Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mike Marciniszyn | 8601 | 56.28% | 38 | 28.36% |
Kaike Wan | 4555 | 29.81% | 29 | 21.64% |
Don Hiatt | 1075 | 7.03% | 12 | 8.96% |
Dennis Dalessandro | 351 | 2.30% | 13 | 9.70% |
Jianxin Xiong | 262 | 1.71% | 3 | 2.24% |
Sebastian Sanchez | 99 | 0.65% | 6 | 4.48% |
Mitko Haralanov | 97 | 0.63% | 5 | 3.73% |
Dasaratharaman Chandramouli | 58 | 0.38% | 1 | 0.75% |
Brian Welty | 44 | 0.29% | 5 | 3.73% |
Dean Luick | 39 | 0.26% | 2 | 1.49% |
Jubin John | 29 | 0.19% | 3 | 2.24% |
Gustavo A. R. Silva | 25 | 0.16% | 1 | 0.75% |
Venkata Sandeep Dhanalakota | 14 | 0.09% | 2 | 1.49% |
Ralph Campbell | 10 | 0.07% | 1 | 0.75% |
Ira Weiny | 5 | 0.03% | 1 | 0.75% |
Lee Jones | 4 | 0.03% | 2 | 1.49% |
Christoph Hellwig | 4 | 0.03% | 1 | 0.75% |
Harish Chegondi | 2 | 0.01% | 1 | 0.75% |
Nicolas Iooss | 1 | 0.01% | 1 | 0.75% |
Vennila Megavannan | 1 | 0.01% | 1 | 0.75% |
zhengbin | 1 | 0.01% | 1 | 0.75% |
Michael J. Ruhl | 1 | 0.01% | 1 | 0.75% |
Krzysztof Kozlowski | 1 | 0.01% | 1 | 0.75% |
Arthur Kepner | 1 | 0.01% | 1 | 0.75% |
Kamenee Arumugame | 1 | 0.01% | 1 | 0.75% |
caihuoqing | 1 | 0.01% | 1 | 0.75% |
Total | 15282 | 134 |
// SPDX-License-Identifier: GPL-2.0 OR BSD-3-Clause /* * Copyright(c) 2015 - 2018 Intel Corporation. */ #include <linux/io.h> #include <rdma/rdma_vt.h> #include <rdma/rdmavt_qp.h> #include "hfi.h" #include "qp.h" #include "rc.h" #include "verbs_txreq.h" #include "trace.h" struct rvt_ack_entry *find_prev_entry(struct rvt_qp *qp, u32 psn, u8 *prev, u8 *prev_ack, bool *scheduled) __must_hold(&qp->s_lock) { struct rvt_ack_entry *e = NULL; u8 i, p; bool s = true; for (i = qp->r_head_ack_queue; ; i = p) { if (i == qp->s_tail_ack_queue) s = false; if (i) p = i - 1; else p = rvt_size_atomic(ib_to_rvt(qp->ibqp.device)); if (p == qp->r_head_ack_queue) { e = NULL; break; } e = &qp->s_ack_queue[p]; if (!e->opcode) { e = NULL; break; } if (cmp_psn(psn, e->psn) >= 0) { if (p == qp->s_tail_ack_queue && cmp_psn(psn, e->lpsn) <= 0) s = false; break; } } if (prev) *prev = p; if (prev_ack) *prev_ack = i; if (scheduled) *scheduled = s; return e; } /** * make_rc_ack - construct a response packet (ACK, NAK, or RDMA read) * @dev: the device for this QP * @qp: a pointer to the QP * @ohdr: a pointer to the IB header being constructed * @ps: the xmit packet state * * Return 1 if constructed; otherwise, return 0. * Note that we are in the responder's side of the QP context. * Note the QP s_lock must be held. */ static int make_rc_ack(struct hfi1_ibdev *dev, struct rvt_qp *qp, struct ib_other_headers *ohdr, struct hfi1_pkt_state *ps) { struct rvt_ack_entry *e; u32 hwords, hdrlen; u32 len = 0; u32 bth0 = 0, bth2 = 0; u32 bth1 = qp->remote_qpn | (HFI1_CAP_IS_KSET(OPFN) << IB_BTHE_E_SHIFT); int middle = 0; u32 pmtu = qp->pmtu; struct hfi1_qp_priv *qpriv = qp->priv; bool last_pkt; u32 delta; u8 next = qp->s_tail_ack_queue; struct tid_rdma_request *req; trace_hfi1_rsp_make_rc_ack(qp, 0); lockdep_assert_held(&qp->s_lock); /* Don't send an ACK if we aren't supposed to. */ if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) goto bail; if (qpriv->hdr_type == HFI1_PKT_TYPE_9B) /* header size in 32-bit words LRH+BTH = (8+12)/4. */ hwords = 5; else /* header size in 32-bit words 16B LRH+BTH = (16+12)/4. */ hwords = 7; switch (qp->s_ack_state) { case OP(RDMA_READ_RESPONSE_LAST): case OP(RDMA_READ_RESPONSE_ONLY): e = &qp->s_ack_queue[qp->s_tail_ack_queue]; release_rdma_sge_mr(e); fallthrough; case OP(ATOMIC_ACKNOWLEDGE): /* * We can increment the tail pointer now that the last * response has been sent instead of only being * constructed. */ if (++next > rvt_size_atomic(&dev->rdi)) next = 0; /* * Only advance the s_acked_ack_queue pointer if there * have been no TID RDMA requests. */ e = &qp->s_ack_queue[qp->s_tail_ack_queue]; if (e->opcode != TID_OP(WRITE_REQ) && qp->s_acked_ack_queue == qp->s_tail_ack_queue) qp->s_acked_ack_queue = next; qp->s_tail_ack_queue = next; trace_hfi1_rsp_make_rc_ack(qp, e->psn); fallthrough; case OP(SEND_ONLY): case OP(ACKNOWLEDGE): /* Check for no next entry in the queue. */ if (qp->r_head_ack_queue == qp->s_tail_ack_queue) { if (qp->s_flags & RVT_S_ACK_PENDING) goto normal; goto bail; } e = &qp->s_ack_queue[qp->s_tail_ack_queue]; /* Check for tid write fence */ if ((qpriv->s_flags & HFI1_R_TID_WAIT_INTERLCK) || hfi1_tid_rdma_ack_interlock(qp, e)) { iowait_set_flag(&qpriv->s_iowait, IOWAIT_PENDING_IB); goto bail; } if (e->opcode == OP(RDMA_READ_REQUEST)) { /* * If a RDMA read response is being resent and * we haven't seen the duplicate request yet, * then stop sending the remaining responses the * responder has seen until the requester re-sends it. */ len = e->rdma_sge.sge_length; if (len && !e->rdma_sge.mr) { if (qp->s_acked_ack_queue == qp->s_tail_ack_queue) qp->s_acked_ack_queue = qp->r_head_ack_queue; qp->s_tail_ack_queue = qp->r_head_ack_queue; goto bail; } /* Copy SGE state in case we need to resend */ ps->s_txreq->mr = e->rdma_sge.mr; if (ps->s_txreq->mr) rvt_get_mr(ps->s_txreq->mr); qp->s_ack_rdma_sge.sge = e->rdma_sge; qp->s_ack_rdma_sge.num_sge = 1; ps->s_txreq->ss = &qp->s_ack_rdma_sge; if (len > pmtu) { len = pmtu; qp->s_ack_state = OP(RDMA_READ_RESPONSE_FIRST); } else { qp->s_ack_state = OP(RDMA_READ_RESPONSE_ONLY); e->sent = 1; } ohdr->u.aeth = rvt_compute_aeth(qp); hwords++; qp->s_ack_rdma_psn = e->psn; bth2 = mask_psn(qp->s_ack_rdma_psn++); } else if (e->opcode == TID_OP(WRITE_REQ)) { /* * If a TID RDMA WRITE RESP is being resent, we have to * wait for the actual request. All requests that are to * be resent will have their state set to * TID_REQUEST_RESEND. When the new request arrives, the * state will be changed to TID_REQUEST_RESEND_ACTIVE. */ req = ack_to_tid_req(e); if (req->state == TID_REQUEST_RESEND || req->state == TID_REQUEST_INIT_RESEND) goto bail; qp->s_ack_state = TID_OP(WRITE_RESP); qp->s_ack_rdma_psn = mask_psn(e->psn + req->cur_seg); goto write_resp; } else if (e->opcode == TID_OP(READ_REQ)) { /* * If a TID RDMA read response is being resent and * we haven't seen the duplicate request yet, * then stop sending the remaining responses the * responder has seen until the requester re-sends it. */ len = e->rdma_sge.sge_length; if (len && !e->rdma_sge.mr) { if (qp->s_acked_ack_queue == qp->s_tail_ack_queue) qp->s_acked_ack_queue = qp->r_head_ack_queue; qp->s_tail_ack_queue = qp->r_head_ack_queue; goto bail; } /* Copy SGE state in case we need to resend */ ps->s_txreq->mr = e->rdma_sge.mr; if (ps->s_txreq->mr) rvt_get_mr(ps->s_txreq->mr); qp->s_ack_rdma_sge.sge = e->rdma_sge; qp->s_ack_rdma_sge.num_sge = 1; qp->s_ack_state = TID_OP(READ_RESP); goto read_resp; } else { /* COMPARE_SWAP or FETCH_ADD */ ps->s_txreq->ss = NULL; len = 0; qp->s_ack_state = OP(ATOMIC_ACKNOWLEDGE); ohdr->u.at.aeth = rvt_compute_aeth(qp); ib_u64_put(e->atomic_data, &ohdr->u.at.atomic_ack_eth); hwords += sizeof(ohdr->u.at) / sizeof(u32); bth2 = mask_psn(e->psn); e->sent = 1; } trace_hfi1_tid_write_rsp_make_rc_ack(qp); bth0 = qp->s_ack_state << 24; break; case OP(RDMA_READ_RESPONSE_FIRST): qp->s_ack_state = OP(RDMA_READ_RESPONSE_MIDDLE); fallthrough; case OP(RDMA_READ_RESPONSE_MIDDLE): ps->s_txreq->ss = &qp->s_ack_rdma_sge; ps->s_txreq->mr = qp->s_ack_rdma_sge.sge.mr; if (ps->s_txreq->mr) rvt_get_mr(ps->s_txreq->mr); len = qp->s_ack_rdma_sge.sge.sge_length; if (len > pmtu) { len = pmtu; middle = HFI1_CAP_IS_KSET(SDMA_AHG); } else { ohdr->u.aeth = rvt_compute_aeth(qp); hwords++; qp->s_ack_state = OP(RDMA_READ_RESPONSE_LAST); e = &qp->s_ack_queue[qp->s_tail_ack_queue]; e->sent = 1; } bth0 = qp->s_ack_state << 24; bth2 = mask_psn(qp->s_ack_rdma_psn++); break; case TID_OP(WRITE_RESP): write_resp: /* * 1. Check if RVT_S_ACK_PENDING is set. If yes, * goto normal. * 2. Attempt to allocate TID resources. * 3. Remove RVT_S_RESP_PENDING flags from s_flags * 4. If resources not available: * 4.1 Set RVT_S_WAIT_TID_SPACE * 4.2 Queue QP on RCD TID queue * 4.3 Put QP on iowait list. * 4.4 Build IB RNR NAK with appropriate timeout value * 4.5 Return indication progress made. * 5. If resources are available: * 5.1 Program HW flow CSRs * 5.2 Build TID RDMA WRITE RESP packet * 5.3 If more resources needed, do 2.1 - 2.3. * 5.4 Wake up next QP on RCD TID queue. * 5.5 Return indication progress made. */ e = &qp->s_ack_queue[qp->s_tail_ack_queue]; req = ack_to_tid_req(e); /* * Send scheduled RNR NAK's. RNR NAK's need to be sent at * segment boundaries, not at request boundaries. Don't change * s_ack_state because we are still in the middle of a request */ if (qpriv->rnr_nak_state == TID_RNR_NAK_SEND && qp->s_tail_ack_queue == qpriv->r_tid_alloc && req->cur_seg == req->alloc_seg) { qpriv->rnr_nak_state = TID_RNR_NAK_SENT; goto normal_no_state; } bth2 = mask_psn(qp->s_ack_rdma_psn); hdrlen = hfi1_build_tid_rdma_write_resp(qp, e, ohdr, &bth1, bth2, &len, &ps->s_txreq->ss); if (!hdrlen) return 0; hwords += hdrlen; bth0 = qp->s_ack_state << 24; qp->s_ack_rdma_psn++; trace_hfi1_tid_req_make_rc_ack_write(qp, 0, e->opcode, e->psn, e->lpsn, req); if (req->cur_seg != req->total_segs) break; e->sent = 1; /* Do not free e->rdma_sge until all data are received */ qp->s_ack_state = OP(ATOMIC_ACKNOWLEDGE); break; case TID_OP(READ_RESP): read_resp: e = &qp->s_ack_queue[qp->s_tail_ack_queue]; ps->s_txreq->ss = &qp->s_ack_rdma_sge; delta = hfi1_build_tid_rdma_read_resp(qp, e, ohdr, &bth0, &bth1, &bth2, &len, &last_pkt); if (delta == 0) goto error_qp; hwords += delta; if (last_pkt) { e->sent = 1; /* * Increment qp->s_tail_ack_queue through s_ack_state * transition. */ qp->s_ack_state = OP(RDMA_READ_RESPONSE_LAST); } break; case TID_OP(READ_REQ): goto bail; default: normal: /* * Send a regular ACK. * Set the s_ack_state so we wait until after sending * the ACK before setting s_ack_state to ACKNOWLEDGE * (see above). */ qp->s_ack_state = OP(SEND_ONLY); normal_no_state: if (qp->s_nak_state) ohdr->u.aeth = cpu_to_be32((qp->r_msn & IB_MSN_MASK) | (qp->s_nak_state << IB_AETH_CREDIT_SHIFT)); else ohdr->u.aeth = rvt_compute_aeth(qp); hwords++; len = 0; bth0 = OP(ACKNOWLEDGE) << 24; bth2 = mask_psn(qp->s_ack_psn); qp->s_flags &= ~RVT_S_ACK_PENDING; ps->s_txreq->txreq.flags |= SDMA_TXREQ_F_VIP; ps->s_txreq->ss = NULL; } qp->s_rdma_ack_cnt++; ps->s_txreq->sde = qpriv->s_sde; ps->s_txreq->s_cur_size = len; ps->s_txreq->hdr_dwords = hwords; hfi1_make_ruc_header(qp, ohdr, bth0, bth1, bth2, middle, ps); return 1; error_qp: spin_unlock_irqrestore(&qp->s_lock, ps->flags); spin_lock_irqsave(&qp->r_lock, ps->flags); spin_lock(&qp->s_lock); rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); spin_unlock(&qp->s_lock); spin_unlock_irqrestore(&qp->r_lock, ps->flags); spin_lock_irqsave(&qp->s_lock, ps->flags); bail: qp->s_ack_state = OP(ACKNOWLEDGE); /* * Ensure s_rdma_ack_cnt changes are committed prior to resetting * RVT_S_RESP_PENDING */ smp_wmb(); qp->s_flags &= ~(RVT_S_RESP_PENDING | RVT_S_ACK_PENDING | HFI1_S_AHG_VALID); return 0; } /** * hfi1_make_rc_req - construct a request packet (SEND, RDMA r/w, ATOMIC) * @qp: a pointer to the QP * @ps: the current packet state * * Assumes s_lock is held. * * Return 1 if constructed; otherwise, return 0. */ int hfi1_make_rc_req(struct rvt_qp *qp, struct hfi1_pkt_state *ps) { struct hfi1_qp_priv *priv = qp->priv; struct hfi1_ibdev *dev = to_idev(qp->ibqp.device); struct ib_other_headers *ohdr; struct rvt_sge_state *ss = NULL; struct rvt_swqe *wqe; struct hfi1_swqe_priv *wpriv; struct tid_rdma_request *req = NULL; /* header size in 32-bit words LRH+BTH = (8+12)/4. */ u32 hwords = 5; u32 len = 0; u32 bth0 = 0, bth2 = 0; u32 bth1 = qp->remote_qpn | (HFI1_CAP_IS_KSET(OPFN) << IB_BTHE_E_SHIFT); u32 pmtu = qp->pmtu; char newreq; int middle = 0; int delta; struct tid_rdma_flow *flow = NULL; struct tid_rdma_params *remote; trace_hfi1_sender_make_rc_req(qp); lockdep_assert_held(&qp->s_lock); ps->s_txreq = get_txreq(ps->dev, qp); if (!ps->s_txreq) goto bail_no_tx; if (priv->hdr_type == HFI1_PKT_TYPE_9B) { /* header size in 32-bit words LRH+BTH = (8+12)/4. */ hwords = 5; if (rdma_ah_get_ah_flags(&qp->remote_ah_attr) & IB_AH_GRH) ohdr = &ps->s_txreq->phdr.hdr.ibh.u.l.oth; else ohdr = &ps->s_txreq->phdr.hdr.ibh.u.oth; } else { /* header size in 32-bit words 16B LRH+BTH = (16+12)/4. */ hwords = 7; if ((rdma_ah_get_ah_flags(&qp->remote_ah_attr) & IB_AH_GRH) && (hfi1_check_mcast(rdma_ah_get_dlid(&qp->remote_ah_attr)))) ohdr = &ps->s_txreq->phdr.hdr.opah.u.l.oth; else ohdr = &ps->s_txreq->phdr.hdr.opah.u.oth; } /* Sending responses has higher priority over sending requests. */ if ((qp->s_flags & RVT_S_RESP_PENDING) && make_rc_ack(dev, qp, ohdr, ps)) return 1; if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_SEND_OK)) { if (!(ib_rvt_state_ops[qp->state] & RVT_FLUSH_SEND)) goto bail; /* We are in the error state, flush the work request. */ if (qp->s_last == READ_ONCE(qp->s_head)) goto bail; /* If DMAs are in progress, we can't flush immediately. */ if (iowait_sdma_pending(&priv->s_iowait)) { qp->s_flags |= RVT_S_WAIT_DMA; goto bail; } clear_ahg(qp); wqe = rvt_get_swqe_ptr(qp, qp->s_last); hfi1_trdma_send_complete(qp, wqe, qp->s_last != qp->s_acked ? IB_WC_SUCCESS : IB_WC_WR_FLUSH_ERR); /* will get called again */ goto done_free_tx; } if (qp->s_flags & (RVT_S_WAIT_RNR | RVT_S_WAIT_ACK | HFI1_S_WAIT_HALT)) goto bail; if (cmp_psn(qp->s_psn, qp->s_sending_hpsn) <= 0) { if (cmp_psn(qp->s_sending_psn, qp->s_sending_hpsn) <= 0) { qp->s_flags |= RVT_S_WAIT_PSN; goto bail; } qp->s_sending_psn = qp->s_psn; qp->s_sending_hpsn = qp->s_psn - 1; } /* Send a request. */ wqe = rvt_get_swqe_ptr(qp, qp->s_cur); check_s_state: switch (qp->s_state) { default: if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_NEXT_SEND_OK)) goto bail; /* * Resend an old request or start a new one. * * We keep track of the current SWQE so that * we don't reset the "furthest progress" state * if we need to back up. */ newreq = 0; if (qp->s_cur == qp->s_tail) { /* Check if send work queue is empty. */ if (qp->s_tail == READ_ONCE(qp->s_head)) { clear_ahg(qp); goto bail; } /* * If a fence is requested, wait for previous * RDMA read and atomic operations to finish. * However, there is no need to guard against * TID RDMA READ after TID RDMA READ. */ if ((wqe->wr.send_flags & IB_SEND_FENCE) && qp->s_num_rd_atomic && (wqe->wr.opcode != IB_WR_TID_RDMA_READ || priv->pending_tid_r_segs < qp->s_num_rd_atomic)) { qp->s_flags |= RVT_S_WAIT_FENCE; goto bail; } /* * Local operations are processed immediately * after all prior requests have completed */ if (wqe->wr.opcode == IB_WR_REG_MR || wqe->wr.opcode == IB_WR_LOCAL_INV) { int local_ops = 0; int err = 0; if (qp->s_last != qp->s_cur) goto bail; if (++qp->s_cur == qp->s_size) qp->s_cur = 0; if (++qp->s_tail == qp->s_size) qp->s_tail = 0; if (!(wqe->wr.send_flags & RVT_SEND_COMPLETION_ONLY)) { err = rvt_invalidate_rkey( qp, wqe->wr.ex.invalidate_rkey); local_ops = 1; } rvt_send_complete(qp, wqe, err ? IB_WC_LOC_PROT_ERR : IB_WC_SUCCESS); if (local_ops) atomic_dec(&qp->local_ops_pending); goto done_free_tx; } newreq = 1; qp->s_psn = wqe->psn; } /* * Note that we have to be careful not to modify the * original work request since we may need to resend * it. */ len = wqe->length; ss = &qp->s_sge; bth2 = mask_psn(qp->s_psn); /* * Interlock between various IB requests and TID RDMA * if necessary. */ if ((priv->s_flags & HFI1_S_TID_WAIT_INTERLCK) || hfi1_tid_rdma_wqe_interlock(qp, wqe)) goto bail; switch (wqe->wr.opcode) { case IB_WR_SEND: case IB_WR_SEND_WITH_IMM: case IB_WR_SEND_WITH_INV: /* If no credit, return. */ if (!rvt_rc_credit_avail(qp, wqe)) goto bail; if (len > pmtu) { qp->s_state = OP(SEND_FIRST); len = pmtu; break; } if (wqe->wr.opcode == IB_WR_SEND) { qp->s_state = OP(SEND_ONLY); } else if (wqe->wr.opcode == IB_WR_SEND_WITH_IMM) { qp->s_state = OP(SEND_ONLY_WITH_IMMEDIATE); /* Immediate data comes after the BTH */ ohdr->u.imm_data = wqe->wr.ex.imm_data; hwords += 1; } else { qp->s_state = OP(SEND_ONLY_WITH_INVALIDATE); /* Invalidate rkey comes after the BTH */ ohdr->u.ieth = cpu_to_be32( wqe->wr.ex.invalidate_rkey); hwords += 1; } if (wqe->wr.send_flags & IB_SEND_SOLICITED) bth0 |= IB_BTH_SOLICITED; bth2 |= IB_BTH_REQ_ACK; if (++qp->s_cur == qp->s_size) qp->s_cur = 0; break; case IB_WR_RDMA_WRITE: if (newreq && !(qp->s_flags & RVT_S_UNLIMITED_CREDIT)) qp->s_lsn++; goto no_flow_control; case IB_WR_RDMA_WRITE_WITH_IMM: /* If no credit, return. */ if (!rvt_rc_credit_avail(qp, wqe)) goto bail; no_flow_control: put_ib_reth_vaddr( wqe->rdma_wr.remote_addr, &ohdr->u.rc.reth); ohdr->u.rc.reth.rkey = cpu_to_be32(wqe->rdma_wr.rkey); ohdr->u.rc.reth.length = cpu_to_be32(len); hwords += sizeof(struct ib_reth) / sizeof(u32); if (len > pmtu) { qp->s_state = OP(RDMA_WRITE_FIRST); len = pmtu; break; } if (wqe->wr.opcode == IB_WR_RDMA_WRITE) { qp->s_state = OP(RDMA_WRITE_ONLY); } else { qp->s_state = OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE); /* Immediate data comes after RETH */ ohdr->u.rc.imm_data = wqe->wr.ex.imm_data; hwords += 1; if (wqe->wr.send_flags & IB_SEND_SOLICITED) bth0 |= IB_BTH_SOLICITED; } bth2 |= IB_BTH_REQ_ACK; if (++qp->s_cur == qp->s_size) qp->s_cur = 0; break; case IB_WR_TID_RDMA_WRITE: if (newreq) { /* * Limit the number of TID RDMA WRITE requests. */ if (atomic_read(&priv->n_tid_requests) >= HFI1_TID_RDMA_WRITE_CNT) goto bail; if (!(qp->s_flags & RVT_S_UNLIMITED_CREDIT)) qp->s_lsn++; } hwords += hfi1_build_tid_rdma_write_req(qp, wqe, ohdr, &bth1, &bth2, &len); ss = NULL; if (priv->s_tid_cur == HFI1_QP_WQE_INVALID) { priv->s_tid_cur = qp->s_cur; if (priv->s_tid_tail == HFI1_QP_WQE_INVALID) { priv->s_tid_tail = qp->s_cur; priv->s_state = TID_OP(WRITE_RESP); } } else if (priv->s_tid_cur == priv->s_tid_head) { struct rvt_swqe *__w; struct tid_rdma_request *__r; __w = rvt_get_swqe_ptr(qp, priv->s_tid_cur); __r = wqe_to_tid_req(__w); /* * The s_tid_cur pointer is advanced to s_cur if * any of the following conditions about the WQE * to which s_ti_cur currently points to are * satisfied: * 1. The request is not a TID RDMA WRITE * request, * 2. The request is in the INACTIVE or * COMPLETE states (TID RDMA READ requests * stay at INACTIVE and TID RDMA WRITE * transition to COMPLETE when done), * 3. The request is in the ACTIVE or SYNC * state and the number of completed * segments is equal to the total segment * count. * (If ACTIVE, the request is waiting for * ACKs. If SYNC, the request has not * received any responses because it's * waiting on a sync point.) */ if (__w->wr.opcode != IB_WR_TID_RDMA_WRITE || __r->state == TID_REQUEST_INACTIVE || __r->state == TID_REQUEST_COMPLETE || ((__r->state == TID_REQUEST_ACTIVE || __r->state == TID_REQUEST_SYNC) && __r->comp_seg == __r->total_segs)) { if (priv->s_tid_tail == priv->s_tid_cur && priv->s_state == TID_OP(WRITE_DATA_LAST)) { priv->s_tid_tail = qp->s_cur; priv->s_state = TID_OP(WRITE_RESP); } priv->s_tid_cur = qp->s_cur; } /* * A corner case: when the last TID RDMA WRITE * request was completed, s_tid_head, * s_tid_cur, and s_tid_tail all point to the * same location. Other requests are posted and * s_cur wraps around to the same location, * where a new TID RDMA WRITE is posted. In * this case, none of the indices need to be * updated. However, the priv->s_state should. */ if (priv->s_tid_tail == qp->s_cur && priv->s_state == TID_OP(WRITE_DATA_LAST)) priv->s_state = TID_OP(WRITE_RESP); } req = wqe_to_tid_req(wqe); if (newreq) { priv->s_tid_head = qp->s_cur; priv->pending_tid_w_resp += req->total_segs; atomic_inc(&priv->n_tid_requests); atomic_dec(&priv->n_requests); } else { req->state = TID_REQUEST_RESEND; req->comp_seg = delta_psn(bth2, wqe->psn); /* * Pull back any segments since we are going * to re-receive them. */ req->setup_head = req->clear_tail; priv->pending_tid_w_resp += delta_psn(wqe->lpsn, bth2) + 1; } trace_hfi1_tid_write_sender_make_req(qp, newreq); trace_hfi1_tid_req_make_req_write(qp, newreq, wqe->wr.opcode, wqe->psn, wqe->lpsn, req); if (++qp->s_cur == qp->s_size) qp->s_cur = 0; break; case IB_WR_RDMA_READ: /* * Don't allow more operations to be started * than the QP limits allow. */ if (qp->s_num_rd_atomic >= qp->s_max_rd_atomic) { qp->s_flags |= RVT_S_WAIT_RDMAR; goto bail; } qp->s_num_rd_atomic++; if (newreq && !(qp->s_flags & RVT_S_UNLIMITED_CREDIT)) qp->s_lsn++; put_ib_reth_vaddr( wqe->rdma_wr.remote_addr, &ohdr->u.rc.reth); ohdr->u.rc.reth.rkey = cpu_to_be32(wqe->rdma_wr.rkey); ohdr->u.rc.reth.length = cpu_to_be32(len); qp->s_state = OP(RDMA_READ_REQUEST); hwords += sizeof(ohdr->u.rc.reth) / sizeof(u32); ss = NULL; len = 0; bth2 |= IB_BTH_REQ_ACK; if (++qp->s_cur == qp->s_size) qp->s_cur = 0; break; case IB_WR_TID_RDMA_READ: trace_hfi1_tid_read_sender_make_req(qp, newreq); wpriv = wqe->priv; req = wqe_to_tid_req(wqe); trace_hfi1_tid_req_make_req_read(qp, newreq, wqe->wr.opcode, wqe->psn, wqe->lpsn, req); delta = cmp_psn(qp->s_psn, wqe->psn); /* * Don't allow more operations to be started * than the QP limits allow. We could get here under * three conditions; (1) It's a new request; (2) We are * sending the second or later segment of a request, * but the qp->s_state is set to OP(RDMA_READ_REQUEST) * when the last segment of a previous request is * received just before this; (3) We are re-sending a * request. */ if (qp->s_num_rd_atomic >= qp->s_max_rd_atomic) { qp->s_flags |= RVT_S_WAIT_RDMAR; goto bail; } if (newreq) { struct tid_rdma_flow *flow = &req->flows[req->setup_head]; /* * Set up s_sge as it is needed for TID * allocation. However, if the pages have been * walked and mapped, skip it. An earlier try * has failed to allocate the TID entries. */ if (!flow->npagesets) { qp->s_sge.sge = wqe->sg_list[0]; qp->s_sge.sg_list = wqe->sg_list + 1; qp->s_sge.num_sge = wqe->wr.num_sge; qp->s_sge.total_len = wqe->length; qp->s_len = wqe->length; req->isge = 0; req->clear_tail = req->setup_head; req->flow_idx = req->setup_head; req->state = TID_REQUEST_ACTIVE; } } else if (delta == 0) { /* Re-send a request */ req->cur_seg = 0; req->comp_seg = 0; req->ack_pending = 0; req->flow_idx = req->clear_tail; req->state = TID_REQUEST_RESEND; } req->s_next_psn = qp->s_psn; /* Read one segment at a time */ len = min_t(u32, req->seg_len, wqe->length - req->seg_len * req->cur_seg); delta = hfi1_build_tid_rdma_read_req(qp, wqe, ohdr, &bth1, &bth2, &len); if (delta <= 0) { /* Wait for TID space */ goto bail; } if (newreq && !