Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Lu Baolu | 1513 | 55.54% | 46 | 50.00% |
David Woodhouse | 860 | 31.57% | 10 | 10.87% |
Jacob jun Pan | 174 | 6.39% | 8 | 8.70% |
Ashok Raj | 46 | 1.69% | 1 | 1.09% |
Sohil Mehta | 23 | 0.84% | 3 | 3.26% |
Joerg Roedel | 18 | 0.66% | 4 | 4.35% |
Pavel Tatashin | 12 | 0.44% | 1 | 1.09% |
Jingqi Liu | 12 | 0.44% | 1 | 1.09% |
Youquan Song | 10 | 0.37% | 1 | 1.09% |
Anil S Keshavamurthy | 8 | 0.29% | 1 | 1.09% |
Gerard Snitselaar | 8 | 0.29% | 1 | 1.09% |
Yang Yingliang | 7 | 0.26% | 1 | 1.09% |
Tina Zhang | 7 | 0.26% | 2 | 2.17% |
Yi L Liu | 6 | 0.22% | 2 | 2.17% |
Ingo Molnar | 4 | 0.15% | 2 | 2.17% |
Alistair Popple | 3 | 0.11% | 1 | 1.09% |
Dan Carpenter | 3 | 0.11% | 1 | 1.09% |
Andi Kleen | 3 | 0.11% | 1 | 1.09% |
Suresh B. Siddha | 2 | 0.07% | 1 | 1.09% |
Thomas Gleixner | 2 | 0.07% | 1 | 1.09% |
CQ Tang | 1 | 0.04% | 1 | 1.09% |
Kan Liang | 1 | 0.04% | 1 | 1.09% |
Fenghua Yu | 1 | 0.04% | 1 | 1.09% |
Total | 2724 | 92 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright © 2015 Intel Corporation. * * Authors: David Woodhouse <dwmw2@infradead.org> */ #include <linux/mmu_notifier.h> #include <linux/sched.h> #include <linux/sched/mm.h> #include <linux/slab.h> #include <linux/rculist.h> #include <linux/pci.h> #include <linux/pci-ats.h> #include <linux/dmar.h> #include <linux/interrupt.h> #include <linux/mm_types.h> #include <linux/xarray.h> #include <asm/page.h> #include <asm/fpu/api.h> #include "iommu.h" #include "pasid.h" #include "perf.h" #include "../iommu-pages.h" #include "trace.h" static irqreturn_t prq_event_thread(int irq, void *d); int intel_svm_enable_prq(struct intel_iommu *iommu) { struct iopf_queue *iopfq; int irq, ret; iommu->prq = iommu_alloc_pages_node(iommu->node, GFP_KERNEL, PRQ_ORDER); if (!iommu->prq) { pr_warn("IOMMU: %s: Failed to allocate page request queue\n", iommu->name); return -ENOMEM; } irq = dmar_alloc_hwirq(IOMMU_IRQ_ID_OFFSET_PRQ + iommu->seq_id, iommu->node, iommu); if (irq <= 0) { pr_err("IOMMU: %s: Failed to create IRQ vector for page request queue\n", iommu->name); ret = -EINVAL; goto free_prq; } iommu->pr_irq = irq; snprintf(iommu->iopfq_name, sizeof(iommu->iopfq_name), "dmar%d-iopfq", iommu->seq_id); iopfq = iopf_queue_alloc(iommu->iopfq_name); if (!iopfq) { pr_err("IOMMU: %s: Failed to allocate iopf queue\n", iommu->name); ret = -ENOMEM; goto free_hwirq; } iommu->iopf_queue = iopfq; snprintf(iommu->prq_name, sizeof(iommu->prq_name), "dmar%d-prq", iommu->seq_id); ret = request_threaded_irq(irq, NULL, prq_event_thread, IRQF_ONESHOT, iommu->prq_name, iommu); if (ret) { pr_err("IOMMU: %s: Failed to request IRQ for page request queue\n", iommu->name); goto free_iopfq; } dmar_writeq(iommu->reg + DMAR_PQH_REG, 0ULL); dmar_writeq(iommu->reg + DMAR_PQT_REG, 0ULL); dmar_writeq(iommu->reg + DMAR_PQA_REG, virt_to_phys(iommu->prq) | PRQ_ORDER); init_completion(&iommu->prq_complete); return 0; free_iopfq: iopf_queue_free(iommu->iopf_queue); iommu->iopf_queue = NULL; free_hwirq: dmar_free_hwirq(irq); iommu->pr_irq = 0; free_prq: iommu_free_pages(iommu->prq, PRQ_ORDER); iommu->prq = NULL; return ret; } int intel_svm_finish_prq(struct intel_iommu *iommu) { dmar_writeq(iommu->reg + DMAR_PQH_REG, 0ULL); dmar_writeq(iommu->reg + DMAR_PQT_REG, 0ULL); dmar_writeq(iommu->reg + DMAR_PQA_REG, 0ULL); if (iommu->pr_irq) { free_irq(iommu->pr_irq, iommu); dmar_free_hwirq(iommu->pr_irq); iommu->pr_irq = 0; } if (iommu->iopf_queue) { iopf_queue_free(iommu->iopf_queue); iommu->iopf_queue = NULL; } iommu_free_pages(iommu->prq, PRQ_ORDER); iommu->prq = NULL; return 0; } void intel_svm_check(struct intel_iommu *iommu) { if (!pasid_supported(iommu)) return; if (cpu_feature_enabled(X86_FEATURE_GBPAGES) && !cap_fl1gp_support(iommu->cap)) { pr_err("%s SVM disabled, incompatible 1GB page capability\n", iommu->name); return; } if (cpu_feature_enabled(X86_FEATURE_LA57) && !cap_fl5lp_support(iommu->cap)) { pr_err("%s SVM disabled, incompatible paging mode\n", iommu->name); return; } iommu->flags |= VTD_FLAG_SVM_CAPABLE; } /* Pages have been freed at this point */ static void intel_arch_invalidate_secondary_tlbs(struct mmu_notifier *mn, struct mm_struct *mm, unsigned long start, unsigned long end) { struct dmar_domain *domain = container_of(mn, struct dmar_domain, notifier); if (start == 0 && end == ULONG_MAX) { cache_tag_flush_all(domain); return; } /* * The mm_types defines vm_end as the first byte after the end address, * different from IOMMU subsystem using the last address of an address * range. */ cache_tag_flush_range(domain, start, end - 1, 0); } static void intel_mm_release(struct mmu_notifier *mn, struct mm_struct *mm) { struct dmar_domain *domain = container_of(mn, struct dmar_domain, notifier); struct dev_pasid_info *dev_pasid; struct device_domain_info *info; unsigned long flags; /* This might end up being called from exit_mmap(), *before* the page * tables are cleared. And __mmu_notifier_release() will delete us from * the list of notifiers so that our invalidate_range() callback doesn't * get called when the page tables are cleared. So we need to protect * against hardware accessing those page tables. * * We do it by clearing the entry in the PASID table and then flushing * the IOTLB and the PASID table caches. This might upset hardware; * perhaps we'll want to point the PASID to a dummy PGD (like the zero * page) so that we end up taking a fault that the hardware really * *has* to handle gracefully without affecting other processes. */ spin_lock_irqsave(&domain->lock, flags); list_for_each_entry(dev_pasid, &domain->dev_pasids, link_domain) { info = dev_iommu_priv_get(dev_pasid->dev); intel_pasid_tear_down_entry(info->iommu, dev_pasid->dev, dev_pasid->pasid, true); } spin_unlock_irqrestore(&domain->lock, flags); } static void intel_mm_free_notifier(struct mmu_notifier *mn) { kfree(container_of(mn, struct dmar_domain, notifier)); } static const struct mmu_notifier_ops intel_mmuops = { .release = intel_mm_release, .arch_invalidate_secondary_tlbs = intel_arch_invalidate_secondary_tlbs, .free_notifier = intel_mm_free_notifier, }; static int intel_svm_set_dev_pasid(struct iommu_domain *domain, struct device *dev, ioasid_t pasid) { struct device_domain_info *info = dev_iommu_priv_get(dev); struct dmar_domain *dmar_domain = to_dmar_domain(domain); struct intel_iommu *iommu = info->iommu; struct mm_struct *mm = domain->mm; struct