Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Or Gerlitz | 1453 | 37.92% | 13 | 10.48% |
Sagi Grimberg | 1099 | 28.68% | 38 | 30.65% |
Ariel Nahum | 254 | 6.63% | 8 | 6.45% |
Israel Rukshin | 169 | 4.41% | 3 | 2.42% |
Christoph Hellwig | 149 | 3.89% | 3 | 2.42% |
Alex Tabachnik | 106 | 2.77% | 3 | 2.42% |
Yamin Friedman | 98 | 2.56% | 1 | 0.81% |
Max Gurtovoy | 71 | 1.85% | 12 | 9.68% |
Sergey Gorenko | 66 | 1.72% | 3 | 2.42% |
Jenny Derzhavetz (Jenny Falkovich) | 64 | 1.67% | 1 | 0.81% |
Shlomo Pongratz | 50 | 1.30% | 2 | 1.61% |
Roi Dayan | 47 | 1.23% | 5 | 4.03% |
Roland Dreier | 35 | 0.91% | 1 | 0.81% |
Minh Duc Tran | 30 | 0.78% | 1 | 0.81% |
Adir Lev | 25 | 0.65% | 1 | 0.81% |
Arne Redlich | 22 | 0.57% | 2 | 1.61% |
Jason Gunthorpe | 19 | 0.50% | 4 | 3.23% |
Randy Dunlap | 19 | 0.50% | 2 | 1.61% |
Steve Wise | 18 | 0.47% | 2 | 1.61% |
Erez Zilber | 8 | 0.21% | 1 | 0.81% |
Bart Van Assche | 5 | 0.13% | 2 | 1.61% |
Michael Christie | 4 | 0.10% | 2 | 1.61% |
Guy Shapiro | 3 | 0.08% | 1 | 0.81% |
Dan Carpenter | 2 | 0.05% | 1 | 0.81% |
David Disseldorp | 2 | 0.05% | 1 | 0.81% |
Gustavo A. R. Silva | 2 | 0.05% | 1 | 0.81% |
Linus Torvalds (pre-git) | 2 | 0.05% | 1 | 0.81% |
Sean Hefty | 2 | 0.05% | 1 | 0.81% |
Leon Romanovsky | 2 | 0.05% | 2 | 1.61% |
Ajaykumar Hotchandani | 1 | 0.03% | 1 | 0.81% |
Doug Ledford | 1 | 0.03% | 1 | 0.81% |
Mike Marciniszyn | 1 | 0.03% | 1 | 0.81% |
Linus Torvalds | 1 | 0.03% | 1 | 0.81% |
Arnd Bergmann | 1 | 0.03% | 1 | 0.81% |
zhengbin | 1 | 0.03% | 1 | 0.81% |
Total | 3832 | 124 |
/* * Copyright (c) 2004, 2005, 2006 Voltaire, Inc. All rights reserved. * Copyright (c) 2005, 2006 Cisco Systems. All rights reserved. * Copyright (c) 2013-2014 Mellanox Technologies. All rights reserved. * * This software is available to you under a choice of one of two * licenses. You may choose to be licensed under the terms of the GNU * General Public License (GPL) Version 2, available from the file * COPYING in the main directory of this source tree, or the * OpenIB.org BSD license below: * * Redistribution and use in source and binary forms, with or * without modification, are permitted provided that the following * conditions are met: * * - Redistributions of source code must retain the above * copyright notice, this list of conditions and the following * disclaimer. * * - Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials * provided with the distribution. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include <linux/kernel.h> #include <linux/slab.h> #include <linux/delay.h> #include "iscsi_iser.h" static void iser_qp_event_callback(struct ib_event *cause, void *context) { iser_err("qp event %s (%d)\n", ib_event_msg(cause->event), cause->event); } static void iser_event_handler(struct ib_event_handler *handler, struct ib_event *event) { iser_err("async event %s (%d) on device %s port %d\n", ib_event_msg(event->event), event->event, dev_name(&event->device->dev), event->element.port_num); } /* * iser_create_device_ib_res - creates Protection Domain (PD), Completion * Queue (CQ), DMA Memory Region (DMA MR) with the device associated with * the adaptor. * * Return: 0 on success, -1 on failure */ static int iser_create_device_ib_res(struct iser_device *device) { struct ib_device *ib_dev = device->ib_device; if (!