(qp->s_flags & RVT_S_UNLIMITED_CREDIT)) qp->s_lsn++; hwords += delta; ss = &wpriv->ss; /* Check if this is the last segment */ if (req->cur_seg >= req->total_segs && ++qp->s_cur == qp->s_size) qp->s_cur = 0; break; case IB_WR_ATOMIC_CMP_AND_SWP: case IB_WR_ATOMIC_FETCH_AND_ADD: /* * Don't allow more operations to be started * than the QP limits allow. */ if (qp->s_num_rd_atomic >= qp->s_max_rd_atomic) { qp->s_flags |= RVT_S_WAIT_RDMAR; goto bail; } qp->s_num_rd_atomic++; fallthrough; case IB_WR_OPFN: if (newreq && !(qp->s_flags & RVT_S_UNLIMITED_CREDIT)) qp->s_lsn++; if (wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP || wqe->wr.opcode == IB_WR_OPFN) { qp->s_state = OP(COMPARE_SWAP); put_ib_ateth_swap(wqe->atomic_wr.swap, &ohdr->u.atomic_eth); put_ib_ateth_compare(wqe->atomic_wr.compare_add, &ohdr->u.atomic_eth); } else { qp->s_state = OP(FETCH_ADD); put_ib_ateth_swap(wqe->atomic_wr.compare_add, &ohdr->u.atomic_eth); put_ib_ateth_compare(0, &ohdr->u.atomic_eth); } put_ib_ateth_vaddr(wqe->atomic_wr.remote_addr, &ohdr->u.atomic_eth); ohdr->u.atomic_eth.rkey = cpu_to_be32( wqe->atomic_wr.rkey); hwords += sizeof(struct ib_atomic_eth) / sizeof(u32); ss = NULL; len = 0; bth2 |= IB_BTH_REQ_ACK; if (++qp->s_cur == qp->s_size) qp->s_cur = 0; break; default: goto bail; } if (wqe->wr.opcode != IB_WR_TID_RDMA_READ) { qp->s_sge.sge = wqe->sg_list[0]; qp->s_sge.sg_list = wqe->sg_list + 1; qp->s_sge.num_sge = wqe->wr.num_sge; qp->s_sge.total_len = wqe->length; qp->s_len = wqe->length; } if (newreq) { qp->s_tail++; if (qp->s_tail >= qp->s_size) qp->s_tail = 0; } if (wqe->wr.opcode == IB_WR_RDMA_READ || wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) qp->s_psn = wqe->lpsn + 1; else if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) qp->s_psn = req->s_next_psn; else qp->s_psn++; break; case OP(RDMA_READ_RESPONSE_FIRST): /* * qp->s_state is normally set to the opcode of the * last packet constructed for new requests and therefore * is never set to RDMA read response. * RDMA_READ_RESPONSE_FIRST is used by the ACK processing * thread to indicate a SEND needs to be restarted from an * earlier PSN without interfering with the sending thread. * See restart_rc(). */ qp->s_len = restart_sge(&qp->s_sge, wqe, qp->s_psn, pmtu); fallthrough; case OP(SEND_FIRST): qp->s_state = OP(SEND_MIDDLE); fallthrough; case OP(SEND_MIDDLE): bth2 = mask_psn(qp->s_psn++); ss = &qp->s_sge; len = qp->s_len; if (len > pmtu) { len = pmtu; middle = HFI1_CAP_IS_KSET(SDMA_AHG); break; } if (wqe->wr.opcode == IB_WR_SEND) { qp->s_state = OP(SEND_LAST); } else if (wqe->wr.opcode == IB_WR_SEND_WITH_IMM) { qp->s_state = OP(SEND_LAST_WITH_IMMEDIATE); /* Immediate data comes after the BTH */ ohdr->u.imm_data = wqe->wr.ex.imm_data; hwords += 1; } else { qp->s_state = OP(SEND_LAST_WITH_INVALIDATE); /* invalidate data comes after the BTH */ ohdr->u.ieth = cpu_to_be32(wqe->wr.ex.invalidate_rkey); hwords += 1; } if (wqe->wr.send_flags & IB_SEND_SOLICITED) bth0 |= IB_BTH_SOLICITED; bth2 |= IB_BTH_REQ_ACK; qp->s_cur++; if (qp->s_cur >= qp->s_size) qp->s_cur = 0; break; case OP(RDMA_READ_RESPONSE_LAST): /* * qp->s_state is normally set to the opcode of the * last packet constructed for new requests and therefore * is never set to RDMA read response. * RDMA_READ_RESPONSE_LAST is used by the ACK processing * thread to indicate a RDMA write needs to be restarted from * an earlier PSN without interfering with the sending thread. * See restart_rc(). */ qp->s_len = restart_sge(&qp->s_sge, wqe, qp->s_psn, pmtu); fallthrough; case OP(RDMA_WRITE_FIRST): qp->s_state = OP(RDMA_WRITE_MIDDLE); fallthrough; case OP(RDMA_WRITE_MIDDLE): bth2 = mask_psn(qp->s_psn++); ss = &qp->s_sge; len = qp->s_len; if (len > pmtu) { len = pmtu; middle = HFI1_CAP_IS_KSET(SDMA_AHG); break; } if (wqe->wr.opcode == IB_WR_RDMA_WRITE) { qp->s_state = OP(RDMA_WRITE_LAST); } else { qp->s_state = OP(RDMA_WRITE_LAST_WITH_IMMEDIATE); /* Immediate data comes after the BTH */ ohdr->u.imm_data = wqe->wr.ex.imm_data; hwords += 1; if (wqe->wr.send_flags & IB_SEND_SOLICITED) bth0 |= IB_BTH_SOLICITED; } bth2 |= IB_BTH_REQ_ACK; qp->s_cur++; if (qp->s_cur >= qp->s_size) qp->s_cur = 0; break; case OP(RDMA_READ_RESPONSE_MIDDLE): /* * qp->s_state is normally set to the opcode of the * last packet constructed for new requests and therefore * is never set to RDMA read response. * RDMA_READ_RESPONSE_MIDDLE is used by the ACK processing * thread to indicate a RDMA read needs to be restarted from * an earlier PSN without interfering with the sending thread. * See restart_rc(). */ len = (delta_psn(qp->s_psn, wqe->psn)) * pmtu; put_ib_reth_vaddr( wqe->rdma_wr.remote_addr + len, &ohdr->u.rc.reth); ohdr->u.rc.reth.rkey = cpu_to_be32(wqe->rdma_wr.rkey); ohdr->u.rc.reth.length = cpu_to_be32(wqe->length - len); qp->s_state = OP(RDMA_READ_REQUEST); hwords += sizeof(ohdr->u.rc.reth) / sizeof(u32); bth2 = mask_psn(qp->s_psn) | IB_BTH_REQ_ACK; qp->s_psn = wqe->lpsn + 1; ss = NULL; len = 0; qp->s_cur++; if (qp->s_cur == qp->s_size) qp->s_cur = 0; break; case TID_OP(WRITE_RESP): /* * This value for s_state is used for restarting a TID RDMA * WRITE request. See comment in OP(RDMA_READ_RESPONSE_MIDDLE * for more). */ req = wqe_to_tid_req(wqe); req->state = TID_REQUEST_RESEND; rcu_read_lock(); remote = rcu_dereference(priv->tid_rdma.remote); req->comp_seg = delta_psn(qp->s_psn, wqe->psn); len = wqe->length - (req->comp_seg * remote->max_len); rcu_read_unlock(); bth2 = mask_psn(qp->s_psn); hwords += hfi1_build_tid_rdma_write_req(qp, wqe, ohdr, &bth1, &bth2, &len); qp->s_psn = wqe->lpsn + 1; ss = NULL; qp->s_state = TID_OP(WRITE_REQ); priv->pending_tid_w_resp += delta_psn(wqe->lpsn, bth2) + 1; priv->s_tid_cur = qp->s_cur; if (++qp->s_cur == qp->s_size) qp->s_cur = 0; trace_hfi1_tid_req_make_req_write(qp, 0, wqe->wr.opcode, wqe->psn, wqe->lpsn, req); break; case TID_OP(READ_RESP): if (wqe->wr.opcode != IB_WR_TID_RDMA_READ) goto bail; /* This is used to restart a TID read request */ req = wqe_to_tid_req(wqe); wpriv = wqe->priv; /* * Back down. The field qp->s_psn has been set to the psn with * which the request should be restart. It's OK to use division * as this is on the retry path. */ req->cur_seg = delta_psn(qp->s_psn, wqe->psn) / priv->pkts_ps; /* * The following function need to be redefined to return the * status to make sure that we find the flow. At the same * time, we can use the req->state change to check if the * call succeeds or not. */ req->state = TID_REQUEST_RESEND; hfi1_tid_rdma_restart_req(qp, wqe, &bth2); if (req->state != TID_REQUEST_ACTIVE) { /* * Failed to find the flow. Release all allocated tid * resources. */ hfi1_kern_exp_rcv_clear_all(req); hfi1_kern_clear_hw_flow(priv->rcd, qp); hfi1_trdma_send_complete(qp, wqe, IB_WC_LOC_QP_OP_ERR); goto bail; } req->state = TID_REQUEST_RESEND; len = min_t(u32, req->seg_len, wqe->length - req->seg_len * req->cur_seg); flow = &req->flows[req->flow_idx]; len -= flow->sent; req->s_next_psn = flow->flow_state.ib_lpsn + 1; delta = hfi1_build_tid_rdma_read_packet(wqe, ohdr, &bth1, &bth2, &len); if (delta <= 0) { /* Wait for TID space */ goto bail; } hwords += delta; ss = &wpriv->ss; /* Check if this is the last segment */ if (req->cur_seg >= req->total_segs && ++qp->s_cur == qp->s_size) qp->s_cur = 0; qp->s_psn = req->s_next_psn; trace_hfi1_tid_req_make_req_read(qp, 0, wqe->wr.opcode, wqe->psn, wqe->lpsn, req); break; case TID_OP(READ_REQ): req = wqe_to_tid_req(wqe); delta = cmp_psn(qp->s_psn, wqe->psn); /* * If the current WR is not TID RDMA READ, or this is the start * of a new request, we need to change the qp->s_state so that * the request can be set up properly. */ if (wqe->wr.opcode != IB_WR_TID_RDMA_READ || delta == 0 || qp->s_cur == qp->s_tail) { qp->s_state = OP(RDMA_READ_REQUEST); if (delta == 0 || qp->s_cur == qp->s_tail) goto check_s_state; else goto bail; } /* Rate limiting */ if (qp->s_num_rd_atomic >= qp->s_max_rd_atomic) { qp->s_flags |= RVT_S_WAIT_RDMAR; goto bail; } wpriv = wqe->priv; /* Read one segment at a time */ len = min_t(u32, req->seg_len, wqe->length - req->seg_len * req->cur_seg); delta = hfi1_build_tid_rdma_read_req(qp, wqe, ohdr, &bth1, &bth2, &len); if (delta <= 0) { /* Wait for TID space */ goto bail; } hwords += delta; ss = &wpriv->ss; /* Check if this is the last segment */ if (req->cur_seg >= req->total_segs && ++qp->s_cur == qp->s_size) qp->s_cur = 0; qp->s_psn = req->s_next_psn; trace_hfi1_tid_req_make_req_read(qp, 0, wqe->wr.opcode, wqe->psn, wqe->lpsn, req); break; } qp->s_sending_hpsn = bth2; delta = delta_psn(bth2, wqe->psn); if (delta && delta % HFI1_PSN_CREDIT == 0 && wqe->wr.opcode != IB_WR_TID_RDMA_WRITE) bth2 |= IB_BTH_REQ_ACK; if (qp->s_flags & RVT_S_SEND_ONE) { qp->s_flags &= ~RVT_S_SEND_ONE; qp->s_flags |= RVT_S_WAIT_ACK; bth2 |= IB_BTH_REQ_ACK; } qp->s_len -= len; ps->s_txreq->hdr_dwords = hwords; ps->s_txreq->sde = priv->s_sde; ps->s_txreq->ss = ss; ps->s_txreq->s_cur_size = len; hfi1_make_ruc_header( qp, ohdr, bth0 | (qp->s_state << 24), bth1, bth2, middle, ps); return 1; done_free_tx: hfi1_put_txreq(ps->s_txreq); ps->s_txreq = NULL; return 1; bail: hfi1_put_txreq(ps->s_txreq); bail_no_tx: ps->s_txreq = NULL; qp->s_flags &= ~RVT_S_BUSY; /* * If we didn't get a txreq, the QP will be woken up later to try * again. Set the flags to indicate which work item to wake * up. */ iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_IB); return 0; } static inline void hfi1_make_bth_aeth(struct rvt_qp *qp, struct ib_other_headers *ohdr, u32 bth0, u32 bth1) { if (qp->r_nak_state) ohdr->u.aeth = cpu_to_be32((qp->r_msn & IB_MSN_MASK) | (qp->r_nak_state << IB_AETH_CREDIT_SHIFT)); else ohdr->u.aeth = rvt_compute_aeth(qp); ohdr->bth[0] = cpu_to_be32(bth0); ohdr->bth[1] = cpu_to_be32(bth1 | qp->remote_qpn); ohdr->bth[2] = cpu_to_be32(mask_psn(qp->r_ack_psn)); } static inline void hfi1_queue_rc_ack(struct hfi1_packet *packet, bool is_fecn) { struct rvt_qp *qp = packet->qp; struct hfi1_ibport *ibp; unsigned long flags; spin_lock_irqsave(&qp->s_lock, flags); if (!(ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) goto unlock; ibp = rcd_to_iport(packet->rcd); this_cpu_inc(*ibp->rvp.rc_qacks); qp->s_flags |= RVT_S_ACK_PENDING | RVT_S_RESP_PENDING; qp->s_nak_state = qp->r_nak_state; qp->s_ack_psn = qp->r_ack_psn; if (is_fecn) qp->s_flags |= RVT_S_ECN; /* Schedule the send tasklet. */ hfi1_schedule_send(qp); unlock: spin_unlock_irqrestore(&qp->s_lock, flags); } static inline void hfi1_make_rc_ack_9B(struct hfi1_packet *packet, struct hfi1_opa_header *opa_hdr, u8 sc5, bool is_fecn, u64 *pbc_flags, u32 *hwords, u32 *nwords) { struct rvt_qp *qp = packet->qp; struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd); struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); struct ib_header *hdr = &opa_hdr->ibh; struct ib_other_headers *ohdr; u16 lrh0 = HFI1_LRH_BTH; u16 pkey; u32 bth0, bth1; opa_hdr->hdr_type = HFI1_PKT_TYPE_9B; ohdr = &hdr->u.oth; /* header size in 32-bit words LRH+BTH+AETH = (8+12+4)/4 */ *hwords = 6; if (unlikely(rdma_ah_get_ah_flags(&qp->remote_ah_attr) & IB_AH_GRH)) { *hwords += hfi1_make_grh(ibp, &hdr->u.l.grh, rdma_ah_read_grh(&qp->remote_ah_attr), *hwords - 2, SIZE_OF_CRC); ohdr = &hdr->u.l.oth; lrh0 = HFI1_LRH_GRH; } /* set PBC_DC_INFO bit (aka SC[4]) in pbc_flags */ *pbc_flags |= ((!!(sc5 & 0x10)) << PBC_DC_INFO_SHIFT); /* read pkey_index w/o lock (its atomic) */ pkey = hfi1_get_pkey(ibp, qp->s_pkey_index); lrh0 |= (sc5 & IB_SC_MASK) << IB_SC_SHIFT | (rdma_ah_get_sl(&qp->remote_ah_attr) & IB_SL_MASK) << IB_SL_SHIFT; hfi1_make_ib_hdr(hdr, lrh0, *hwords + SIZE_OF_CRC, opa_get_lid(rdma_ah_get_dlid(&qp->remote_ah_attr), 9B), ppd->lid | rdma_ah_get_path_bits(&qp->remote_ah_attr)); bth0 = pkey | (OP(ACKNOWLEDGE) << 24); if (qp->s_mig_state == IB_MIG_MIGRATED) bth0 |= IB_BTH_MIG_REQ; bth1 = (!!is_fecn) << IB_BECN_SHIFT; /* * Inline ACKs go out without the use of the Verbs send engine, so * we need to set the STL Verbs Extended bit here */ bth1 |= HFI1_CAP_IS_KSET(OPFN) << IB_BTHE_E_SHIFT; hfi1_make_bth_aeth(qp, ohdr, bth0, bth1); } static inline void hfi1_make_rc_ack_16B(struct hfi1_packet *packet, struct hfi1_opa_header *opa_hdr, u8 sc5, bool is_fecn, u64 *pbc_flags, u32 *hwords, u32 *nwords) { struct rvt_qp *qp = packet->qp; struct hfi1_ibport *ibp = rcd_to_iport(packet->rcd); struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); struct hfi1_16b_header *hdr = &opa_hdr->opah; struct ib_other_headers *ohdr; u32 bth0, bth1 = 0; u16 len, pkey; bool becn = is_fecn; u8 l4 = OPA_16B_L4_IB_LOCAL; u8 extra_bytes; opa_hdr->hdr_type = HFI1_PKT_TYPE_16B; ohdr = &hdr->u.oth; /* header size in 32-bit words 16B LRH+BTH+AETH = (16+12+4)/4 */ *hwords = 8; extra_bytes = hfi1_get_16b_padding(*hwords << 2, 0); *nwords = SIZE_OF_CRC + ((extra_bytes + SIZE_OF_LT) >> 2); if (unlikely(rdma_ah_get_ah_flags(&qp->remote_ah_attr) & IB_AH_GRH) && hfi1_check_mcast(rdma_ah_get_dlid(&qp->remote_ah_attr))) { *hwords += hfi1_make_grh(ibp, &hdr->u.l.grh, rdma_ah_read_grh(&qp->remote_ah_attr), *hwords - 4, *nwords); ohdr = &hdr->u.l.oth; l4 = OPA_16B_L4_IB_GLOBAL; } *pbc_flags |= PBC_PACKET_BYPASS | PBC_INSERT_BYPASS_ICRC; /* read pkey_index w/o lock (its atomic) */ pkey = hfi1_get_pkey(ibp, qp->s_pkey_index); /* Convert dwords to flits */ len = (*hwords + *nwords) >> 1; hfi1_make_16b_hdr(hdr, ppd->lid | (rdma_ah_get_path_bits(&qp->remote_ah_attr) & ((1 << ppd->lmc) - 1)), opa_get_lid(rdma_ah_get_dlid(&qp->remote_ah_attr), 16B), len, pkey, becn, 0, l4, sc5); bth0 = pkey | (OP(ACKNOWLEDGE) << 24); bth0 |= extra_bytes << 20; if (qp->s_mig_state == IB_MIG_MIGRATED) bth1 = OPA_BTH_MIG_REQ; hfi1_make_bth_aeth(qp, ohdr, bth0, bth1); } typedef void (*hfi1_make_rc_ack)(struct hfi1_packet *packet, struct hfi1_opa_header *opa_hdr, u8 sc5, bool is_fecn, u64 *pbc_flags, u32 *hwords, u32 *nwords); /* We support only two types - 9B and 16B for now */ static const hfi1_make_rc_ack hfi1_make_rc_ack_tbl[2] = { [HFI1_PKT_TYPE_9B] = &hfi1_make_rc_ack_9B, [HFI1_PKT_TYPE_16B] = &hfi1_make_rc_ack_16B }; /* * hfi1_send_rc_ack - Construct an ACK packet and send it * * This is called from hfi1_rc_rcv() and handle_receive_interrupt(). * Note that RDMA reads and atomics are handled in the * send side QP state and send engine. */ void hfi1_send_rc_ack(struct hfi1_packet *packet, bool is_fecn) { struct hfi1_ctxtdata *rcd = packet->rcd; struct rvt_qp *qp = packet->qp; struct hfi1_ibport *ibp = rcd_to_iport(rcd); struct hfi1_qp_priv *priv = qp->priv; struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); u8 sc5 = ibp->sl_to_sc[rdma_ah_get_sl(&qp->remote_ah_attr)]; u64 pbc, pbc_flags = 0; u32 hwords = 0; u32 nwords = 0; u32 plen; struct pio_buf *pbuf; struct hfi1_opa_header opa_hdr; /* clear the defer count */ qp->r_adefered = 0; /* Don't send ACK or NAK if a RDMA read or atomic is pending. */ if (qp->s_flags & RVT_S_RESP_PENDING) { hfi1_queue_rc_ack(packet, is_fecn); return; } /* Ensure s_rdma_ack_cnt changes are committed */ if (qp->s_rdma_ack_cnt) { hfi1_queue_rc_ack(packet, is_fecn); return; } /* Don't try to send ACKs if the link isn't ACTIVE */ if (driver_lstate(ppd) != IB_PORT_ACTIVE) return; /* Make the appropriate header */ hfi1_make_rc_ack_tbl[priv->hdr_type](packet, &opa_hdr, sc5, is_fecn, &pbc_flags, &hwords, &nwords); plen = 2 /* PBC */ + hwords + nwords; pbc = create_pbc(ppd, pbc_flags, qp->srate_mbps, sc_to_vlt(ppd->dd, sc5), plen); pbuf = sc_buffer_alloc(rcd->sc, plen, NULL, NULL); if (IS_ERR_OR_NULL(pbuf)) { /* * We have no room to send at the moment. Pass * responsibility for sending the ACK to the send engine * so that when enough buffer space becomes available, * the ACK is sent ahead of other outgoing packets. */ hfi1_queue_rc_ack(packet, is_fecn); return; } trace_ack_output_ibhdr(dd_from_ibdev(qp->ibqp.device), &opa_hdr, ib_is_sc5(sc5)); /* write the pbc and data */ ppd->dd->pio_inline_send(ppd->dd, pbuf, pbc, (priv->hdr_type == HFI1_PKT_TYPE_9B ? (void *)&opa_hdr.ibh : (void *)&opa_hdr.opah), hwords); return; } /** * update_num_rd_atomic - update the qp->s_num_rd_atomic * @qp: the QP * @psn: the packet sequence number to restart at * @wqe: the wqe * * This is called from reset_psn() to update qp->s_num_rd_atomic * for the current wqe. * Called at interrupt level with the QP s_lock held. */ static void update_num_rd_atomic(struct rvt_qp *qp, u32 psn, struct rvt_swqe *wqe) { u32 opcode = wqe->wr.opcode; if (opcode == IB_WR_RDMA_READ || opcode == IB_WR_ATOMIC_CMP_AND_SWP || opcode == IB_WR_ATOMIC_FETCH_AND_ADD) { qp->s_num_rd_atomic++; } else if (opcode == IB_WR_TID_RDMA_READ) { struct tid_rdma_request *req = wqe_to_tid_req(wqe); struct hfi1_qp_priv *priv = qp->priv; if (cmp_psn(psn, wqe->lpsn) <= 0) { u32 cur_seg; cur_seg = (psn - wqe->psn) / priv->pkts_ps; req->ack_pending = cur_seg - req->comp_seg; priv->pending_tid_r_segs += req->ack_pending; qp->s_num_rd_atomic += req->ack_pending; trace_hfi1_tid_req_update_num_rd_atomic(qp, 0, wqe->wr.opcode, wqe->psn, wqe->lpsn, req); } else { priv->pending_tid_r_segs += req->total_segs; qp->s_num_rd_atomic += req->total_segs; } } } /** * reset_psn - reset the QP state to send starting from PSN * @qp: the QP * @psn: the packet sequence number to restart at * * This is called from hfi1_rc_rcv() to process an incoming RC ACK * for the given QP. * Called at interrupt level with the QP s_lock held. */ static void reset_psn(struct rvt_qp *qp, u32 psn) { u32 n = qp->s_acked; struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, n); u32 opcode; struct hfi1_qp_priv *priv = qp->priv; lockdep_assert_held(&qp->s_lock); qp->s_cur = n; priv->pending_tid_r_segs = 0; priv->pending_tid_w_resp = 0; qp->s_num_rd_atomic = 0; /* * If we are starting the request from the beginning, * let the normal send code handle initialization. */ if (cmp_psn(psn, wqe->psn) <= 0) { qp->s_state = OP(SEND_LAST); goto done; } update_num_rd_atomic(qp, psn, wqe); /* Find the work request opcode corresponding to the given PSN. */ for (;;) { int diff; if (++n == qp->s_size) n = 0; if (n == qp->s_tail) break; wqe = rvt_get_swqe_ptr(qp, n); diff = cmp_psn(psn, wqe->psn); if (diff < 0) { /* Point wqe back to the previous one*/ wqe = rvt_get_swqe_ptr(qp, qp->s_cur); break; } qp->s_cur = n; /* * If we are starting the request from the beginning, * let the normal send code handle initialization. */ if (diff == 0) { qp->s_state = OP(SEND_LAST); goto done; } update_num_rd_atomic(qp, psn, wqe); } opcode = wqe->wr.opcode; /* * Set the state to restart in the middle of a request. * Don't change the s_sge, s_cur_sge, or s_cur_size. * See hfi1_make_rc_req(). */ switch (opcode) { case IB_WR_SEND: case IB_WR_SEND_WITH_IMM: qp->s_state = OP(RDMA_READ_RESPONSE_FIRST); break; case IB_WR_RDMA_WRITE: case IB_WR_RDMA_WRITE_WITH_IMM: qp->s_state = OP(RDMA_READ_RESPONSE_LAST); break; case IB_WR_TID_RDMA_WRITE: qp->s_state = TID_OP(WRITE_RESP); break; case IB_WR_RDMA_READ: qp->s_state = OP(RDMA_READ_RESPONSE_MIDDLE); break; case IB_WR_TID_RDMA_READ: qp->s_state = TID_OP(READ_RESP); break; default: /* * This case shouldn't happen since its only * one PSN per req. */ qp->s_state = OP(SEND_LAST); } done: priv->s_flags &= ~HFI1_S_TID_WAIT_INTERLCK; qp->s_psn = psn; /* * Set RVT_S_WAIT_PSN as rc_complete() may start the timer * asynchronously before the send engine can get scheduled. * Doing it in hfi1_make_rc_req() is too late. */ if ((cmp_psn(qp->s_psn, qp->s_sending_hpsn) <= 0) && (cmp_psn(qp->s_sending_psn, qp->s_sending_hpsn) <= 0)) qp->s_flags |= RVT_S_WAIT_PSN; qp->s_flags &= ~HFI1_S_AHG_VALID; trace_hfi1_sender_reset_psn(qp); } /* * Back up requester to resend the last un-ACKed request. * The QP r_lock and s_lock should be held and interrupts disabled. */ void hfi1_restart_rc(struct rvt_qp *qp, u32 psn, int wait) { struct hfi1_qp_priv *priv = qp->priv; struct rvt_swqe *wqe = rvt_get_swqe_ptr(qp, qp->s_acked); struct hfi1_ibport *ibp; lockdep_assert_held(&qp->r_lock); lockdep_assert_held(&qp->s_lock); trace_hfi1_sender_restart_rc(qp); if (qp->s_retry == 0) { if (qp->s_mig_state == IB_MIG_ARMED) { hfi1_migrate_qp(qp); qp->s_retry = qp->s_retry_cnt; } else if (qp->s_last == qp->s_acked) { /* * We need special handling for the OPFN request WQEs as * they are not allowed to generate real user errors */ if (wqe->wr.opcode == IB_WR_OPFN) { struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num); /* * Call