Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Vianney le Clément de Saint-Marcq | 1390 | 41.59% | 5 | 20.00% |
Peter Meerwald-Stadler | 898 | 26.87% | 1 | 4.00% |
Marek Vašut | 696 | 20.83% | 4 | 16.00% |
Crt Mori | 291 | 8.71% | 4 | 16.00% |
Javier Martinez Canillas | 25 | 0.75% | 1 | 4.00% |
Jonathan Cameron | 21 | 0.63% | 2 | 8.00% |
Uwe Kleine-König | 10 | 0.30% | 3 | 12.00% |
Peter Rosin | 6 | 0.18% | 1 | 4.00% |
Rob Herring | 2 | 0.06% | 1 | 4.00% |
Biju Das | 1 | 0.03% | 1 | 4.00% |
Thomas Gleixner | 1 | 0.03% | 1 | 4.00% |
Matt Ranostay | 1 | 0.03% | 1 | 4.00% |
Total | 3342 | 25 |
// SPDX-License-Identifier: GPL-2.0-only /* * mlx90614.c - Support for Melexis MLX90614/MLX90615 contactless IR temperature sensor * * Copyright (c) 2014 Peter Meerwald <pmeerw@pmeerw.net> * Copyright (c) 2015 Essensium NV * Copyright (c) 2015 Melexis * * Driver for the Melexis MLX90614/MLX90615 I2C 16-bit IR thermopile sensor * * MLX90614 - 17-bit ADC + MLX90302 DSP * MLX90615 - 16-bit ADC + MLX90325 DSP * * (7-bit I2C slave address 0x5a, 100KHz bus speed only!) * * To wake up from sleep mode, the SDA line must be held low while SCL is high * for at least 33ms. This is achieved with an extra GPIO that can be connected * directly to the SDA line. In normal operation, the GPIO is set as input and * will not interfere in I2C communication. While the GPIO is driven low, the * i2c adapter is locked since it cannot be used by other clients. The SCL line * always has a pull-up so we do not need an extra GPIO to drive it high. If * the "wakeup" GPIO is not given, power management will be disabled. */ #include <linux/delay.h> #include <linux/err.h> #include <linux/gpio/consumer.h> #include <linux/i2c.h> #include <linux/jiffies.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/pm_runtime.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> #define MLX90614_OP_RAM 0x00 #define MLX90614_OP_EEPROM 0x20 #define MLX90614_OP_SLEEP 0xff #define MLX90615_OP_EEPROM 0x10 #define MLX90615_OP_RAM 0x20 #define MLX90615_OP_SLEEP 0xc6 /* Control bits in configuration register */ #define MLX90614_CONFIG_IIR_SHIFT 0 /* IIR coefficient */ #define MLX90614_CONFIG_IIR_MASK (0x7 << MLX90614_CONFIG_IIR_SHIFT) #define MLX90614_CONFIG_DUAL_SHIFT 6 /* single (0) or dual (1) IR sensor */ #define MLX90614_CONFIG_DUAL_MASK (1 << MLX90614_CONFIG_DUAL_SHIFT) #define MLX90614_CONFIG_FIR_SHIFT 8 /* FIR coefficient */ #define MLX90614_CONFIG_FIR_MASK (0x7 << MLX90614_CONFIG_FIR_SHIFT) #define MLX90615_CONFIG_IIR_SHIFT 12 /* IIR coefficient */ #define MLX90615_CONFIG_IIR_MASK (0x7 << MLX90615_CONFIG_IIR_SHIFT) /* Timings (in ms) */ #define MLX90614_TIMING_EEPROM 20 /* time for EEPROM write/erase to complete */ #define MLX90614_TIMING_WAKEUP 34 /* time to hold SDA low for wake-up */ #define MLX90614_TIMING_STARTUP 250 /* time before first data after wake-up */ #define MLX90615_TIMING_WAKEUP 22 /* time to hold SCL low for wake-up */ #define MLX90614_AUTOSLEEP_DELAY 5000 /* default autosleep delay */ /* Magic constants */ #define MLX90614_CONST_OFFSET_DEC -13657 /* decimal part of the Kelvin offset */ #define MLX90614_CONST_OFFSET_REM 500000 /* remainder of offset (273.15*50) */ #define MLX90614_CONST_SCALE 20 /* Scale in milliKelvin (0.02 * 1000) */ #define MLX90614_CONST_FIR 0x7 /* Fixed value for FIR part of low pass filter */ /* Non-constant mask variant of FIELD_GET() and FIELD_PREP() */ #define field_get(_mask, _reg) (((_reg) & (_mask)) >> (ffs(_mask) - 1)) #define field_prep(_mask, _val) (((_val) << (ffs(_mask) - 