(ib_dev->attrs.device_cap_flags & IB_DEVICE_MEM_MGT_EXTENSIONS)) { iser_err("IB device does not support memory registrations\n"); return -1; } device->pd = ib_alloc_pd(ib_dev, iser_always_reg ? 0 : IB_PD_UNSAFE_GLOBAL_RKEY); if (IS_ERR(device->pd)) goto pd_err; INIT_IB_EVENT_HANDLER(&device->event_handler, ib_dev, iser_event_handler); ib_register_event_handler(&device->event_handler); return 0; pd_err: iser_err("failed to allocate an IB resource\n"); return -1; } /* * iser_free_device_ib_res - destroy/dealloc/dereg the DMA MR, * CQ and PD created with the device associated with the adaptor. */ static void iser_free_device_ib_res(struct iser_device *device) { ib_unregister_event_handler(&device->event_handler); ib_dealloc_pd(device->pd); device->pd = NULL; } static struct iser_fr_desc * iser_create_fastreg_desc(struct iser_device *device, struct ib_pd *pd, bool pi_enable, unsigned int size) { struct iser_fr_desc *desc; struct ib_device *ib_dev = device->ib_device; enum ib_mr_type mr_type; int ret; desc = kzalloc(sizeof(*desc), GFP_KERNEL); if (!desc) return ERR_PTR(-ENOMEM); if (ib_dev->attrs.kernel_cap_flags & IBK_SG_GAPS_REG) mr_type = IB_MR_TYPE_SG_GAPS; else mr_type = IB_MR_TYPE_MEM_REG; desc->rsc.mr = ib_alloc_mr(pd, mr_type, size); if (IS_ERR(desc->rsc.mr)) { ret = PTR_ERR(desc->rsc.mr); iser_err("Failed to allocate ib_fast_reg_mr err=%d\n", ret); goto err_alloc_mr; } if (pi_enable) { desc->rsc.sig_mr = ib_alloc_mr_integrity(pd, size, size); if (IS_ERR(desc->rsc.sig_mr)) { ret = PTR_ERR(desc->rsc.sig_mr); iser_err("Failed to allocate sig_mr err=%d\n", ret); goto err_alloc_mr_integrity; } } return desc; err_alloc_mr_integrity: ib_dereg_mr(desc->rsc.mr); err_alloc_mr: kfree(desc); return ERR_PTR(ret); } static void iser_destroy_fastreg_desc(struct iser_fr_desc *desc) { struct iser_reg_resources *res = &desc->rsc; ib_dereg_mr(res->mr); if (res->sig_mr) { ib_dereg_mr(res->sig_mr); res->sig_mr = NULL; } kfree(desc); } /** * iser_alloc_fastreg_pool - Creates pool of fast_reg descriptors * for fast registration work requests. * @ib_conn: connection RDMA resources * @cmds_max: max number of SCSI commands for this connection * @size: max number of pages per map request * * Return: 0 on success, or errno code on failure */ int iser_alloc_fastreg_pool(struct ib_conn *ib_conn, unsigned cmds_max, unsigned int size) { struct iser_device *device = ib_conn->device; struct iser_fr_pool *fr_pool = &ib_conn->fr_pool; struct iser_fr_desc *desc; int i, ret; INIT_LIST_HEAD(&fr_pool->list); INIT_LIST_HEAD(&fr_pool->all_list); spin_lock_init(&fr_pool->lock); fr_pool->size = 0; for (i = 0; i < cmds_max; i++) { desc = iser_create_fastreg_desc(device, device->pd, ib_conn->pi_support, size); if (IS_ERR(desc)) { ret = PTR_ERR(desc); goto err; } list_add_tail(&desc->list, &fr_pool->list); list_add_tail(&desc->all_list, &fr_pool->all_list); fr_pool->size++; } return 0; err: iser_free_fastreg_pool(ib_conn); return