opfn_conn_reply() with capcode and * remaining data as 0 to close out the * current request */ opfn_conn_reply(qp, priv->opfn.curr); wqe = do_rc_completion(qp, wqe, ibp); qp->s_flags &= ~RVT_S_WAIT_ACK; } else { trace_hfi1_tid_write_sender_restart_rc(qp, 0); if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) { struct tid_rdma_request *req; req = wqe_to_tid_req(wqe); hfi1_kern_exp_rcv_clear_all(req); hfi1_kern_clear_hw_flow(priv->rcd, qp); } hfi1_trdma_send_complete(qp, wqe, IB_WC_RETRY_EXC_ERR); rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); } return; } else { /* need to handle delayed completion */ return; } } else { qp->s_retry--; } ibp = to_iport(qp->ibqp.device, qp->port_num); if (wqe->wr.opcode == IB_WR_RDMA_READ || wqe->wr.opcode == IB_WR_TID_RDMA_READ) ibp->rvp.n_rc_resends++; else ibp->rvp.n_rc_resends += delta_psn(qp->s_psn, psn); qp->s_flags &= ~(RVT_S_WAIT_FENCE | RVT_S_WAIT_RDMAR | RVT_S_WAIT_SSN_CREDIT | RVT_S_WAIT_PSN | RVT_S_WAIT_ACK | HFI1_S_WAIT_TID_RESP); if (wait) qp->s_flags |= RVT_S_SEND_ONE; reset_psn(qp, psn); } /* * Set qp->s_sending_psn to the next PSN after the given one. * This would be psn+1 except when RDMA reads or TID RDMA ops * are present. */ static void reset_sending_psn(struct rvt_qp *qp, u32 psn) { struct rvt_swqe *wqe; u32 n = qp->s_last; lockdep_assert_held(&qp->s_lock); /* Find the work request corresponding to the given PSN. */ for (;;) { wqe = rvt_get_swqe_ptr(qp, n); if (cmp_psn(psn, wqe->lpsn) <= 0) { if (wqe->wr.opcode == IB_WR_RDMA_READ || wqe->wr.opcode == IB_WR_TID_RDMA_READ || wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) qp->s_sending_psn = wqe->lpsn + 1; else qp->s_sending_psn = psn + 1; break; } if (++n == qp->s_size) n = 0; if (n == qp->s_tail) break; } } /** * hfi1_rc_verbs_aborted - handle abort status * @qp: the QP * @opah: the opa header * * This code modifies both ACK bit in BTH[2] * and the s_flags to go into send one mode. * * This serves to throttle the send engine to only * send a single packet in the likely case the * a link has gone down. */ void hfi1_rc_verbs_aborted(struct rvt_qp *qp, struct hfi1_opa_header *opah) { struct ib_other_headers *ohdr = hfi1_get_rc_ohdr(opah); u8 opcode = ib_bth_get_opcode(ohdr); u32 psn; /* ignore responses */ if ((opcode >= OP(RDMA_READ_RESPONSE_FIRST) && opcode <= OP(ATOMIC_ACKNOWLEDGE)) || opcode == TID_OP(READ_RESP) || opcode == TID_OP(WRITE_RESP)) return; psn = ib_bth_get_psn(ohdr) | IB_BTH_REQ_ACK; ohdr->bth[2] = cpu_to_be32(psn); qp->s_flags |= RVT_S_SEND_ONE; } /* * This should be called with the QP s_lock held and interrupts disabled. */ void hfi1_rc_send_complete(struct rvt_qp *qp, struct hfi1_opa_header *opah) { struct ib_other_headers *ohdr; struct hfi1_qp_priv *priv = qp->priv; struct rvt_swqe *wqe; u32 opcode, head, tail; u32 psn; struct tid_rdma_request *req; lockdep_assert_held(&qp->s_lock); if (!(ib_rvt_state_ops[qp->state] & RVT_SEND_OR_FLUSH_OR_RECV_OK)) return; ohdr = hfi1_get_rc_ohdr(opah); opcode = ib_bth_get_opcode(ohdr); if ((opcode >= OP(RDMA_READ_RESPONSE_FIRST) && opcode <= OP(ATOMIC_ACKNOWLEDGE)) || opcode == TID_OP(READ_RESP) || opcode == TID_OP(WRITE_RESP)) { WARN_ON(!qp->s_rdma_ack_cnt); qp->s_rdma_ack_cnt--; return; } psn = ib_bth_get_psn(ohdr); /* * Don't attempt to reset the sending PSN for packets in the * KDETH PSN space since the PSN does not match anything. */ if (opcode != TID_OP(WRITE_DATA) && opcode != TID_OP(WRITE_DATA_LAST) && opcode != TID_OP(ACK) && opcode != TID_OP(RESYNC)) reset_sending_psn(qp, psn); /* Handle TID RDMA WRITE packets differently */ if (opcode >= TID_OP(WRITE_REQ) && opcode <= TID_OP(WRITE_DATA_LAST)) { head = priv->s_tid_head; tail = priv->s_tid_cur; /* * s_tid_cur is set to s_tid_head in the case, where * a new TID RDMA request is being started and all * previous ones have been completed. * Therefore, we need to do a secondary check in order * to properly determine whether we should start the * RC timer. */ wqe = rvt_get_swqe_ptr(qp, tail); req = wqe_to_tid_req(wqe); if (head == tail && req->comp_seg < req->total_segs) { if (tail == 0) tail = qp->s_size - 1; else tail -= 1; } } else { head = qp->s_tail; tail = qp->s_acked; } /* * Start timer after a packet requesting an ACK has been sent and * there are still requests that haven't been acked. */ if ((psn & IB_BTH_REQ_ACK) && tail != head && opcode != TID_OP(WRITE_DATA) && opcode != TID_OP(WRITE_DATA_LAST) && opcode != TID_OP(RESYNC) && !(qp->s_flags & (RVT_S_TIMER | RVT_S_WAIT_RNR | RVT_S_WAIT_PSN)) && (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) { if (opcode == TID_OP(READ_REQ)) rvt_add_retry_timer_ext(qp, priv->timeout_shift); else rvt_add_retry_timer(qp); } /* Start TID RDMA ACK timer */ if ((opcode == TID_OP(WRITE_DATA) || opcode == TID_OP(WRITE_DATA_LAST) || opcode == TID_OP(RESYNC)) && (psn & IB_BTH_REQ_ACK) && !(priv->s_flags & HFI1_S_TID_RETRY_TIMER) && (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK)) { /* * The TID RDMA ACK packet could be received before this * function is called. Therefore, add the timer only if TID * RDMA ACK packets are actually pending. */ wqe = rvt_get_swqe_ptr(qp, qp->s_acked); req = wqe_to_tid_req(wqe); if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE && req->ack_seg < req->cur_seg) hfi1_add_tid_retry_timer(qp); } while (qp->s_last != qp->s_acked) { wqe = rvt_get_swqe_ptr(qp, qp->s_last); if (cmp_psn(wqe->lpsn, qp->s_sending_psn) >= 0 && cmp_psn(qp->s_sending_psn, qp->s_sending_hpsn) <= 0) break; trdma_clean_swqe(qp, wqe); trace_hfi1_qp_send_completion(qp, wqe, qp->s_last); rvt_qp_complete_swqe(qp, wqe, ib_hfi1_wc_opcode[wqe->wr.opcode], IB_WC_SUCCESS); } /* * If we were waiting for sends to complete before re-sending, * and they are now complete, restart sending. */ trace_hfi1_sendcomplete(qp, psn); if (qp->s_flags & RVT_S_WAIT_PSN && cmp_psn(qp->s_sending_psn, qp->s_sending_hpsn) > 0) { qp->s_flags &= ~RVT_S_WAIT_PSN; qp->s_sending_psn = qp->s_psn; qp->s_sending_hpsn = qp->s_psn - 1; hfi1_schedule_send(qp); } } static inline void update_last_psn(struct rvt_qp *qp, u32 psn) { qp->s_last_psn = psn; } /* * Generate a SWQE completion. * This is similar to hfi1_send_complete but has to check to be sure * that the SGEs are not being referenced if the SWQE is being resent. */ struct rvt_swqe *do_rc_completion(struct rvt_qp *qp, struct rvt_swqe *wqe, struct hfi1_ibport *ibp) { struct hfi1_qp_priv *priv = qp->priv; lockdep_assert_held(&qp->s_lock); /* * Don't decrement refcount and don't generate a * completion if the SWQE is being resent until the send * is finished. */ trace_hfi1_rc_completion(qp, wqe->lpsn); if (cmp_psn(wqe->lpsn, qp->s_sending_psn) < 0 || cmp_psn(qp->s_sending_psn, qp->s_sending_hpsn) > 0) { trdma_clean_swqe(qp, wqe); trace_hfi1_qp_send_completion(qp, wqe, qp->s_last); rvt_qp_complete_swqe(qp, wqe, ib_hfi1_wc_opcode[wqe->wr.opcode], IB_WC_SUCCESS); } else { struct hfi1_pportdata *ppd = ppd_from_ibp(ibp); this_cpu_inc(*ibp->rvp.rc_delayed_comp); /* * If send progress not running attempt to progress * SDMA queue. */ if (ppd->dd->flags & HFI1_HAS_SEND_DMA) { struct sdma_engine *engine; u8 sl = rdma_ah_get_sl(&qp->remote_ah_attr); u8 sc5; /* For now use sc to find engine */ sc5 = ibp->sl_to_sc[sl]; engine = qp_to_sdma_engine(qp, sc5); sdma_engine_progress_schedule(engine); } } qp->s_retry = qp->s_retry_cnt; /* * Don't update the last PSN if the request being completed is * a TID RDMA WRITE request. * Completion of the TID RDMA WRITE requests are done by the * TID RDMA ACKs and as such could be for a request that has * already been ACKed as far as the IB state machine is * concerned. */ if (wqe->wr.opcode != IB_WR_TID_RDMA_WRITE) update_last_psn(qp, wqe->lpsn); /* * If we are completing a request which is in the process of * being resent, we can stop re-sending it since we know the * responder has already seen it. */ if (qp->s_acked == qp->s_cur) { if (++qp->s_cur >= qp->s_size) qp->s_cur = 0; qp->s_acked = qp->s_cur; wqe = rvt_get_swqe_ptr(qp, qp->s_cur); if (qp->s_acked != qp->s_tail) { qp->s_state = OP(SEND_LAST); qp->s_psn = wqe->psn; } } else { if (++qp->s_acked >= qp->s_size) qp->s_acked = 0; if (qp->state == IB_QPS_SQD && qp->s_acked == qp->s_cur) qp->s_draining = 0; wqe = rvt_get_swqe_ptr(qp, qp->s_acked); } if (priv->s_flags & HFI1_S_TID_WAIT_INTERLCK) { priv->s_flags &= ~HFI1_S_TID_WAIT_INTERLCK; hfi1_schedule_send(qp); } return wqe; } static void set_restart_qp(struct rvt_qp *qp, struct hfi1_ctxtdata *rcd) { /* Retry this request. */ if (!(qp->r_flags & RVT_R_RDMAR_SEQ)) { qp->r_flags |= RVT_R_RDMAR_SEQ; hfi1_restart_rc(qp, qp->s_last_psn + 1, 0); if (list_empty(&qp->rspwait)) { qp->r_flags |= RVT_R_RSP_SEND; rvt_get_qp(qp); list_add_tail(&qp->rspwait, &rcd->qp_wait_list); } } } /** * update_qp_retry_state - Update qp retry state. * @qp: the QP * @psn: the packet sequence number of the TID RDMA WRITE RESP. * @spsn: The start psn for the given TID RDMA WRITE swqe. * @lpsn: The last psn for the given TID RDMA WRITE swqe. * * This function is called to update the qp retry state upon * receiving a TID WRITE RESP after the qp is scheduled to retry * a request. */ static void update_qp_retry_state(struct rvt_qp *qp, u32 psn, u32 spsn, u32 lpsn) { struct hfi1_qp_priv *qpriv = qp->priv; qp->s_psn = psn + 1; /* * If this is the first TID RDMA WRITE RESP packet for the current * request, change the s_state so that the retry will be processed * correctly. Similarly, if this is the last TID RDMA WRITE RESP * packet, change the s_state and advance the s_cur. */ if (cmp_psn(psn, lpsn) >= 0) { qp->s_cur = qpriv->s_tid_cur + 1; if (qp->s_cur >= qp->s_size) qp->s_cur = 0; qp->s_state = TID_OP(WRITE_REQ); } else if (!cmp_psn(psn, spsn)) { qp->s_cur = qpriv->s_tid_cur; qp->s_state = TID_OP(WRITE_RESP); } } /* * do_rc_ack - process an incoming RC ACK * @qp: the QP the ACK came in on * @psn: the packet sequence number of the ACK * @opcode: the opcode of the request that resulted in the ACK * * This is called from rc_rcv_resp() to process an incoming RC ACK * for the given QP. * May be called at interrupt level, with the QP s_lock held. * Returns 1 if OK, 0 if current operation should be aborted (NAK). */ int do_rc_ack(struct rvt_qp *qp, u32 aeth, u32 psn, int opcode, u64 val, struct hfi1_ctxtdata *rcd) { struct hfi1_ibport *ibp; enum ib_wc_status status; struct hfi1_qp_priv *qpriv = qp->priv; struct rvt_swqe *wqe; int ret = 0; u32 ack_psn; int diff; struct rvt_dev_info *rdi; lockdep_assert_held(&qp->s_lock); /* * Note that NAKs implicitly ACK outstanding SEND and RDMA write * requests and implicitly NAK RDMA read and atomic requests issued * before the