Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Lu Baolu | 1781 | 93.20% | 19 | 54.29% |
Jacob jun Pan | 42 | 2.20% | 2 | 5.71% |
Yi L Liu | 37 | 1.94% | 3 | 8.57% |
David Woodhouse | 22 | 1.15% | 2 | 5.71% |
Allen M Kay | 10 | 0.52% | 1 | 2.86% |
Tina Zhang | 4 | 0.21% | 1 | 2.86% |
Anil S Keshavamurthy | 3 | 0.16% | 1 | 2.86% |
Fenghua Yu | 2 | 0.10% | 1 | 2.86% |
Stephen Rothwell | 2 | 0.10% | 1 | 2.86% |
Linus Torvalds | 2 | 0.10% | 1 | 2.86% |
Tejun Heo | 2 | 0.10% | 1 | 2.86% |
Yian Chen | 2 | 0.10% | 1 | 2.86% |
Weidong Han | 2 | 0.10% | 1 | 2.86% |
Total | 1911 | 35 |
// SPDX-License-Identifier: GPL-2.0 /* * cache.c - Intel VT-d cache invalidation * * Copyright (C) 2024 Intel Corporation * * Author: Lu Baolu <baolu.lu@linux.intel.com> */ #define pr_fmt(fmt) "DMAR: " fmt #include <linux/dmar.h> #include <linux/iommu.h> #include <linux/memory.h> #include <linux/pci.h> #include <linux/spinlock.h> #include "iommu.h" #include "pasid.h" #include "trace.h" /* Check if an existing cache tag can be reused for a new association. */ static bool cache_tage_match(struct cache_tag *tag, u16 domain_id, struct intel_iommu *iommu, struct device *dev, ioasid_t pasid, enum cache_tag_type type) { if (tag->type != type) return false; if (tag->domain_id != domain_id || tag->pasid != pasid) return false; if (type == CACHE_TAG_IOTLB || type == CACHE_TAG_NESTING_IOTLB) return tag->iommu == iommu; if (type == CACHE_TAG_DEVTLB || type == CACHE_TAG_NESTING_DEVTLB) return tag->dev == dev; return false; } /* Assign a cache tag with specified type to domain. */ static int cache_tag_assign(struct dmar_domain *domain, u16 did, struct device *dev, ioasid_t pasid, enum cache_tag_type type) { struct device_domain_info *info = dev_iommu_priv_get(dev); struct intel_iommu *iommu = info->iommu; struct cache_tag *tag, *temp; unsigned long flags; tag = kzalloc(sizeof(*tag), GFP_KERNEL); if (!tag) return -ENOMEM; tag->type = type; tag->iommu = iommu; tag->domain_id = did; tag->pasid = pasid; tag->users = 1; if (type == CACHE_TAG_DEVTLB || type == CACHE_TAG_NESTING_DEVTLB) tag->dev = dev; else tag->dev = iommu->iommu.dev; spin_lock_irqsave(&domain->cache_lock, flags); list_for_each_entry(temp, &domain->cache_tags, node) { if (cache_tage_match(temp, did, iommu, dev, pasid, type)) { temp->users++; spin_unlock_irqrestore(&domain->cache_lock, flags); kfree(tag); trace_cache_tag_assign(temp); return 0; } } list_add_tail(&tag->node, &domain->cache_tags); spin_unlock_irqrestore(&domain->cache_lock, flags); trace_cache_tag_assign(tag); return 0; } /* Unassign a cache tag with specified type from domain. */ static void cache_tag_unassign(struct dmar_domain *domain, u16 did, struct device *dev, ioasid_t pasid, enum cache_tag_type type) { struct device_domain_info *info = dev_iommu_priv_get(dev); struct intel_iommu *iommu = info->iommu; struct cache_tag *tag; unsigned long flags; spin_lock_irqsave(&domain->cache_lock, flags); list_for_each_entry(tag, &domain->cache_tags, node) { if (cache_tage_match(tag, did, iommu, dev, pasid, type)) { trace_cache_tag_unassign(tag); if (--tag->users == 0) { list_del(&tag->node); kfree(tag); } break; } } spin_unlock_irqrestore(&domain->cache_lock, flags); } static int __cache_tag_assign_domain(struct dmar_domain *domain, u16 did, struct device *dev, ioasid_t pasid) { struct device_domain_info *info = dev_iommu_priv_get(dev); int ret; ret = cache_tag_assign(domain, did, dev, pasid, CACHE_TAG_IOTLB); if (ret || !info->ats_enabled) return ret; ret = cache_tag_assign(domain, did, dev, pasid, CACHE_TAG_DEVTLB); if (ret) cache_tag_unassign(domain, did, dev, pasid, CACHE_TAG_IOTLB); return ret; } static void __cache_tag_unassign_domain(struct dmar_domain *domain, u16 did, struct device *dev, ioasid_t pasid) { struct device_domain_info *info = dev_iommu_priv_get(dev); cache_tag_unassign(domain, did, dev, pasid, CACHE_TAG_IOTLB); if (info->ats_enabled) cache_tag_unassign(domain, did, dev, pasid, CACHE_TAG_DEVTLB); } static int __cache_tag_assign_parent_domain(struct