ret; } /** * iser_free_fastreg_pool - releases the pool of fast_reg descriptors * @ib_conn: connection RDMA resources */ void iser_free_fastreg_pool(struct ib_conn *ib_conn) { struct iser_fr_pool *fr_pool = &ib_conn->fr_pool; struct iser_fr_desc *desc, *tmp; int i = 0; if (list_empty(&fr_pool->all_list)) return; iser_info("freeing conn %p fr pool\n", ib_conn); list_for_each_entry_safe(desc, tmp, &fr_pool->all_list, all_list) { list_del(&desc->all_list); iser_destroy_fastreg_desc(desc); ++i; } if (i < fr_pool->size) iser_warn("pool still has %d regions registered\n", fr_pool->size - i); } /* * iser_create_ib_conn_res - Queue-Pair (QP) * * Return: 0 on success, -1 on failure */ static int iser_create_ib_conn_res(struct ib_conn *ib_conn) { struct iser_conn *iser_conn = to_iser_conn(ib_conn); struct iser_device *device; struct ib_device *ib_dev; struct ib_qp_init_attr init_attr; int ret = -ENOMEM; unsigned int max_send_wr, cq_size; BUG_ON(ib_conn->device == NULL); device = ib_conn->device; ib_dev = device->ib_device; /* +1 for drain */ if (ib_conn->pi_support) max_send_wr = ISER_QP_SIG_MAX_REQ_DTOS + 1; else max_send_wr = ISER_QP_MAX_REQ_DTOS + 1; max_send_wr = min_t(unsigned int, max_send_wr, (unsigned int)ib_dev->attrs.max_qp_wr); cq_size = max_send_wr + ISER_QP_MAX_RECV_DTOS; ib_conn->cq = ib_cq_pool_get(ib_dev, cq_size, -1, IB_POLL_SOFTIRQ); if (IS_ERR(ib_conn->cq)) { ret = PTR_ERR(ib_conn->cq); goto cq_err; } ib_conn->cq_size = cq_size; memset(&init_attr, 0, sizeof(init_attr)); init_attr.event_handler = iser_qp_event_callback; init_attr.qp_context = (void *)ib_conn; init_attr.send_cq = ib_conn->cq; init_attr.recv_cq = ib_conn->cq; /* +1 for drain */ init_attr.cap.max_recv_wr = ISER_QP_MAX_RECV_DTOS + 1; init_attr.cap.max_send_sge = 2; init_attr.cap.max_recv_sge = 1; init_attr.sq_sig_type = IB_SIGNAL_REQ_WR; init_attr.qp_type = IB_QPT_RC; init_attr.cap.max_send_wr = max_send_wr; if (ib_conn->pi_support) init_attr.create_flags |= IB_QP_CREATE_INTEGRITY_EN; iser_conn->max_cmds = ISER_GET_MAX_XMIT_CMDS(max_send_wr - 1); ret = rdma_create_qp(ib_conn->cma_id, device->pd, &init_attr); if (ret) goto out_err; ib_conn->qp = ib_conn->cma_id->qp; iser_info("setting conn %p cma_id %p qp %p max_send_wr %d\n", ib_conn, ib_conn->cma_id, ib_conn->cma_id->qp, max_send_wr); return ret; out_err: ib_cq_pool_put(ib_conn->cq, ib_conn->cq_size); cq_err: iser_err("unable to alloc mem or create resource, err %d\n", ret); return ret; } /* * based on the resolved device node GUID see if there already allocated * device for this device. If there's no such, create one. */ static struct iser_device *iser_device_find_by_ib_device(struct rdma_cm_id *cma_id) { struct iser_device *device; mutex_lock(&ig.device_list_mutex); list_for_each_entry(device, &ig.device_list, ig_list) /* find if there's a match using the node GUID */ if (device->ib_device->node_guid == cma_id->device->node_guid) goto inc_refcnt; device = kzalloc(sizeof *device, GFP_KERNEL); if (!device) goto out; /* assign this device to the device */ device->ib_device = cma_id->device; /* init the device and link it into ig device list */ if (iser_create_device_ib_res(device)) { kfree(device); device = NULL; goto out; } list_add(&device->ig_list, &ig.device_list); inc_refcnt: device->refcount++; out: mutex_unlock(&ig.device_list_mutex); return device; } /* if there's no demand for this device, release it */ static void iser_device_try_release(struct iser_device *device) { mutex_lock(&ig.device_list_mutex); device->refcount--; iser_info("device %p refcount %d\n", device, device->refcount); if (!device->refcount) { iser_free_device_ib_res(device); list_del(&device->ig_list); kfree(device); } mutex_unlock(&ig.device_list_mutex); } void iser_release_work(struct work_struct *work) { struct iser_conn *iser_conn; iser_conn = container_of(work, struct iser_conn, release_work); /* Wait for conn_stop to complete */ wait_for_completion(&iser_conn->stop_completion); /* Wait for IB resouces cleanup to complete */ wait_for_completion(&iser_conn->ib_completion); mutex_lock(&iser_conn->state_mutex); iser_conn->state = ISER_CONN_DOWN; mutex_unlock(&iser_conn->state_mutex); iser_conn_release(iser_conn); } /** * iser_free_ib_conn_res - release IB related resources * @iser_conn: iser connection struct * @destroy: indicator if we need to try to release the * iser device and memory regoins pool (only iscsi * shutdown and DEVICE_REMOVAL will use this). * * This routine is called with the iser state mutex held * so the cm_id removal is out of here. It is Safe to * be invoked multiple times. */ static void iser_free_ib_conn_res(struct iser_conn *iser_conn, bool destroy) { struct ib_conn *ib_conn = &iser_conn->ib_conn; struct iser_device *device = ib_conn->device; iser_info("freeing conn %p cma_id %p qp %p\n", iser_conn, ib_conn->cma_id, ib_conn->qp); if (ib_conn->qp) { rdma_destroy_qp(ib_conn->cma_id); ib_cq_pool_put(ib_conn->cq, ib_conn->cq_size); ib_conn->qp = NULL; } if (destroy) { if (iser_conn->rx_descs) iser_free_rx_descriptors(iser_conn); if (device) { iser_device_try_release(device); ib_conn->device = NULL; } } } /** * iser_conn_release - Frees all conn objects and deallocs conn descriptor * @iser_conn: iSER connection context */ void iser_conn_release(struct iser_conn *iser_conn) { struct ib_conn *ib_conn = &iser_conn->ib_conn; mutex_lock(&ig.connlist_mutex); list_del(&iser_conn->conn_list); mutex_unlock(&ig.connlist_mutex); mutex_lock(&iser_conn->state_mutex); /* In case we endup here without ep_disconnect being invoked. */ if (iser_conn->state != ISER_CONN_DOWN) { iser_warn("iser conn %p state %d, expected state down.\n", iser_conn, iser_conn->state); iscsi_destroy_endpoint(iser_conn->ep); iser_conn->state = ISER_CONN_DOWN; } /* * In case we never got to bind stage, we still need to * release IB resources (which is safe to call more than once). */ iser_free_ib_conn_res(iser_conn, true); mutex_unlock(&iser_conn->state_mutex); if (ib_conn->cma_id) { rdma_destroy_id(ib_conn->cma_id); ib_conn->cma_id = NULL; } kfree(iser_conn); } /** * iser_conn_terminate - triggers start of the disconnect procedures and * waits for them to be done * @iser_conn: iSER connection context * * Called with state mutex held */ int iser_conn_terminate(struct iser_conn *iser_conn) { struct ib_conn *ib_conn = &iser_conn->ib_conn; int err = 0; lockdep_assert_held(&iser_conn->state_mutex); /* terminate the iser conn only if the conn state is UP */ if (iser_conn->state != ISER_CONN_UP) return 0; iser_conn->state = ISER_CONN_TERMINATING; iser_info("iser_conn %p state %d\n", iser_conn, iser_conn->state); /* suspend queuing of new iscsi commands */ if (iser_conn->iscsi_conn) iscsi_suspend_queue(iser_conn->iscsi_conn); /* * In case we didn't already clean up the cma_id (peer initiated * a disconnection), we need to Cause the CMA to change the QP * state to ERROR. */ if (ib_conn->cma_id) { err = rdma_disconnect(ib_conn->cma_id); if (err) iser_err("Failed to disconnect, conn: 0x%p err %d\n", iser_conn, err); /* block until all flush errors are consumed */ ib_drain_qp(ib_conn->qp); } return 1; } /* * Called with state mutex held */ static void iser_connect_error(struct rdma_cm_id *cma_id) { struct iser_conn *iser_conn = cma_id->context; lockdep_assert_held(&iser_conn->state_mutex); iser_conn->state = ISER_CONN_TERMINATING; } static void iser_calc_scsi_params(struct iser_conn *iser_conn, unsigned int max_sectors) { struct iser_device *device = iser_conn->ib_conn.device; struct ib_device_attr *attr = &device->ib_device->attrs; unsigned short sg_tablesize, sup_sg_tablesize; unsigned short reserved_mr_pages; u32 max_num_sg; /* * FRs without SG_GAPS can only map up to a (device) page per entry, * but if the first entry is misaligned we'll end up using two entries * (head and tail) for a single page worth data, so one additional * entry is required. */ if (attr->kernel_cap_flags & IBK_SG_GAPS_REG) reserved_mr_pages = 0; else reserved_mr_pages = 1; if (iser_conn->ib_conn.pi_support) max_num_sg = attr->max_pi_fast_reg_page_list_len; else max_num_sg = attr->max_fast_reg_page_list_len; sg_tablesize = DIV_ROUND_UP(max_sectors * SECTOR_SIZE, SZ_4K); sup_sg_tablesize = min_t(uint, ISCSI_ISER_MAX_SG_TABLESIZE, max_num_sg - reserved_mr_pages); iser_conn->scsi_sg_tablesize = min(sg_tablesize, sup_sg_tablesize); iser_conn->pages_per_mr = iser_conn->scsi_sg_tablesize + reserved_mr_pages; } /* * Called with state mutex held */ static void iser_addr_handler(struct rdma_cm_id *cma_id) { struct iser_conn *iser_conn = cma_id->context; struct iser_device *device; struct ib_conn *ib_conn; int ret; lockdep_assert_held(&iser_conn->state_mutex); if (iser_conn->state != ISER_CONN_PENDING) /* bailout */ return; ib_conn = &iser_conn->ib_conn; device = iser_device_find_by_ib_device(cma_id); if (!device) { iser_err("device lookup/creation failed\n"); iser_connect_error(cma_id); return; } ib_conn->device = device; /* connection T10-PI support */ if (iser_pi_enable) { if (!