1)) & (_mask)) struct mlx_chip_info { /* EEPROM offsets with 16-bit data, MSB first */ /* emissivity correction coefficient */ u8 op_eeprom_emissivity; u8 op_eeprom_config1; /* RAM offsets with 16-bit data, MSB first */ /* ambient temperature */ u8 op_ram_ta; /* object 1 temperature */ u8 op_ram_tobj1; /* object 2 temperature */ u8 op_ram_tobj2; u8 op_sleep; /* support for two input channels (MLX90614 only) */ u8 dual_channel; u8 wakeup_delay_ms; u16 emissivity_max; u16 fir_config_mask; u16 iir_config_mask; int iir_valid_offset; u16 iir_values[8]; int iir_freqs[8][2]; }; struct mlx90614_data { struct i2c_client *client; struct mutex lock; /* for EEPROM access only */ struct gpio_desc *wakeup_gpio; /* NULL to disable sleep/wake-up */ const struct mlx_chip_info *chip_info; /* Chip hardware details */ unsigned long ready_timestamp; /* in jiffies */ }; /* * Erase an address and write word. * The mutex must be locked before calling. */ static s32 mlx90614_write_word(const struct i2c_client *client, u8 command, u16 value) { /* * Note: The mlx90614 requires a PEC on writing but does not send us a * valid PEC on reading. Hence, we cannot set I2C_CLIENT_PEC in * i2c_client.flags. As a workaround, we use i2c_smbus_xfer here. */ union i2c_smbus_data data; s32 ret; dev_dbg(&client->dev, "Writing 0x%x to address 0x%x", value, command); data.word = 0x0000; /* erase command */ ret = i2c_smbus_xfer(client->adapter, client->addr, client->flags | I2C_CLIENT_PEC, I2C_SMBUS_WRITE, command, I2C_SMBUS_WORD_DATA, &data); if (ret < 0) return ret; msleep(MLX90614_TIMING_EEPROM); data.word = value; /* actual write */ ret = i2c_smbus_xfer(client->adapter, client->addr, client->flags | I2C_CLIENT_PEC, I2C_SMBUS_WRITE, command, I2C_SMBUS_WORD_DATA, &data); msleep(MLX90614_TIMING_EEPROM); return ret; } /* * Find the IIR value inside iir_values array and return its position * which is equivalent to the bit value in sensor register */ static inline s32 mlx90614_iir_search(const struct i2c_client *client, int value) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct mlx90614_data *data = iio_priv(indio_dev); const struct mlx_chip_info *chip_info = data->chip_info; int i; s32 ret; for (i = chip_info->iir_valid_offset; i < ARRAY_SIZE(chip_info->iir_values); i++) { if (value == chip_info->iir_values[i]) break; } if (i == ARRAY_SIZE(chip_info->iir_values)) return -EINVAL; /* * CONFIG register values must not be changed so * we must read them before we actually write * changes */ ret = i2c_smbus_read_word_data(client, chip_info->op_eeprom_config1); if (ret < 0) return ret; /* Modify FIR on parts which have configurable FIR filter */ if (chip_info->fir_config_mask) { ret &= ~chip_info->fir_config_mask; ret |= field_prep(chip_info->fir_config_mask, MLX90614_CONST_FIR); } ret &= ~chip_info->iir_config_mask; ret |= field_prep(chip_info->iir_config_mask, i); /* Write changed values */ ret = mlx90614_write_word(client, chip_info->op_eeprom_config1, ret); return ret; } #ifdef CONFIG_PM /* * If @startup is true, make sure MLX90614_TIMING_STARTUP ms have elapsed since * the last wake-up. This is normally only needed to get a valid temperature * reading. EEPROM access does not need such delay. * Return 0 on success, <0 on error. */ static int mlx90614_power_get(struct mlx90614_data *data, bool startup) { unsigned long now; int ret; if (!data->wakeup_gpio) return 0; ret = pm_runtime_resume_and_get(&data->client->dev); if (ret < 0) return ret; if (startup) { now = jiffies; if (time_before(now, data->ready_timestamp) && msleep_interruptible(jiffies_to_msecs( data->ready_timestamp - now)) != 0) { pm_runtime_put_autosuspend(&data->client->dev); return -EINTR; } } return 0; } static void mlx90614_power_put(struct mlx90614_data *data) { if (!data->wakeup_gpio) return; pm_runtime_mark_last_busy(&data->client->dev); pm_runtime_put_autosuspend(&data->client->dev); } #else static inline int mlx90614_power_get(struct mlx90614_data *data, bool startup) { return 0; } static inline void mlx90614_power_put(struct mlx90614_data *data) { } #endif static int mlx90614_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *channel, int *val, int *val2, long mask) { struct mlx90614_data *data = iio_priv(indio_dev); const struct mlx_chip_info *chip_info = data->chip_info; u8 cmd, idx; s32 ret; switch (mask) { case IIO_CHAN_INFO_RAW: /* 0.02K / LSB */ switch (channel->channel2) { case IIO_MOD_TEMP_AMBIENT: cmd = chip_info->op_ram_ta; break; case IIO_MOD_TEMP_OBJECT: if (chip_info->dual_channel && channel->channel) return -EINVAL; switch (channel->channel) { case 0: cmd = chip_info->op_ram_tobj1; break; case 1: cmd = chip_info->op_ram_tobj2; break; default: return -EINVAL; } break; default: return -EINVAL; } ret = mlx90614_power_get(data, true); if (ret < 0) return ret; ret = i2c_smbus_read_word_data(data->client, cmd); mlx90614_power_put(data); if (ret < 0) return ret; /* MSB is an error flag */ if (ret & 0x8000) return -EIO; *val = ret; return IIO_VAL_INT; case IIO_CHAN_INFO_OFFSET: *val = MLX90614_CONST_OFFSET_DEC; *val2 = MLX90614_CONST_OFFSET_REM; return IIO_VAL_INT_PLUS_MICRO; case IIO_CHAN_INFO_SCALE: *val = MLX90614_CONST_SCALE; return IIO_VAL_INT; case IIO_CHAN_INFO_CALIBEMISSIVITY: /* 1/emissivity_max / LSB */ ret = mlx90614_power_get(data, false); if (ret < 0) return ret; mutex_lock(&data->lock); ret = i2c_smbus_read_word_data(data->client, chip_info->op_eeprom_emissivity); mutex_unlock(&data->lock); mlx90614_power_put(data); if (ret < 0) return ret; if (ret == chip_info->emissivity_max) { *val = 1; *val2 = 0; } else { *val = 0; *val2 = ret * NSEC_PER_SEC / chip_info->emissivity_max; } return IIO_VAL_INT_PLUS_NANO; /* IIR setting with FIR=1024 (MLX90614) or FIR=65536 (MLX90615) */ case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: ret = mlx90614_power_get(data, false); if (ret < 0) return ret; mutex_lock(&data->lock); ret = i2c_smbus_read_word_data(data->client, chip_info->op_eeprom_config1); mutex_unlock(&data->lock); mlx90614_power_put(data); if (ret < 0) return ret; idx = field_get(chip_info->iir_config_mask, ret) - chip_info->iir_valid_offset; *val = chip_info->iir_values[idx] / 100; *val2 = (chip_info->iir_values[idx] % 100) * 10000; return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } } static int mlx90614_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *channel, int val, int val2, long mask) { struct mlx90614_data *data = iio_priv(indio_dev); const struct mlx_chip_info *chip_info = data->chip_info; s32 ret; switch (mask) { case IIO_CHAN_INFO_CALIBEMISSIVITY: /* 1/emissivity_max / LSB */ if (val < 0 || val2 < 0 || val > 1 || (val == 1 && val2 != 0)) return -EINVAL; val = val * chip_info->emissivity_max + val2 * chip_info->emissivity_max / NSEC_PER_SEC; ret = mlx90614_power_get(data, false); if (ret < 0) return ret; mutex_lock(&data->lock); ret = mlx90614_write_word(data->client, chip_info->op_eeprom_emissivity, val); mutex_unlock(&data->lock); mlx90614_power_put(data); return ret; case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: /* IIR