Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Crt Mori | 6237 | 99.52% | 12 | 60.00% |
Jonathan Cameron | 10 | 0.16% | 2 | 10.00% |
Uwe Kleine-König | 9 | 0.14% | 2 | 10.00% |
David Frey | 6 | 0.10% | 1 | 5.00% |
Andy Shevchenko | 3 | 0.05% | 1 | 5.00% |
Slaveyko Slaveykov | 1 | 0.02% | 1 | 5.00% |
Trevor Gamblin | 1 | 0.02% | 1 | 5.00% |
Total | 6267 | 20 |
// SPDX-License-Identifier: GPL-2.0 /* * mlx90632.c - Melexis MLX90632 contactless IR temperature sensor * * Copyright (c) 2017 Melexis <cmo@melexis.com> * * Driver for the Melexis MLX90632 I2C 16-bit IR thermopile sensor */ #include <linux/bitfield.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/err.h> #include <linux/gpio/consumer.h> #include <linux/i2c.h> #include <linux/iopoll.h> #include <linux/jiffies.h> #include <linux/kernel.h> #include <linux/limits.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/math64.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <linux/iio/iio.h> #include <linux/iio/sysfs.h> /* Memory sections addresses */ #define MLX90632_ADDR_RAM 0x4000 /* Start address of ram */ #define MLX90632_ADDR_EEPROM 0x2480 /* Start address of user eeprom */ /* EEPROM addresses - used at startup */ #define MLX90632_EE_CTRL 0x24d4 /* Control register initial value */ #define MLX90632_EE_I2C_ADDR 0x24d5 /* I2C address register initial value */ #define MLX90632_EE_VERSION 0x240b /* EEPROM version reg address */ #define MLX90632_EE_P_R 0x240c /* P_R calibration register 32bit */ #define MLX90632_EE_P_G 0x240e /* P_G calibration register 32bit */ #define MLX90632_EE_P_T 0x2410 /* P_T calibration register 32bit */ #define MLX90632_EE_P_O 0x2412 /* P_O calibration register 32bit */ #define MLX90632_EE_Aa 0x2414 /* Aa calibration register 32bit */ #define MLX90632_EE_Ab 0x2416 /* Ab calibration register 32bit */ #define MLX90632_EE_Ba 0x2418 /* Ba calibration register 32bit */ #define MLX90632_EE_Bb 0x241a /* Bb calibration register 32bit */ #define MLX90632_EE_Ca 0x241c /* Ca calibration register 32bit */ #define MLX90632_EE_Cb 0x241e /* Cb calibration register 32bit */ #define MLX90632_EE_Da 0x2420 /* Da calibration register 32bit */ #define MLX90632_EE_Db 0x2422 /* Db calibration register 32bit */ #define MLX90632_EE_Ea 0x2424 /* Ea calibration register 32bit */ #define MLX90632_EE_Eb 0x2426 /* Eb calibration register 32bit */ #define MLX90632_EE_Fa 0x2428 /* Fa calibration register 32bit */ #define MLX90632_EE_Fb 0x242a /* Fb calibration register 32bit */ #define MLX90632_EE_Ga 0x242c /* Ga calibration register 32bit */ #define MLX90632_EE_Gb 0x242e /* Gb calibration register 16bit */ #define MLX90632_EE_Ka 0x242f /* Ka calibration register 16bit */ #define MLX90632_EE_Ha 0x2481 /* Ha customer calib value reg 16bit */ #define MLX90632_EE_Hb 0x2482 /* Hb customer calib value reg 16bit */ #define MLX90632_EE_MEDICAL_MEAS1 0x24E1 /* Medical measurement 1 16bit */ #define MLX90632_EE_MEDICAL_MEAS2 0x24E2 /* Medical measurement 2 16bit */ #define MLX90632_EE_EXTENDED_MEAS1 0x24F1 /* Extended measurement 1 16bit */ #define MLX90632_EE_EXTENDED_MEAS2 0x24F2 /* Extended measurement 2 16bit */ #define MLX90632_EE_EXTENDED_MEAS3 0x24F3 /* Extended measurement 3 16bit */ /* Register addresses - volatile */ #define MLX90632_REG_I2C_ADDR 0x3000 /* Chip I2C address register */ /* Control register address - volatile */ #define MLX90632_REG_CONTROL 0x3001 /* Control Register address */ #define MLX90632_CFG_PWR_MASK GENMASK(2, 1) /* PowerMode Mask */ #define MLX90632_CFG_MTYP_MASK GENMASK(8, 4) /* Meas select Mask */ #define MLX90632_CFG_SOB_MASK BIT(11) /* PowerModes statuses */ #define MLX90632_PWR_STATUS(ctrl_val) (ctrl_val << 1) #define MLX90632_PWR_STATUS_HALT MLX90632_PWR_STATUS(0) /* hold */ #define MLX90632_PWR_STATUS_SLEEP_STEP MLX90632_PWR_STATUS(1) /* sleep step */ #define MLX90632_PWR_STATUS_STEP MLX90632_PWR_STATUS(2) /* step */ #define MLX90632_PWR_STATUS_CONTINUOUS MLX90632_PWR_STATUS(3) /* continuous */ #define MLX90632_EE_RR GENMASK(10, 8) /* Only Refresh Rate bits */ #define MLX90632_REFRESH_RATE(ee_val) FIELD_GET(MLX90632_EE_RR, ee_val) /* Extract Refresh Rate from ee register */ #define MLX90632_REFRESH_RATE_STATUS(refresh_rate) (refresh_rate << 8) /* Measurement types */ #define MLX90632_MTYP_MEDICAL 0 #define MLX90632_MTYP_EXTENDED 17 /* Measurement type select*/ #define MLX90632_MTYP_STATUS(ctrl_val) (ctrl_val << 4) #define MLX90632_MTYP_STATUS_MEDICAL MLX90632_MTYP_STATUS(MLX90632_MTYP_MEDICAL) #define MLX90632_MTYP_STATUS_EXTENDED MLX90632_MTYP_STATUS(MLX90632_MTYP_EXTENDED) /* I2C command register - volatile */ #define MLX90632_REG_I2C_CMD 