Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Anup Patel | 3822 | 99.79% | 1 | 25.00% |
Thomas Gleixner | 8 | 0.21% | 3 | 75.00% |
Total | 3830 | 4 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2021 Western Digital Corporation or its affiliates. * Copyright (C) 2022 Ventana Micro Systems Inc. */ #define pr_fmt(fmt) "riscv-imsic: " fmt #include <linux/cpu.h> #include <linux/bitmap.h> #include <linux/interrupt.h> #include <linux/irq.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_address.h> #include <linux/of_irq.h> #include <linux/seq_file.h> #include <linux/spinlock.h> #include <linux/smp.h> #include <asm/hwcap.h> #include "irq-riscv-imsic-state.h" #define IMSIC_DISABLE_EIDELIVERY 0 #define IMSIC_ENABLE_EIDELIVERY 1 #define IMSIC_DISABLE_EITHRESHOLD 1 #define IMSIC_ENABLE_EITHRESHOLD 0 static inline void imsic_csr_write(unsigned long reg, unsigned long val) { csr_write(CSR_ISELECT, reg); csr_write(CSR_IREG, val); } static inline unsigned long imsic_csr_read(unsigned long reg) { csr_write(CSR_ISELECT, reg); return csr_read(CSR_IREG); } static inline unsigned long imsic_csr_read_clear(unsigned long reg, unsigned long val) { csr_write(CSR_ISELECT, reg); return csr_read_clear(CSR_IREG, val); } static inline void imsic_csr_set(unsigned long reg, unsigned long val) { csr_write(CSR_ISELECT, reg); csr_set(CSR_IREG, val); } static inline void imsic_csr_clear(unsigned long reg, unsigned long val) { csr_write(CSR_ISELECT, reg); csr_clear(CSR_IREG, val); } struct imsic_priv *imsic; const struct imsic_global_config *imsic_get_global_config(void) { return imsic ? &imsic->global : NULL; } EXPORT_SYMBOL_GPL(imsic_get_global_config); static bool __imsic_eix_read_clear(unsigned long id, bool pend) { unsigned long isel, imask; isel = id / BITS_PER_LONG; isel *= BITS_PER_LONG / IMSIC_EIPx_BITS; isel += pend ? IMSIC_EIP0 : IMSIC_EIE0; imask = BIT(id & (__riscv_xlen - 1)); return !!(imsic_csr_read_clear(isel, imask) & imask); } static inline bool __imsic_id_read_clear_enabled(unsigned long id) { return __imsic_eix_read_clear(id, false); } static inline bool __imsic_id_read_clear_pending(unsigned long id) { return __imsic_eix_read_clear(id, true); } void __imsic_eix_update(unsigned long base_id, unsigned long num_id, bool pend, bool val) { unsigned long id = base_id, last_id = base_id + num_id; unsigned long i, isel, ireg; while (id < last_id) { isel = id / BITS_PER_LONG; isel *= BITS_PER_LONG / IMSIC_EIPx_BITS; isel += pend ? IMSIC_EIP0 : IMSIC_EIE0; /* * Prepare the ID mask to be programmed in the * IMSIC EIEx and EIPx registers. These registers * are XLEN-wide and we must not touch IDs which * are < base_id and >= (base_id + num_id). */ ireg = 0; for (i = id & (__riscv_xlen - 1); id < last_id && i < __riscv_xlen; i++) { ireg |= BIT(i); id++; } /* * The IMSIC EIEx and EIPx registers are indirectly * accessed via using ISELECT and IREG CSRs so we * need to access these CSRs without getting preempted. * * All existing users of this function call this * function with local IRQs disabled so we don't * need to do anything special here. */ if (val) imsic_csr_set(isel, ireg); else imsic_csr_clear(isel, ireg); } } static void __imsic_local_sync(struct imsic_local_priv *lpriv) { struct imsic_local_config *mlocal; struct imsic_vector *vec, *mvec; int i; lockdep_assert_held(&lpriv->lock); for_each_set_bit(i, lpriv->dirty_bitmap, imsic->global.nr_ids + 1) { if (!i || i == IMSIC_IPI_ID) goto skip; vec = &lpriv->vectors[i]; if (READ_ONCE(vec->enable)) __imsic_id_set_enable(i); else __imsic_id_clear_enable(i); /* * If