Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mike Marciniszyn | 6133 | 69.66% | 2 | 5.71% |
Dean Luick | 1732 | 19.67% | 12 | 34.29% |
Easwar Hariharan | 673 | 7.64% | 5 | 14.29% |
Grzegorz Morys | 79 | 0.90% | 1 | 2.86% |
Sebastian Sanchez | 55 | 0.62% | 2 | 5.71% |
Jakub Byczkowski | 47 | 0.53% | 5 | 14.29% |
Wang Yufen | 30 | 0.34% | 1 | 2.86% |
Michael J. Ruhl | 24 | 0.27% | 1 | 2.86% |
Thomas Bogendoerfer | 20 | 0.23% | 1 | 2.86% |
Wang Wensheng | 5 | 0.06% | 1 | 2.86% |
Jubin John | 3 | 0.03% | 1 | 2.86% |
caihuoqing | 1 | 0.01% | 1 | 2.86% |
Krzysztof Kozlowski | 1 | 0.01% | 1 | 2.86% |
wangjianli | 1 | 0.01% | 1 | 2.86% |
Total | 8804 | 35 |
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* * Copyright(c) 2015 - 2017 Intel Corporation. */ #include <linux/firmware.h> #include <linux/mutex.h> #include <linux/delay.h> #include <linux/crc32.h> #include "hfi.h" #include "trace.h" /* * Make it easy to toggle firmware file name and if it gets loaded by * editing the following. This may be something we do while in development * but not necessarily something a user would ever need to use. */ #define DEFAULT_FW_8051_NAME_FPGA "hfi_dc8051.bin" #define DEFAULT_FW_8051_NAME_ASIC "hfi1_dc8051.fw" #define DEFAULT_FW_FABRIC_NAME "hfi1_fabric.fw" #define DEFAULT_FW_SBUS_NAME "hfi1_sbus.fw" #define DEFAULT_FW_PCIE_NAME "hfi1_pcie.fw" #define ALT_FW_8051_NAME_ASIC "hfi1_dc8051_d.fw" #define ALT_FW_FABRIC_NAME "hfi1_fabric_d.fw" #define ALT_FW_SBUS_NAME "hfi1_sbus_d.fw" #define ALT_FW_PCIE_NAME "hfi1_pcie_d.fw" MODULE_FIRMWARE(DEFAULT_FW_8051_NAME_ASIC); MODULE_FIRMWARE(DEFAULT_FW_FABRIC_NAME); MODULE_FIRMWARE(DEFAULT_FW_SBUS_NAME); MODULE_FIRMWARE(DEFAULT_FW_PCIE_NAME); static uint fw_8051_load = 1; static uint fw_fabric_serdes_load = 1; static uint fw_pcie_serdes_load = 1; static uint fw_sbus_load = 1; /* Firmware file names get set in hfi1_firmware_init() based on the above */ static char *fw_8051_name; static char *fw_fabric_serdes_name; static char *fw_sbus_name; static char *fw_pcie_serdes_name; #define SBUS_MAX_POLL_COUNT 100 #define SBUS_COUNTER(reg, name) \ (((reg) >> ASIC_STS_SBUS_COUNTERS_##name##_CNT_SHIFT) & \ ASIC_STS_SBUS_COUNTERS_##name##_CNT_MASK) /* * Firmware security header. */ struct css_header { u32 module_type; u32 header_len; u32 header_version; u32 module_id; u32 module_vendor; u32 date; /* BCD yyyymmdd */ u32 size; /* in DWORDs */ u32 key_size; /* in DWORDs */ u32 modulus_size; /* in DWORDs */ u32 exponent_size; /* in DWORDs */ u32 reserved[22]; }; /* expected field values */ #define CSS_MODULE_TYPE 0x00000006 #define CSS_HEADER_LEN 0x000000a1 #define CSS_HEADER_VERSION 0x00010000 #define CSS_MODULE_VENDOR 0x00008086 #define KEY_SIZE 256 #define MU_SIZE 8 #define EXPONENT_SIZE 4 /* size of platform configuration partition */ #define MAX_PLATFORM_CONFIG_FILE_SIZE 4096 /* size of file of plaform configuration encoded in format version 4 */ #define PLATFORM_CONFIG_FORMAT_4_FILE_SIZE 528 /* the file itself */ struct firmware_file { struct css_header css_header; u8 modulus[KEY_SIZE]; u8 exponent[EXPONENT_SIZE]; u8 signature[KEY_SIZE]; u8 firmware[]; }; struct augmented_firmware_file { struct css_header css_header; u8 modulus[KEY_SIZE]; u8 exponent[EXPONENT_SIZE]; u8 signature[KEY_SIZE]; u8 r2[KEY_SIZE]; u8 mu[MU_SIZE]; u8 firmware[]; }; /* augmented file size difference */ #define AUGMENT_SIZE (sizeof(struct augmented_firmware_file) - \ sizeof(struct firmware_file)) struct firmware_details { /* Linux core piece */ const struct firmware *fw; struct css_header *css_header; u8 *firmware_ptr; /* pointer to binary data */ u32 firmware_len; /* length in bytes */ u8 *modulus; /* pointer to the modulus */ u8 *exponent; /* pointer to the exponent */ u8 *signature; /* pointer to the signature */ u8 *r2; /* pointer to r2 */ u8 *mu; /* pointer to mu */ struct augmented_firmware_file dummy_header; }; /* * The mutex protects fw_state, fw_err, and all of the firmware_details * variables. */ static DEFINE_MUTEX(fw_mutex); enum fw_state { FW_EMPTY, FW_TRY, FW_FINAL, FW_ERR }; static enum fw_state fw_state = FW_EMPTY; static int fw_err; static struct firmware_details fw_8051; static struct firmware_details fw_fabric; static struct firmware_details fw_pcie; static struct firmware_details fw_sbus; /* flags for turn_off_spicos() */ #define SPICO_SBUS 0x1 #define SPICO_FABRIC 0x2 #define ENABLE_SPICO_SMASK 0x1 /* security block commands */ #define RSA_CMD_INIT 0x1 #define RSA_CMD_START 0x2 /* security block status */ #define RSA_STATUS_IDLE 0x0 #define RSA_STATUS_ACTIVE 0x1 #define RSA_STATUS_DONE 0x2 #define RSA_STATUS_FAILED 0x3 /* RSA engine timeout, in ms */ #define RSA_ENGINE_TIMEOUT 100 /* ms */ /* hardware mutex timeout, in ms */ #define HM_TIMEOUT 10 /* ms */ /* 8051 memory access timeout, in us */ #define DC8051_ACCESS_TIMEOUT 100 /* us */ /* the number of fabric SerDes on the SBus */ #define NUM_FABRIC_SERDES 4 /* ASIC_STS_SBUS_RESULT.RESULT_CODE value */ #define SBUS_READ_COMPLETE 0x4 /* SBus fabric SerDes addresses, one set per HFI */ static const u8 fabric_serdes_addrs[2][NUM_FABRIC_SERDES] = { { 0x01, 0x02, 0x03, 0x04 }, { 0x28, 0x29, 0x2a, 0x2b } }; /* SBus PCIe SerDes addresses, one set per HFI */ static const u8 pcie_serdes_addrs[2][NUM_PCIE_SERDES] = { { 0x08, 0x0a, 0x0c, 0x0e, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1a, 0x1c, 0x1e, 0x20, 0x22, 0x24, 0x26 }, { 0x2f, 0x31, 0x33, 0x35, 0x37, 0x39, 0x3b, 0x3d, 0x3f, 0x41, 0x43, 0x45, 0x47, 0x49, 0x4b, 0x4d } }; /* SBus PCIe PCS addresses, one set per HFI */ const u8 pcie_pcs_addrs[2][NUM_PCIE_SERDES] = { { 0x09, 0x0b, 0x0d, 0x0f, 0x11, 0x13, 0x15, 0x17, 0x19, 0x1b, 0x1d, 0x1f, 0x21, 0x23, 0x25, 0x27 }, { 0x30, 0x32, 0x34, 0x36, 0x38, 0x3a, 0x3c, 0x3e, 0x40, 0x42, 0x44, 0x46, 0x48, 0x4a, 0x4c, 0x4e } }; /* SBus fabric SerDes broadcast addresses, one per HFI */ static const u8 fabric_serdes_broadcast[2] = { 0xe4, 0xe5 }; static const u8 all_fabric_serdes_broadcast = 0xe1; /* SBus PCIe SerDes broadcast addresses, one per HFI */ const u8 pcie_serdes_broadcast[2] = { 0xe2, 0xe3 }; static const u8 all_pcie_serdes_broadcast = 0xe0; static const u32 platform_config_table_limits[PLATFORM_CONFIG_TABLE_MAX] = { 0, SYSTEM_TABLE_MAX, PORT_TABLE_MAX, RX_PRESET_TABLE_MAX, TX_PRESET_TABLE_MAX, QSFP_ATTEN_TABLE_MAX, VARIABLE_SETTINGS_TABLE_MAX }; /* forwards */ static void dispose_one_firmware(struct firmware_details *fdet); static int load_fabric_serdes_firmware(struct hfi1_devdata *dd, struct firmware_details *fdet); static void dump_fw_version(struct hfi1_devdata *dd); /* * Read a single 64-bit value from 8051 data memory. * * Expects: * o caller to have already set up data read, no auto increment * o caller to turn off read enable when finished * * The address argument is a byte offset. Bits 0:2 in the address are * ignored - i.e. the hardware will always do aligned 8-byte reads as if * the lower bits are zero. * * Return 0 on success, -ENXIO on a read error (timeout). */ static int __read_8051_data(struct hfi1_devdata *dd, u32 addr, u64 *result) { u64 reg; int count; /* step 1: set the address, clear enable */ reg = (addr & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK) << DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT; write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg); /* step 2: enable */ write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg | DC_DC8051_CFG_RAM_ACCESS_CTRL_READ_ENA_SMASK); /* wait until ACCESS_COMPLETED is set */ count = 0; while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS) & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK) == 0) { count++; if (count > DC8051_ACCESS_TIMEOUT) { dd_dev_err(dd, "timeout reading 8051 data\n"); return -ENXIO; } ndelay(10); } /* gather the data */ *result = read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_RD_DATA); return 0; } /* * Read 8051 data starting at addr, for len bytes. Will read in 8-byte chunks. * Return 0 on success, -errno on error. */ int read_8051_data(struct hfi1_devdata *dd, u32 addr, u32 len, u64 *result) { unsigned long flags; u32 done; int ret = 0; spin_lock_irqsave(&dd->dc8051_memlock, flags); /* data read set-up, no auto-increment */ write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0); for (done = 0; done < len; addr += 8, done += 8, result++) { ret = __read_8051_data(dd, addr, result); if (ret) break; } /* turn off read enable */ write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0); spin_unlock_irqrestore(&dd->dc8051_memlock, flags); return ret; } /* * Write data or code to the 8051 code or data RAM. */ static int write_8051(struct hfi1_devdata *dd, int code, u32 start, const u8 *data, u32 len) { u64 reg; u32 offset; int aligned, count; /* check alignment */ aligned = ((unsigned long)data & 0x7) == 0; /* write set-up */ reg = (code ? DC_DC8051_CFG_RAM_ACCESS_SETUP_RAM_SEL_SMASK : 0ull) | DC_DC8051_CFG_RAM_ACCESS_SETUP_AUTO_INCR_ADDR_SMASK; write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, reg); reg = ((start & DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_MASK) << DC_DC8051_CFG_RAM_ACCESS_CTRL_ADDRESS_SHIFT) | DC_DC8051_CFG_RAM_ACCESS_CTRL_WRITE_ENA_SMASK; write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, reg); /* write */ for (offset = 0; offset < len; offset += 8) { int bytes = len - offset; if (bytes < 8) { reg = 0; memcpy(®, &data[offset], bytes); } else if (aligned) { reg = *(u64 *)&data[offset]; } else { memcpy(®, &data[offset], 8); } write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_WR_DATA, reg); /* wait until ACCESS_COMPLETED is set */ count = 0; while ((read_csr(dd, DC_DC8051_CFG_RAM_ACCESS_STATUS) & DC_DC8051_CFG_RAM_ACCESS_STATUS_ACCESS_COMPLETED_SMASK) == 0) { count++; if (count > DC8051_ACCESS_TIMEOUT) { dd_dev_err(dd, "timeout writing 8051 data\n"); return -ENXIO; } udelay(1); } } /* turn off write access, auto increment (also sets to data access) */ write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_CTRL, 0); write_csr(dd, DC_DC8051_CFG_RAM_ACCESS_SETUP, 0); return 0; } /* return 0 if values match, non-zero and complain otherwise */ static int invalid_header(struct hfi1_devdata *dd, const char *what, u32 actual, u32 expected) { if (actual == expected) return 0; dd_dev_err(dd, "invalid firmware header field %s: expected 0x%x, actual 0x%x\n", what, expected, actual); return 1; } /* * Verify that the static fields in the CSS header match. */ static int verify_css_header(struct hfi1_devdata *dd, struct css_header *css) { /* verify CSS header fields (most sizes are in DW, so add /4) */ if (invalid_header(dd, "module_type", css->module_type, CSS_MODULE_TYPE) || invalid_header(dd, "header_len", css->header_len, (sizeof(struct firmware_file) / 4)) || invalid_header(dd, "header_version", css->header_version, CSS_HEADER_VERSION) || invalid_header(dd, "module_vendor", css->module_vendor, CSS_MODULE_VENDOR) || invalid_header(dd, "key_size", css->key_size, KEY_SIZE / 4) || invalid_header(dd, "modulus_size", css->modulus_size, KEY_SIZE / 4) || invalid_header(dd, "exponent_size", css->exponent_size, EXPONENT_SIZE / 4)) { return -EINVAL; } return 0; } /* * Make sure there are at least some bytes after the prefix. */ static int payload_check(struct hfi1_devdata *dd, const char *name, long file_size, long prefix_size) { /* make sure we have some payload */ if (prefix_size >= file_size) { dd_dev_err(dd, "firmware \"%s\", size %ld, must be larger than %ld bytes\n", name, file_size, prefix_size); return -EINVAL; } return 0; } /* * Request the firmware from the system. Extract the pieces and fill in * fdet. If successful, the caller will need to call dispose_one_firmware(). * Returns 0 on success, -ERRNO on error. */ static int obtain_one_firmware(struct hfi1_devdata *dd, const char *name, struct firmware_details *fdet) { struct css_header *css; int ret; memset(fdet, 0, sizeof(*fdet)); ret = request_firmware(&fdet->fw, name, &dd->pcidev->dev); if (ret) { dd_dev_warn(dd, "cannot find firmware \"%s\", err %d\n", name, ret); return ret; } /* verify the firmware */ if (fdet->fw->size < sizeof(struct css_header)) { dd_dev_err(dd, "firmware \"%s\" is too small\n", name); ret = -EINVAL; goto done; } css = (struct css_header *)fdet->fw->data; hfi1_cdbg(FIRMWARE, "Firmware %s details:", name); hfi1_cdbg(FIRMWARE, "file size: 0x%lx bytes", fdet->fw->size); hfi1_cdbg(FIRMWARE, "CSS structure:"); hfi1_cdbg(FIRMWARE, " module_type 0x%x", css->module_type); hfi1_cdbg(FIRMWARE, " header_len 0x%03x (0x%03x bytes)", css->header_len, 4 * css->header_len); hfi1_cdbg(FIRMWARE, " header_version 0x%x", css->header_version); hfi1_cdbg(FIRMWARE, " module_id 0x%x", css->module_id); hfi1_cdbg(FIRMWARE, " module_vendor 0x%x", css->module_vendor); hfi1_cdbg(FIRMWARE, " date 0x%x", css->date); hfi1_cdbg(FIRMWARE, " size 0x%03x (0x%03x bytes)", css->size, 4 * css->size); hfi1_cdbg(FIRMWARE, " key_size 0x%03x (0x%03x bytes)", css->key_size, 4 * css->key_size); hfi1_cdbg(FIRMWARE, " modulus_size 0x%03x (0x%03x bytes)", css->modulus_size, 4 * css->modulus_size); hfi1_cdbg(FIRMWARE, " exponent_size 0x%03x (0x%03x bytes)", css->exponent_size, 4 * css->exponent_size); hfi1_cdbg(FIRMWARE, "firmware size: 0x%lx bytes", fdet->fw->size - sizeof(struct firmware_file)); /* * If the file does not have a valid CSS header, fail. * Otherwise, check the CSS size field for an expected size. * The augmented file has r2 and mu inserted after the header * was generated, so there will be a known difference between * the CSS header size and the actual file size. Use this * difference to identify an augmented file. * * Note: css->size is in DWORDs, multiply by 4 to get bytes. */ ret = verify_css_header(dd, css); if (ret) { dd_dev_info(dd, "Invalid CSS header for \"%s\"\n", name); } else if ((css->size * 4) == fdet->fw->size) { /* non-augmented firmware file */ struct firmware_file *ff = (struct firmware_file *) fdet->fw->data; /* make sure there are bytes in the payload */ ret = payload_check(dd, name, fdet->fw->size, sizeof(struct firmware_file)); if (ret == 0) { fdet->css_header = css; fdet->modulus = ff->modulus; fdet->exponent = ff->exponent; fdet->signature = ff->signature; fdet->r2 = fdet->dummy_header.r2; /* use dummy space */ fdet->mu = fdet->dummy_header.mu; /* use dummy space */ fdet->firmware_ptr = ff->firmware; fdet->firmware_len = fdet->fw->size - sizeof(struct firmware_file); /* * Header does not include r2 and mu - generate here. * For now, fail. */ dd_dev_err(dd, "driver is unable to validate firmware without r2 and mu (not in firmware file)\n"); ret = -EINVAL; } } else if ((css->size * 4) + AUGMENT_SIZE == fdet->fw->size) { /* augmented firmware file */ struct augmented_firmware_file *aff = (struct augmented_firmware_file *)fdet->fw->data; /* make sure there are bytes in the payload */ ret = payload_check(dd, name, fdet->fw->size, sizeof(struct augmented_firmware_file)); if (ret == 0) { fdet->css_header = css; fdet->modulus = aff->modulus; fdet->exponent = aff->exponent; fdet->signature = aff->signature; fdet->r2 = aff->r2; fdet->mu = aff->mu; fdet->firmware_ptr = aff->firmware; fdet->firmware_len = fdet->fw->size - sizeof(struct augmented_firmware_file); } } else { /* css->size check failed */ dd_dev_err(dd, "invalid firmware