0x3005 /* I2C command Register address */ /* Device status register - volatile */ #define MLX90632_REG_STATUS 0x3fff /* Device status register */ #define MLX90632_STAT_BUSY BIT(10) /* Device busy indicator */ #define MLX90632_STAT_EE_BUSY BIT(9) /* EEPROM busy indicator */ #define MLX90632_STAT_BRST BIT(8) /* Brown out reset indicator */ #define MLX90632_STAT_CYCLE_POS GENMASK(6, 2) /* Data position */ #define MLX90632_STAT_DATA_RDY BIT(0) /* Data ready indicator */ /* RAM_MEAS address-es for each channel */ #define MLX90632_RAM_1(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num) #define MLX90632_RAM_2(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 1) #define MLX90632_RAM_3(meas_num) (MLX90632_ADDR_RAM + 3 * meas_num + 2) /* Name important RAM_MEAS channels */ #define MLX90632_RAM_DSP5_EXTENDED_AMBIENT_1 MLX90632_RAM_3(17) #define MLX90632_RAM_DSP5_EXTENDED_AMBIENT_2 MLX90632_RAM_3(18) #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_1 MLX90632_RAM_1(17) #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_2 MLX90632_RAM_2(17) #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_3 MLX90632_RAM_1(18) #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_4 MLX90632_RAM_2(18) #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_5 MLX90632_RAM_1(19) #define MLX90632_RAM_DSP5_EXTENDED_OBJECT_6 MLX90632_RAM_2(19) /* Magic constants */ #define MLX90632_ID_MEDICAL 0x0105 /* EEPROM DSPv5 Medical device id */ #define MLX90632_ID_CONSUMER 0x0205 /* EEPROM DSPv5 Consumer device id */ #define MLX90632_ID_EXTENDED 0x0505 /* EEPROM DSPv5 Extended range device id */ #define MLX90632_ID_MASK GENMASK(14, 0) /* DSP version and device ID in EE_VERSION */ #define MLX90632_DSP_VERSION 5 /* DSP version */ #define MLX90632_DSP_MASK GENMASK(7, 0) /* DSP version in EE_VERSION */ #define MLX90632_RESET_CMD 0x0006 /* Reset sensor (address or global) */ #define MLX90632_REF_12 12LL /* ResCtrlRef value of Ch 1 or Ch 2 */ #define MLX90632_REF_3 12LL /* ResCtrlRef value of Channel 3 */ #define MLX90632_MAX_MEAS_NUM 31 /* Maximum measurements in list */ #define MLX90632_SLEEP_DELAY_MS 6000 /* Autosleep delay */ #define MLX90632_EXTENDED_LIMIT 27000 /* Extended mode raw value limit */ #define MLX90632_MEAS_MAX_TIME 2000 /* Max measurement time in ms for the lowest refresh rate */ /** * struct mlx90632_data - private data for the MLX90632 device * @client: I2C client of the device * @lock: Internal mutex for multiple reads for single measurement * @regmap: Regmap of the device * @emissivity: Object emissivity from 0 to 1000 where 1000 = 1. * @mtyp: Measurement type physical sensor configuration for extended range * calculations * @object_ambient_temperature: Ambient temperature at object (might differ of * the ambient temperature of sensor. * @regulator: Regulator of the device * @powerstatus: Current POWER status of the device * @interaction_ts: Timestamp of the last temperature read that is used * for power management in jiffies */ struct mlx90632_data { struct i2c_client *client; struct mutex lock; struct regmap *regmap; u16 emissivity; u8 mtyp; u32 object_ambient_temperature; struct regulator *regulator; int powerstatus; unsigned long interaction_ts; }; static const struct regmap_range mlx90632_volatile_reg_range[] = { regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL), regmap_reg_range(MLX90632_REG_I2C_CMD, MLX90632_REG_I2C_CMD), regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS), regmap_reg_range(MLX90632_RAM_1(0), MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)), }; static const struct regmap_access_table mlx90632_volatile_regs_tbl = { .yes_ranges = mlx90632_volatile_reg_range, .n_yes_ranges = ARRAY_SIZE(mlx90632_volatile_reg_range), }; static const struct regmap_range mlx90632_read_reg_range[] = { regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka), regmap_reg_range(MLX90632_EE_CTRL, MLX90632_EE_I2C_ADDR), regmap_reg_range(MLX90632_EE_Ha, MLX90632_EE_Hb), regmap_reg_range(MLX90632_EE_MEDICAL_MEAS1, MLX90632_EE_MEDICAL_MEAS2), regmap_reg_range(MLX90632_EE_EXTENDED_MEAS1, MLX90632_EE_EXTENDED_MEAS3), regmap_reg_range(MLX90632_REG_I2C_ADDR, MLX90632_REG_CONTROL), regmap_reg_range(MLX90632_REG_I2C_CMD, MLX90632_REG_I2C_CMD), regmap_reg_range(MLX90632_REG_STATUS, MLX90632_REG_STATUS), regmap_reg_range(MLX90632_RAM_1(0), MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)), }; static const struct regmap_access_table mlx90632_readable_regs_tbl = { .yes_ranges = mlx90632_read_reg_range, .n_yes_ranges = ARRAY_SIZE(mlx90632_read_reg_range), }; static const struct regmap_range