NAK'ed request. The MSN won't include the NAK'ed * request but will include an ACK'ed request(s). */ ack_psn = psn; if (aeth >> IB_AETH_NAK_SHIFT) ack_psn--; wqe = rvt_get_swqe_ptr(qp, qp->s_acked); ibp = rcd_to_iport(rcd); /* * The MSN might be for a later WQE than the PSN indicates so * only complete WQEs that the PSN finishes. */ while ((diff = delta_psn(ack_psn, wqe->lpsn)) >= 0) { /* * RDMA_READ_RESPONSE_ONLY is a special case since * we want to generate completion events for everything * before the RDMA read, copy the data, then generate * the completion for the read. */ if (wqe->wr.opcode == IB_WR_RDMA_READ && opcode == OP(RDMA_READ_RESPONSE_ONLY) && diff == 0) { ret = 1; goto bail_stop; } /* * If this request is a RDMA read or atomic, and the ACK is * for a later operation, this ACK NAKs the RDMA read or * atomic. In other words, only a RDMA_READ_LAST or ONLY * can ACK a RDMA read and likewise for atomic ops. Note * that the NAK case can only happen if relaxed ordering is * used and requests are sent after an RDMA read or atomic * is sent but before the response is received. */ if ((wqe->wr.opcode == IB_WR_RDMA_READ && (opcode != OP(RDMA_READ_RESPONSE_LAST) || diff != 0)) || (wqe->wr.opcode == IB_WR_TID_RDMA_READ && (opcode != TID_OP(READ_RESP) || diff != 0)) || ((wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP || wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) && (opcode != OP(ATOMIC_ACKNOWLEDGE) || diff != 0)) || (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE && (delta_psn(psn, qp->s_last_psn) != 1))) { set_restart_qp(qp, rcd); /* * No need to process the ACK/NAK since we are * restarting an earlier request. */ goto bail_stop; } if (wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP || wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) { u64 *vaddr = wqe->sg_list[0].vaddr; *vaddr = val; } if (wqe->wr.opcode == IB_WR_OPFN) opfn_conn_reply(qp, val); if (qp->s_num_rd_atomic && (wqe->wr.opcode == IB_WR_RDMA_READ || wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP || wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD)) { qp->s_num_rd_atomic--; /* Restart sending task if fence is complete */ if ((qp->s_flags & RVT_S_WAIT_FENCE) && !qp->s_num_rd_atomic) { qp->s_flags &= ~(RVT_S_WAIT_FENCE | RVT_S_WAIT_ACK); hfi1_schedule_send(qp); } else if (qp->s_flags & RVT_S_WAIT_RDMAR) { qp->s_flags &= ~(RVT_S_WAIT_RDMAR | RVT_S_WAIT_ACK); hfi1_schedule_send(qp); } } /* * TID RDMA WRITE requests will be completed by the TID RDMA * ACK packet handler (see tid_rdma.c). */ if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) break; wqe = do_rc_completion(qp, wqe, ibp); if (qp->s_acked == qp->s_tail) break; } trace_hfi1_rc_ack_do(qp, aeth, psn, wqe); trace_hfi1_sender_do_rc_ack(qp); switch (aeth >> IB_AETH_NAK_SHIFT) { case 0: /* ACK */ this_cpu_inc(*ibp->rvp.rc_acks); if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) { if (wqe_to_tid_req(wqe)->ack_pending) rvt_mod_retry_timer_ext(qp, qpriv->timeout_shift); else rvt_stop_rc_timers(qp); } else if (qp->s_acked != qp->s_tail) { struct rvt_swqe *__w = NULL; if (qpriv->s_tid_cur != HFI1_QP_WQE_INVALID) __w = rvt_get_swqe_ptr(qp, qpriv->s_tid_cur); /* * Stop timers if we've received all of the TID RDMA * WRITE * responses. */ if (__w && __w->wr.opcode == IB_WR_TID_RDMA_WRITE && opcode == TID_OP(WRITE_RESP)) { /* * Normally, the loop above would correctly * process all WQEs from s_acked onward and * either complete them or check for correct * PSN sequencing. * However, for TID RDMA, due to pipelining, * the response may not be for the request at * s_acked so the above look would just be * skipped. This does not allow for checking * the PSN sequencing. It has to be done * separately. */ if (cmp_psn(psn, qp->s_last_psn + 1)) { set_restart_qp(qp, rcd); goto bail_stop; } /* * If the psn is being resent, stop the * resending. */ if (qp->s_cur != qp->s_tail && cmp_psn(qp->s_psn, psn) <= 0) update_qp_retry_state(qp, psn, __w->psn, __w->lpsn); else if (--qpriv->pending_tid_w_resp) rvt_mod_retry_timer(qp); else rvt_stop_rc_timers(qp); } else { /* * We are expecting more ACKs so * mod the retry timer. */ rvt_mod_retry_timer(qp); /* * We can stop re-sending the earlier packets * and continue with the next packet the * receiver wants. */ if (cmp_psn(qp->s_psn, psn) <= 0) reset_psn(qp, psn + 1); } } else { /* No more acks - kill all timers */ rvt_stop_rc_timers(qp); if (cmp_psn(qp->s_psn, psn) <= 0) { qp->s_state = OP(SEND_LAST); qp->s_psn = psn + 1; } } if (qp->s_flags & RVT_S_WAIT_ACK) { qp->s_flags &= ~RVT_S_WAIT_ACK; hfi1_schedule_send(qp); } rvt_get_credit(qp, aeth); qp->s_rnr_retry = qp->s_rnr_retry_cnt; qp->s_retry = qp->s_retry_cnt; /* * If the current request is a TID RDMA WRITE request and the * response is not a TID RDMA WRITE RESP packet, s_last_psn * can't be advanced. */ if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE && opcode != TID_OP(WRITE_RESP) && cmp_psn(psn, wqe->psn) >= 0) return 1; update_last_psn(qp, psn); return 1; case 1: /* RNR NAK */ ibp->rvp.n_rnr_naks++; if (qp->s_acked == qp->s_tail) goto bail_stop; if (qp->s_flags & RVT_S_WAIT_RNR) goto bail_stop; rdi = ib_to_rvt(qp->ibqp.device); if (!(rdi->post_parms[wqe->wr.opcode].flags & RVT_OPERATION_IGN_RNR_CNT)) { if (qp->s_rnr_retry == 0) { status = IB_WC_RNR_RETRY_EXC_ERR; goto class_b; } if (qp->s_rnr_retry_cnt < 7 && qp->s_rnr_retry_cnt > 0) qp->s_rnr_retry--; } /* * The last valid PSN is the previous PSN. For TID RDMA WRITE * request, s_last_psn should be incremented only when a TID * RDMA WRITE RESP is received to avoid skipping lost TID RDMA * WRITE RESP packets. */ if (wqe->wr.opcode == IB_WR_TID_RDMA_WRITE) { reset_psn(qp, qp->s_last_psn + 1); } else { update_last_psn(qp, psn - 1); reset_psn(qp, psn); } ibp->rvp.n_rc_resends += delta_psn(qp->s_psn, psn); qp->s_flags &= ~(RVT_S_WAIT_SSN_CREDIT | RVT_S_WAIT_ACK); rvt_stop_rc_timers(qp); rvt_add_rnr_timer(qp, aeth); return 0; case 3: /* NAK */ if (qp->s_acked == qp->s_tail) goto bail_stop; /* The last valid PSN is the previous PSN. */ update_last_psn(qp, psn - 1); switch ((aeth >> IB_AETH_CREDIT_SHIFT) & IB_AETH_CREDIT_MASK) { case 0: /* PSN sequence error */ ibp->rvp.n_seq_naks++; /* * Back up to the responder's expected PSN. * Note that we might get a NAK in the middle of an * RDMA READ response which terminates the RDMA * READ. */ hfi1_restart_rc(qp, psn, 0); hfi1_schedule_send(qp); break; case 1: /* Invalid Request */ status = IB_WC_REM_INV_REQ_ERR; ibp->rvp.n_other_naks++; goto class_b; case 2: /* Remote Access Error */ status = IB_WC_REM_ACCESS_ERR; ibp->rvp.n_other_naks++; goto class_b; case 3: /* Remote Operation Error */ status = IB_WC_REM_OP_ERR; ibp->rvp.n_other_naks++; class_b: if (qp->s_last == qp->s_acked) { if (wqe->wr.opcode == IB_WR_TID_RDMA_READ) hfi1_kern_read_tid_flow_free(qp); hfi1_trdma_send_complete(qp, wqe, status); rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); } break; default: /* Ignore other reserved NAK error codes */ goto reserved; } qp->s_retry = qp->s_retry_cnt; qp->s_rnr_retry = qp->s_rnr_retry_cnt; goto bail_stop; default: /* 2: reserved */ reserved: /* Ignore reserved NAK codes. */ goto bail_stop; } /* cannot be reached */ bail_stop: rvt_stop_rc_timers(qp); return ret; } /* * We have seen an out of sequence RDMA read middle or last packet. * This ACKs SENDs and RDMA writes up to the first RDMA read or atomic SWQE. */ static void rdma_seq_err(struct rvt_qp *qp, struct hfi1_ibport *ibp, u32 psn, struct hfi1_ctxtdata *rcd) { struct rvt_swqe *wqe; lockdep_assert_held(&qp->s_lock); /* Remove QP from retry timer */ rvt_stop_rc_timers(qp); wqe = rvt_get_swqe_ptr(qp, qp->s_acked); while (cmp_psn(psn, wqe->lpsn) > 0) { if (wqe->wr.opcode == IB_WR_RDMA_READ || wqe->wr.opcode == IB_WR_TID_RDMA_READ || wqe->wr.opcode == IB_WR_TID_RDMA_WRITE || wqe->wr.opcode == IB_WR_ATOMIC_CMP_AND_SWP || wqe->wr.opcode == IB_WR_ATOMIC_FETCH_AND_ADD) break; wqe = do_rc_completion(qp, wqe, ibp); } ibp->rvp.n_rdma_seq++; qp->r_flags |= RVT_R_RDMAR_SEQ; hfi1_restart_rc(qp, qp->s_last_psn + 1, 0); if (list_empty(&qp->rspwait)) { qp->r_flags |= RVT_R_RSP_SEND; rvt_get_qp(qp); list_add_tail(&qp->rspwait, &rcd->qp_wait_list); } } /** * rc_rcv_resp - process an incoming RC response packet * @packet: data packet information * * This is called from hfi1_rc_rcv() to process an incoming RC response * packet for the given QP. * Called at interrupt level. */ static void rc_rcv_resp(struct hfi1_packet *packet) { struct hfi1_ctxtdata *rcd = packet->rcd; void *data = packet->payload; u32 tlen = packet->tlen; struct rvt_qp *qp = packet->qp; struct hfi1_ibport *ibp; struct ib_other_headers *ohdr = packet->ohdr; struct rvt_swqe *wqe; enum ib_wc_status status; unsigned long flags; int diff; u64 val; u32 aeth; u32 psn = ib_bth_get_psn(packet->ohdr); u32 pmtu = qp->pmtu; u16 hdrsize = packet->hlen; u8 opcode = packet->opcode; u8 pad = packet->pad; u8 extra_bytes = pad + packet->extra_byte + (SIZE_OF_CRC << 2); spin_lock_irqsave(&qp->s_lock, flags); trace_hfi1_ack(qp, psn); /* Ignore invalid responses. */ if (cmp_psn(psn, READ_ONCE(qp->s_next_psn)) >= 0) goto ack_done; /* Ignore duplicate responses. */ diff = cmp_psn(psn, qp->s_last_psn); if (unlikely(diff <= 0)) { /* Update credits for "ghost" ACKs */ if (diff == 0 && opcode == OP(ACKNOWLEDGE)) { aeth = be32_to_cpu(ohdr->u.aeth); if ((aeth >> IB_AETH_NAK_SHIFT) == 0) rvt_get_credit(qp, aeth); } goto ack_done; } /* * Skip everything other than the PSN we expect, if we are waiting * for a reply to a restarted RDMA read or atomic op. */ if (qp->r_flags & RVT_R_RDMAR_SEQ) { if (cmp_psn(psn, qp->s_last_psn + 1) != 0) goto ack_done; qp->r_flags &= ~RVT_R_RDMAR_SEQ; } if (unlikely(qp->s_acked == qp->s_tail)) goto ack_done; wqe = rvt_get_swqe_ptr(qp, qp->s_acked); status = IB_WC_SUCCESS; switch (opcode) { case OP(ACKNOWLEDGE): case OP(ATOMIC_ACKNOWLEDGE): case OP(RDMA_READ_RESPONSE_FIRST): aeth = be32_to_cpu(ohdr->u.aeth); if (opcode == OP(ATOMIC_ACKNOWLEDGE)) val = ib_u64_get(&ohdr->u.at.atomic_ack_eth); else val = 0; if (!do_rc_ack(qp, aeth, psn, opcode, val, rcd) || opcode != OP(RDMA_READ_RESPONSE_FIRST)) goto ack_done; wqe = rvt_get_swqe_ptr(qp, qp->s_acked); if (unlikely(wqe->wr.opcode != IB_WR_RDMA_READ)) goto ack_op_err; /* * If this is a response to a resent RDMA read, we * have to be careful to copy the data to the right * location. */ qp->s_rdma_read_len = restart_sge(&qp->s_rdma_read_sge, wqe, psn, pmtu); goto read_middle; case OP(RDMA_READ_RESPONSE_MIDDLE): /* no AETH, no ACK */ if (unlikely(cmp_psn(psn, qp->s_last_psn + 1))) goto ack_seq_err; if (unlikely(wqe->wr.opcode != IB_WR_RDMA_READ)) goto