header field size: expected 0x%lx or 0x%lx, actual 0x%x\n", fdet->fw->size / 4, (fdet->fw->size - AUGMENT_SIZE) / 4, css->size); ret = -EINVAL; } done: /* if returning an error, clean up after ourselves */ if (ret) dispose_one_firmware(fdet); return ret; } static void dispose_one_firmware(struct firmware_details *fdet) { release_firmware(fdet->fw); /* erase all previous information */ memset(fdet, 0, sizeof(*fdet)); } /* * Obtain the 4 firmwares from the OS. All must be obtained at once or not * at all. If called with the firmware state in FW_TRY, use alternate names. * On exit, this routine will have set the firmware state to one of FW_TRY, * FW_FINAL, or FW_ERR. * * Must be holding fw_mutex. */ static void __obtain_firmware(struct hfi1_devdata *dd) { int err = 0; if (fw_state == FW_FINAL) /* nothing more to obtain */ return; if (fw_state == FW_ERR) /* already in error */ return; /* fw_state is FW_EMPTY or FW_TRY */ retry: if (fw_state == FW_TRY) { /* * We tried the original and it failed. Move to the * alternate. */ dd_dev_warn(dd, "using alternate firmware names\n"); /* * Let others run. Some systems, when missing firmware, does * something that holds for 30 seconds. If we do that twice * in a row it triggers task blocked warning. */ cond_resched(); if (fw_8051_load) dispose_one_firmware(&fw_8051); if (fw_fabric_serdes_load) dispose_one_firmware(&fw_fabric); if (fw_sbus_load) dispose_one_firmware(&fw_sbus); if (fw_pcie_serdes_load) dispose_one_firmware(&fw_pcie); fw_8051_name = ALT_FW_8051_NAME_ASIC; fw_fabric_serdes_name = ALT_FW_FABRIC_NAME; fw_sbus_name = ALT_FW_SBUS_NAME; fw_pcie_serdes_name = ALT_FW_PCIE_NAME; /* * Add a delay before obtaining and loading debug firmware. * Authorization will fail if the delay between firmware * authorization events is shorter than 50us. Add 100us to * make a delay time safe. */ usleep_range(100, 120); } if (fw_sbus_load) { err = obtain_one_firmware(dd, fw_sbus_name, &fw_sbus); if (err) goto done; } if (fw_pcie_serdes_load) { err = obtain_one_firmware(dd, fw_pcie_serdes_name, &fw_pcie); if (err) goto done; } if (fw_fabric_serdes_load) { err = obtain_one_firmware(dd, fw_fabric_serdes_name, &fw_fabric); if (err) goto done; } if (fw_8051_load) { err = obtain_one_firmware(dd, fw_8051_name, &fw_8051); if (err) goto done; } done: if (err) { /* oops, had problems obtaining a firmware */ if (fw_state == FW_EMPTY && dd->icode == ICODE_RTL_SILICON) { /* retry with alternate (RTL only) */ fw_state = FW_TRY; goto retry; } dd_dev_err(dd, "unable to obtain working firmware\n"); fw_state = FW_ERR; fw_err = -ENOENT; } else { /* success */ if (fw_state == FW_EMPTY && dd->icode != ICODE_FUNCTIONAL_SIMULATOR) fw_state = FW_TRY; /* may retry later */ else fw_state = FW_FINAL; /* cannot try again */ } } /* * Called by all HFIs when loading their firmware - i.e. device probe time. * The first one will do the actual firmware load. Use a mutex to resolve * any possible race condition. * * The call to this routine cannot be moved to driver load because the kernel * call request_firmware() requires a device which is only available after * the first device probe. */ static int obtain_firmware(struct hfi1_devdata *dd) { unsigned long timeout; mutex_lock(&fw_mutex); /* 40s delay due to long delay on missing firmware on some systems */ timeout = jiffies + msecs_to_jiffies(40000); while (fw_state == FW_TRY) { /* * Another device is trying the firmware. Wait until it * decides what works (or not). */ if (time_after(jiffies, timeout)) { /* waited too long */ dd_dev_err(dd, "Timeout waiting for firmware try"); fw_state = FW_ERR; fw_err = -ETIMEDOUT; break; } mutex_unlock(&fw_mutex); msleep(20); /* arbitrary delay */ mutex_lock(&fw_mutex); } /* not in FW_TRY state */ /* set fw_state to FW_TRY, FW_FINAL, or FW_ERR, and fw_err */ if (fw_state == FW_EMPTY) __obtain_firmware(dd); mutex_unlock(&fw_mutex); return fw_err; } /* * Called when the driver unloads. The timing is asymmetric with its * counterpart, obtain_firmware(). If called at device remove time, * then it is conceivable that another device could probe while the * firmware is being disposed. The mutexes can be moved to do that * safely, but then the firmware would be requested from the OS multiple * times. * * No mutex is needed as the driver is unloading and there cannot be any * other callers. */ void dispose_firmware(void) { dispose_one_firmware(&fw_8051); dispose_one_firmware(&fw_fabric); dispose_one_firmware(&fw_pcie); dispose_one_firmware(&fw_sbus); /* retain the error state, otherwise revert to empty */ if (fw_state != FW_ERR) fw_state = FW_EMPTY; } /* * Called with the result of a firmware download. * * Return 1 to retry loading the firmware, 0 to stop. */ static int retry_firmware(struct hfi1_devdata *dd, int load_result) { int retry; mutex_lock(&fw_mutex); if (load_result == 0) { /* * The load succeeded, so expect all others to do the same. * Do not retry again. */ if (fw_state == FW_TRY) fw_state = FW_FINAL; retry = 0; /* do NOT retry */ } else if (fw_state == FW_TRY) { /* load failed, obtain alternate firmware */ __obtain_firmware(dd); retry = (fw_state == FW_FINAL); } else { /* else in FW_FINAL or FW_ERR, no retry in either case */ retry = 0; } mutex_unlock(&fw_mutex); return retry; } /* * Write a block of data to a given array CSR. All calls will be in * multiples of 8 bytes. */ static void write_rsa_data(struct hfi1_devdata *dd, int what, const u8 *data, int nbytes) { int qw_size = nbytes / 8; int i; if (((unsigned long)data & 0x7) == 0) { /* aligned */ u64 *ptr = (u64 *)data; for (i = 0; i < qw_size; i++, ptr++) write_csr(dd, what + (8 * i), *ptr); } else { /* not aligned */ for (i = 0; i < qw_size; i++, data += 8) { u64 value; memcpy(&value, data, 8); write_csr(dd, what + (8 * i), value); } } } /* * Write a block of data to a given CSR as a stream of writes. All calls will * be in multiples of 8 bytes. */ static void write_streamed_rsa_data(struct hfi1_devdata *dd, int what, const u8 *data, int nbytes) { u64 *ptr = (u64 *)data; int qw_size = nbytes / 8; for (; qw_size > 0; qw_size--, ptr++) write_csr(dd, what, *ptr); } /* * Download the signature and start the RSA mechanism. Wait for * RSA_ENGINE_TIMEOUT before giving up. */ static int run_rsa(struct hfi1_devdata *dd, const char *who, const u8 *signature) { unsigned long timeout; u64 reg; u32 status; int ret = 0; /* write the signature */ write_rsa_data(dd, MISC_CFG_RSA_SIGNATURE, signature, KEY_SIZE); /* initialize RSA */ write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_INIT); /* * Make sure the engine is idle and insert a delay between the two * writes to MISC_CFG_RSA_CMD. */ status = (read_csr(dd, MISC_CFG_FW_CTRL) & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK) >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT; if (status != RSA_STATUS_IDLE) { dd_dev_err(dd, "%s security engine not idle - giving up\n", who); return -EBUSY; } /* start RSA */ write_csr(dd, MISC_CFG_RSA_CMD, RSA_CMD_START); /* * Look for the result. * * The RSA engine is hooked up to two MISC errors. The driver * masks these errors as they do not respond to the standard * error "clear down" mechanism. Look for these errors here and * clear them when possible. This routine will exit with the * errors of the current run still set. * * MISC_FW_AUTH_FAILED_ERR * Firmware authorization failed. This can be cleared by * re-initializing the RSA engine, then clearing the status bit. * Do not re-init the RSA angine immediately after a successful * run - this will reset the current authorization. * * MISC_KEY_MISMATCH_ERR * Key does not match. The only way