mlx90632_no_write_reg_range[] = { regmap_reg_range(MLX90632_EE_VERSION, MLX90632_EE_Ka), regmap_reg_range(MLX90632_RAM_1(0), MLX90632_RAM_3(MLX90632_MAX_MEAS_NUM)), }; static const struct regmap_access_table mlx90632_writeable_regs_tbl = { .no_ranges = mlx90632_no_write_reg_range, .n_no_ranges = ARRAY_SIZE(mlx90632_no_write_reg_range), }; static const struct regmap_config mlx90632_regmap = { .reg_bits = 16, .val_bits = 16, .volatile_table = &mlx90632_volatile_regs_tbl, .rd_table = &mlx90632_readable_regs_tbl, .wr_table = &mlx90632_writeable_regs_tbl, .use_single_read = true, .use_single_write = true, .reg_format_endian = REGMAP_ENDIAN_BIG, .val_format_endian = REGMAP_ENDIAN_BIG, .cache_type = REGCACHE_RBTREE, }; static int mlx90632_pwr_set_sleep_step(struct regmap *regmap) { struct mlx90632_data *data = iio_priv(dev_get_drvdata(regmap_get_device(regmap))); int ret; if (data->powerstatus == MLX90632_PWR_STATUS_SLEEP_STEP) return 0; ret = regmap_write_bits(regmap, MLX90632_REG_CONTROL, MLX90632_CFG_PWR_MASK, MLX90632_PWR_STATUS_SLEEP_STEP); if (ret < 0) return ret; data->powerstatus = MLX90632_PWR_STATUS_SLEEP_STEP; return 0; } static int mlx90632_pwr_continuous(struct regmap *regmap) { struct mlx90632_data *data = iio_priv(dev_get_drvdata(regmap_get_device(regmap))); int ret; if (data->powerstatus == MLX90632_PWR_STATUS_CONTINUOUS) return 0; ret = regmap_write_bits(regmap, MLX90632_REG_CONTROL, MLX90632_CFG_PWR_MASK, MLX90632_PWR_STATUS_CONTINUOUS); if (ret < 0) return ret; data->powerstatus = MLX90632_PWR_STATUS_CONTINUOUS; return 0; } /** * mlx90632_reset_delay() - Give the mlx90632 some time to reset properly * If this is not done, the following I2C command(s) will not be accepted. */ static void mlx90632_reset_delay(void) { usleep_range(150, 200); } static int mlx90632_get_measurement_time(struct regmap *regmap, u16 meas) { unsigned int reg; int ret; ret = regmap_read(regmap, meas, ®); if (ret < 0) return ret; return MLX90632_MEAS_MAX_TIME >> FIELD_GET(MLX90632_EE_RR, reg); } static int mlx90632_calculate_dataset_ready_time(struct mlx90632_data *data) { unsigned int refresh_time; int ret; if (data->mtyp == MLX90632_MTYP_MEDICAL) { ret = mlx90632_get_measurement_time(data->regmap, MLX90632_EE_MEDICAL_MEAS1); if (ret < 0) return ret; refresh_time = ret; ret = mlx90632_get_measurement_time(data->regmap, MLX90632_EE_MEDICAL_MEAS2); if (ret < 0) return ret; refresh_time += ret; } else { ret = mlx90632_get_measurement_time(data->regmap, MLX90632_EE_EXTENDED_MEAS1); if (ret < 0) return ret; refresh_time = ret; ret = mlx90632_get_measurement_time(data->regmap, MLX90632_EE_EXTENDED_MEAS2); if (ret < 0) return ret; refresh_time += ret; ret = mlx90632_get_measurement_time(data->regmap, MLX90632_EE_EXTENDED_MEAS3); if (ret < 0) return ret; refresh_time += ret; } return refresh_time; } /** * mlx90632_perform_measurement() - Trigger and retrieve current measurement cycle * @data: pointer to mlx90632_data object containing regmap information * * Perform a measurement and return latest measurement cycle position reported * by sensor. This is a blocking function for 500ms, as that is default sensor * refresh rate. */ static int mlx90632_perform_measurement(struct mlx90632_data *data) { unsigned int reg_status; int ret; ret = regmap_clear_bits(data->regmap, MLX90632_REG_STATUS, MLX90632_STAT_DATA_RDY); if (ret < 0) return ret; ret = regmap_read_poll_timeout(data->regmap, MLX90632_REG_STATUS, reg_status, !(reg_status & MLX90632_STAT_DATA_RDY), 10000, 100 * 10000); if (ret < 0) { dev_err(&data->client->dev, "data not ready"); return -ETIMEDOUT; } return (reg_status & MLX90632_STAT_CYCLE_POS) >> 2; } /** * mlx90632_perform_measurement_burst() - Trigger and retrieve current measurement * cycle in step sleep mode * @data: pointer to mlx90632_data object containing regmap information * * Perform a measurement and return 2 as measurement cycle position reported * by sensor. This is a blocking function for amount dependent on the sensor * refresh rate. */ static int mlx90632_perform_measurement_burst(struct mlx90632_data *data) { unsigned int reg_status; int ret; ret = regmap_write_bits(data->regmap, MLX90632_REG_CONTROL, MLX90632_CFG_SOB_MASK, MLX90632_CFG_SOB_MASK); if (ret < 0) return ret; ret = mlx90632_calculate_dataset_ready_time(data); if (ret < 0) return ret; msleep(ret); /* Wait minimum time for dataset to be ready */ ret = regmap_read_poll_timeout(data->regmap, MLX90632_REG_STATUS, reg_status, (reg_status & MLX90632_STAT_BUSY) == 0, 10000, 100 * 10000); if (ret < 0) { dev_err(&data->client->dev, "data not ready"); return -ETIMEDOUT; } return 