dmar_domain *domain, u16 did, struct device *dev, ioasid_t pasid) { struct device_domain_info *info = dev_iommu_priv_get(dev); int ret; ret = cache_tag_assign(domain, did, dev, pasid, CACHE_TAG_NESTING_IOTLB); if (ret || !info->ats_enabled) return ret; ret = cache_tag_assign(domain, did, dev, pasid, CACHE_TAG_NESTING_DEVTLB); if (ret) cache_tag_unassign(domain, did, dev, pasid, CACHE_TAG_NESTING_IOTLB); return ret; } static void __cache_tag_unassign_parent_domain(struct dmar_domain *domain, u16 did, struct device *dev, ioasid_t pasid) { struct device_domain_info *info = dev_iommu_priv_get(dev); cache_tag_unassign(domain, did, dev, pasid, CACHE_TAG_NESTING_IOTLB); if (info->ats_enabled) cache_tag_unassign(domain, did, dev, pasid, CACHE_TAG_NESTING_DEVTLB); } static u16 domain_get_id_for_dev(struct dmar_domain *domain, struct device *dev) { struct device_domain_info *info = dev_iommu_priv_get(dev); struct intel_iommu *iommu = info->iommu; /* * The driver assigns different domain IDs for all domains except * the SVA type. */ if (domain->domain.type == IOMMU_DOMAIN_SVA) return FLPT_DEFAULT_DID; return domain_id_iommu(domain, iommu); } /* * Assign cache tags to a domain when it's associated with a device's * PASID using a specific domain ID. * * On success (return value of 0), cache tags are created and added to the * domain's cache tag list. On failure (negative return value), an error * code is returned indicating the reason for the failure. */ int cache_tag_assign_domain(struct dmar_domain *domain, struct device *dev, ioasid_t pasid) { u16 did = domain_get_id_for_dev(domain, dev); int ret; ret = __cache_tag_assign_domain(domain, did, dev, pasid); if (ret || domain->domain.type != IOMMU_DOMAIN_NESTED) return ret; ret = __cache_tag_assign_parent_domain(domain->s2_domain, did, dev, pasid); if (ret) __cache_tag_unassign_domain(domain, did, dev, pasid); return ret; } /* * Remove the cache tags associated with a device's PASID when the domain is * detached from the device. * * The cache tags must be previously assigned to the domain by calling the * assign interface. */ void cache_tag_unassign_domain(struct dmar_domain *domain, struct device *dev, ioasid_t pasid) { u16 did = domain_get_id_for_dev(domain, dev); __cache_tag_unassign_domain(domain, did, dev, pasid); if (domain->domain.type == IOMMU_DOMAIN_NESTED) __cache_tag_unassign_parent_domain(domain->s2_domain, did, dev, pasid); } static unsigned long calculate_psi_aligned_address(unsigned long start, unsigned long end, unsigned long *_pages, unsigned long *_mask) { unsigned long pages = aligned_nrpages(start, end - start + 1); unsigned long aligned_pages = __roundup_pow_of_two(pages); unsigned long bitmask = aligned_pages - 1; unsigned long mask = ilog2(aligned_pages); unsigned long pfn = IOVA_PFN(start); /* * PSI masks the low order bits of the base address. If the * address isn't aligned to the mask, then compute a mask value * needed to ensure the target range is flushed. */ if (unlikely(bitmask & pfn)) { unsigned long end_pfn = pfn + pages - 1, shared_bits; /* * Since end_pfn <= pfn + bitmask, the only way bits * higher than bitmask can differ in pfn and end_pfn is * by carrying. This means after masking out bitmask, * high bits starting with the first set bit in * shared_bits are all equal in both pfn and end_pfn. */ shared_bits = ~(pfn ^ end_pfn) & ~bitmask; mask = shared_bits ? __ffs(shared_bits) : MAX_AGAW_PFN_WIDTH; aligned_pages = 1UL << mask; } *_pages = aligned_pages; *_mask = mask; return ALIGN_DOWN(start, VTD_PAGE_SIZE << mask); } /* * Invalidates a range of IOVA from @start (inclusive) to @end (inclusive) * when the memory mappings in the target domain have been modified. */ void cache_tag_flush_range(struct dmar_domain *domain, unsigned long start, unsigned long end, int ih) { unsigned long pages, mask, addr; struct cache_tag *tag; unsigned long flags; addr = calculate_psi_aligned_address(start, end, &pages, &mask); spin_lock_irqsave(&domain->cache_lock, flags); list_for_each_entry(tag, &domain->cache_tags, node) { struct