to clear this is to load * a matching key then clear the status bit. If this error * is raised, it will persist outside of this routine until a * matching key is loaded. */ timeout = msecs_to_jiffies(RSA_ENGINE_TIMEOUT) + jiffies; while (1) { status = (read_csr(dd, MISC_CFG_FW_CTRL) & MISC_CFG_FW_CTRL_RSA_STATUS_SMASK) >> MISC_CFG_FW_CTRL_RSA_STATUS_SHIFT; if (status == RSA_STATUS_IDLE) { /* should not happen */ dd_dev_err(dd, "%s firmware security bad idle state\n", who); ret = -EINVAL; break; } else if (status == RSA_STATUS_DONE) { /* finished successfully */ break; } else if (status == RSA_STATUS_FAILED) { /* finished unsuccessfully */ ret = -EINVAL; break; } /* else still active */ if (time_after(jiffies, timeout)) { /* * Timed out while active. We can't reset the engine * if it is stuck active, but run through the * error code to see what error bits are set. */ dd_dev_err(dd, "%s firmware security time out\n", who); ret = -ETIMEDOUT; break; } msleep(20); } /* * Arrive here on success or failure. Clear all RSA engine * errors. All current errors will stick - the RSA logic is keeping * error high. All previous errors will clear - the RSA logic * is not keeping the error high. */ write_csr(dd, MISC_ERR_CLEAR, MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK | MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK); /* * All that is left are the current errors. Print warnings on * authorization failure details, if any. Firmware authorization * can be retried, so these are only warnings. */ reg = read_csr(dd, MISC_ERR_STATUS); if (ret) { if (reg & MISC_ERR_STATUS_MISC_FW_AUTH_FAILED_ERR_SMASK) dd_dev_warn(dd, "%s firmware authorization failed\n", who); if (reg & MISC_ERR_STATUS_MISC_KEY_MISMATCH_ERR_SMASK) dd_dev_warn(dd, "%s firmware key mismatch\n", who); } return ret; } static void load_security_variables(struct hfi1_devdata *dd, struct firmware_details *fdet) { /* Security variables a. Write the modulus */ write_rsa_data(dd, MISC_CFG_RSA_MODULUS, fdet->modulus, KEY_SIZE); /* Security variables b. Write the r2 */ write_rsa_data(dd, MISC_CFG_RSA_R2, fdet->r2, KEY_SIZE); /* Security variables c. Write the mu */ write_rsa_data(dd, MISC_CFG_RSA_MU, fdet->mu, MU_SIZE); /* Security variables d. Write the header */ write_streamed_rsa_data(dd, MISC_CFG_SHA_PRELOAD, (u8 *)fdet->css_header, sizeof(struct css_header)); } /* return the 8051 firmware state */ static inline u32 get_firmware_state(struct hfi1_devdata *dd) { u64 reg = read_csr(dd, DC_DC8051_STS_CUR_STATE); return (reg >> DC_DC8051_STS_CUR_STATE_FIRMWARE_SHIFT) & DC_DC8051_STS_CUR_STATE_FIRMWARE_MASK; } /* * Wait until the firmware is up and ready to take host requests. * Return 0 on success, -ETIMEDOUT on timeout. */ int wait_fm_ready(struct hfi1_devdata *dd, u32 mstimeout) { unsigned long timeout; /* in the simulator, the fake 8051 is always ready */ if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) return 0; timeout = msecs_to_jiffies(mstimeout) + jiffies; while (1) { if (get_firmware_state(dd) == 0xa0) /* ready */ return 0; if (time_after(jiffies, timeout)) /* timed out */ return -ETIMEDOUT; usleep_range(1950, 2050); /* sleep 2ms-ish */ } } /* * Load the 8051 firmware. */ static int load_8051_firmware(struct hfi1_devdata *dd, struct firmware_details *fdet) { u64 reg; int ret; u8 ver_major; u8 ver_minor; u8 ver_patch; /* * DC Reset sequence * Load DC 8051 firmware */ /* * DC reset step 1: Reset DC8051 */ reg = DC_DC8051_CFG_RST_M8051W_SMASK | DC_DC8051_CFG_RST_CRAM_SMASK | DC_DC8051_CFG_RST_DRAM_SMASK | DC_DC8051_CFG_RST_IRAM_SMASK | DC_DC8051_CFG_RST_SFR_SMASK; write_csr(dd, DC_DC8051_CFG_RST, reg); /* * DC reset step 2 (optional): Load 8051 data memory with link * configuration */ /* * DC reset step 3: Load DC8051 firmware */ /* release all but the core reset */ reg = DC_DC8051_CFG_RST_M8051W_SMASK; write_csr(dd, DC_DC8051_CFG_RST, reg); /* Firmware load step 1 */ load_security_variables(dd, fdet); /* * Firmware load step 2. Clear MISC_CFG_FW_CTRL.FW_8051_LOADED */ write_csr(dd, MISC_CFG_FW_CTRL, 0); /* Firmware load steps 3-5 */ ret = write_8051(dd, 1/*code*/, 0, fdet->firmware_ptr, fdet->firmware_len); if (ret) return ret; /* * DC reset step 4. Host starts the DC8051 firmware */ /* * Firmware load step 6. Set MISC_CFG_FW_CTRL.FW_8051_LOADED */ write_csr(dd, MISC_CFG_FW_CTRL, MISC_CFG_FW_CTRL_FW_8051_LOADED_SMASK); /* Firmware load steps 7-10 */ ret = run_rsa(dd, "8051", fdet->signature); if (ret) return ret; /* clear all reset bits, releasing the 8051 */ write_csr(dd, DC_DC8051_CFG_RST, 0ull); /* * DC reset step 5. Wait for firmware to be ready to accept host * requests. */ ret = wait_fm_ready(dd, TIMEOUT_8051_START); if (ret) { /* timed out */ dd_dev_err(dd, "8051 start timeout, current state 0x%x\n", get_firmware_state(dd)); return -ETIMEDOUT; } read_misc_status(dd, &ver_major, &ver_minor, &ver_patch); dd_dev_info(dd, "8051 firmware version %d.%d.%d\n", (int)ver_major, (int)ver_minor, (int)ver_patch); dd->dc8051_ver = dc8051_ver(ver_major, ver_minor, ver_patch); ret = write_host_interface_version(dd, HOST_INTERFACE_VERSION); if (ret != HCMD_SUCCESS) { dd_dev_err(dd, "Failed to set host interface version, return 0x%x\n", ret); return -EIO; } return 0; } /* * Write the SBus request register * * No need for masking - the arguments are sized exactly. */ void sbus_request(struct hfi1_devdata *dd, u8 receiver_addr, u8 data_addr, u8 command, u32 data_in) { write_csr(dd, ASIC_CFG_SBUS_REQUEST, ((u64)data_in << ASIC_CFG_SBUS_REQUEST_DATA_IN_SHIFT) | ((u64)command << ASIC_CFG_SBUS_REQUEST_COMMAND_SHIFT) | ((u64)data_addr << ASIC_CFG_SBUS_REQUEST_DATA_ADDR_SHIFT) | ((u64)receiver_addr << ASIC_CFG_SBUS_REQUEST_RECEIVER_ADDR_SHIFT)); } /* * Read a value from the SBus. * * Requires the caller to be in fast mode */ static u32 sbus_read(struct hfi1_devdata *dd, u8 receiver_addr, u8 data_addr, u32 data_in) { u64 reg; int retries; int success = 0; u32 result = 0; u32 result_code = 0; sbus_request(dd, receiver_addr, data_addr, READ_SBUS_RECEIVER, data_in); for (retries = 0; retries < 100; retries++) { usleep_range(1000, 1200); /* arbitrary */ reg = read_csr(dd, ASIC_STS_SBUS_RESULT); result_code = (reg >> ASIC_STS_SBUS_RESULT_RESULT_CODE_SHIFT) & ASIC_STS_SBUS_RESULT_RESULT_CODE_MASK; if (result_code != SBUS_READ_COMPLETE) continue; success = 1; result = (reg >> ASIC_STS_SBUS_RESULT_DATA_OUT_SHIFT) & ASIC_STS_SBUS_RESULT_DATA_OUT_MASK; break; } if (!success) { dd_dev_err(dd, "%s: read failed, result code 0x%x\n", __func__, result_code); } return result; } /* * Turn off the SBus and fabric serdes spicos. * * + Must be called with Sbus fast mode turned on. * + Must be called after fabric serdes broadcast is set up. * + Must be called before the 8051 is loaded - assumes 8051 is not loaded * when using MISC_CFG_FW_CTRL. */ static void turn_off_spicos(struct hfi1_devdata *dd, int flags) { /* only needed on A0 */ if (!is_ax(dd)) return; dd_dev_info(dd, "Turning off spicos:%s%s\n", flags & SPICO_SBUS ? " SBus" : "", flags & SPICO_FABRIC ? " fabric" : ""); write_csr(dd, MISC_CFG_FW_CTRL, ENABLE_SPICO_SMASK); /* disable SBus spico */ if (flags & SPICO_SBUS) sbus_request(dd, SBUS_MASTER_BROADCAST, 0x01, WRITE_SBUS_RECEIVER, 0x00000040); /* disable the fabric serdes spicos */ if (flags & SPICO_FABRIC) sbus_request(dd, fabric_serdes_broadcast[dd->hfi1_id], 0x07, WRITE_SBUS_RECEIVER, 0x00000000); write_csr(dd, MISC_CFG_FW_CTRL, 0); } /* * Reset all of the fabric serdes for this HFI in preparation to take the * link to Polling. * * To do a reset, we need to write to the serdes registers. Unfortunately, * the fabric serdes