dev_pasid_info *dev_pasid; unsigned long sflags; unsigned long flags; int ret = 0; dev_pasid = kzalloc(sizeof(*dev_pasid), GFP_KERNEL); if (!dev_pasid) return -ENOMEM; dev_pasid->dev = dev; dev_pasid->pasid = pasid; ret = cache_tag_assign_domain(to_dmar_domain(domain), dev, pasid); if (ret) goto free_dev_pasid; /* Setup the pasid table: */ sflags = cpu_feature_enabled(X86_FEATURE_LA57) ? PASID_FLAG_FL5LP : 0; ret = intel_pasid_setup_first_level(iommu, dev, mm->pgd, pasid, FLPT_DEFAULT_DID, sflags); if (ret) goto unassign_tag; spin_lock_irqsave(&dmar_domain->lock, flags); list_add(&dev_pasid->link_domain, &dmar_domain->dev_pasids); spin_unlock_irqrestore(&dmar_domain->lock, flags); return 0; unassign_tag: cache_tag_unassign_domain(to_dmar_domain(domain), dev, pasid); free_dev_pasid: kfree(dev_pasid); return ret; } /* Page request queue descriptor */ struct page_req_dsc { union { struct { u64 type:8; u64 pasid_present:1; u64 rsvd:7; u64 rid:16; u64 pasid:20; u64 exe_req:1; u64 pm_req:1; u64 rsvd2:10; }; u64 qw_0; }; union { struct { u64 rd_req:1; u64 wr_req:1; u64 lpig:1; u64 prg_index:9; u64 addr:52; }; u64 qw_1; }; u64 qw_2; u64 qw_3; }; static bool is_canonical_address(u64 addr) { int shift = 64 - (__VIRTUAL_MASK_SHIFT + 1); long saddr = (long) addr; return (((saddr << shift) >> shift) == saddr); } /** * intel_drain_pasid_prq - Drain page requests and responses for a pasid * @dev: target device * @pasid: pasid for draining * * Drain all pending page requests and responses related to @pasid in both * software and hardware. This is supposed to be called after the device * driver has stopped DMA, the pasid entry has been cleared, and both IOTLB * and DevTLB have been invalidated. * * It waits until all pending page requests for @pasid in the page fault * queue are completed by the prq handling thread. Then follow the steps * described in VT-d spec CH7.10 to drain all page requests and page * responses pending in the hardware. */ void intel_drain_pasid_prq(struct device *dev, u32 pasid) { struct device_domain_info *info; struct dmar_domain *domain; struct intel_iommu *iommu; struct qi_desc desc[3]; struct pci_dev *pdev; int head, tail; u16 sid, did; int qdep; info = dev_iommu_priv_get(dev); if (WARN_ON(!info || !dev_is_pci(dev))) return; if (!info->pri_enabled) return; iommu = info->iommu; domain = info->domain; pdev = to_pci_dev(dev); sid = PCI_DEVID(info->bus, info->devfn); did = domain_id_iommu(domain, iommu); qdep = pci_ats_queue_depth(pdev); /* * Check and wait until all pending page requests in the queue are * handled by the prq handling thread. */ prq_retry: reinit_completion(&iommu->prq_complete); tail = dmar_readq(iommu->reg + DMAR_PQT_REG) & PRQ_RING_MASK; head = dmar_readq(iommu->reg + DMAR_PQH_REG) & PRQ_RING_MASK; while (head != tail) { struct page_req_dsc *req; req = &iommu->prq[head / sizeof(*req)]; if (!req->pasid_present || req->pasid != pasid) { head = (head + sizeof(*req)) & PRQ_RING_MASK; continue; } wait_for_completion(&iommu->prq_complete); goto prq_retry; } iopf_queue_flush_dev(dev); /* * Perform steps described in VT-d spec CH7.10 to drain page * requests and responses in hardware. */ memset(desc, 0, sizeof(desc)); desc[0].qw0 = QI_IWD_STATUS_DATA(QI_DONE) | QI_IWD_FENCE | QI_IWD_TYPE; desc[1].qw0 = QI_EIOTLB_PASID(pasid) | QI_EIOTLB_DID(did) | QI_EIOTLB_GRAN(QI_GRAN_NONG_PASID) | QI_EIOTLB_TYPE; desc[2].qw0 = QI_DEV_EIOTLB_PASID(pasid) | QI_DEV_EIOTLB_SID(sid) | QI_DEV_EIOTLB_QDEP(qdep) | QI_DEIOTLB_TYPE | QI_DEV_IOTLB_PFSID(info->pfsid); qi_retry: reinit_completion(&iommu->prq_complete); qi_submit_sync(iommu, desc, 3, QI_OPT_WAIT_DRAIN); if (readl(iommu->reg + DMAR_PRS_REG) & DMA_PRS_PRO) { wait_for_completion(&iommu->prq_complete); goto qi_retry; } } static int prq_to_iommu_prot(struct page_req_dsc *req) { int prot = 0; if (req->rd_req) prot |= IOMMU_FAULT_PERM_READ; if (req->wr_req) prot |= IOMMU_FAULT_PERM_WRITE; if (req->exe_req) prot |= IOMMU_FAULT_PERM_EXEC; if (req->pm_req) prot |= IOMMU_FAULT_PERM_PRIV; return prot; } static void intel_svm_prq_report(struct intel_iommu *iommu, struct device *dev, struct page_req_dsc *desc) { struct iopf_fault event = { }; /* Fill in event data for device specific processing */ event.fault.type = IOMMU_FAULT_PAGE_REQ; event.fault.prm.addr = (u64)desc->addr << VTD_PAGE_SHIFT; event.fault.prm.pasid = desc->pasid; event.fault.prm.grpid = desc->prg_index; event.fault.prm.perm = prq_to_iommu_prot(desc); if (desc->lpig) event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE; if (desc->pasid_present) { event.fault.prm.flags |= IOMMU_FAULT_PAGE_REQUEST_PASID_VALID; event.fault.prm.flags |= IOMMU_FAULT_PAGE_RESPONSE_NEEDS_PASID; } iommu_report_device_fault(dev, &event); } static void handle_bad_prq_event(struct intel_iommu *iommu, struct page_req_dsc *req, int result) { struct qi_desc desc = { }; pr_err("%s: Invalid page request: %08llx %08llx\n", iommu->name, ((unsigned long long *)req)[0], ((unsigned long long *)req)[1]); if (!req->lpig) return; desc.qw0 = QI_PGRP_PASID(req->pasid) | QI_PGRP_DID(req->rid) | QI_PGRP_PASID_P(req->pasid_present) | QI_PGRP_RESP_CODE(result) | QI_PGRP_RESP_TYPE; desc.qw1 = QI_PGRP_IDX(req->prg_index) | QI_PGRP_LPIG(req->lpig); qi_submit_sync(iommu, &desc, 1, 0); } static irqreturn_t prq_event_thread(int irq, void *d) { struct intel_iommu *iommu = d; struct page_req_dsc *req; int head, tail, handled; struct device *dev; u64 address; /* * Clear PPR bit before reading head/tail registers, to ensure that * we get a new interrupt if needed. */ writel(DMA_PRS_PPR, iommu->reg + DMAR_PRS_REG); tail = dmar_readq(iommu->reg + DMAR_PQT_REG) & PRQ_RING_MASK; head = dmar_readq(iommu->reg + DMAR_PQH_REG) & PRQ_RING_MASK; handled = (head != tail); while (head != tail) { req = &iommu->prq[head / sizeof(*req)]; address = (u64)req->addr << VTD_PAGE_SHIFT; if (unlikely(!req->pasid_present)) { pr_err("IOMMU: %s: Page request without PASID\n", iommu->name); bad_req: handle_bad_prq_event(iommu, req, QI_RESP_INVALID); goto prq_advance; } if (unlikely(!is_canonical_address(address))) { pr_err("IOMMU: %s: Address is not canonical\n", iommu->name); goto bad_req; } if (unlikely(req->pm_req && (req->rd_req | req->wr_req))) { pr_err("IOMMU: %s: Page request in Privilege Mode\n", iommu->name); goto bad_req; } if (unlikely(req->exe_req && req->rd_req)) { pr_err("IOMMU: %s: Execution request not supported\n", iommu->name); goto