intel_iommu *iommu = tag->iommu; struct device_domain_info *info; u16 sid; switch (tag->type) { case CACHE_TAG_IOTLB: case CACHE_TAG_NESTING_IOTLB: if (domain->use_first_level) { qi_flush_piotlb(iommu, tag->domain_id, tag->pasid, addr, pages, ih); } else { /* * Fallback to domain selective flush if no * PSI support or the size is too big. */ if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap)) iommu->flush.flush_iotlb(iommu, tag->domain_id, 0, 0, DMA_TLB_DSI_FLUSH); else iommu->flush.flush_iotlb(iommu, tag->domain_id, addr | ih, mask, DMA_TLB_PSI_FLUSH); } break; case CACHE_TAG_NESTING_DEVTLB: /* * Address translation cache in device side caches the * result of nested translation. There is no easy way * to identify the exact set of nested translations * affected by a change in S2. So just flush the entire * device cache. */ addr = 0; mask = MAX_AGAW_PFN_WIDTH; fallthrough; case CACHE_TAG_DEVTLB: info = dev_iommu_priv_get(tag->dev); sid = PCI_DEVID(info->bus, info->devfn); if (tag->pasid == IOMMU_NO_PASID) qi_flush_dev_iotlb(iommu, sid, info->pfsid, info->ats_qdep, addr, mask); else qi_flush_dev_iotlb_pasid(iommu, sid, info->pfsid, tag->pasid, info->ats_qdep, addr, mask); quirk_extra_dev_tlb_flush(info, addr, mask, tag->pasid, info->ats_qdep); break; } trace_cache_tag_flush_range(tag, start, end, addr, pages, mask); } spin_unlock_irqrestore(&domain->cache_lock, flags); } /* * Invalidates all ranges of IOVA when the memory mappings in the target * domain have been modified. */ void cache_tag_flush_all(struct dmar_domain *domain) { struct cache_tag *tag; unsigned long flags; spin_lock_irqsave(&domain->cache_lock, flags); list_for_each_entry(tag, &domain->cache_tags, node) { struct intel_iommu *iommu = tag->iommu; struct device_domain_info *info; u16 sid; switch (tag->type) { case CACHE_TAG_IOTLB: case CACHE_TAG_NESTING_IOTLB: if (domain->use_first_level) qi_flush_piotlb(iommu, tag->domain_id, tag->pasid, 0, -1, 0); else iommu->flush.flush_iotlb(iommu, tag->domain_id, 0, 0, DMA_TLB_DSI_FLUSH); break; case CACHE_TAG_DEVTLB: case CACHE_TAG_NESTING_DEVTLB: info = dev_iommu_priv_get(tag->dev); sid = PCI_DEVID(info->bus, info->devfn); qi_flush_dev_iotlb(iommu, sid, info->pfsid, info->ats_qdep, 0, MAX_AGAW_PFN_WIDTH); quirk_extra_dev_tlb_flush(info, 0, MAX_AGAW_PFN_WIDTH, IOMMU_NO_PASID, info->ats_qdep); break; } trace_cache_tag_flush_all(tag); } spin_unlock_irqrestore(&domain->cache_lock, flags); } /* * Invalidate a range of IOVA when new mappings are created in the target * domain. * * - VT-d spec, Section 6.1 Caching Mode: When the CM field is reported as * Set, any software updates to remapping structures other than first- * stage mapping requires explicit invalidation of the caches. * - VT-d spec, Section 6.8 Write Buffer Flushing: For hardware that requires * write buffer flushing, software must explicitly perform write-buffer * flushing, if cache invalidation is not required. */ void cache_tag_flush_range_np(struct dmar_domain *domain, unsigned long start, unsigned long end) { unsigned long pages, mask, addr; struct cache_tag *tag; unsigned long flags; addr = calculate_psi_aligned_address(start, end, &pages, &mask); spin_lock_irqsave(&domain->cache_lock, flags); list_for_each_entry(tag, &domain->cache_tags, node) { struct intel_iommu *iommu = tag->iommu; if (!cap_caching_mode(iommu->cap) || domain->use_first_level) { iommu_flush_write_buffer(iommu); continue; } if (tag->type == CACHE_TAG_IOTLB || tag->type == CACHE_TAG_NESTING_IOTLB) { /* * Fallback to domain selective flush if no * PSI support or the size is too big. */ if (!cap_pgsel_inv(iommu->cap) || mask > cap_max_amask_val(iommu->cap)) iommu->flush.flush_iotlb(iommu, tag->domain_id, 0, 0, DMA_TLB_DSI_FLUSH); else iommu->flush.flush_iotlb(iommu, tag->domain_id, addr, mask, DMA_TLB_PSI_FLUSH); } trace_cache_tag_flush_range_np(tag, start, end, addr, pages, mask); } spin_unlock_irqrestore(&domain->cache_lock, flags); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1