ack_op_err; read_middle: if (unlikely(tlen != (hdrsize + pmtu + extra_bytes))) goto ack_len_err; if (unlikely(pmtu >= qp->s_rdma_read_len)) goto ack_len_err; /* * We got a response so update the timeout. * 4.096 usec. * (1 << qp->timeout) */ rvt_mod_retry_timer(qp); if (qp->s_flags & RVT_S_WAIT_ACK) { qp->s_flags &= ~RVT_S_WAIT_ACK; hfi1_schedule_send(qp); } if (opcode == OP(RDMA_READ_RESPONSE_MIDDLE)) qp->s_retry = qp->s_retry_cnt; /* * Update the RDMA receive state but do the copy w/o * holding the locks and blocking interrupts. */ qp->s_rdma_read_len -= pmtu; update_last_psn(qp, psn); spin_unlock_irqrestore(&qp->s_lock, flags); rvt_copy_sge(qp, &qp->s_rdma_read_sge, data, pmtu, false, false); goto bail; case OP(RDMA_READ_RESPONSE_ONLY): aeth = be32_to_cpu(ohdr->u.aeth); if (!do_rc_ack(qp, aeth, psn, opcode, 0, rcd)) goto ack_done; /* * Check that the data size is >= 0 && <= pmtu. * Remember to account for ICRC (4). */ if (unlikely(tlen < (hdrsize + extra_bytes))) goto ack_len_err; /* * If this is a response to a resent RDMA read, we * have to be careful to copy the data to the right * location. */ wqe = rvt_get_swqe_ptr(qp, qp->s_acked); qp->s_rdma_read_len = restart_sge(&qp->s_rdma_read_sge, wqe, psn, pmtu); goto read_last; case OP(RDMA_READ_RESPONSE_LAST): /* ACKs READ req. */ if (unlikely(cmp_psn(psn, qp->s_last_psn + 1))) goto ack_seq_err; if (unlikely(wqe->wr.opcode != IB_WR_RDMA_READ)) goto ack_op_err; /* * Check that the data size is >= 1 && <= pmtu. * Remember to account for ICRC (4). */ if (unlikely(tlen <= (hdrsize + extra_bytes))) goto ack_len_err; read_last: tlen -= hdrsize + extra_bytes; if (unlikely(tlen != qp->s_rdma_read_len)) goto ack_len_err; aeth = be32_to_cpu(ohdr->u.aeth); rvt_copy_sge(qp, &qp->s_rdma_read_sge, data, tlen, false, false); WARN_ON(qp->s_rdma_read_sge.num_sge); (void)do_rc_ack(qp, aeth, psn, OP(RDMA_READ_RESPONSE_LAST), 0, rcd); goto ack_done; } ack_op_err: status = IB_WC_LOC_QP_OP_ERR; goto ack_err; ack_seq_err: ibp = rcd_to_iport(rcd); rdma_seq_err(qp, ibp, psn, rcd); goto ack_done; ack_len_err: status = IB_WC_LOC_LEN_ERR; ack_err: if (qp->s_last == qp->s_acked) { rvt_send_complete(qp, wqe, status); rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR); } ack_done: spin_unlock_irqrestore(&qp->s_lock, flags); bail: return; } static inline void rc_cancel_ack(struct rvt_qp *qp) { qp->r_adefered = 0; if (list_empty(&qp->rspwait)) return; list_del_init(&qp->rspwait); qp->r_flags &= ~RVT_R_RSP_NAK; rvt_put_qp(qp); } /** * rc_rcv_error - process an incoming duplicate or error RC packet * @ohdr: the other headers for this packet * @data: the packet data * @qp: the QP for this packet * @opcode: the opcode for this packet * @psn: the packet sequence number for this packet * @diff: the difference between the PSN and the expected PSN * @rcd: the receive context * * This is called from hfi1_rc_rcv() to process an unexpected * incoming RC packet for the given QP. * Called at interrupt level. * Return 1 if no more processing is needed; otherwise return 0 to * schedule a response to be sent. */ static noinline int rc_rcv_error(struct ib_other_headers *ohdr, void *data, struct rvt_qp *qp, u32 opcode, u32 psn, int diff, struct hfi1_ctxtdata *rcd) { struct hfi1_ibport *ibp = rcd_to_iport(rcd); struct rvt_ack_entry *e; unsigned long flags; u8 prev; u8 mra; /* most recent ACK */ bool old_req; trace_hfi1_rcv_error(qp, psn); if (diff > 0) { /* * Packet sequence error. * A NAK will ACK earlier sends and RDMA writes. * Don't queue the NAK if we already sent one. */ if (!qp->r_nak_state) { ibp->rvp.n_rc_seqnak++; qp->r_nak_state = IB_NAK_PSN_ERROR; /* Use the expected PSN. */ qp->r_ack_psn = qp->r_psn; /* * Wait to send the sequence NAK until all packets * in the receive queue have been processed. * Otherwise, we end up propagating congestion. */ rc_defered_ack(rcd, qp); } goto done; } /* * Handle a duplicate request. Don't re-execute SEND, RDMA * write or atomic op. Don't NAK errors, just silently drop * the duplicate request. Note that r_sge, r_len, and * r_rcv_len may be in use so don't modify them. * * We are supposed to ACK the earliest duplicate PSN but we * can coalesce an outstanding duplicate ACK. We have to * send the earliest so that RDMA reads can be restarted at * the requester's expected PSN. * * First, find where this duplicate PSN falls within the * ACKs previously sent. * old_req is true if there is an older response that is scheduled * to be sent before sending this one. */ e = NULL; old_req = true; ibp->rvp.n_rc_dupreq++; spin_lock_irqsave(&qp->s_lock, flags); e = find_prev_entry(qp, psn, &prev, &mra, &old_req); switch (opcode) { case OP(RDMA_READ_REQUEST): { struct ib_reth *reth; u32 offset; u32 len; /* * If we didn't find the RDMA read request in the ack queue, * we can ignore this request. */ if (!e || e->opcode != OP(RDMA_READ_REQUEST)) goto unlock_done; /* RETH comes after BTH */ reth = &ohdr->u.rc.reth; /* * Address range must be a subset of the original * request and start on pmtu boundaries. * We reuse the old ack_queue slot since the requester * should not back up and request an earlier PSN for the * same request. */ offset = delta_psn(psn, e->psn) * qp->pmtu; len = be32_to_cpu(reth->length); if (unlikely(offset + len != e->rdma_sge.sge_length)) goto unlock_done; release_rdma_sge_mr(e); if (len != 0) { u32 rkey = be32_to_cpu(reth->rkey); u64 vaddr = get_ib_reth_vaddr(reth); int ok; ok = rvt_rkey_ok(qp, &e->rdma_sge, len, vaddr, rkey, IB_ACCESS_REMOTE_READ); if (unlikely(!ok)) goto unlock_done; } else { e->rdma_sge.vaddr = NULL; e->rdma_sge.length = 0; e->rdma_sge.sge_length = 0; } e->psn = psn; if (old_req) goto unlock_done; if (qp->s_acked_ack_queue == qp->s_tail_ack_queue) qp->s_acked_ack_queue = prev; qp->s_tail_ack_queue = prev; break; } case OP(COMPARE_SWAP): case OP(FETCH_ADD): { /* * If we didn't find the atomic request in the ack queue * or the send engine is already backed up to send an * earlier entry, we can ignore this request. */ if (!e || e->opcode != (u8)opcode || old_req) goto unlock_done; if (qp->s_tail_ack_queue == qp->s_acked_ack_queue) qp->s_acked_ack_queue = prev; qp->s_tail_ack_queue = prev; break; } default: /* * Ignore this operation if it doesn't request an ACK * or an earlier RDMA read or atomic is going to be resent. */ if (!(psn & IB_BTH_REQ_ACK) || old_req) goto unlock_done; /* * Resend the most recent ACK if this request is * after all the previous RDMA reads and atomics. */ if (mra == qp->r_head_ack_queue) { spin_unlock_irqrestore(&qp->s_lock, flags); qp->r_nak_state = 0; qp->r_ack_psn = qp->r_psn - 1; goto send_ack; } /* * Resend the RDMA read or atomic op which * ACKs this duplicate request. */ if (qp->s_tail_ack_queue == qp->s_acked_ack_queue) qp->s_acked_ack_queue = mra; qp->s_tail_ack_queue = mra; break; } qp->s_ack_state = OP(ACKNOWLEDGE); qp->s_flags |= RVT_S_RESP_PENDING; qp->r_nak_state = 0; hfi1_schedule_send(qp); unlock_done: spin_unlock_irqrestore(&qp->s_lock, flags); done: return 1; send_ack: return 0; } static void log_cca_event(struct hfi1_pportdata *ppd, u8 sl, u32 rlid, u32 lqpn, u32 rqpn, u8 svc_type) { struct opa_hfi1_cong_log_event_internal *cc_event; unsigned long flags; if (sl >= OPA_MAX_SLS) return; spin_lock_irqsave(&ppd->cc_log_lock, flags); ppd->threshold_cong_event_map[sl / 8] |= 1 << (sl % 8); ppd->threshold_event_counter++; cc_event = &ppd->cc_events[ppd->cc_log_idx++]; if (ppd->cc_log_idx == OPA_CONG_LOG_ELEMS) ppd->cc_log_idx = 0; cc_event->lqpn = lqpn & RVT_QPN_MASK; cc_event->rqpn = rqpn & RVT_QPN_MASK; cc_event->sl = sl; cc_event->svc_type = svc_type; cc_event->rlid = rlid; /* keep timestamp in units of 1.024 usec */ cc_event->timestamp = ktime_get_ns() / 1024; spin_unlock_irqrestore(&ppd->cc_log_lock, flags); } void process_becn(struct hfi1_pportdata *ppd, u8 sl, u32 rlid, u32 lqpn, u32 rqpn, u8 svc_type) { struct cca_timer *cca_timer; u16 ccti, ccti_incr, ccti_timer, ccti_limit; u8 trigger_threshold; struct cc_state *cc_state; unsigned long flags; if (sl >= OPA_MAX_SLS) return; cc_state = get_cc_state(ppd); if (!cc_state) return; /* * 1) increase CCTI (for this SL) * 2) select IPG (i.e., call set_link_ipg()) * 3) start timer */ ccti_limit = cc_state->cct.ccti_limit; ccti_incr = cc_state->cong_setting.entries[sl].ccti_increase; ccti_timer = cc_state->cong_setting.entries[sl].ccti_timer; trigger_threshold = cc_state->cong_setting.entries[sl].trigger_threshold; spin_lock_irqsave(&ppd->cca_timer_lock, flags); cca_timer = &ppd->cca_timer[sl]; if (cca_timer->ccti < ccti_limit) { if (cca_timer->ccti + ccti_incr <= ccti_limit) cca_timer->ccti += ccti_incr; else cca_timer->ccti = ccti_limit; set_link_ipg(ppd); } ccti = cca_timer->ccti; if (!hrtimer_active(&cca_timer->hrtimer)) { /* ccti_timer is in units of 1.024 usec */ unsigned long nsec = 1024 * ccti_timer; hrtimer_start(&cca_timer->hrtimer, ns_to_ktime(nsec), HRTIMER_MODE_REL_PINNED); } spin_unlock_irqrestore(&ppd->cca_timer_lock, flags); if ((trigger_threshold != 0) && (ccti >= trigger_threshold)) log_cca_event(ppd, sl, rlid, lqpn, rqpn, svc_type); } /** * hfi1_rc_rcv - process an incoming RC packet * @packet: data packet information * * This is called from qp_rcv() to process an incoming RC packet * for the given QP. * May be called at interrupt level. */ void hfi1_rc_rcv(struct hfi1_packet *packet) { struct hfi1_ctxtdata *rcd = packet->rcd; void *data = packet->payload; u32 tlen = packet->tlen; struct rvt_qp *qp = packet->qp; struct hfi1_qp_priv *qpriv = qp->priv; struct hfi1_ibport *ibp = rcd_to_iport(rcd); struct ib_other_headers *ohdr = packet->ohdr; u32 opcode = packet->opcode; u32 hdrsize = packet->hlen; u32 psn = ib_bth_get_psn(packet->ohdr); u32 pad = packet->pad; struct ib_wc wc; u32 pmtu = qp->pmtu; int diff; struct ib_reth *reth; unsigned long flags; int ret; bool copy_last = false, fecn; u32 rkey; u8 extra_bytes = pad + packet->extra_byte + (SIZE_OF_CRC << 2); lockdep_assert_held(&qp->r_lock); if (hfi1_ruc_check_hdr(ibp, packet)) return; fecn = process_ecn(qp, packet); opfn_trigger_conn_request(qp, be32_to_cpu(ohdr->bth[1])); /* * Process responses (ACKs) before anything else. Note that the * packet sequence number will be for something in the send work * queue rather than the expected receive packet sequence number. * In other words, this QP is the requester. */ if (opcode >= OP(RDMA_READ_RESPONSE_FIRST) && opcode <= OP(ATOMIC_ACKNOWLEDGE)) { rc_rcv_resp(packet); return; } /* Compute 24 bits worth of difference. */ diff = delta_psn(psn, qp->r_psn); if (unlikely(diff)) { if (rc_rcv_error(ohdr, data, qp, opcode, psn, diff, rcd)) return; goto send_ack; } /* Check for opcode sequence errors. */ switch (qp->r_state) { case OP(SEND_FIRST): case OP(SEND_MIDDLE): if (opcode == OP(SEND_MIDDLE) || opcode == OP(SEND_LAST) || opcode == OP(SEND_LAST_WITH_IMMEDIATE) || opcode == OP(SEND_LAST_WITH_INVALIDATE)) break; goto nack_inv; case OP(RDMA_WRITE_FIRST): case OP(RDMA_WRITE_MIDDLE): if (opcode == OP(RDMA_WRITE_MIDDLE) || opcode == OP(RDMA_WRITE_LAST) || opcode == OP(RDMA_WRITE_LAST_WITH_IMMEDIATE)) break; goto nack_inv; default: if (opcode == OP(SEND_MIDDLE) || opcode == OP(SEND_LAST) || opcode == OP(SEND_LAST_WITH_IMMEDIATE) || opcode == OP(SEND_LAST_WITH_INVALIDATE) || opcode == OP(RDMA_WRITE_MIDDLE) || opcode == OP(RDMA_WRITE_LAST) || opcode == OP(RDMA_WRITE_LAST_WITH_IMMEDIATE)) goto nack_inv; /* * Note that it is up to the requester to not send a new * RDMA read or atomic operation before receiving an ACK * for the previous operation. */ break; } if (qp->state == IB_QPS_RTR && !