2; } static int mlx90632_set_meas_type(struct mlx90632_data *data, u8 type) { int current_powerstatus; int ret; if (data->mtyp == type) return 0; current_powerstatus = data->powerstatus; ret = mlx90632_pwr_continuous(data->regmap); if (ret < 0) return ret; ret = regmap_write(data->regmap, MLX90632_REG_I2C_CMD, MLX90632_RESET_CMD); if (ret < 0) return ret; mlx90632_reset_delay(); ret = regmap_update_bits(data->regmap, MLX90632_REG_CONTROL, (MLX90632_CFG_MTYP_MASK | MLX90632_CFG_PWR_MASK), (MLX90632_MTYP_STATUS(type) | MLX90632_PWR_STATUS_HALT)); if (ret < 0) return ret; data->mtyp = type; data->powerstatus = MLX90632_PWR_STATUS_HALT; if (current_powerstatus == MLX90632_PWR_STATUS_SLEEP_STEP) return mlx90632_pwr_set_sleep_step(data->regmap); return mlx90632_pwr_continuous(data->regmap); } static int mlx90632_channel_new_select(int perform_ret, uint8_t *channel_new, uint8_t *channel_old) { switch (perform_ret) { case 1: *channel_new = 1; *channel_old = 2; break; case 2: *channel_new = 2; *channel_old = 1; break; default: return -ECHRNG; } return 0; } static int mlx90632_read_ambient_raw(struct regmap *regmap, s16 *ambient_new_raw, s16 *ambient_old_raw) { unsigned int read_tmp; int ret; ret = regmap_read(regmap, MLX90632_RAM_3(1), &read_tmp); if (ret < 0) return ret; *ambient_new_raw = (s16)read_tmp; ret = regmap_read(regmap, MLX90632_RAM_3(2), &read_tmp); if (ret < 0) return ret; *ambient_old_raw = (s16)read_tmp; return ret; } static int mlx90632_read_object_raw(struct regmap *regmap, int perform_measurement_ret, s16 *object_new_raw, s16 *object_old_raw) { unsigned int read_tmp; u8 channel_old = 0; u8 channel = 0; s16 read; int ret; ret = mlx90632_channel_new_select(perform_measurement_ret, &channel, &channel_old); if (ret != 0) return ret; ret = regmap_read(regmap, MLX90632_RAM_2(channel), &read_tmp); if (ret < 0) return ret; read = (s16)read_tmp; ret = regmap_read(regmap, MLX90632_RAM_1(channel), &read_tmp); if (ret < 0) return ret; *object_new_raw = (read + (s16)read_tmp) / 2; ret = regmap_read(regmap, MLX90632_RAM_2(channel_old), &read_tmp); if (ret < 0) return ret; read = (s16)read_tmp; ret = regmap_read(regmap, MLX90632_RAM_1(channel_old), &read_tmp); if (ret < 0) return ret; *object_old_raw = (read + (s16)read_tmp) / 2; return ret; } static int mlx90632_read_all_channel(struct mlx90632_data *data, s16 *ambient_new_raw, s16 *ambient_old_raw, s16 *object_new_raw, s16 *object_old_raw) { s32 measurement; int ret; mutex_lock(&data->lock); ret = mlx90632_set_meas_type(data, MLX90632_MTYP_MEDICAL); if (ret < 0) goto read_unlock; switch (data->powerstatus) { case MLX90632_PWR_STATUS_CONTINUOUS: ret = mlx90632_perform_measurement(data); if (ret < 0) goto read_unlock; break; case MLX90632_PWR_STATUS_SLEEP_STEP: ret = mlx90632_perform_measurement_burst(data); if (ret < 0) goto read_unlock; break; default: ret = -EOPNOTSUPP; goto read_unlock; } measurement = ret; /* If we came here ret holds the measurement position */ ret = mlx90632_read_ambient_raw(data->regmap, ambient_new_raw, ambient_old_raw); if (ret < 0) goto read_unlock; ret = mlx90632_read_object_raw(data->regmap, measurement, object_new_raw, object_old_raw); read_unlock: mutex_unlock(&data->lock); return ret; } static int mlx90632_read_ambient_raw_extended(struct regmap *regmap, s16 *ambient_new_raw, s16 *ambient_old_raw) { unsigned int read_tmp; int ret; ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_AMBIENT_1, &read_tmp); if (ret < 0) return ret; *ambient_new_raw = (s16)read_tmp; ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_AMBIENT_2, &read_tmp); if (ret < 0) return ret; *ambient_old_raw = (s16)read_tmp; return 0; } static int mlx90632_read_object_raw_extended(struct regmap *regmap, s16 *object_new_raw) { unsigned int read_tmp; s32 read; int ret; ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_1, &read_tmp); if (ret < 0) return ret; read = (s16)read_tmp; ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_2, &read_tmp); if (ret < 0) return ret; read = read - (s16)read_tmp; ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_3, &read_tmp); if (ret < 0) return ret; read = read - (s16)read_tmp; ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_4, &read_tmp); if (ret < 0) return ret; read = (read + (s16)read_tmp) / 2; ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_5, &read_tmp); if (ret < 0) return ret; read = read + (s16)read_tmp; ret = regmap_read(regmap, MLX90632_RAM_DSP5_EXTENDED_OBJECT_6, &read_tmp); if (ret < 0) return ret; read = read + (s16)read_tmp; if (read > S16_MAX || read < S16_MIN) return -ERANGE; *object_new_raw = read; return 