download to the other HFI on the ASIC will have turned * off the firmware validation on this HFI. This means we can't write to the * registers to reset the serdes. Work around this by performing a complete * re-download and validation of the fabric serdes firmware. This, as a * by-product, will reset the serdes. NOTE: the re-download requires that * the 8051 be in the Offline state. I.e. not actively trying to use the * serdes. This routine is called at the point where the link is Offline and * is getting ready to go to Polling. */ void fabric_serdes_reset(struct hfi1_devdata *dd) { int ret; if (!fw_fabric_serdes_load) return; ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT); if (ret) { dd_dev_err(dd, "Cannot acquire SBus resource to reset fabric SerDes - perhaps you should reboot\n"); return; } set_sbus_fast_mode(dd); if (is_ax(dd)) { /* A0 serdes do not work with a re-download */ u8 ra = fabric_serdes_broadcast[dd->hfi1_id]; /* place SerDes in reset and disable SPICO */ sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011); /* wait 100 refclk cycles @ 156.25MHz => 640ns */ udelay(1); /* remove SerDes reset */ sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010); /* turn SPICO enable on */ sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002); } else { turn_off_spicos(dd, SPICO_FABRIC); /* * No need for firmware retry - what to download has already * been decided. * No need to pay attention to the load return - the only * failure is a validation failure, which has already been * checked by the initial download. */ (void)load_fabric_serdes_firmware(dd, &fw_fabric); } clear_sbus_fast_mode(dd); release_chip_resource(dd, CR_SBUS); } /* Access to the SBus in this routine should probably be serialized */ int sbus_request_slow(struct hfi1_devdata *dd, u8 receiver_addr, u8 data_addr, u8 command, u32 data_in) { u64 reg, count = 0; /* make sure fast mode is clear */ clear_sbus_fast_mode(dd); sbus_request(dd, receiver_addr, data_addr, command, data_in); write_csr(dd, ASIC_CFG_SBUS_EXECUTE, ASIC_CFG_SBUS_EXECUTE_EXECUTE_SMASK); /* Wait for both DONE and RCV_DATA_VALID to go high */ reg = read_csr(dd, ASIC_STS_SBUS_RESULT); while (!((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) && (reg & ASIC_STS_SBUS_RESULT_RCV_DATA_VALID_SMASK))) { if (count++ >= SBUS_MAX_POLL_COUNT) { u64 counts = read_csr(dd, ASIC_STS_SBUS_COUNTERS); /* * If the loop has timed out, we are OK if DONE bit * is set and RCV_DATA_VALID and EXECUTE counters * are the same. If not, we cannot proceed. */ if ((reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) && (SBUS_COUNTER(counts, RCV_DATA_VALID) == SBUS_COUNTER(counts, EXECUTE))) break; return -ETIMEDOUT; } udelay(1); reg = read_csr(dd, ASIC_STS_SBUS_RESULT); } count = 0; write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0); /* Wait for DONE to clear after EXECUTE is cleared */ reg = read_csr(dd, ASIC_STS_SBUS_RESULT); while (reg & ASIC_STS_SBUS_RESULT_DONE_SMASK) { if (count++ >= SBUS_MAX_POLL_COUNT) return -ETIME; udelay(1); reg = read_csr(dd, ASIC_STS_SBUS_RESULT); } return 0; } static int load_fabric_serdes_firmware(struct hfi1_devdata *dd, struct firmware_details *fdet) { int i, err; const u8 ra = fabric_serdes_broadcast[dd->hfi1_id]; /* receiver addr */ dd_dev_info(dd, "Downloading fabric firmware\n"); /* step 1: load security variables */ load_security_variables(dd, fdet); /* step 2: place SerDes in reset and disable SPICO */ sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000011); /* wait 100 refclk cycles @ 156.25MHz => 640ns */ udelay(1); /* step 3: remove SerDes reset */ sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000010); /* step 4: assert IMEM override */ sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x40000000); /* step 5: download SerDes machine code */ for (i = 0; i < fdet->firmware_len; i += 4) { sbus_request(dd, ra, 0x0a, WRITE_SBUS_RECEIVER, *(u32 *)&fdet->firmware_ptr[i]); } /* step 6: IMEM override off */ sbus_request(dd, ra, 0x00, WRITE_SBUS_RECEIVER, 0x00000000); /* step 7: turn ECC on */ sbus_request(dd, ra, 0x0b, WRITE_SBUS_RECEIVER, 0x000c0000); /* steps 8-11: run the RSA engine */ err = run_rsa(dd, "fabric serdes", fdet->signature); if (err) return err; /* step 12: turn SPICO enable on */ sbus_request(dd, ra, 0x07, WRITE_SBUS_RECEIVER, 0x00000002); /* step 13: enable core hardware interrupts */ sbus_request(dd, ra, 0x08, WRITE_SBUS_RECEIVER, 0x00000000); return 0; } static int load_sbus_firmware(struct hfi1_devdata *dd, struct firmware_details *fdet) { int i, err; const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */ dd_dev_info(dd, "Downloading SBus firmware\n"); /* step 1: load security variables */ load_security_variables(dd, fdet); /* step 2: place SPICO into reset and enable off */ sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x000000c0); /* step 3: remove reset, enable off, IMEM_CNTRL_EN on */ sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000240); /* step 4: set starting IMEM address for burst download */ sbus_request(dd, ra, 0x03, WRITE_SBUS_RECEIVER, 0x80000000); /* step 5: download the SBus Master machine code */ for (i = 0; i < fdet->firmware_len; i += 4) { sbus_request(dd, ra, 0x14, WRITE_SBUS_RECEIVER, *(u32 *)&fdet->firmware_ptr[i]); } /* step 6: set IMEM_CNTL_EN off */ sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000040); /* step 7: turn ECC on */ sbus_request(dd, ra, 0x16, WRITE_SBUS_RECEIVER, 0x000c0000); /* steps 8-11: run the RSA engine */ err = run_rsa(dd, "SBus", fdet->signature); if (err) return err; /* step 12: set SPICO_ENABLE on */ sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140); return 0; } static int load_pcie_serdes_firmware(struct hfi1_devdata *dd, struct firmware_details *fdet) { int i; const u8 ra = SBUS_MASTER_BROADCAST; /* receiver address */ dd_dev_info(dd, "Downloading PCIe firmware\n"); /* step 1: load security variables */ load_security_variables(dd, fdet); /* step 2: assert single step (halts the SBus Master spico) */ sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000001); /* step 3: enable XDMEM access */ sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000d40); /* step 4: load firmware into SBus Master XDMEM */ /* * NOTE: the dmem address, write_en, and wdata are all pre-packed, * we only need to pick up the bytes and write them */ for (i = 0; i < fdet->firmware_len; i += 4) { sbus_request(dd, ra, 0x04, WRITE_SBUS_RECEIVER, *(u32 *)&fdet->firmware_ptr[i]); } /* step 5: disable XDMEM access */ sbus_request(dd, ra, 0x01, WRITE_SBUS_RECEIVER, 0x00000140); /* step 6: allow SBus Spico to run */ sbus_request(dd, ra, 0x05, WRITE_SBUS_RECEIVER, 0x00000000); /* * steps 7-11: run RSA, if it succeeds, firmware is available to * be swapped */ return run_rsa(dd, "PCIe serdes", fdet->signature); } /* * Set the given broadcast values on the given list of devices. */ static void set_serdes_broadcast(struct hfi1_devdata *dd, u8 bg1, u8 bg2, const u8 *addrs, int count) { while (--count >= 0) { /* * Set BROADCAST_GROUP_1 and BROADCAST_GROUP_2, leave * defaults for everything else. Do not read-modify-write, * per instruction from the manufacturer. * * Register 0xfd: * bits what * ----- --------------------------------- * 0 IGNORE_BROADCAST (default 0) * 11:4 BROADCAST_GROUP_1 (default 0xff) * 23:16 BROADCAST_GROUP_2 (default 0xff) */ sbus_request(dd, addrs[count], 0xfd, WRITE_SBUS_RECEIVER, (u32)bg1 << 4 | (u32)bg2 << 16); } } int acquire_hw_mutex(struct hfi1_devdata *dd) { unsigned long timeout; int try = 0; u8 mask = 1 << dd->hfi1_id; u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX); if (user == mask) { dd_dev_info(dd, "Hardware mutex already acquired, mutex mask %u\n", (u32)mask); return 0; } retry: timeout = msecs_to_jiffies(HM_TIMEOUT) + jiffies; while (1) { write_csr(dd, ASIC_CFG_MUTEX, mask); user = (u8)read_csr(dd, ASIC_CFG_MUTEX); if (user == mask) return 0; /* success */ if (time_after(jiffies, timeout)) break; /* timed out */ msleep(20); } /* timed out */ dd_dev_err(dd, "Unable to acquire hardware mutex, mutex mask %u, my mask %u (%s)\n", (u32)user, (u32)mask, (try == 0) ? "retrying" : "giving up"); if (try == 0) { /* break mutex and retry */ write_csr(dd, ASIC_CFG_MUTEX, 0); try++; goto retry; } return -EBUSY; } void release_hw_mutex(struct hfi1_devdata *dd) { u8 mask = 1 << dd->hfi1_id; u8 user = (u8)read_csr(dd, ASIC_CFG_MUTEX); if (user != mask) dd_dev_warn(dd, "Unable to release hardware mutex, mutex mask %u, my mask %u\n", (u32)user, (u32)mask); else write_csr(dd, ASIC_CFG_MUTEX, 0); } /* return the given resource bit(s) as a mask for the given HFI */ static inline u64 resource_mask(u32 hfi1_id, u32 resource) { return ((u64)resource) << (hfi1_id ? CR_DYN_SHIFT : 0); } static void fail_mutex_acquire_message(struct hfi1_devdata *dd, const char *func) { dd_dev_err(dd, "%s: hardware mutex stuck - suggest rebooting the machine\n", func); } /* * Acquire access to a chip resource. * * Return 0 on success, -EBUSY if resource busy, -EIO if mutex acquire failed. */ static int __acquire_chip_resource(struct hfi1_devdata *dd, u32 resource) { u64 scratch0, all_bits, my_bit; int ret; if (resource & CR_DYN_MASK) { /* a dynamic resource is in use if either HFI has set the bit */ if (dd->pcidev->device == PCI_DEVICE_ID_INTEL0 && (resource & (CR_I2C1 | CR_I2C2))) { /* discrete devices must serialize across both chains */ all_bits = resource_mask(0, CR_I2C1 | CR_I2C2) | resource_mask(1, CR_I2C1 | CR_I2C2); } else { all_bits = resource_mask(0, resource) | resource_mask(1, resource); } my_bit = resource_mask(dd->hfi1_id, resource); } else { /* non-dynamic resources are not split between HFIs */ all_bits = resource; my_bit = resource; } /* lock against other callers within the driver wanting a resource */ mutex_lock(&dd->asic_data->asic_resource_mutex); ret = acquire_hw_mutex(dd); if (ret) { fail_mutex_acquire_message(dd, __func__); ret = -EIO; goto done; } scratch0 = read_csr(dd, ASIC_CFG_SCRATCH); if (scratch0 & all_bits) { ret = -EBUSY; } else { write_csr(dd, ASIC_CFG_SCRATCH, scratch0 | my_bit); /* force write to be visible to other HFI on another OS */ (void)read_csr(dd, ASIC_CFG_SCRATCH); } release_hw_mutex(dd); done: mutex_unlock(&dd->asic_data->asic_resource_mutex); return ret; } /* * Acquire access to a chip resource, wait up to mswait milliseconds for * the resource to become available. * * Return 0 on success, -EBUSY if busy (even after wait), -EIO if mutex * acquire failed. */ int acquire_chip_resource(struct hfi1_devdata *dd, u32 resource, u32 mswait) { unsigned long timeout; int ret; timeout = jiffies + msecs_to_jiffies(mswait); while (1) { ret = __acquire_chip_resource(dd, resource); if (ret != -EBUSY) return ret; /* resource is busy, check our timeout */ if (time_after_eq(jiffies, timeout)) return -EBUSY; usleep_range(80, 120); /* arbitrary delay */ } } /* * Release access to a chip resource */ void release_chip_resource(struct hfi1_devdata *dd, u32 resource) { u64 scratch0, bit; /* only dynamic resources should ever be cleared */ if (!(resource & CR_DYN_MASK)) { dd_dev_err(dd, "%s: invalid resource 0x%x\n", __func__, resource); return; } bit = resource_mask(dd->hfi1_id, resource); /* lock against other callers within the driver wanting a resource */ mutex_lock(&dd->asic_data->asic_resource_mutex); if (acquire_hw_mutex(dd)) { fail_mutex_acquire_message(dd, __func__); goto done; } scratch0 = read_csr(dd, ASIC_CFG_SCRATCH); if ((scratch0 & bit) != 0) { scratch0 &= ~bit; write_csr(dd, ASIC_CFG_SCRATCH, scratch0); /* force write to be visible to other HFI on another OS */ (void)read_csr(dd, ASIC_CFG_SCRATCH); } else { dd_dev_warn(dd, "%s: id %d, resource 0x%x: bit not set\n", __func__, dd->hfi1_id, resource); } release_hw_mutex(dd); done: mutex_unlock(&dd->asic_data->asic_resource_mutex); } /* * Return true if resource is set, false otherwise. Print a warning * if not set and a function is supplied. */ bool check_chip_resource(struct hfi1_devdata *dd, u32 resource, const char *func) { u64 scratch0, bit; if (resource & CR_DYN_MASK) bit = resource_mask(dd->hfi1_id, resource); else bit = resource; scratch0 = read_csr(dd, ASIC_CFG_SCRATCH); if ((scratch0 & bit) == 0) { if (func) dd_dev_warn(dd, "%s: id %d, resource 0x%x, not acquired!\n", func, dd->hfi1_id, resource); return false; } return true; } static void clear_chip_resources(struct hfi1_devdata *dd, const char *func) { u64 scratch0; /* lock against other callers within the driver wanting a resource */ mutex_lock(&dd->asic_data->asic_resource_mutex); if (acquire_hw_mutex(dd)) { fail_mutex_acquire_message(dd, func); goto done; } /* clear all dynamic access bits for this HFI */ scratch0 = read_csr(dd, ASIC_CFG_SCRATCH); scratch0 &= ~resource_mask(dd->hfi1_id, CR_DYN_MASK); write_csr(dd, ASIC_CFG_SCRATCH, scratch0); /* force write to be visible to other HFI on another OS */ (void)read_csr(dd, ASIC_CFG_SCRATCH); release_hw_mutex(dd); done: mutex_unlock(&dd->asic_data->asic_resource_mutex); } void init_chip_resources(struct hfi1_devdata *dd) { /* clear any holds left by us */ clear_chip_resources(dd, __func__); } void finish_chip_resources(struct hfi1_devdata *dd) { /* clear any holds left by us */ clear_chip_resources(dd, __func__); } void set_sbus_fast_mode(struct hfi1_devdata *dd) { write_csr(dd, ASIC_CFG_SBUS_EXECUTE, ASIC_CFG_SBUS_EXECUTE_FAST_MODE_SMASK); } void clear_sbus_fast_mode(struct hfi1_devdata *dd) { u64 reg, count = 0; reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS); while (SBUS_COUNTER(reg, EXECUTE) != SBUS_COUNTER(reg, RCV_DATA_VALID)) { if (count++ >= SBUS_MAX_POLL_COUNT) break; udelay(1); reg = read_csr(dd, ASIC_STS_SBUS_COUNTERS); } write_csr(dd, ASIC_CFG_SBUS_EXECUTE, 0); } int load_firmware(struct hfi1_devdata *dd) { int ret; if (fw_fabric_serdes_load) { ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT); if (ret) return ret; set_sbus_fast_mode(dd); set_serdes_broadcast(dd, all_fabric_serdes_broadcast, fabric_serdes_broadcast[dd->hfi1_id], fabric_serdes_addrs[dd->hfi1_id], NUM_FABRIC_SERDES); turn_off_spicos(dd, SPICO_FABRIC); do { ret = load_fabric_serdes_firmware(dd, &fw_fabric); } while (retry_firmware(dd, ret)); clear_sbus_fast_mode(dd); release_chip_resource(dd, CR_SBUS); if (ret) return ret; } if (fw_8051_load) { do { ret = load_8051_firmware(dd, &fw_8051); } while (retry_firmware(dd, ret)); if (ret) return ret; } dump_fw_version(dd); return 0; } int hfi1_firmware_init(struct hfi1_devdata *dd) { /* only RTL can use these */ if (dd->icode != ICODE_RTL_SILICON) { fw_fabric_serdes_load = 0; fw_pcie_serdes_load = 0; fw_sbus_load = 0; } /* no 8051 or QSFP on simulator */ if (dd->icode == ICODE_FUNCTIONAL_SIMULATOR) fw_8051_load = 0; if (!fw_8051_name) { if (dd->icode == ICODE_RTL_SILICON) fw_8051_name = DEFAULT_FW_8051_NAME_ASIC; else fw_8051_name = DEFAULT_FW_8051_NAME_FPGA; } if (!fw_fabric_serdes_name) fw_fabric_serdes_name = DEFAULT_FW_FABRIC_NAME; if (!fw_sbus_name) fw_sbus_name = DEFAULT_FW_SBUS_NAME; if (!fw_pcie_serdes_name) fw_pcie_serdes_name = DEFAULT_FW_PCIE_NAME; return obtain_firmware(dd); } /* * This function is a helper function for parse_platform_config(...) and * does not check for validity of the platform configuration cache * (because we know it is