(device->ib_device->attrs.kernel_cap_flags & IBK_INTEGRITY_HANDOVER)) { iser_warn("T10-PI requested but not supported on %s, " "continue without T10-PI\n", dev_name(&ib_conn->device->ib_device->dev)); ib_conn->pi_support = false; } else { ib_conn->pi_support = true; } } iser_calc_scsi_params(iser_conn, iser_max_sectors); ret = rdma_resolve_route(cma_id, 1000); if (ret) { iser_err("resolve route failed: %d\n", ret); iser_connect_error(cma_id); return; } } /* * Called with state mutex held */ static void iser_route_handler(struct rdma_cm_id *cma_id) { struct rdma_conn_param conn_param; int ret; struct iser_cm_hdr req_hdr; struct iser_conn *iser_conn = cma_id->context; struct ib_conn *ib_conn = &iser_conn->ib_conn; struct ib_device *ib_dev = ib_conn->device->ib_device; lockdep_assert_held(&iser_conn->state_mutex); if (iser_conn->state != ISER_CONN_PENDING) /* bailout */ return; ret = iser_create_ib_conn_res(ib_conn); if (ret) goto failure; memset(&conn_param, 0, sizeof conn_param); conn_param.responder_resources = ib_dev->attrs.max_qp_rd_atom; conn_param.initiator_depth = 1; conn_param.retry_count = 7; conn_param.rnr_retry_count = 6; memset(&req_hdr, 0, sizeof(req_hdr)); req_hdr.flags = ISER_ZBVA_NOT_SUP; if (!iser_always_reg) req_hdr.flags |= ISER_SEND_W_INV_NOT_SUP; conn_param.private_data = (void *)&req_hdr; conn_param.private_data_len = sizeof(struct iser_cm_hdr); ret = rdma_connect_locked(cma_id, &conn_param); if (ret) { iser_err("failure connecting: %d\n", ret); goto failure; } return; failure: iser_connect_error(cma_id); } /* * Called with state mutex held */ static void iser_connected_handler(struct rdma_cm_id *cma_id, const void *private_data) { struct iser_conn *iser_conn = cma_id->context; struct ib_qp_attr attr; struct ib_qp_init_attr init_attr; lockdep_assert_held(&iser_conn->state_mutex); if (iser_conn->state != ISER_CONN_PENDING) /* bailout */ return; (void)ib_query_qp(cma_id->qp, &attr, ~0, &init_attr); iser_info("remote qpn:%x my qpn:%x\n", attr.dest_qp_num, cma_id->qp->qp_num); if (private_data) { u8 flags = *(u8 *)private_data; iser_conn->snd_w_inv = !(flags & ISER_SEND_W_INV_NOT_SUP); } iser_info("conn %p: negotiated %s invalidation\n", iser_conn, iser_conn->snd_w_inv ? "remote" : "local"); iser_conn->state = ISER_CONN_UP; complete(&iser_conn->up_completion); } /* * Called with state mutex held */ static void iser_cleanup_handler(struct rdma_cm_id *cma_id, bool destroy) { struct iser_conn *iser_conn = cma_id->context; lockdep_assert_held(&iser_conn->state_mutex); /* * We are not guaranteed that we visited disconnected_handler * by now, call it here to be safe that we handle CM drep * and flush errors. */ if (iser_conn_terminate(iser_conn)) { if (iser_conn->iscsi_conn) iscsi_conn_failure(iser_conn->iscsi_conn, ISCSI_ERR_CONN_FAILED); else iser_err("iscsi_iser connection isn't bound\n"); } iser_free_ib_conn_res(iser_conn, destroy); complete(&iser_conn->ib_completion); } static int iser_cma_handler(struct rdma_cm_id *cma_id, struct rdma_cm_event *event) { struct iser_conn *iser_conn; int ret = 0; iser_conn = cma_id->context; iser_info("%s (%d): status %d conn %p id %p\n", rdma_event_msg(event->event), event->event, event->status, cma_id->context, cma_id); mutex_lock(&iser_conn->state_mutex); switch (event->event) { case RDMA_CM_EVENT_ADDR_RESOLVED: iser_addr_handler(cma_id); break; case RDMA_CM_EVENT_ROUTE_RESOLVED: iser_route_handler(cma_id); break; case RDMA_CM_EVENT_ESTABLISHED: iser_connected_handler(cma_id, event->param.conn.private_data); break; case RDMA_CM_EVENT_REJECTED: iser_info("Connection rejected: %s\n", rdma_reject_msg(cma_id, event->status)); fallthrough; case RDMA_CM_EVENT_ADDR_ERROR: case RDMA_CM_EVENT_ROUTE_ERROR: case RDMA_CM_EVENT_CONNECT_ERROR: case RDMA_CM_EVENT_UNREACHABLE: iser_connect_error(cma_id); break; case RDMA_CM_EVENT_DISCONNECTED: case RDMA_CM_EVENT_ADDR_CHANGE: case RDMA_CM_EVENT_TIMEWAIT_EXIT: iser_cleanup_handler(cma_id, false); break; case RDMA_CM_EVENT_DEVICE_REMOVAL: /* * we *must* destroy the device as we cannot rely * on iscsid to be around to initiate error handling. * also if we are not in state DOWN implicitly destroy * the cma_id. */ iser_cleanup_handler(cma_id, true); if (iser_conn->state != ISER_CONN_DOWN) { iser_conn->ib_conn.cma_id = NULL; ret = 1; } break; default: iser_err("Unexpected RDMA CM event: %s (%d)\n", rdma_event_msg(event->event), event->event); break; } mutex_unlock(&iser_conn->state_mutex); return ret; } void iser_conn_init(struct iser_conn *iser_conn) { struct ib_conn *ib_conn = &iser_conn->ib_conn; iser_conn->state = ISER_CONN_INIT; init_completion(&iser_conn->stop_completion); init_completion(&iser_conn->ib_completion); init_completion(&iser_conn->up_completion); INIT_LIST_HEAD(&iser_conn->conn_list); mutex_init(&iser_conn->state_mutex); ib_conn->reg_cqe.done = iser_reg_comp; } /* * starts the process of connecting to the target * sleeps until the connection is established or rejected */ int iser_connect(struct iser_conn *iser_conn, struct sockaddr *src_addr, struct sockaddr *dst_addr, int non_blocking) { struct ib_conn *ib_conn = &iser_conn->ib_conn; int err = 0; mutex_lock(&iser_conn->state_mutex); sprintf(iser_conn->name, "%pISp", dst_addr); iser_info("connecting to: %s\n", iser_conn->name); /* the device is known only --after-- address resolution */ ib_conn->device = NULL; iser_conn->state = ISER_CONN_PENDING; ib_conn->cma_id = rdma_create_id(&init_net, iser_cma_handler, iser_conn, RDMA_PS_TCP, IB_QPT_RC); if (IS_ERR(ib_conn->cma_id)) { err = PTR_ERR(ib_conn->cma_id); iser_err("rdma_create_id failed: %d\n", err); goto id_failure; } err = rdma_resolve_addr(ib_conn->cma_id, src_addr, dst_addr, 1000); if (err) { iser_err("rdma_resolve_addr failed: %d\n", err); goto addr_failure; } if (!non_blocking) { wait_for_completion_interruptible(&iser_conn->up_completion); if (iser_conn->state != ISER_CONN_UP) { err = -EIO; goto connect_failure; } } mutex_unlock(&iser_conn->state_mutex); mutex_lock(&ig.connlist_mutex); list_add(&iser_conn->conn_list, &ig.connlist); mutex_unlock(&ig.connlist_mutex); return 0; id_failure: ib_conn->cma_id = NULL; addr_failure: iser_conn->state = ISER_CONN_DOWN; connect_failure: mutex_unlock(&iser_conn->state_mutex); iser_conn_release(iser_conn); return err; } int iser_post_recvl(struct iser_conn *iser_conn) { struct ib_conn *ib_conn = &iser_conn->ib_conn; struct iser_login_desc *desc = &iser_conn->login_desc; struct ib_recv_wr wr; int ret; desc->sge.addr = desc->rsp_dma; desc->sge.length = ISER_RX_LOGIN_SIZE; desc->sge.lkey = ib_conn->device->pd->local_dma_lkey; desc->cqe.done = iser_login_rsp; wr.wr_cqe = &desc->cqe; wr.sg_list = &desc->sge; wr.num_sge = 1; wr.next = NULL; ret = ib_post_recv(ib_conn->qp, &wr, NULL); if (unlikely(ret)) iser_err("ib_post_recv login failed ret=%d\n", ret); return ret; } int iser_post_recvm(struct iser_conn *iser_conn, struct iser_rx_desc *rx_desc) { struct ib_conn *ib_conn = &iser_conn->ib_conn; struct ib_recv_wr wr; int ret; rx_desc->cqe.done = iser_task_rsp; wr.wr_cqe = &rx_desc->cqe; wr.sg_list = &rx_desc->rx_sg; wr.num_sge = 1; wr.next = NULL; ret = ib_post_recv(ib_conn->qp, &wr, NULL); if (unlikely(ret)) iser_err("ib_post_recv failed ret=%d\n", ret); return ret; } /** * iser_post_send - Initiate a Send DTO operation * @ib_conn: connection RDMA resources * @tx_desc: iSER TX descriptor * * Return: 0 on success, -1 on failure */ int iser_post_send(struct ib_conn *ib_conn, struct iser_tx_desc *tx_desc) { struct ib_send_wr *wr = &tx_desc->send_wr; struct ib_send_wr *first_wr; int ret; ib_dma_sync_single_for_device(ib_conn->device->ib_device, tx_desc->dma_addr, ISER_HEADERS_LEN, DMA_TO_DEVICE); wr->next = NULL; wr->wr_cqe = &tx_desc->cqe; wr->sg_list = tx_desc->tx_sg; wr->num_sge = tx_desc->num_sge; wr->opcode = IB_WR_SEND; wr->send_flags = IB_SEND_SIGNALED; if (tx_desc->inv_wr.next) first_wr = &tx_desc->inv_wr; else if (tx_desc->reg_wr.wr.next) first_wr = &tx_desc->reg_wr.wr; else first_wr = wr; ret = ib_post_send(ib_conn->qp, first_wr, NULL); if (unlikely(ret)) iser_err("ib_post_send failed, ret:%d opcode:%d\n", ret, wr->opcode); return ret; } u8 iser_check_task_pi_status(struct iscsi_iser_task *iser_task, enum iser_data_dir cmd_dir, sector_t *sector) { struct iser_mem_reg *reg = &iser_task->rdma_reg[cmd_dir]; struct iser_fr_desc *desc = reg->desc; unsigned long sector_size = iser_task->sc->device->sector_size; struct ib_mr_status mr_status; int ret; if (desc && desc->sig_protected) { desc->sig_protected = false; ret = ib_check_mr_status(desc->rsc.sig_mr, IB_MR_CHECK_SIG_STATUS, &mr_status); if (ret) { iser_err("ib_check_mr_status failed, ret %d\n", ret); /* Not a lot we can do, return ambiguous guard error */ *sector = 0; return 0x1; } if (mr_status.fail_status & IB_MR_CHECK_SIG_STATUS) { sector_t sector_off = mr_status.sig_err.sig_err_offset; sector_div(sector_off, sector_size + 8); *sector = scsi_get_sector(iser_task->sc) + sector_off; iser_err("PI error found type %d at sector %llx " "expected %x vs actual %x\n", mr_status.sig_err.err_type, (unsigned long long)*sector, mr_status.sig_err.expected, mr_status.sig_err.actual); switch (mr_status.sig_err.err_type) { case IB_SIG_BAD_GUARD: return 0x1; case IB_SIG_BAD_REFTAG: return 0x3; case IB_SIG_BAD_APPTAG: return 0x2; } } } return 0; } void iser_err_comp(struct ib_wc *wc, const char *type) { if (wc->status != IB_WC_WR_FLUSH_ERR) { struct iser_conn *iser_conn = to_iser_conn(wc->qp->qp_context); iser_err("%s failure: %s (%d) vend_err %#x\n", type, ib_wc_status_msg(wc->status), wc->status, wc->vendor_err); if (iser_conn->iscsi_conn) iscsi_conn_failure(iser_conn->iscsi_conn, ISCSI_ERR_CONN_FAILED); } else { iser_dbg("%s failure: %s (%d)\n", type, ib_wc_status_msg(wc->status), wc->status); } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1