0; } static int mlx90632_read_all_channel_extended(struct mlx90632_data *data, s16 *object_new_raw, s16 *ambient_new_raw, s16 *ambient_old_raw) { s32 ret, meas; mutex_lock(&data->lock); ret = mlx90632_set_meas_type(data, MLX90632_MTYP_EXTENDED); if (ret < 0) goto read_unlock; switch (data->powerstatus) { case MLX90632_PWR_STATUS_CONTINUOUS: ret = read_poll_timeout(mlx90632_perform_measurement, meas, meas == 19, 50000, 800000, false, data); if (ret) goto read_unlock; break; case MLX90632_PWR_STATUS_SLEEP_STEP: ret = mlx90632_perform_measurement_burst(data); if (ret < 0) goto read_unlock; break; default: ret = -EOPNOTSUPP; goto read_unlock; } ret = mlx90632_read_object_raw_extended(data->regmap, object_new_raw); if (ret < 0) goto read_unlock; ret = mlx90632_read_ambient_raw_extended(data->regmap, ambient_new_raw, ambient_old_raw); read_unlock: mutex_unlock(&data->lock); return ret; } static int mlx90632_read_ee_register(struct regmap *regmap, u16 reg_lsb, s32 *reg_value) { unsigned int read; u32 value; int ret; ret = regmap_read(regmap, reg_lsb, &read); if (ret < 0) return ret; value = read; ret = regmap_read(regmap, reg_lsb + 1, &read); if (ret < 0) return ret; *reg_value = (read << 16) | (value & 0xffff); return 0; } static s64 mlx90632_preprocess_temp_amb(s16 ambient_new_raw, s16 ambient_old_raw, s16 Gb) { s64 VR_Ta, kGb, tmp; kGb = ((s64)Gb * 1000LL) >> 10ULL; VR_Ta = (s64)ambient_old_raw * 1000000LL + kGb * div64_s64(((s64)ambient_new_raw * 1000LL), (MLX90632_REF_3)); tmp = div64_s64( div64_s64(((s64)ambient_new_raw * 1000000000000LL), (MLX90632_REF_3)), VR_Ta); return div64_s64(tmp << 19ULL, 1000LL); } static s64 mlx90632_preprocess_temp_obj(s16 object_new_raw, s16 object_old_raw, s16 ambient_new_raw, s16 ambient_old_raw, s16 Ka) { s64 VR_IR, kKa, tmp; kKa = ((s64)Ka * 1000LL) >> 10ULL; VR_IR = (s64)ambient_old_raw * 1000000LL + kKa * div64_s64(((s64)ambient_new_raw * 1000LL), (MLX90632_REF_3)); tmp = div64_s64( div64_s64(((s64)((object_new_raw + object_old_raw) / 2) * 1000000000000LL), (MLX90632_REF_12)), VR_IR); return div64_s64((tmp << 19ULL), 1000LL); } static s64 mlx90632_preprocess_temp_obj_extended(s16 object_new_raw, s16 ambient_new_raw, s16 ambient_old_raw, s16 Ka) { s64 VR_IR, kKa, tmp; kKa = ((s64)Ka * 1000LL) >> 10ULL; VR_IR = (s64)ambient_old_raw * 1000000LL + kKa * div64_s64((s64)ambient_new_raw * 1000LL, MLX90632_REF_3); tmp = div64_s64( div64_s64((s64) object_new_raw * 1000000000000LL, MLX90632_REF_12), VR_IR); return div64_s64(tmp << 19ULL, 1000LL); } static s32 mlx90632_calc_temp_ambient(s16 ambient_new_raw, s16 ambient_old_raw, s32 P_T, s32 P_R, s32 P_G, s32 P_O, s16 Gb) { s64 Asub, Bsub, Ablock, Bblock, Cblock, AMB, sum; AMB = mlx90632_preprocess_temp_amb(ambient_new_raw, ambient_old_raw, Gb); Asub = ((s64)P_T * 10000000000LL) >> 44ULL; Bsub = AMB - (((s64)P_R * 1000LL) >> 8ULL); Ablock = Asub * (Bsub * Bsub); Bblock = (div64_s64(Bsub * 10000000LL, P_G)) << 20ULL; Cblock = ((s64)P_O * 10000000000LL) >> 8ULL; sum = div64_s64(Ablock, 1000000LL) + Bblock + Cblock; return div64_s64(sum, 10000000LL); } static s32 mlx90632_calc_temp_object_iteration(s32 prev_object_temp, s64 object, s64 TAdut, s64 TAdut4, s32 Fa, s32 Fb, s32 Ga, s16 Ha, s16 Hb, u16 emissivity) { s64 calcedKsTO, calcedKsTA, ir_Alpha, Alpha_corr; s64 Ha_customer, Hb_customer; Ha_customer = ((s64)Ha * 1000000LL) >> 14ULL; Hb_customer = ((s64)Hb * 100) >> 10ULL; calcedKsTO = ((s64)((s64)Ga * (prev_object_temp - 25 * 1000LL) * 1000LL)) >> 36LL; calcedKsTA = ((s64)(Fb * (TAdut - 25 * 1000000LL))) >> 36LL; Alpha_corr = div64_s64((((s64)(Fa * 10000000000LL) >> 46LL) * Ha_customer), 1000LL); Alpha_corr *= ((s64)(1 * 1000000LL + calcedKsTO + calcedKsTA)); Alpha_corr = emissivity * div64_s64(Alpha_corr, 100000LL); Alpha_corr = div64_s64(Alpha_corr, 1000LL); ir_Alpha = div64_s64((s64)object * 10000000LL, Alpha_corr); return (int_sqrt64(int_sqrt64(ir_Alpha * 1000000000000LL + TAdut4)) - 27315 - Hb_customer) * 10; } static s64 mlx90632_calc_ta4(s64 TAdut, s64 scale) { return (div64_s64(TAdut, scale) + 27315) * (div64_s64(TAdut, scale) + 27315) * (div64_s64(TAdut, scale) + 27315) * (div64_s64(TAdut, scale) + 27315); } static s32 mlx90632_calc_temp_object(s64 object, s64 ambient, s32 Ea, s32 Eb, s32 Fa, s32 Fb, s32 Ga, s16 Ha, s16 Hb, u16 tmp_emi) { s64 kTA, kTA0, TAdut, TAdut4; s64 temp = 25000; s8 i; kTA = (Ea * 1000LL) >> 16LL; kTA0 = (Eb * 1000LL) >> 8LL; TAdut = div64_s64(((ambient - kTA0) * 1000000LL), kTA) + 25 * 1000000LL; TAdut4 = mlx90632_calc_ta4(TAdut, 10000LL); /* Iterations of calculation as described in datasheet */ for (i = 0; i < 5; ++i) { temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut, TAdut4, Fa, Fb, Ga, Ha, Hb, tmp_emi); } return temp; } static s32 mlx90632_calc_temp_object_extended(s64 object, s64 ambient, s64 reflected, s32 Ea, s32 Eb, s32 Fa, s32 Fb, s32 Ga, s16 Ha, s16 Hb, u16 tmp_emi) { s64 kTA, kTA0, TAdut, TAdut4, Tr4, TaTr4; s64 temp = 25000; s8 i; kTA = (Ea * 1000LL) >> 16LL; kTA0 = (Eb * 1000LL) >> 8LL; TAdut = div64_s64((ambient - kTA0) * 1000000LL, kTA) + 25 * 1000000LL; Tr4 = mlx90632_calc_ta4(reflected, 10); TAdut4 = mlx90632_calc_ta4(TAdut, 10000LL); TaTr4 = Tr4 - div64_s64(Tr4 - TAdut4, tmp_emi) * 1000; /* Iterations of calculation as described in datasheet */ for (i = 0; i < 5; ++i) { temp = mlx90632_calc_temp_object_iteration(temp, object, TAdut, TaTr4, Fa / 2, Fb, Ga, Ha, Hb, tmp_emi); } return temp; } static int mlx90632_calc_object_dsp105(struct mlx90632_data *data, int *val) { s16 ambient_new_raw, ambient_old_raw, object_new_raw, object_old_raw; s32 Ea, Eb, Fa, Fb, Ga; unsigned int read_tmp; s64 object, ambient; s16 Ha, Hb, Gb, Ka; int ret; ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ea, &Ea); if (ret < 0) return ret; ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Eb, &Eb); if (ret < 0) return ret; ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fa, &Fa); if (ret < 0) return ret; ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Fb, &Fb); if (ret < 0) return ret; ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_Ga, &Ga); if (ret < 0) return ret; ret = regmap_read(data->regmap, MLX90632_EE_Ha, &read_tmp); if (ret < 0) return ret; Ha = (s16)read_tmp; ret = regmap_read(data->regmap, MLX90632_EE_Hb, &read_tmp); if (ret < 0) return ret; Hb = (s16)read_tmp; ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp); if (ret < 0) return ret; Gb = (s16)read_tmp; ret = regmap_read(data->regmap, MLX90632_EE_Ka, &read_tmp); if (ret < 0) return ret; Ka = (s16)read_tmp; ret = mlx90632_read_all_channel(data, &ambient_new_raw, &ambient_old_raw, &object_new_raw, &object_old_raw); if (ret < 0) return ret; if (object_new_raw > MLX90632_EXTENDED_LIMIT && data->mtyp == MLX90632_MTYP_EXTENDED) { ret = mlx90632_read_all_channel_extended(data, &object_new_raw, &ambient_new_raw, &ambient_old_raw); if (ret < 0) return ret; /* Use extended mode calculations */ ambient = mlx90632_preprocess_temp_amb(ambient_new_raw, ambient_old_raw, Gb); object = mlx90632_preprocess_temp_obj_extended(object_new_raw, ambient_new_raw, ambient_old_raw, Ka); *val = mlx90632_calc_temp_object_extended(object, ambient, data->object_ambient_temperature, Ea, Eb, Fa, Fb, Ga, Ha, Hb, data->emissivity); return 0; } ambient = mlx90632_preprocess_temp_amb(ambient_new_raw, ambient_old_raw, Gb); object = mlx90632_preprocess_temp_obj(object_new_raw, object_old_raw, ambient_new_raw, ambient_old_raw, Ka); *val = mlx90632_calc_temp_object(object, ambient, Ea, Eb, Fa, Fb, Ga, Ha, Hb, data->emissivity); return 0; } static int mlx90632_calc_ambient_dsp105(struct mlx90632_data *data, int *val) { s16 ambient_new_raw, ambient_old_raw; unsigned int read_tmp; s32 PT, PR, PG, PO; int ret; s16 Gb; ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_R, &PR); if (ret < 0) return ret; ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_G, &PG); if (ret < 0) return ret; ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_T, &PT); if (ret < 0) return ret; ret = mlx90632_read_ee_register(data->regmap, MLX90632_EE_P_O, &PO); if (ret < 0) return ret; ret = regmap_read(data->regmap, MLX90632_EE_Gb, &read_tmp); if (ret < 0) return ret; Gb = (s16)read_tmp; ret = mlx90632_read_ambient_raw(data->regmap, &ambient_new_raw, &ambient_old_raw); if (ret < 0) return ret; *val = mlx90632_calc_temp_ambient(ambient_new_raw, ambient_old_raw, PT, PR, PG, PO, Gb); return ret; } static int mlx90632_get_refresh_rate(struct mlx90632_data *data, int *refresh_rate) { unsigned int meas1; int ret; ret = regmap_read(data->regmap, MLX90632_EE_MEDICAL_MEAS1, &meas1); if (ret < 0) return ret; *refresh_rate = MLX90632_REFRESH_RATE(meas1); return ret; } static const int mlx90632_freqs[][2] = { {0, 500000}, {1, 0}, {2, 0}, {4, 0}, {8, 0}, {16, 0}, {32, 0}, {64, 0} }; /** * mlx90632_pm_interraction_wakeup() - Measure time between user interactions to change powermode * @data: pointer to mlx90632_data object containing interaction_ts information * * Switch to continuous mode when interaction is faster than MLX90632_MEAS_MAX_TIME. Update the * interaction_ts for each function call with the jiffies to enable measurement between function * calls. Initial value of the interaction_ts needs to be