REG_USEFUL_PHR_MSB, .channel = 0, .scan_index = 0, .scan_type = { .sign = 's', .realbits = 12, .storagebits = 16, .endianness = IIO_BE, }, }, { .type = IIO_PROXIMITY, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_HARDWAREGAIN), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), .info_mask_separate_available = BIT(IIO_CHAN_INFO_HARDWAREGAIN), .info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ), .indexed = 1, .address = SX9360_REG_USEFUL_PHM_MSB, .event_spec = sx_common_events, .num_event_specs = ARRAY_SIZE(sx_common_events), .channel = 1, .scan_index = 1, .scan_type = { .sign = 's', .realbits = 12, .storagebits = 16, .endianness = IIO_BE, }, }, IIO_CHAN_SOFT_TIMESTAMP(2), }; /* * Each entry contains the integer part (val) and the fractional part, in micro * seconds. It conforms to the IIO output IIO_VAL_INT_PLUS_MICRO. * * The frequency control register holds the period, with a ~2ms increment. * Therefore the smallest frequency is 4MHz / (2047 * 8192), * The fastest is 4MHz / 8192. * The interval is not linear, but given there is 2047 possible value, * Returns the fake increment of (Max-Min)/2047 */ static const struct { int val; int val2; } sx9360_samp_freq_interval[] = { { 0, 281250 }, /* 4MHz / (8192 * 2047) */ { 0, 281250 }, { 448, 281250 }, /* 4MHz / 8192 */ }; static const struct regmap_range sx9360_writable_reg_ranges[] = { /* * To set COMPSTAT for compensation, even if datasheet says register is * RO. */ regmap_reg_range(SX9360_REG_STAT, SX9360_REG_IRQ_CFG), regmap_reg_range(SX9360_REG_GNRL_CTRL0, SX9360_REG_GNRL_CTRL2), regmap_reg_range(SX9360_REG_AFE_CTRL1, SX9360_REG_AFE_PARAM1_PHM), regmap_reg_range(SX9360_REG_PROX_CTRL0_PHR, SX9360_REG_PROX_CTRL5), regmap_reg_range(SX9360_REG_REF_CORR0, SX9360_REG_REF_CORR1), regmap_reg_range(SX9360_REG_OFFSET_PMR_MSB, SX9360_REG_OFFSET_PMR_LSB), regmap_reg_range(SX9360_REG_RESET, SX9360_REG_RESET), }; static const struct regmap_access_table sx9360_writeable_regs = { .yes_ranges = sx9360_writable_reg_ranges, .n_yes_ranges = ARRAY_SIZE(sx9360_writable_reg_ranges), }; /* * All allocated registers are readable, so we just list unallocated * ones. */ static const struct regmap_range sx9360_non_readable_reg_ranges[] = { regmap_reg_range(SX9360_REG_IRQ_CFG + 1, SX9360_REG_GNRL_CTRL0 - 1), regmap_reg_range(SX9360_REG_GNRL_CTRL2 + 1, SX9360_REG_AFE_CTRL1 - 1), regmap_reg_range(SX9360_REG_AFE_PARAM1_PHM + 1, SX9360_REG_PROX_CTRL0_PHR - 1), regmap_reg_range(SX9360_REG_PROX_CTRL5 + 1, SX9360_REG_REF_CORR0 - 1), regmap_reg_range(SX9360_REG_REF_CORR1 + 1, SX9360_REG_USEFUL_PHR_MSB - 1), regmap_reg_range(SX9360_REG_USE_FILTER_LSB + 1, SX9360_REG_RESET - 1), regmap_reg_range(SX9360_REG_RESET + 1, SX9360_REG_WHOAMI - 1), regmap_reg_range(SX9360_REG_WHOAMI + 1, SX9360_REG_REVISION - 1), }; static const struct regmap_access_table sx9360_readable_regs = { .no_ranges = sx9360_non_readable_reg_ranges, .n_no_ranges = ARRAY_SIZE(sx9360_non_readable_reg_ranges), }; static const struct regmap_range sx9360_volatile_reg_ranges[] = { regmap_reg_range(SX9360_REG_IRQ_SRC, SX9360_REG_STAT), regmap_reg_range(SX9360_REG_USEFUL_PHR_MSB, SX9360_REG_USE_FILTER_LSB), regmap_reg_range(SX9360_REG_WHOAMI, SX9360_REG_WHOAMI), regmap_reg_range(SX9360_REG_REVISION, SX9360_REG_REVISION), }; static