invalid as we are building up the cache). * As such, this should not be called from anywhere other than * parse_platform_config */ static int check_meta_version(struct hfi1_devdata *dd, u32 *system_table) { u32 meta_ver, meta_ver_meta, ver_start, ver_len, mask; struct platform_config_cache *pcfgcache = &dd->pcfg_cache; if (!system_table) return -EINVAL; meta_ver_meta = *(pcfgcache->config_tables[PLATFORM_CONFIG_SYSTEM_TABLE].table_metadata + SYSTEM_TABLE_META_VERSION); mask = ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1); ver_start = meta_ver_meta & mask; meta_ver_meta >>= METADATA_TABLE_FIELD_LEN_SHIFT; mask = ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1); ver_len = meta_ver_meta & mask; ver_start /= 8; meta_ver = *((u8 *)system_table + ver_start) & ((1 << ver_len) - 1); if (meta_ver < 4) { dd_dev_info( dd, "%s:Please update platform config\n", __func__); return -EINVAL; } return 0; } int parse_platform_config(struct hfi1_devdata *dd) { struct platform_config_cache *pcfgcache = &dd->pcfg_cache; struct hfi1_pportdata *ppd = dd->pport; u32 *ptr = NULL; u32 header1 = 0, header2 = 0, magic_num = 0, crc = 0, file_length = 0; u32 record_idx = 0, table_type = 0, table_length_dwords = 0; int ret = -EINVAL; /* assume failure */ /* * For integrated devices that did not fall back to the default file, * the SI tuning information for active channels is acquired from the * scratch register bitmap, thus there is no platform config to parse. * Skip parsing in these situations. */ if (ppd->config_from_scratch) return 0; if (!dd->platform_config.data) { dd_dev_err(dd, "%s: Missing config file\n", __func__); ret = -EINVAL; goto bail; } ptr = (u32 *)dd->platform_config.data; magic_num = *ptr; ptr++; if (magic_num != PLATFORM_CONFIG_MAGIC_NUM) { dd_dev_err(dd, "%s: Bad config file\n", __func__); ret = -EINVAL; goto bail; } /* Field is file size in DWORDs */ file_length = (*ptr) * 4; /* * Length can't be larger than partition size. Assume platform * config format version 4 is being used. Interpret the file size * field as header instead by not moving the pointer. */ if (file_length > MAX_PLATFORM_CONFIG_FILE_SIZE) { dd_dev_info(dd, "%s:File length out of bounds, using alternative format\n", __func__); file_length = PLATFORM_CONFIG_FORMAT_4_FILE_SIZE; } else { ptr++; } if (file_length > dd->platform_config.size) { dd_dev_info(dd, "%s:File claims to be larger than read size\n", __func__); ret = -EINVAL; goto bail; } else if (file_length < dd->platform_config.size) { dd_dev_info(dd, "%s:File claims to be smaller than read size, continuing\n", __func__); } /* exactly equal, perfection */ /* * In both cases where we proceed, using the self-reported file length * is the safer option. In case of old format a predefined value is * being used. */ while (ptr < (u32 *)(dd->platform_config.data + file_length)) { header1 = *ptr; header2 = *(ptr + 1); if (header1 != ~header2) { dd_dev_err(dd, "%s: Failed validation at offset %ld\n", __func__, (ptr - (u32 *) dd->platform_config.data)); ret = -EINVAL; goto bail; } record_idx = *ptr & ((1 << PLATFORM_CONFIG_HEADER_RECORD_IDX_LEN_BITS) - 1); table_length_dwords = (*ptr >> PLATFORM_CONFIG_HEADER_TABLE_LENGTH_SHIFT) & ((1 << PLATFORM_CONFIG_HEADER_TABLE_LENGTH_LEN_BITS) - 1); table_type = (*ptr >> PLATFORM_CONFIG_HEADER_TABLE_TYPE_SHIFT) & ((1 << PLATFORM_CONFIG_HEADER_TABLE_TYPE_LEN_BITS) - 1); /* Done with this set of headers */ ptr += 2; if (record_idx) { /* data table */ switch (table_type) { case PLATFORM_CONFIG_SYSTEM_TABLE: pcfgcache->config_tables[table_type].num_table = 1; ret = check_meta_version(dd, ptr); if (ret) goto bail; break; case PLATFORM_CONFIG_PORT_TABLE: pcfgcache->config_tables[table_type].num_table = 2; break; case PLATFORM_CONFIG_RX_PRESET_TABLE: case PLATFORM_CONFIG_TX_PRESET_TABLE: case PLATFORM_CONFIG_QSFP_ATTEN_TABLE: case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE: pcfgcache->config_tables[table_type].num_table = table_length_dwords; break; default: dd_dev_err(dd, "%s: Unknown data table %d, offset %ld\n", __func__, table_type, (ptr - (u32 *) dd->platform_config.data)); ret = -EINVAL; goto bail; /* We don't trust this file now */ } pcfgcache->config_tables[table_type].table = ptr; } else { /* metadata table */ switch (table_type) { case PLATFORM_CONFIG_SYSTEM_TABLE: case PLATFORM_CONFIG_PORT_TABLE: case PLATFORM_CONFIG_RX_PRESET_TABLE: case PLATFORM_CONFIG_TX_PRESET_TABLE: case PLATFORM_CONFIG_QSFP_ATTEN_TABLE: case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE: break; default: dd_dev_err(dd, "%s: Unknown meta table %d, offset %ld\n", __func__, table_type, (ptr - (u32 *)dd->platform_config.data)); ret = -EINVAL; goto bail; /* We don't trust this file now */ } pcfgcache->config_tables[table_type].table_metadata = ptr; } /* Calculate and check table crc */ crc = crc32_le(~(u32)0, (unsigned char const *)ptr, (table_length_dwords * 4)); crc ^= ~(u32)0; /* Jump the table */ ptr += table_length_dwords; if (crc != *ptr) { dd_dev_err(dd, "%s: Failed CRC check at offset %ld\n", __func__, (ptr - (u32 *)dd->platform_config.data)); ret = -EINVAL; goto bail; } /* Jump the CRC DWORD */ ptr++; } pcfgcache->cache_valid = 1; return 0; bail: memset(pcfgcache, 0, sizeof(struct platform_config_cache)); return ret; } static void get_integrated_platform_config_field( struct hfi1_devdata *dd, enum platform_config_table_type_encoding table_type, int field_index, u32 *data) { struct hfi1_pportdata *ppd = dd->pport; u8 *cache = ppd->qsfp_info.cache; u32 tx_preset = 0; switch (table_type) { case PLATFORM_CONFIG_SYSTEM_TABLE: if (field_index == SYSTEM_TABLE_QSFP_POWER_CLASS_MAX) *data = ppd->max_power_class; else if (field_index == SYSTEM_TABLE_QSFP_ATTENUATION_DEFAULT_25G) *data = ppd->default_atten; break; case PLATFORM_CONFIG_PORT_TABLE: if (field_index == PORT_TABLE_PORT_TYPE) *data = ppd->port_type; else if (field_index == PORT_TABLE_LOCAL_ATTEN_25G) *data = ppd->local_atten; else if (field_index == PORT_TABLE_REMOTE_ATTEN_25G) *data = ppd->remote_atten; break; case PLATFORM_CONFIG_RX_PRESET_TABLE: if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR_APPLY) *data = (ppd->rx_preset & QSFP_RX_CDR_APPLY_SMASK) >> QSFP_RX_CDR_APPLY_SHIFT; else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP_APPLY) *data = (ppd->rx_preset & QSFP_RX_EMP_APPLY_SMASK) >> QSFP_RX_EMP_APPLY_SHIFT; else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP_APPLY) *data = (ppd->rx_preset & QSFP_RX_AMP_APPLY_SMASK) >> QSFP_RX_AMP_APPLY_SHIFT; else if (field_index == RX_PRESET_TABLE_QSFP_RX_CDR) *data = (ppd->rx_preset & QSFP_RX_CDR_SMASK) >> QSFP_RX_CDR_SHIFT; else if (field_index == RX_PRESET_TABLE_QSFP_RX_EMP) *data = (ppd->rx_preset & QSFP_RX_EMP_SMASK) >> QSFP_RX_EMP_SHIFT; else if (field_index == RX_PRESET_TABLE_QSFP_RX_AMP) *data = (ppd->rx_preset & QSFP_RX_AMP_SMASK) >> QSFP_RX_AMP_SHIFT; break; case PLATFORM_CONFIG_TX_PRESET_TABLE: if (cache[QSFP_EQ_INFO_OFFS] & 0x4) tx_preset = ppd->tx_preset_eq; else tx_preset = ppd->tx_preset_noeq; if (field_index == TX_PRESET_TABLE_PRECUR) *data = (tx_preset & TX_PRECUR_SMASK) >> TX_PRECUR_SHIFT; else if (field_index == TX_PRESET_TABLE_ATTN) *data = (tx_preset & TX_ATTN_SMASK) >> TX_ATTN_SHIFT; else if (field_index == TX_PRESET_TABLE_POSTCUR) *data = (tx_preset & TX_POSTCUR_SMASK) >> TX_POSTCUR_SHIFT; else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR_APPLY) *data = (tx_preset & QSFP_TX_CDR_APPLY_SMASK) >> QSFP_TX_CDR_APPLY_SHIFT; else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ_APPLY) *data = (tx_preset & QSFP_TX_EQ_APPLY_SMASK) >> QSFP_TX_EQ_APPLY_SHIFT; else if (field_index == TX_PRESET_TABLE_QSFP_TX_CDR) *data = (tx_preset & QSFP_TX_CDR_SMASK) >> QSFP_TX_CDR_SHIFT; else if (field_index == TX_PRESET_TABLE_QSFP_TX_EQ) *data = (tx_preset & QSFP_TX_EQ_SMASK) >> QSFP_TX_EQ_SHIFT; break; case PLATFORM_CONFIG_QSFP_ATTEN_TABLE: case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE: default: break; } } static int get_platform_fw_field_metadata(struct hfi1_devdata *dd, int table, int field, u32 *field_len_bits, u32 *field_start_bits) { struct platform_config_cache *pcfgcache = &dd->pcfg_cache; u32 *src_ptr = NULL; if (!pcfgcache->cache_valid) return -EINVAL; switch (table) { case PLATFORM_CONFIG_SYSTEM_TABLE: case PLATFORM_CONFIG_PORT_TABLE: case PLATFORM_CONFIG_RX_PRESET_TABLE: case PLATFORM_CONFIG_TX_PRESET_TABLE: case PLATFORM_CONFIG_QSFP_ATTEN_TABLE: case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE: if (field && field < platform_config_table_limits[table]) src_ptr = pcfgcache->config_tables[table].table_metadata + field; break; default: dd_dev_info(dd, "%s: Unknown table\n", __func__); break; } if (!src_ptr) return -EINVAL; if (field_start_bits) *field_start_bits = *src_ptr & ((1 << METADATA_TABLE_FIELD_START_LEN_BITS) - 1); if (field_len_bits) *field_len_bits = (*src_ptr >> METADATA_TABLE_FIELD_LEN_SHIFT) & ((1 << METADATA_TABLE_FIELD_LEN_LEN_BITS) - 1); return 0; } /* This is the central interface to getting data out of the platform config * file. It depends on parse_platform_config() having populated the * platform_config_cache in hfi1_devdata, and checks the cache_valid member to * validate the sanity of the cache. * * The non-obvious parameters: * @table_index: Acts as a look up key into which instance of the tables the * relevant field is fetched from. * * This applies to the data tables that have multiple instances. The port table * is an exception to this rule as each HFI only has one port and thus the * relevant table can be distinguished by hfi_id. * * @data: pointer to memory that will be populated with the field requested. * @len: length of memory pointed by @data in bytes. */ int get_platform_config_field(struct hfi1_devdata *dd, enum platform_config_table_type_encoding table_type, int table_index, int field_index, u32 *data, u32 len) { int ret = 0, wlen = 0, seek = 0; u32 field_len_bits = 0, field_start_bits = 0, *src_ptr = NULL; struct platform_config_cache *pcfgcache = &dd->pcfg_cache; struct hfi1_pportdata *ppd = dd->pport; if (data) memset(data, 0, len); else return -EINVAL; if (ppd->config_from_scratch) { /* * Use saved configuration from ppd for integrated platforms */ get_integrated_platform_config_field(dd, table_type, field_index, data); return 0; } ret = get_platform_fw_field_metadata(dd, table_type, field_index, &field_len_bits, &field_start_bits); if (ret) return -EINVAL; /* Convert length to bits */ len *= 8; /* Our metadata function checked cache_valid and field_index for us */ switch (table_type) { case PLATFORM_CONFIG_SYSTEM_TABLE: src_ptr = pcfgcache->config_tables[table_type].table; if (field_index != SYSTEM_TABLE_QSFP_POWER_CLASS_MAX) { if (len < field_len_bits) return -EINVAL; seek = field_start_bits / 8; wlen = field_len_bits / 8; src_ptr = (u32 *)((u8 *)src_ptr + seek); /* * We expect the field to be byte aligned and whole byte * lengths if we are here */ memcpy(data, src_ptr, wlen); return 0; } break; case PLATFORM_CONFIG_PORT_TABLE: /* Port table is 4 DWORDS */ src_ptr = dd->hfi1_id ? pcfgcache->config_tables[table_type].table + 4 : pcfgcache->config_tables[table_type].table; break; case PLATFORM_CONFIG_RX_PRESET_TABLE: case PLATFORM_CONFIG_TX_PRESET_TABLE: case PLATFORM_CONFIG_QSFP_ATTEN_TABLE: case PLATFORM_CONFIG_VARIABLE_SETTINGS_TABLE: src_ptr = pcfgcache->config_tables[table_type].table; if (table_index < pcfgcache->config_tables[table_type].num_table) src_ptr += table_index; else src_ptr = NULL; break; default: dd_dev_info(dd, "%s: Unknown table\n", __func__); break; } if (!src_ptr || len < field_len_bits) return -EINVAL; src_ptr += (field_start_bits / 32); *data = (*src_ptr >> (field_start_bits % 32)) & ((1 << field_len_bits) - 1); return 0; } /* * Download the firmware needed for the Gen3 PCIe SerDes. An update * to the SBus firmware is needed before updating the PCIe firmware. * * Note: caller must be holding the SBus resource. */ int load_pcie_firmware(struct hfi1_devdata *dd) { int ret = 0; /* both firmware loads below use the SBus */ set_sbus_fast_mode(dd); if (fw_sbus_load) { turn_off_spicos(dd, SPICO_SBUS); do { ret = load_sbus_firmware(dd, &fw_sbus); } while (retry_firmware(dd, ret)); if (ret) goto done; } if (fw_pcie_serdes_load) { dd_dev_info(dd, "Setting PCIe SerDes broadcast\n"); set_serdes_broadcast(dd, all_pcie_serdes_broadcast, pcie_serdes_broadcast[dd->hfi1_id], pcie_serdes_addrs[dd->hfi1_id], NUM_PCIE_SERDES); do { ret = load_pcie_serdes_firmware(dd, &fw_pcie); } while (retry_firmware(dd, ret)); if (ret) goto done; } done: clear_sbus_fast_mode(dd); return ret; } /* * Read the GUID from the hardware, store it in dd. */ void read_guid(struct hfi1_devdata *dd) { /* Take the DC out of reset to get a valid GUID value */ write_csr(dd, CCE_DC_CTRL, 0); (void)read_csr(dd, CCE_DC_CTRL); dd->base_guid = read_csr(dd, DC_DC8051_CFG_LOCAL_GUID); dd_dev_info(dd, "GUID %llx", (unsigned long long)dd->base_guid); } /* read and display firmware version info */ static void dump_fw_version(struct hfi1_devdata *dd) { u32 pcie_vers[NUM_PCIE_SERDES]; u32 fabric_vers[NUM_FABRIC_SERDES]; u32 sbus_vers; int i; int all_same; int ret; u8 rcv_addr; ret = acquire_chip_resource(dd, CR_SBUS, SBUS_TIMEOUT); if (ret) { dd_dev_err(dd, "Unable to acquire SBus to read firmware versions\n"); return; } /* set fast mode */ set_sbus_fast_mode(dd); /* read version for SBus Master */ sbus_request(dd, SBUS_MASTER_BROADCAST, 0x02, WRITE_SBUS_RECEIVER, 0); sbus_request(dd, SBUS_MASTER_BROADCAST, 0x07, WRITE_SBUS_RECEIVER, 0x1); /* wait for interrupt to be processed */ usleep_range(10000, 11000); sbus_vers = sbus_read(dd, SBUS_MASTER_BROADCAST, 0x08, 0x1); dd_dev_info(dd, "SBus Master firmware version 0x%08x\n", sbus_vers); /* read version for PCIe SerDes */ all_same = 1; pcie_vers[0] = 0; for (i = 0; i < NUM_PCIE_SERDES; i++) { rcv_addr = pcie_serdes_addrs[dd->hfi1_id][i]; sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0); /* wait for interrupt to be processed */ usleep_range(10000, 11000); pcie_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0); if (i > 0 && pcie_vers[0] != pcie_vers[i]) all_same = 0; } if (all_same) { dd_dev_info(dd, "PCIe SerDes firmware version 0x%x\n", pcie_vers[0]); } else { dd_dev_warn(dd, "PCIe SerDes do not have the same firmware version\n"); for (i = 0; i < NUM_PCIE_SERDES; i++) { dd_dev_info(dd, "PCIe SerDes lane %d firmware version 0x%x\n", i, pcie_vers[i]); } } /* read version for fabric SerDes */ all_same = 1; fabric_vers[0] = 0; for (i = 0; i < NUM_FABRIC_SERDES; i++) { rcv_addr = fabric_serdes_addrs[dd->hfi1_id][i]; sbus_request(dd, rcv_addr, 0x03, WRITE_SBUS_RECEIVER, 0); /* wait for interrupt to be processed */ usleep_range(10000, 11000); fabric_vers[i] = sbus_read(dd, rcv_addr, 0x04, 0x0); if (i > 0 && fabric_vers[0] != fabric_vers[i]) all_same = 0; } if (all_same) { dd_dev_info(dd, "Fabric SerDes firmware version 0x%x\n", fabric_vers[0]); } else { dd_dev_warn(dd, "Fabric SerDes do not have the same firmware version\n"); for (i = 0; i < NUM_FABRIC_SERDES; i++) { dd_dev_info(dd, "Fabric SerDes lane %d firmware version 0x%x\n", i, fabric_vers[i]); } } clear_sbus_fast_mode(dd); release_chip_resource(dd, CR_SBUS); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1