Filter setting */ if (val < 0 || val2 < 0) return -EINVAL; ret = mlx90614_power_get(data, false); if (ret < 0) return ret; mutex_lock(&data->lock); ret = mlx90614_iir_search(data->client, val * 100 + val2 / 10000); mutex_unlock(&data->lock); mlx90614_power_put(data); return ret; default: return -EINVAL; } } static int mlx90614_write_raw_get_fmt(struct iio_dev *indio_dev, struct iio_chan_spec const *channel, long mask) { switch (mask) { case IIO_CHAN_INFO_CALIBEMISSIVITY: return IIO_VAL_INT_PLUS_NANO; case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: return IIO_VAL_INT_PLUS_MICRO; default: return -EINVAL; } } static int mlx90614_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { struct mlx90614_data *data = iio_priv(indio_dev); const struct mlx_chip_info *chip_info = data->chip_info; switch (mask) { case IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY: *vals = (int *)chip_info->iir_freqs; *type = IIO_VAL_INT_PLUS_MICRO; *length = 2 * (ARRAY_SIZE(chip_info->iir_freqs) - chip_info->iir_valid_offset); return IIO_AVAIL_LIST; default: return -EINVAL; } } static const struct iio_chan_spec mlx90614_channels[] = { { .type = IIO_TEMP, .modified = 1, .channel2 = IIO_MOD_TEMP_AMBIENT, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW), .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) | BIT(IIO_CHAN_INFO_SCALE), }, { .type = IIO_TEMP, .modified = 1, .channel2 = IIO_MOD_TEMP_OBJECT, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_CALIBEMISSIVITY) | BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), .info_mask_separate_available = BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) | BIT(IIO_CHAN_INFO_SCALE), }, { .type = IIO_TEMP, .indexed = 1, .modified = 1, .channel = 1, .channel2 = IIO_MOD_TEMP_OBJECT, .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) | BIT(IIO_CHAN_INFO_CALIBEMISSIVITY) | BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), .info_mask_separate_available = BIT(IIO_CHAN_INFO_LOW_PASS_FILTER_3DB_FREQUENCY), .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_OFFSET) | BIT(IIO_CHAN_INFO_SCALE), }, }; static const struct iio_info mlx90614_info = { .read_raw = mlx90614_read_raw, .write_raw = mlx90614_write_raw, .write_raw_get_fmt = mlx90614_write_raw_get_fmt, .read_avail = mlx90614_read_avail, }; #ifdef CONFIG_PM static int mlx90614_sleep(struct mlx90614_data *data) { const struct mlx_chip_info *chip_info = data->chip_info; s32 ret; if (!data->wakeup_gpio) { dev_dbg(&data->client->dev, "Sleep disabled"); return -ENOSYS; } dev_dbg(&data->client->dev, "Requesting sleep"); mutex_lock(&data->lock); ret = i2c_smbus_xfer(data->client->adapter, data->client->addr, data->client->flags | I2C_CLIENT_PEC, I2C_SMBUS_WRITE, chip_info->op_sleep, I2C_SMBUS_BYTE, NULL); mutex_unlock(&data->lock); return ret; } static int mlx90614_wakeup(struct mlx90614_data *data) { const struct mlx_chip_info *chip_info = data->chip_info; if (!data->wakeup_gpio) { dev_dbg(&data->client->dev, "Wake-up disabled"); return -ENOSYS; } dev_dbg(&data->client->dev, "Requesting wake-up"); i2c_lock_bus(data->client->adapter, I2C_LOCK_ROOT_ADAPTER); gpiod_direction_output(data->wakeup_gpio, 0); msleep(chip_info->wakeup_delay_ms); gpiod_direction_input(data->wakeup_gpio); i2c_unlock_bus(data->client->adapter, I2C_LOCK_ROOT_ADAPTER); data->ready_timestamp = jiffies + msecs_to_jiffies(MLX90614_TIMING_STARTUP); /* * Quirk: the i2c controller may get confused right after the * wake-up signal has been sent. As a workaround, do a dummy read. * If the