const struct regmap_access_table sx9360_volatile_regs = { .yes_ranges = sx9360_volatile_reg_ranges, .n_yes_ranges = ARRAY_SIZE(sx9360_volatile_reg_ranges), }; static const struct regmap_config sx9360_regmap_config = { .reg_bits = 8, .val_bits = 8, .max_register = SX9360_REG_REVISION, .cache_type = REGCACHE_RBTREE, .wr_table = &sx9360_writeable_regs, .rd_table = &sx9360_readable_regs, .volatile_table = &sx9360_volatile_regs, }; static int sx9360_read_prox_data(struct sx_common_data *data, const struct iio_chan_spec *chan, __be16 *val) { return regmap_bulk_read(data->regmap, chan->address, val, sizeof(*val)); } /* * If we have no interrupt support, we have to wait for a scan period * after enabling a channel to get a result. */ static int sx9360_wait_for_sample(struct sx_common_data *data) { int ret; __be16 buf; ret = regmap_bulk_read(data->regmap, SX9360_REG_GNRL_CTRL1, &buf, sizeof(buf)); if (ret < 0) return ret; msleep(SX9360_REG_GNRL_REG_2_PERIOD_MS(be16_to_cpu(buf))); return 0; } static int sx9360_read_gain(struct sx_common_data *data, const struct iio_chan_spec *chan, int *val) { unsigned int reg, regval; int ret; reg = SX9360_REG_PROX_CTRL0_PHR + chan->channel; ret = regmap_read(data->regmap, reg, ®val); if (ret) return ret; *val = 1 << FIELD_GET(SX9360_REG_PROX_CTRL0_GAIN_MASK, regval); return IIO_VAL_INT; } static int sx9360_read_samp_freq(struct sx_common_data *data, int *val, int *val2) { int ret, divisor; __be16 buf; ret = regmap_bulk_read(data->regmap, SX9360_REG_GNRL_CTRL1, &buf, sizeof(buf)); if (ret < 0) return ret; divisor = be16_to_cpu(buf); if (divisor == 0) { *val = 0; return IIO_VAL_INT; } *val = SX9360_FOSC_HZ; *val2 = divisor * 8192; return IIO_VAL_FRACTIONAL; } static int sx9360_read_raw(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, int *val, int *val2, long mask) { struct sx_common_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_RAW: iio_device_claim_direct_scoped(return -EBUSY, indio_dev) return sx_common_read_proximity(data, chan, val); unreachable(); case IIO_CHAN_INFO_HARDWAREGAIN: iio_device_claim_direct_scoped(return -EBUSY, indio_dev) return sx9360_read_gain(data, chan, val); unreachable(); case IIO_CHAN_INFO_SAMP_FREQ: return sx9360_read_samp_freq(data, val, val2); default: return -EINVAL; } } static const char *sx9360_channel_labels[SX9360_NUM_CHANNELS] = { "reference", "main", }; static int sx9360_read_label(struct iio_dev *iio_dev, const struct iio_chan_spec *chan, char *label) { return sysfs_emit(label, "%s\n", sx9360_channel_labels[chan->channel]); } static const int sx9360_gain_vals[] = { 1, 2, 4, 8 }; static int sx9360_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { if (chan->type != IIO_PROXIMITY) return -EINVAL; switch (mask) { case IIO_CHAN_INFO_HARDWAREGAIN: *type = IIO_VAL_INT; *length = ARRAY_SIZE(sx9360_gain_vals); *vals = sx9360_gain_vals; return IIO_AVAIL_LIST; case IIO_CHAN_INFO_SAMP_FREQ: *type = IIO_VAL_INT_PLUS_MICRO; *length = ARRAY_SIZE(sx9360_samp_freq_interval) * 2; *vals = (int *)sx9360_samp_freq_interval; return IIO_AVAIL_RANGE; default: return -EINVAL; } } static int sx9360_set_samp_freq(struct sx_common_data *data, int val, int val2) { int reg; __be16 buf; reg = val * 8192 / SX9360_FOSC_HZ + val2 * 8192 / (SX9360_FOSC_MHZ); buf = cpu_to_be16(reg); guard(mutex)(&data->mutex); return regmap_bulk_write(data->regmap, SX9360_REG_GNRL_CTRL1, &buf, sizeof(buf)); } static int sx9360_read_thresh(struct sx_common_data *data, int *val) { unsigned int regval; int ret; ret = regmap_read(data->regmap, SX9360_REG_PROX_CTRL5, ®val); if (ret) return ret; if (regval <= 1) *val = regval; else *val = (regval * regval) / 2; return IIO_VAL_INT; } static int sx9360_read_hysteresis(struct sx_common_data *data, int *val) { unsigned int regval, pthresh; int ret; ret = sx9360_read_thresh(data, &pthresh); if (ret < 0) return ret; ret = regmap_read(data->regmap, SX9360_REG_PROX_CTRL4, ®val); if (ret) return ret; regval = FIELD_GET(SX9360_REG_PROX_CTRL4_HYST_MASK, regval); if (!regval) *val = 0; else *val = pthresh >> (5 - regval); return IIO_VAL_INT; } static int sx9360_read_far_debounce(struct sx_common_data *data, int *val) { unsigned int regval; int ret; ret = regmap_read(data->regmap, SX9360_REG_PROX_CTRL4, ®val); if (ret) return ret; regval = FIELD_GET(SX9360_REG_PROX_CTRL4_FAR_DEBOUNCE_MASK, regval); if (regval) *val = 1 << regval; else *val = 0; return IIO_VAL_INT; } static int sx9360_read_close_debounce(struct sx_common_data *data, int *val) { unsigned int regval; int ret; ret = regmap_read(data->regmap, SX9360_REG_PROX_CTRL4, ®val); if (ret) return ret; regval = FIELD_GET(SX9360_REG_PROX_CTRL4_CLOSE_DEBOUNCE_MASK, regval); if (regval) *val = 1 << regval; else *val = 0; return IIO_VAL_INT; } static int sx9360_read_event_val(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int *val, int *val2) { struct sx_common_data *data = iio_priv(indio_dev); if (chan->type != IIO_PROXIMITY) return -EINVAL; switch (info) { case IIO_EV_INFO_VALUE: return sx9360_read_thresh(data, val); case IIO_EV_INFO_PERIOD: switch (dir) { case IIO_EV_DIR_RISING: return sx9360_read_far_debounce(data, val); case IIO_EV_DIR_FALLING: return sx9360_read_close_debounce(data, val); default: return -EINVAL; } case IIO_EV_INFO_HYSTERESIS: return sx9360_read_hysteresis(data, val); default: return -EINVAL; } } static int sx9360_write_thresh(struct sx_common_data *data, int _val) { unsigned int val = _val; if (val >= 1) val = int_sqrt(2 * val); if (val > 0xff) return -EINVAL; guard(mutex)(&data->mutex); return regmap_write(data->regmap, SX9360_REG_PROX_CTRL5, val); } static int sx9360_write_hysteresis(struct sx_common_data *data, int _val) { unsigned int hyst, val = _val; int ret, pthresh; ret = sx9360_read_thresh(data, &pthresh); if (ret < 0) return ret; if (val == 0) hyst = 0; else if (val >= pthresh >> 2) hyst = 3; else if (val >= pthresh >> 3) hyst = 2; else if (val >= pthresh >> 4) hyst = 1; else return -EINVAL; hyst = FIELD_PREP(SX9360_REG_PROX_CTRL4_HYST_MASK, hyst); guard(mutex)(&data->mutex); return regmap_update_bits(data->regmap, SX9360_REG_PROX_CTRL4, SX9360_REG_PROX_CTRL4_HYST_MASK, hyst); } static int