set before this function call. */ static int mlx90632_pm_interraction_wakeup(struct mlx90632_data *data) { unsigned long now; int ret; now = jiffies; if (time_in_range(now, data->interaction_ts, data->interaction_ts + msecs_to_jiffies(MLX90632_MEAS_MAX_TIME + 100))) { if (data->powerstatus == MLX90632_PWR_STATUS_SLEEP_STEP) { ret = mlx90632_pwr_continuous(data->regmap); if (ret < 0) return ret; } } data->interaction_ts = now; return 0; } static int mlx90632_read_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *channel, int *val, int *val2, long mask) { struct mlx90632_data *data = iio_priv(indio_dev); int ret; int cr; pm_runtime_get_sync(&data->client->dev); ret = mlx90632_pm_interraction_wakeup(data); if (ret < 0) goto mlx90632_read_raw_pm; switch (mask) { case IIO_CHAN_INFO_PROCESSED: switch (channel->channel2) { case IIO_MOD_TEMP_AMBIENT: ret = mlx90632_calc_ambient_dsp105(data, val); if (ret < 0) goto mlx90632_read_raw_pm; ret = IIO_VAL_INT; break; case IIO_MOD_TEMP_OBJECT: ret = mlx90632_calc_object_dsp105(data, val); if (ret < 0) goto mlx90632_read_raw_pm; ret = IIO_VAL_INT; break; default: ret = -EINVAL; break; } break; case IIO_CHAN_INFO_CALIBEMISSIVITY: if (data->emissivity == 1000) { *val = 1; *val2 = 0; } else { *val = 0; *val2 = data->emissivity * 1000; } ret = IIO_VAL_INT_PLUS_MICRO; break; case IIO_CHAN_INFO_CALIBAMBIENT: *val = data->object_ambient_temperature; ret = IIO_VAL_INT; break; case IIO_CHAN_INFO_SAMP_FREQ: ret = mlx90632_get_refresh_rate(data, &cr); if (ret < 0) goto mlx90632_read_raw_pm; *val = mlx90632_freqs[cr][0]; *val2 = mlx90632_freqs[cr][1]; ret = IIO_VAL_INT_PLUS_MICRO; break; default: ret = -EINVAL; break; } mlx90632_read_raw_pm: pm_runtime_mark_last_busy(&data->client->dev); pm_runtime_put_autosuspend(&data->client->dev); return ret; } static int mlx90632_write_raw(struct iio_dev *indio_dev, struct iio_chan_spec const *channel, int val, int val2, long mask) { struct mlx90632_data *data = iio_priv(indio_dev); switch (mask) { case IIO_CHAN_INFO_CALIBEMISSIVITY: /* Confirm we are within 0 and 1.0 */ if (val < 0 || val2 < 0 || val > 1 || (val == 1 && val2 != 0)) return -EINVAL; data->emissivity = val * 1000 + val2 / 1000; return 0; case IIO_CHAN_INFO_CALIBAMBIENT: data->object_ambient_temperature = val; return 0; default: return -EINVAL; } } static int mlx90632_read_avail(struct iio_dev *indio_dev, struct iio_chan_spec const *chan, const int **vals, int *type, int *length, long mask) { switch (mask) { case IIO_CHAN_INFO_SAMP_FREQ: *vals = (int *)mlx90632_freqs; *type = IIO_VAL_INT_PLUS_MICRO; *length = 2 * ARRAY_SIZE(mlx90632_freqs); return IIO_AVAIL_LIST; default: return -EINVAL; } } static const struct iio_chan_spec mlx90632_channels[] = { { .type = IIO_TEMP, .modified = 1, .channel2 = IIO_MOD_TEMP_AMBIENT, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), .info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ), }, { .type = IIO_TEMP, .modified = 1, .channel2 = IIO_MOD_TEMP_OBJECT, .info_mask_separate = BIT(IIO_CHAN_INFO_PROCESSED) | BIT(IIO_CHAN_INFO_CALIBEMISSIVITY) | BIT(IIO_CHAN_INFO_CALIBAMBIENT), .info_mask_shared_by_all = BIT(IIO_CHAN_INFO_SAMP_FREQ), .info_mask_shared_by_all_available = BIT(IIO_CHAN_INFO_SAMP_FREQ), }, }; static const struct iio_info mlx90632_info = { .read_raw = mlx90632_read_raw, .write_raw = mlx90632_write_raw, .read_avail = mlx90632_read_avail, }; static void mlx90632_sleep(void *_data) { struct mlx90632_data *data = _data; mlx90632_pwr_set_sleep_step(data->regmap); } static int mlx90632_suspend(struct mlx90632_data *data) { regcache_mark_dirty(data->regmap); dev_dbg(&data->client->dev, "Requesting suspend"); return mlx90632_pwr_set_sleep_step(data->regmap); } static int mlx90632_wakeup(struct mlx90632_data *data) { int ret; ret = regcache_sync(data->regmap); if (ret < 0) { dev_err(&data->client->dev, "Failed to sync regmap registers: %d\n", ret); return ret; } dev_dbg(&data->client->dev, "Requesting wake-up\n"); return mlx90632_pwr_continuous(data->regmap); } static void mlx90632_disable_regulator(void *_data) { struct mlx90632_data *data = _data; int ret; ret = regulator_disable(data->regulator); if (ret < 0) dev_err(regmap_get_device(data->regmap), "Failed to disable power regulator: %d\n", ret); } static int mlx90632_enable_regulator(struct mlx90632_data *data) { int ret; ret = regulator_enable(data->regulator); if (ret < 0) { dev_err(regmap_get_device(data->regmap), "Failed to enable power regulator!