read fails, the controller will probably be reset so that * further reads will work. */ i2c_smbus_read_word_data(data->client, chip_info->op_eeprom_config1); return 0; } /* Return wake-up GPIO or NULL if sleep functionality should be disabled. */ static struct gpio_desc *mlx90614_probe_wakeup(struct i2c_client *client) { struct gpio_desc *gpio; if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WRITE_BYTE)) { dev_info(&client->dev, "i2c adapter does not support SMBUS_WRITE_BYTE, sleep disabled"); return NULL; } gpio = devm_gpiod_get_optional(&client->dev, "wakeup", GPIOD_IN); if (IS_ERR(gpio)) { dev_warn(&client->dev, "gpio acquisition failed with error %ld, sleep disabled", PTR_ERR(gpio)); return NULL; } else if (!gpio) { dev_info(&client->dev, "wakeup-gpio not found, sleep disabled"); } return gpio; } #else static inline int mlx90614_sleep(struct mlx90614_data *data) { return -ENOSYS; } static inline int mlx90614_wakeup(struct mlx90614_data *data) { return -ENOSYS; } static inline struct gpio_desc *mlx90614_probe_wakeup(struct i2c_client *client) { return NULL; } #endif /* Return 0 for single sensor, 1 for dual sensor, <0 on error. */ static int mlx90614_probe_num_ir_sensors(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct mlx90614_data *data = iio_priv(indio_dev); const struct mlx_chip_info *chip_info = data->chip_info; s32 ret; if (chip_info->dual_channel) return 0; ret = i2c_smbus_read_word_data(client, chip_info->op_eeprom_config1); if (ret < 0) return ret; return (ret & MLX90614_CONFIG_DUAL_MASK) ? 1 : 0; } static int mlx90614_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct iio_dev *indio_dev; struct mlx90614_data *data; int ret; if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_WORD_DATA)) return -EOPNOTSUPP; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*data)); if (!indio_dev) return -ENOMEM; data = iio_priv(indio_dev); i2c_set_clientdata(client, indio_dev); data->client = client; mutex_init(&data->lock); data->wakeup_gpio = mlx90614_probe_wakeup(client); data->chip_info = i2c_get_match_data(client); mlx90614_wakeup(data); indio_dev->name = id->name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &mlx90614_info; ret = mlx90614_probe_num_ir_sensors(client); switch (ret) { case 0: dev_dbg(&client->dev, "Found single sensor"); indio_dev->channels = mlx90614_channels; indio_dev->num_channels = 2; break; case 1: dev_dbg(&client->dev, "Found dual sensor"); indio_dev->channels = mlx90614_channels; indio_dev->num_channels = 3; break; default: return ret; } if (data->wakeup_gpio) { pm_runtime_set_autosuspend_delay(&client->dev, MLX90614_AUTOSLEEP_DELAY); pm_runtime_use_autosuspend(&client->dev); pm_runtime_set_active(&client->dev); pm_runtime_enable(&client->dev); } return iio_device_register(indio_dev); } static void mlx90614_remove(struct i2c_client *client) { struct iio_dev *indio_dev = i2c_get_clientdata(client); struct mlx90614_data *data = iio_priv(indio_dev); iio_device_unregister(indio_dev); if (data->wakeup_gpio) { pm_runtime_disable(&client->dev); if (!pm_runtime_status_suspended(&client->dev)) mlx90614_sleep(data); pm_runtime_set_suspended(&client->dev); } } static const struct mlx_chip_info mlx90614_chip_info = { .op_eeprom_emissivity = MLX90614_OP_EEPROM | 0x04, .op_eeprom_config1 = MLX90614_OP_EEPROM | 0x05, .op_ram_ta = MLX90614_OP_RAM | 0x06, .op_ram_tobj1 = MLX90614_OP_RAM | 0x07, .op_ram_tobj2 = MLX90614_OP_RAM | 0x08, .op_sleep = MLX90614_OP_SLEEP, .dual_channel = true, .wakeup_delay_ms = MLX90614_TIMING_WAKEUP, .emissivity_max = 65535, .fir_config_mask = MLX90614_CONFIG_FIR_MASK, .iir_config_mask = MLX90614_CONFIG_IIR_MASK, .iir_valid_offset = 0, .iir_values = { 77, 31, 20, 15, 723, 153, 110, 86 }, .iir_freqs = { { 0, 150000 }, /* 13% ~= 0.15 Hz */ { 0, 200000 }, /* 17% ~= 0.20 Hz */ { 0, 310000 }, /* 25% ~= 0.31 Hz */ { 0, 770000 }, /* 50% ~= 0.77 Hz */ { 0, 860000 }, /* 57% ~= 0.86 Hz */ { 1, 100000 }, /* 67% ~= 1.10 Hz */ { 1, 530000 }, /* 80% ~= 1.53 Hz */ { 7, 230000 } /* 100% ~= 7.23 Hz */ }, }; static const struct mlx_chip_info mlx90615_chip_info = { .op_eeprom_emissivity = MLX90615_OP_EEPROM | 0x03, .op_eeprom_config1 = MLX90615_OP_EEPROM | 0x02, .op_ram_ta = MLX90615_OP_RAM | 0x06, .op_ram_tobj1 = MLX90615_OP_RAM | 0x07, .op_ram_tobj2 = MLX90615_OP_RAM | 0x08, .op_sleep = MLX90615_OP_SLEEP, .dual_channel = false, .wakeup_delay_ms = MLX90615_TIMING_WAKEUP, .emissivity_max = 16383, .fir_config_mask = 0, /* MLX90615 FIR is fixed */ .iir_config_mask = MLX90615_CONFIG_IIR_MASK, /* IIR value 0 is FORBIDDEN COMBINATION on MLX90615 */ .iir_valid_offset = 1, .iir_values = { 500, 50, 30, 20, 15, 13, 10 }, .iir_freqs = { { 0, 100000 }, /* 14% ~= 0.10 Hz */ { 0, 130000 }, /* 17% ~= 0.13 Hz */ { 0, 150000 }, /* 20% ~= 0.15 Hz */ { 0, 200000 }, /* 25% ~= 0.20 Hz */ { 0, 300000 }, /* 33% ~= 0.30 Hz */ { 0, 500000 }, /* 50% ~= 0.50 Hz */ { 5, 000000 }, /* 100% ~= 5.00 Hz */ }, }; static const struct i2c_device_id mlx90614_id[] = { { "mlx90614", .driver_data = (kernel_ulong_t)&mlx90614_chip_info }, { "mlx90615", .driver_data = (kernel_ulong_t)&mlx90615_chip_info }, { } }; MODULE_DEVICE_TABLE(i2c, mlx90614_id); static const struct of_device_id mlx90614_of_match[] = { { .compatible = "melexis,mlx90614", .data = &mlx90614_chip_info }, { .compatible = "melexis,mlx90615", .data = &mlx90615_chip_info }, { } }; MODULE_DEVICE_TABLE(of, mlx90614_of_match); static int mlx90614_pm_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct mlx90614_data *data = iio_priv(indio_dev); if (data->wakeup_gpio && pm_runtime_active(dev)) return mlx90614_sleep(data); return 0; } static int mlx90614_pm_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct mlx90614_data *data = iio_priv(indio_dev); int err; if (data->wakeup_gpio) { err = mlx90614_wakeup(data); if (err < 0) return err; pm_runtime_disable(dev); pm_runtime_set_active(dev); pm_runtime_enable(dev); } return 0; } static int mlx90614_pm_runtime_suspend(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct mlx90614_data *data = iio_priv(indio_dev); return mlx90614_sleep(data); } static int mlx90614_pm_runtime_resume(struct device *dev) { struct iio_dev *indio_dev = i2c_get_clientdata(to_i2c_client(dev)); struct mlx90614_data *data = iio_priv(indio_dev); return mlx90614_wakeup(data); } static const struct dev_pm_ops mlx90614_pm_ops = { SYSTEM_SLEEP_PM_OPS(mlx90614_pm_suspend, mlx90614_pm_resume) RUNTIME_PM_OPS(mlx90614_pm_runtime_suspend, mlx90614_pm_runtime_resume, NULL) }; static struct i2c_driver mlx90614_driver = { .driver = { .name = "mlx90614", .of_match_table = mlx90614_of_match, .pm = pm_ptr(&mlx90614_pm_ops), }, .probe = mlx90614_probe, .remove = mlx90614_remove, .id_table = mlx90614_id, }; module_i2c_driver(mlx90614_driver); MODULE_AUTHOR("Peter Meerwald <pmeerw@pmeerw.net>"); MODULE_AUTHOR("Vianney le Clément de Saint-Marcq <vianney.leclement@essensium.com>"); MODULE_AUTHOR("Crt Mori <cmo@melexis.com>"); MODULE_DESCRIPTION("Melexis MLX90614 contactless IR temperature sensor driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1