sx9360_write_far_debounce(struct sx_common_data *data, int _val) { unsigned int regval, val = _val; if (val > 0) val = ilog2(val); if (!FIELD_FIT(SX9360_REG_PROX_CTRL4_FAR_DEBOUNCE_MASK, val)) return -EINVAL; regval = FIELD_PREP(SX9360_REG_PROX_CTRL4_FAR_DEBOUNCE_MASK, val); guard(mutex)(&data->mutex); return regmap_update_bits(data->regmap, SX9360_REG_PROX_CTRL4, SX9360_REG_PROX_CTRL4_FAR_DEBOUNCE_MASK, regval); } static int sx9360_write_close_debounce(struct sx_common_data *data, int _val) { unsigned int regval, val = _val; if (val > 0) val = ilog2(val); if (!FIELD_FIT(SX9360_REG_PROX_CTRL4_CLOSE_DEBOUNCE_MASK, val)) return -EINVAL; regval = FIELD_PREP(SX9360_REG_PROX_CTRL4_CLOSE_DEBOUNCE_MASK, val); guard(mutex)(&data->mutex); return regmap_update_bits(data->regmap, SX9360_REG_PROX_CTRL4, SX9360_REG_PROX_CTRL4_CLOSE_DEBOUNCE_MASK, regval); } static int sx9360_write_event_val(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, enum iio_event_type type, enum iio_event_direction dir, enum iio_event_info info, int val, int val2) { struct sx_common_data *data = iio_priv(indio_dev); if (chan->type != IIO_PROXIMITY) return -EINVAL; switch (info) { case IIO_EV_INFO_VALUE: return sx9360_write_thresh(data, val); case IIO_EV_INFO_PERIOD: switch (dir) { case IIO_EV_DIR_RISING: return sx9360_write_far_debounce(data, val); case IIO_EV_DIR_FALLING: return sx9360_write_close_debounce(data, val); default: return -EINVAL; } case IIO_EV_INFO_HYSTERESIS: return sx9360_write_hysteresis(data, val); default: return -EINVAL; } } static int sx9360_write_gain(struct sx_common_data *data, const struct iio_chan_spec *chan, int val) { unsigned int gain, reg; gain = ilog2(val); reg = SX9360_REG_PROX_CTRL0_PHR + chan->channel; gain = FIELD_PREP(SX9360_REG_PROX_CTRL0_GAIN_MASK, gain); guard(mutex)(&data->mutex); return regmap_update_bits(data->regmap, reg, SX9360_REG_PROX_CTRL0_GAIN_MASK, gain); } static int sx9360_write_raw(struct iio_dev *indio_dev, const struct iio_chan_spec *chan, int val, int val2, long mask) { struct sx_common_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: return sx9360_set_samp_freq(data, val, val2); case IIO_CHAN_INFO_HARDWAREGAIN: return sx9360_write_gain(data, chan, val); default: return -EINVAL; } } static const struct sx_common_reg_default sx9360_default_regs[] = { { SX9360_REG_IRQ_MSK, 0x00 }, { SX9360_REG_IRQ_CFG, 0x00, "irq_cfg" }, /* * The lower 2 bits should not be set as it enable sensors measurements. * Turning the detection on before the configuration values are set to * good values can cause the device to return erroneous readings. */ { SX9360_REG_GNRL_CTRL0, 0x00, "gnrl_ctrl0" }, { SX9360_REG_GNRL_CTRL1, 0x00, "gnrl_ctrl1" }, { SX9360_REG_GNRL_CTRL2, SX9360_REG_GNRL_CTRL2_PERIOD_102MS, "gnrl_ctrl2" }, { SX9360_REG_AFE_CTRL1, SX9360_REG_AFE_CTRL1_RESFILTIN_0OHMS, "afe_ctrl0" }, { SX9360_REG_AFE_PARAM0_PHR, SX9360_REG_AFE_PARAM0_RSVD | SX9360_REG_AFE_PARAM0_RESOLUTION_128, "afe_param0_phr" }, { SX9360_REG_AFE_PARAM1_PHR, SX9360_REG_AFE_PARAM1_AGAIN_PHM_6PF | SX9360_REG_AFE_PARAM1_FREQ_83_33HZ, "afe_param1_phr" }, { SX9360_REG_AFE_PARAM0_PHM, SX9360_REG_AFE_PARAM0_RSVD | SX9360_REG_AFE_PARAM0_RESOLUTION_128, "afe_param0_phm" }, { SX9360_REG_AFE_PARAM1_PHM, SX9360_REG_AFE_PARAM1_AGAIN_PHM_6PF | SX9360_REG_AFE_PARAM1_FREQ_83_33HZ, "afe_param1_phm" }, { SX9360_REG_PROX_CTRL0_PHR, SX9360_REG_PROX_CTRL0_GAIN_1 | SX9360_REG_PROX_CTRL0_RAWFILT_1P50, "prox_ctrl0_phr" }, { SX9360_REG_PROX_CTRL0_PHM, SX9360_REG_PROX_CTRL0_GAIN_1 | SX9360_REG_PROX_CTRL0_RAWFILT_1P50, "prox_ctrl0_phm" }, { SX9360_REG_PROX_CTRL1, SX9360_REG_PROX_CTRL1_AVGNEG_THRESH_16K, "prox_ctrl1" }, { SX9360_REG_PROX_CTRL2, SX9360_REG_PROX_CTRL2_AVGDEB_2SAMPLES | SX9360_REG_PROX_CTRL2_AVGPOS_THRESH_16K, "prox_ctrl2" }, { SX9360_REG_PROX_CTRL3, SX9360_REG_PROX_CTRL3_AVGNEG_FILT_2 | SX9360_REG_PROX_CTRL3_AVGPOS_FILT_256, "prox_ctrl3" }, { SX9360_REG_PROX_CTRL4, 0x00, "prox_ctrl4" }, { SX9360_REG_PROX_CTRL5, SX9360_REG_PROX_CTRL5_PROXTHRESH_32, "prox_ctrl5" }, }; /* Activate all channels and perform an initial compensation. */ static int sx9360_init_compensation(struct iio_dev *indio_dev) { struct sx_common_data *data = iio_priv(indio_dev); unsigned int val; int ret; /* run the compensation phase on all channels */ ret = regmap_set_bits(data->regmap, SX9360_REG_STAT, SX9360_REG_STAT_COMPSTAT_MASK); if (ret) return ret; return regmap_read_poll_timeout(data->regmap, SX9360_REG_STAT, val, !(val & SX9360_REG_STAT_COMPSTAT_MASK), 20000, 2000000); } static const struct sx_common_reg_default * sx9360_get_default_reg(struct device *dev, int idx, struct sx_common_reg_default *reg_def) { u32 raw = 0, pos = 0; int ret; memcpy(reg_def, &sx9360_default_regs[idx], sizeof(*reg_def)); switch (reg_def->reg) { case SX9360_REG_AFE_CTRL1: ret = device_property_read_u32(dev, "semtech,input-precharge-resistor-ohms", &raw); if (ret) break; reg_def->def &= ~SX9360_REG_AFE_CTRL1_RESFILTIN_MASK; reg_def->def |= FIELD_PREP(SX9360_REG_AFE_CTRL1_RESFILTIN_MASK, raw / 2000); break; case SX9360_REG_AFE_PARAM0_PHR: case SX9360_REG_AFE_PARAM0_PHM: ret = device_property_read_u32(dev, "semtech,resolution", &raw); if (ret) break; raw = ilog2(raw) - 3; reg_def->def &= ~SX9360_REG_AFE_PARAM0_RESOLUTION_MASK; reg_def->def |= FIELD_PREP(SX9360_REG_AFE_PARAM0_RESOLUTION_MASK, raw); break; case SX9360_REG_PROX_CTRL0_PHR: case SX9360_REG_PROX_CTRL0_PHM: ret = device_property_read_u32(dev, "semtech,proxraw-strength", &raw); if (ret) break; reg_def->def &= ~SX9360_REG_PROX_CTRL0_RAWFILT_MASK; reg_def->def |= FIELD_PREP(SX9360_REG_PROX_CTRL0_RAWFILT_MASK, raw); break; case SX9360_REG_PROX_CTRL3: ret = device_property_read_u32(dev, "semtech,avg-pos-strength", &pos); if (ret) break; /* Powers of 2, except for a gap between 16 and 64 */ raw = clamp(ilog2(pos), 3, 11) - (pos >= 32 ? 4 : 3); reg_def->def &= ~SX9360_REG_PROX_CTRL3_AVGPOS_FILT_MASK; reg_def->def |= FIELD_PREP(SX9360_REG_PROX_CTRL3_AVGPOS_FILT_MASK, raw); break; } return reg_def; } static int sx9360_check_whoami(struct device *dev, struct iio_dev *indio_dev) { /* * Only one sensor for this driver. Assuming the device tree * is correct, just set the sensor name. */ indio_dev->name = "sx9360"; return 0; } static const struct sx_common_chip_info sx9360_chip_info = { .reg_stat = SX9360_REG_STAT, .reg_irq_msk = SX9360_REG_IRQ_MSK, .reg_enable_chan = SX9360_REG_GNRL_CTRL0, .reg_reset = SX9360_REG_RESET, .mask_enable_chan = SX9360_REG_GNRL_CTRL0_PHEN_MASK, .stat_offset = 2, .num_channels = SX9360_NUM_CHANNELS, .num_default_regs = ARRAY_SIZE(sx9360_default_regs), .ops = { .read_prox_data = sx9360_read_prox_data, .check_whoami = sx9360_check_whoami, .init_compensation = sx9360_init_compensation, .wait_for_sample = sx9360_wait_for_sample, .get_default_reg = sx9360_get_default_reg, }, .iio_channels = sx9360_channels, .num_iio_channels = ARRAY_SIZE(sx9360_channels), .iio_info = { .read_raw = sx9360_read_raw, .read_avail = sx9360_read_avail, .read_label = sx9360_read_label, .read_event_value = sx9360_read_event_val, .write_event_value = sx9360_write_event_val, .write_raw = sx9360_write_raw, .read_event_config = sx_common_read_event_config, .write_event_config = sx_common_write_event_config, }, }; static int sx9360_probe(struct i2c_client *client) { return sx_common_probe(client, &sx9360_chip_info, &sx9360_regmap_config); } static int sx9360_suspend(struct device *dev) { struct sx_common_data *data = iio_priv(dev_get_drvdata(dev)); unsigned int regval; int ret; disable_irq_nosync(data->client->irq); guard(mutex)(&data->mutex); ret = regmap_read(data->regmap, SX9360_REG_GNRL_CTRL0, ®val); if (ret < 0) return ret; data->suspend_ctrl = FIELD_GET(SX9360_REG_GNRL_CTRL0_PHEN_MASK, regval); /* Disable all phases, send the device to sleep. */ return regmap_write(data->regmap, SX9360_REG_GNRL_CTRL0, 0); } static int sx9360_resume(struct device *dev) { struct sx_common_data *data = iio_priv(dev_get_drvdata(dev)); scoped_guard(mutex, &data->mutex) { int ret = regmap_update_bits(data->regmap, SX9360_REG_GNRL_CTRL0, SX9360_REG_GNRL_CTRL0_PHEN_MASK, data->suspend_ctrl); if (ret) return ret; } enable_irq(data->client->irq); return 0; } static DEFINE_SIMPLE_DEV_PM_OPS(sx9360_pm_ops, sx9360_suspend, sx9360_resume); static const struct acpi_device_id sx9360_acpi_match[] = { { "STH9360", SX9360_WHOAMI_VALUE }, { "SAMM0208", SX9360_WHOAMI_VALUE }, { } }; MODULE_DEVICE_TABLE(acpi, sx9360_acpi_match); static const struct of_device_id sx9360_of_match[] = { { .compatible = "semtech,sx9360", (void *)SX9360_WHOAMI_VALUE }, { } }; MODULE_DEVICE_TABLE(of, sx9360_of_match); static const struct i2c_device_id sx9360_id[] = { {"sx9360", SX9360_WHOAMI_VALUE }, { } }; MODULE_DEVICE_TABLE(i2c, sx9360_id); static struct i2c_driver sx9360_driver = { .driver = { .name = "sx9360", .acpi_match_table = sx9360_acpi_match, .of_match_table = sx9360_of_match, .pm = pm_sleep_ptr(&sx9360_pm_ops), /* * Lots of i2c transfers in probe + over 200 ms waiting in * sx9360_init_compensation() mean a slow probe; prefer async * so we don't delay boot if we're builtin to the kernel. */ .probe_type = PROBE_PREFER_ASYNCHRONOUS, }, .probe = sx9360_probe, .id_table = sx9360_id, }; module_i2c_driver(sx9360_driver); MODULE_AUTHOR("Gwendal Grignou <gwendal@chromium.org>"); MODULE_DESCRIPTION("Driver for Semtech SX9360 proximity sensor"); MODULE_LICENSE("GPL v2"); MODULE_IMPORT_NS(SEMTECH_PROX);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1