(qp->r_flags & RVT_R_COMM_EST)) rvt_comm_est(qp); /* OK, process the packet. */ switch (opcode) { case OP(SEND_FIRST): ret = rvt_get_rwqe(qp, false); if (ret < 0) goto nack_op_err; if (!ret) goto rnr_nak; qp->r_rcv_len = 0; fallthrough; case OP(SEND_MIDDLE): case OP(RDMA_WRITE_MIDDLE): send_middle: /* Check for invalid length PMTU or posted rwqe len. */ /* * There will be no padding for 9B packet but 16B packets * will come in with some padding since we always add * CRC and LT bytes which will need to be flit aligned */ if (unlikely(tlen != (hdrsize + pmtu + extra_bytes))) goto nack_inv; qp->r_rcv_len += pmtu; if (unlikely(qp->r_rcv_len > qp->r_len)) goto nack_inv; rvt_copy_sge(qp, &qp->r_sge, data, pmtu, true, false); break; case OP(RDMA_WRITE_LAST_WITH_IMMEDIATE): /* consume RWQE */ ret = rvt_get_rwqe(qp, true); if (ret < 0) goto nack_op_err; if (!ret) goto rnr_nak; goto send_last_imm; case OP(SEND_ONLY): case OP(SEND_ONLY_WITH_IMMEDIATE): case OP(SEND_ONLY_WITH_INVALIDATE): ret = rvt_get_rwqe(qp, false); if (ret < 0) goto nack_op_err; if (!ret) goto rnr_nak; qp->r_rcv_len = 0; if (opcode == OP(SEND_ONLY)) goto no_immediate_data; if (opcode == OP(SEND_ONLY_WITH_INVALIDATE)) goto send_last_inv; fallthrough; /* for SEND_ONLY_WITH_IMMEDIATE */ case OP(SEND_LAST_WITH_IMMEDIATE): send_last_imm: wc.ex.imm_data = ohdr->u.imm_data; wc.wc_flags = IB_WC_WITH_IMM; goto send_last; case OP(SEND_LAST_WITH_INVALIDATE): send_last_inv: rkey = be32_to_cpu(ohdr->u.ieth); if (rvt_invalidate_rkey(qp, rkey)) goto no_immediate_data; wc.ex.invalidate_rkey = rkey; wc.wc_flags = IB_WC_WITH_INVALIDATE; goto send_last; case OP(RDMA_WRITE_LAST): copy_last = rvt_is_user_qp(qp); fallthrough; case OP(SEND_LAST): no_immediate_data: wc.wc_flags = 0; wc.ex.imm_data = 0; send_last: /* Check for invalid length. */ /* LAST len should be >= 1 */ if (unlikely(tlen < (hdrsize + extra_bytes))) goto nack_inv; /* Don't count the CRC(and padding and LT byte for 16B). */ tlen -= (hdrsize + extra_bytes); wc.byte_len = tlen + qp->r_rcv_len; if (unlikely(wc.byte_len > qp->r_len)) goto nack_inv; rvt_copy_sge(qp, &qp->r_sge, data, tlen, true, copy_last); rvt_put_ss(&qp->r_sge); qp->r_msn++; if (!__test_and_clear_bit(RVT_R_WRID_VALID, &qp->r_aflags)) break; wc.wr_id = qp->r_wr_id; wc.status = IB_WC_SUCCESS; if (opcode == OP(RDMA_WRITE_LAST_WITH_IMMEDIATE) || opcode == OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE)) wc.opcode = IB_WC_RECV_RDMA_WITH_IMM; else wc.opcode = IB_WC_RECV; wc.qp = &qp->ibqp; wc.src_qp = qp->remote_qpn; wc.slid = rdma_ah_get_dlid(&qp->remote_ah_attr) & U16_MAX; /* * It seems that IB mandates the presence of an SL in a * work completion only for the UD transport (see section * 11.4.2 of IBTA Vol. 1). * * However, the way the SL is chosen below is consistent * with the way that IB/qib works and is trying avoid * introducing incompatibilities. * * See also OPA Vol. 1, section 9.7.6, and table 9-17. */ wc.sl = rdma_ah_get_sl(&qp->remote_ah_attr); /* zero fields that are N/A */ wc.vendor_err = 0; wc.pkey_index = 0; wc.dlid_path_bits = 0; wc.port_num = 0; /* Signal completion event if the solicited bit is set. */ rvt_recv_cq(qp, &wc, ib_bth_is_solicited(ohdr)); break; case OP(RDMA_WRITE_ONLY): copy_last = rvt_is_user_qp(qp); fallthrough; case OP(RDMA_WRITE_FIRST): case OP(RDMA_WRITE_ONLY_WITH_IMMEDIATE): if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_WRITE))) goto nack_inv; /* consume RWQE */ reth = &ohdr->u.rc.reth; qp->r_len = be32_to_cpu(reth->length); qp->r_rcv_len = 0; qp->r_sge.sg_list = NULL; if (qp->r_len != 0) { u32 rkey = be32_to_cpu(reth->rkey); u64 vaddr = get_ib_reth_vaddr(reth); int ok; /* Check rkey & NAK */ ok = rvt_rkey_ok(qp, &qp->r_sge.sge, qp->r_len, vaddr, rkey, IB_ACCESS_REMOTE_WRITE); if (unlikely(!ok)) goto nack_acc; qp->r_sge.num_sge = 1; } else { qp->r_sge.num_sge = 0; qp->r_sge.sge.mr = NULL; qp->r_sge.sge.vaddr = NULL; qp->r_sge.sge.length = 0; qp->r_sge.sge.sge_length = 0; } if (opcode == OP(RDMA_WRITE_FIRST)) goto send_middle; else if (opcode == OP(RDMA_WRITE_ONLY)) goto no_immediate_data; ret = rvt_get_rwqe(qp, true); if (ret < 0) goto nack_op_err; if (!ret) { /* peer will send again */ rvt_put_ss(&qp->r_sge); goto rnr_nak; } wc.ex.imm_data = ohdr->u.rc.imm_data; wc.wc_flags = IB_WC_WITH_IMM; goto send_last; case OP(RDMA_READ_REQUEST): { struct rvt_ack_entry *e; u32 len; u8 next; if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_READ))) goto nack_inv; next = qp->r_head_ack_queue + 1; /* s_ack_queue is size rvt_size_atomic()+1 so use > not >= */ if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device))) next = 0; spin_lock_irqsave(&qp->s_lock, flags); if (unlikely(next == qp->s_acked_ack_queue)) { if (!qp->s_ack_queue[next].sent) goto nack_inv_unlck; update_ack_queue(qp, next); } e = &qp->s_ack_queue[qp->r_head_ack_queue]; release_rdma_sge_mr(e); reth = &ohdr->u.rc.reth; len = be32_to_cpu(reth->length); if (len) { u32 rkey = be32_to_cpu(reth->rkey); u64 vaddr = get_ib_reth_vaddr(reth); int ok; /* Check rkey & NAK */ ok = rvt_rkey_ok(qp, &e->rdma_sge, len, vaddr, rkey, IB_ACCESS_REMOTE_READ); if (unlikely(!ok)) goto nack_acc_unlck; /* * Update the next expected PSN. We add 1 later * below, so only add the remainder here. */ qp->r_psn += rvt_div_mtu(qp, len - 1); } else { e->rdma_sge.mr = NULL; e->rdma_sge.vaddr = NULL; e->rdma_sge.length = 0; e->rdma_sge.sge_length = 0; } e->opcode = opcode; e->sent = 0; e->psn = psn; e->lpsn = qp->r_psn; /* * We need to increment the MSN here instead of when we * finish sending the result since a duplicate request would * increment it more than once. */ qp->r_msn++; qp->r_psn++; qp->r_state = opcode; qp->r_nak_state = 0; qp->r_head_ack_queue = next; qpriv->r_tid_alloc = qp->r_head_ack_queue; /* Schedule the send engine. */ qp->s_flags |= RVT_S_RESP_PENDING; if (fecn) qp->s_flags |= RVT_S_ECN; hfi1_schedule_send(qp); spin_unlock_irqrestore(&qp->s_lock, flags); return; } case OP(COMPARE_SWAP): case OP(FETCH_ADD): { struct ib_atomic_eth *ateth = &ohdr->u.atomic_eth; u64 vaddr = get_ib_ateth_vaddr(ateth); bool opfn = opcode == OP(COMPARE_SWAP) && vaddr == HFI1_VERBS_E_ATOMIC_VADDR; struct rvt_ack_entry *e; atomic64_t *maddr; u64 sdata; u32 rkey; u8 next; if (unlikely(!(qp->qp_access_flags & IB_ACCESS_REMOTE_ATOMIC) && !opfn)) goto nack_inv; next = qp->r_head_ack_queue + 1; if (next > rvt_size_atomic(ib_to_rvt(qp->ibqp.device))) next = 0; spin_lock_irqsave(&qp->s_lock, flags); if (unlikely(next == qp->s_acked_ack_queue)) { if (!qp->s_ack_queue[next].sent) goto nack_inv_unlck; update_ack_queue(qp, next); } e = &qp->s_ack_queue[qp->r_head_ack_queue]; release_rdma_sge_mr(e); /* Process OPFN special virtual address */ if (opfn) { opfn_conn_response(qp, e, ateth); goto ack; } if (unlikely(vaddr & (sizeof(u64) - 1))) goto nack_inv_unlck; rkey = be32_to_cpu(ateth->rkey); /* Check rkey & NAK */ if (unlikely(!rvt_rkey_ok(qp, &qp->r_sge.sge, sizeof(u64), vaddr, rkey, IB_ACCESS_REMOTE_ATOMIC))) goto nack_acc_unlck; /* Perform atomic OP and save result. */ maddr = (atomic64_t *)qp->r_sge.sge.vaddr; sdata = get_ib_ateth_swap(ateth); e->atomic_data = (opcode == OP(FETCH_ADD)) ? (u64)atomic64_add_return(sdata, maddr) - sdata : (u64)cmpxchg((u64 *)qp->r_sge.sge.vaddr, get_ib_ateth_compare(ateth), sdata); rvt_put_mr(qp->r_sge.sge.mr); qp->r_sge.num_sge = 0; ack: e->opcode = opcode; e->sent = 0; e->psn = psn; e->lpsn = psn; qp->r_msn++; qp->r_psn++; qp->r_state = opcode; qp->r_nak_state = 0; qp->r_head_ack_queue = next; qpriv->r_tid_alloc = qp->r_head_ack_queue; /* Schedule the send engine. */ qp->s_flags |= RVT_S_RESP_PENDING; if (fecn) qp->s_flags |= RVT_S_ECN; hfi1_schedule_send(qp); spin_unlock_irqrestore(&qp->s_lock, flags); return; } default: /* NAK unknown opcodes. */ goto nack_inv; } qp->r_psn++; qp->r_state = opcode; qp->r_ack_psn = psn; qp->r_nak_state = 0; /* Send an ACK if requested or required. */ if (psn & IB_BTH_REQ_ACK || fecn) { if (packet->numpkt == 0 || fecn || qp->r_adefered >= HFI1_PSN_CREDIT) { rc_cancel_ack(qp); goto send_ack; } qp->r_adefered++; rc_defered_ack(rcd, qp); } return; rnr_nak: qp->r_nak_state = qp->r_min_rnr_timer | IB_RNR_NAK; qp->r_ack_psn = qp->r_psn; /* Queue RNR NAK for later */ rc_defered_ack(rcd, qp); return; nack_op_err: rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR); qp->r_nak_state = IB_NAK_REMOTE_OPERATIONAL_ERROR; qp->r_ack_psn = qp->r_psn; /* Queue NAK for later */ rc_defered_ack(rcd, qp); return; nack_inv_unlck: spin_unlock_irqrestore(&qp->s_lock, flags); nack_inv: rvt_rc_error(qp, IB_WC_LOC_QP_OP_ERR); qp->r_nak_state = IB_NAK_INVALID_REQUEST; qp->r_ack_psn = qp->r_psn; /* Queue NAK for later */ rc_defered_ack(rcd, qp); return; nack_acc_unlck: spin_unlock_irqrestore(&qp->s_lock, flags); nack_acc: rvt_rc_error(qp, IB_WC_LOC_PROT_ERR); qp->r_nak_state = IB_NAK_REMOTE_ACCESS_ERROR; qp->r_ack_psn = qp->r_psn; send_ack: hfi1_send_rc_ack(packet, fecn); } void hfi1_rc_hdrerr( struct hfi1_ctxtdata *rcd, struct hfi1_packet *packet, struct rvt_qp *qp) { struct hfi1_ibport *ibp = rcd_to_iport(rcd); int diff; u32 opcode; u32 psn; if (hfi1_ruc_check_hdr(ibp, packet)) return; psn = ib_bth_get_psn(packet->ohdr); opcode = ib_bth_get_opcode(packet->ohdr); /* Only deal with RDMA Writes for now */ if (opcode < IB_OPCODE_RC_RDMA_READ_RESPONSE_FIRST) { diff = delta_psn(psn, qp->r_psn); if (!qp->r_nak_state && diff >= 0) { ibp->rvp.n_rc_seqnak++; qp->r_nak_state = IB_NAK_PSN_ERROR; /* Use the expected PSN. */ qp->r_ack_psn = qp->r_psn; /* * Wait to send the sequence * NAK until all packets * in the receive queue have * been processed. * Otherwise, we end up * propagating congestion. */ rc_defered_ack(rcd, qp); } /* Out of sequence NAK */ } /* QP Request NAKs */ }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1