bad_req; } /* Drop Stop Marker message. No need for a response. */ if (unlikely(req->lpig && !req->rd_req && !req->wr_req)) goto prq_advance; /* * If prq is to be handled outside iommu driver via receiver of * the fault notifiers, we skip the page response here. */ mutex_lock(&iommu->iopf_lock); dev = device_rbtree_find(iommu, req->rid); if (!dev) { mutex_unlock(&iommu->iopf_lock); goto bad_req; } intel_svm_prq_report(iommu, dev, req); trace_prq_report(iommu, dev, req->qw_0, req->qw_1, req->qw_2, req->qw_3, iommu->prq_seq_number++); mutex_unlock(&iommu->iopf_lock); prq_advance: head = (head + sizeof(*req)) & PRQ_RING_MASK; } dmar_writeq(iommu->reg + DMAR_PQH_REG, tail); /* * Clear the page request overflow bit and wake up all threads that * are waiting for the completion of this handling. */ if (readl(iommu->reg + DMAR_PRS_REG) & DMA_PRS_PRO) { pr_info_ratelimited("IOMMU: %s: PRQ overflow detected\n", iommu->name); head = dmar_readq(iommu->reg + DMAR_PQH_REG) & PRQ_RING_MASK; tail = dmar_readq(iommu->reg + DMAR_PQT_REG) & PRQ_RING_MASK; if (head == tail) { iopf_queue_discard_partial(iommu->iopf_queue); writel(DMA_PRS_PRO, iommu->reg + DMAR_PRS_REG); pr_info_ratelimited("IOMMU: %s: PRQ overflow cleared", iommu->name); } } if (!completion_done(&iommu->prq_complete)) complete(&iommu->prq_complete); return IRQ_RETVAL(handled); } void intel_svm_page_response(struct device *dev, struct iopf_fault *evt, struct iommu_page_response *msg) { struct device_domain_info *info = dev_iommu_priv_get(dev); struct intel_iommu *iommu = info->iommu; u8 bus = info->bus, devfn = info->devfn; struct iommu_fault_page_request *prm; struct qi_desc desc; bool pasid_present; bool last_page; u16 sid; prm = &evt->fault.prm; sid = PCI_DEVID(bus, devfn); pasid_present = prm->flags & IOMMU_FAULT_PAGE_REQUEST_PASID_VALID; last_page = prm->flags & IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE; desc.qw0 = QI_PGRP_PASID(prm->pasid) | QI_PGRP_DID(sid) | QI_PGRP_PASID_P(pasid_present) | QI_PGRP_RESP_CODE(msg->code) | QI_PGRP_RESP_TYPE; desc.qw1 = QI_PGRP_IDX(prm->grpid) | QI_PGRP_LPIG(last_page); desc.qw2 = 0; desc.qw3 = 0; qi_submit_sync(iommu, &desc, 1, 0); } static void intel_svm_domain_free(struct iommu_domain *domain) { struct dmar_domain *dmar_domain = to_dmar_domain(domain); /* dmar_domain free is deferred to the mmu free_notifier callback. */ mmu_notifier_put(&dmar_domain->notifier); } static const struct iommu_domain_ops intel_svm_domain_ops = { .set_dev_pasid = intel_svm_set_dev_pasid, .free = intel_svm_domain_free }; struct iommu_domain *intel_svm_domain_alloc(struct device *dev, struct mm_struct *mm) { struct dmar_domain *domain; int ret; domain = kzalloc(sizeof(*domain), GFP_KERNEL); if (!domain) return ERR_PTR(-ENOMEM); domain->domain.ops = &intel_svm_domain_ops; domain->use_first_level = true; INIT_LIST_HEAD(&domain->dev_pasids); INIT_LIST_HEAD(&domain->cache_tags); spin_lock_init(&domain->cache_lock); spin_lock_init(&domain->lock); domain->notifier.ops = &intel_mmuops; ret = mmu_notifier_register(&domain->notifier, mm); if (ret) { kfree(domain); return ERR_PTR(ret); } return &domain->domain; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1