\n"); return ret; } mlx90632_reset_delay(); return ret; } static int mlx90632_probe(struct i2c_client *client) { const struct i2c_device_id *id = i2c_client_get_device_id(client); struct mlx90632_data *mlx90632; struct iio_dev *indio_dev; struct regmap *regmap; unsigned int read; int ret; indio_dev = devm_iio_device_alloc(&client->dev, sizeof(*mlx90632)); if (!indio_dev) { dev_err(&client->dev, "Failed to allocate device\n"); return -ENOMEM; } regmap = devm_regmap_init_i2c(client, &mlx90632_regmap); if (IS_ERR(regmap)) { ret = PTR_ERR(regmap); dev_err(&client->dev, "Failed to allocate regmap: %d\n", ret); return ret; } mlx90632 = iio_priv(indio_dev); i2c_set_clientdata(client, indio_dev); mlx90632->client = client; mlx90632->regmap = regmap; mlx90632->mtyp = MLX90632_MTYP_MEDICAL; mlx90632->powerstatus = MLX90632_PWR_STATUS_HALT; mutex_init(&mlx90632->lock); indio_dev->name = id->name; indio_dev->modes = INDIO_DIRECT_MODE; indio_dev->info = &mlx90632_info; indio_dev->channels = mlx90632_channels; indio_dev->num_channels = ARRAY_SIZE(mlx90632_channels); mlx90632->regulator = devm_regulator_get(&client->dev, "vdd"); if (IS_ERR(mlx90632->regulator)) return dev_err_probe(&client->dev, PTR_ERR(mlx90632->regulator), "failed to get vdd regulator"); ret = mlx90632_enable_regulator(mlx90632); if (ret < 0) return ret; ret = devm_add_action_or_reset(&client->dev, mlx90632_disable_regulator, mlx90632); if (ret < 0) { dev_err(&client->dev, "Failed to setup regulator cleanup action %d\n", ret); return ret; } ret = mlx90632_wakeup(mlx90632); if (ret < 0) { dev_err(&client->dev, "Wakeup failed: %d\n", ret); return ret; } ret = devm_add_action_or_reset(&client->dev, mlx90632_sleep, mlx90632); if (ret < 0) { dev_err(&client->dev, "Failed to setup low power cleanup action %d\n", ret); return ret; } ret = regmap_read(mlx90632->regmap, MLX90632_EE_VERSION, &read); if (ret < 0) { dev_err(&client->dev, "read of version failed: %d\n", ret); return ret; } read = read & MLX90632_ID_MASK; if (read == MLX90632_ID_MEDICAL) { dev_dbg(&client->dev, "Detected Medical EEPROM calibration %x\n", read); } else if (read == MLX90632_ID_CONSUMER) { dev_dbg(&client->dev, "Detected Consumer EEPROM calibration %x\n", read); } else if (read == MLX90632_ID_EXTENDED) { dev_dbg(&client->dev, "Detected Extended range EEPROM calibration %x\n", read); mlx90632->mtyp = MLX90632_MTYP_EXTENDED; } else if ((read & MLX90632_DSP_MASK) == MLX90632_DSP_VERSION) { dev_dbg(&client->dev, "Detected Unknown EEPROM calibration %x\n", read); } else { dev_err(&client->dev, "Wrong DSP version %x (expected %x)\n", read, MLX90632_DSP_VERSION); return -EPROTONOSUPPORT; } mlx90632->emissivity = 1000; mlx90632->object_ambient_temperature = 25000; /* 25 degrees milliCelsius */ mlx90632->interaction_ts = jiffies; /* Set initial value */ pm_runtime_get_noresume(&client->dev); pm_runtime_set_active(&client->dev); ret = devm_pm_runtime_enable(&client->dev); if (ret) return ret; pm_runtime_set_autosuspend_delay(&client->dev, MLX90632_SLEEP_DELAY_MS); pm_runtime_use_autosuspend(&client->dev); pm_runtime_put_autosuspend(&client->dev); return devm_iio_device_register(&client->dev, indio_dev); } static const struct i2c_device_id mlx90632_id[] = { { "mlx90632" }, { } }; MODULE_DEVICE_TABLE(i2c, mlx90632_id); static const struct of_device_id mlx90632_of_match[] = { { .compatible = "melexis,mlx90632" }, { } }; MODULE_DEVICE_TABLE(of, mlx90632_of_match); static int mlx90632_pm_suspend(struct device *dev) { struct mlx90632_data *data = iio_priv(dev_get_drvdata(dev)); int ret; ret = mlx90632_suspend(data); if (ret < 0) return ret; ret = regulator_disable(data->regulator); if (ret < 0) dev_err(regmap_get_device(data->regmap), "Failed to disable power regulator: %d\n", ret); return ret; } static int mlx90632_pm_resume(struct device *dev) { struct mlx90632_data *data = iio_priv(dev_get_drvdata(dev)); int ret; ret = mlx90632_enable_regulator(data); if (ret < 0) return ret; return mlx90632_wakeup(data); } static int mlx90632_pm_runtime_suspend(struct device *dev) { struct mlx90632_data *data = iio_priv(dev_get_drvdata(dev)); return mlx90632_pwr_set_sleep_step(data->regmap); } static const struct dev_pm_ops mlx90632_pm_ops = { SYSTEM_SLEEP_PM_OPS(mlx90632_pm_suspend, mlx90632_pm_resume) RUNTIME_PM_OPS(mlx90632_pm_runtime_suspend, NULL, NULL) }; static struct i2c_driver mlx90632_driver = { .driver = { .name = "mlx90632", .of_match_table = mlx90632_of_match, .pm = pm_ptr(&mlx90632_pm_ops), }, .probe = mlx90632_probe, .id_table = mlx90632_id, }; module_i2c_driver(mlx90632_driver); MODULE_AUTHOR("Crt Mori <cmo@melexis.com>"); MODULE_DESCRIPTION("Melexis MLX90632 contactless Infra Red temperature sensor driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1