the ID was being moved to a new ID on some other CPU * then we can get a MSI during the movement so check the * ID pending bit and re-trigger the new ID on other CPU * using MMIO write. */ mvec = READ_ONCE(vec->move); WRITE_ONCE(vec->move, NULL); if (mvec && mvec != vec) { if (__imsic_id_read_clear_pending(i)) { mlocal = per_cpu_ptr(imsic->global.local, mvec->cpu); writel_relaxed(mvec->local_id, mlocal->msi_va); } imsic_vector_free(&lpriv->vectors[i]); } skip: bitmap_clear(lpriv->dirty_bitmap, i, 1); } } void imsic_local_sync_all(void) { struct imsic_local_priv *lpriv = this_cpu_ptr(imsic->lpriv); unsigned long flags; raw_spin_lock_irqsave(&lpriv->lock, flags); bitmap_fill(lpriv->dirty_bitmap, imsic->global.nr_ids + 1); __imsic_local_sync(lpriv); raw_spin_unlock_irqrestore(&lpriv->lock, flags); } void imsic_local_delivery(bool enable) { if (enable) { imsic_csr_write(IMSIC_EITHRESHOLD, IMSIC_ENABLE_EITHRESHOLD); imsic_csr_write(IMSIC_EIDELIVERY, IMSIC_ENABLE_EIDELIVERY); return; } imsic_csr_write(IMSIC_EIDELIVERY, IMSIC_DISABLE_EIDELIVERY); imsic_csr_write(IMSIC_EITHRESHOLD, IMSIC_DISABLE_EITHRESHOLD); } #ifdef CONFIG_SMP static void imsic_local_timer_callback(struct timer_list *timer) { struct imsic_local_priv *lpriv = this_cpu_ptr(imsic->lpriv); unsigned long flags; raw_spin_lock_irqsave(&lpriv->lock, flags); __imsic_local_sync(lpriv); raw_spin_unlock_irqrestore(&lpriv->lock, flags); } static void __imsic_remote_sync(struct imsic_local_priv *lpriv, unsigned int cpu) { lockdep_assert_held(&lpriv->lock); /* * The spinlock acquire/release semantics ensure that changes * to vector enable, vector move and dirty bitmap are visible * to the target CPU. */ /* * We schedule a timer on the target CPU if the target CPU is not * same as the current CPU. An offline CPU will unconditionally * synchronize IDs through imsic_starting_cpu() when the * CPU is brought up. */ if (cpu_online(cpu)) { if (cpu == smp_processor_id()) { __imsic_local_sync(lpriv); return; } if (!timer_pending(&lpriv->timer)) { lpriv->timer.expires = jiffies + 1; add_timer_on(&lpriv->timer, cpu); } } } #else static void __imsic_remote_sync(struct imsic_local_priv *lpriv, unsigned int cpu) { lockdep_assert_held(&lpriv->lock); __imsic_local_sync(lpriv); } #endif void imsic_vector_mask(struct imsic_vector *vec) { struct imsic_local_priv *lpriv; lpriv = per_cpu_ptr(imsic->lpriv, vec->cpu); if (WARN_ON_ONCE(&lpriv->vectors[vec->local_id] != vec)) return; /* * This function is called through Linux irq subsystem with * irqs disabled so no need to save/restore irq flags. */ raw_spin_lock(&lpriv->lock); WRITE_ONCE(vec->enable, false); bitmap_set(lpriv->dirty_bitmap, vec->local_id, 1); __imsic_remote_sync(lpriv, vec->cpu); raw_spin_unlock(&lpriv->lock); } void imsic_vector_unmask(struct imsic_vector *vec) { struct imsic_local_priv *lpriv; lpriv = per_cpu_ptr(imsic->lpriv, vec->cpu); if (WARN_ON_ONCE(&lpriv->vectors[vec->local_id] != vec)) return; /* * This function is called through Linux irq subsystem with * irqs disabled so no need to save/restore irq flags. */ raw_spin_lock(&lpriv->lock); WRITE_ONCE(vec->enable, true); bitmap_set(lpriv->dirty_bitmap, vec->local_id, 1); __imsic_remote_sync(lpriv, vec->cpu); raw_spin_unlock(&lpriv->lock); } static bool imsic_vector_move_update(struct imsic_local_priv *lpriv, struct imsic_vector *vec, bool new_enable, struct imsic_vector *new_move) { unsigned long flags; bool enabled; raw_spin_lock_irqsave(&lpriv->lock, flags); /* Update enable and move details */ enabled = READ_ONCE(vec->enable); WRITE_ONCE(vec->enable, new_enable); WRITE_ONCE(vec->move, new_move); /* Mark the vector as dirty and synchronize */ bitmap_set(lpriv->dirty_bitmap, vec->local_id, 1); __imsic_remote_sync(lpriv, vec->cpu); raw_spin_unlock_irqrestore(&lpriv->lock, flags); return enabled; } void imsic_vector_move(struct imsic_vector *old_vec, struct imsic_vector *new_vec) { struct imsic_local_priv *old_lpriv, *new_lpriv; bool enabled; if (WARN_ON_ONCE(old_vec->cpu == new_vec->cpu)) return; old_lpriv = per_cpu_ptr(imsic->lpriv, old_vec->cpu); if (WARN_ON_ONCE(&old_lpriv->vectors[old_vec->local_id] != old_vec)) return; new_lpriv = per_cpu_ptr(imsic->lpriv, new_vec->cpu); if (WARN_ON_ONCE(&new_lpriv->vectors[new_vec->local_id] != new_vec)) return; /* * Move and re-trigger the new vector based on the pending * state of the old vector because we might get a device * interrupt on the old vector while device was being moved * to the new vector. */ enabled = imsic_vector_move_update(old_lpriv, old_vec, false, new_vec); imsic_vector_move_update(new_lpriv, new_vec, enabled, new_vec); } #ifdef CONFIG_GENERIC_IRQ_DEBUGFS void imsic_vector_debug_show(struct seq_file *m, struct imsic_vector *vec, int ind) { struct imsic_local_priv *lpriv; struct imsic_vector *mvec; bool is_enabled; lpriv = per_cpu_ptr(imsic->lpriv, vec->cpu); if (WARN_ON_ONCE(&lpriv->vectors[vec->local_id] != vec)) return; is_enabled = imsic_vector_isenabled(vec); mvec = imsic_vector_get_move(vec); seq_printf(m, "%*starget_cpu : %5u\n", ind, "", vec->cpu); seq_printf(m, "%*starget_local_id : %5u\n", ind, "", vec->local_id); seq_printf(m, "%*sis_reserved : %5u\n", ind, "", (vec->local_id <= IMSIC_IPI_ID) ? 1 : 0); seq_printf(m, "%*sis_enabled : %5u\n", ind, "", is_enabled ? 1 : 0); seq_printf(m, "%*sis_move_pending : %5u\n", ind, "", mvec ? 1 : 0); if (mvec) { seq_printf(m, "%*smove_cpu : %5u\n", ind, "", mvec->cpu); seq_printf(m, "%*smove_local_id : %5u\n", ind, "", mvec->local_id); } } void imsic_vector_debug_show_summary(struct seq_file *m, int ind) { irq_matrix_debug_show(m, imsic->matrix, ind); } #endif struct imsic_vector *imsic_vector_from_local_id(unsigned int cpu, unsigned int local_id) { struct imsic_local_priv *lpriv = per_cpu_ptr(imsic->lpriv, cpu); if (!lpriv || imsic->global.nr_ids < local_id) return NULL; return &lpriv->vectors[local_id]; } struct imsic_vector *imsic_vector_alloc(unsigned int hwirq, const struct cpumask *mask) { struct imsic_vector *vec = NULL; struct imsic_local_priv *lpriv; unsigned long flags; unsigned int cpu; int local_id; raw_spin_lock_irqsave(&imsic->matrix_lock, flags); local_id = irq_matrix_alloc(imsic->matrix, mask, false, &cpu); raw_spin_unlock_irqrestore(&imsic->matrix_lock, flags); if (local_id < 0) return NULL; lpriv = per_cpu_ptr(imsic->lpriv, cpu); vec = &lpriv->vectors[local_id]; vec->hwirq = hwirq; vec->enable = false; vec->move = NULL; return vec; } void imsic_vector_free(struct imsic_vector *vec) { unsigned long flags; raw_spin_lock_irqsave(&imsic->matrix_lock, flags); vec->hwirq = UINT_MAX; irq_matrix_free(imsic->matrix, vec->cpu, vec->local_id, false); raw_spin_unlock_irqrestore(&imsic->matrix_lock, flags); } static void __init imsic_local_cleanup(void) { struct imsic_local_priv *lpriv; int cpu; for_each_possible_cpu(cpu) { lpriv = per_cpu_ptr(imsic->lpriv, cpu); bitmap_free(lpriv->dirty_bitmap); kfree(lpriv->vectors); } free_percpu(imsic->lpriv); } static int __init imsic_local_init(void) { struct imsic_global_config *global = &imsic->global; struct imsic_local_priv *lpriv; struct imsic_vector *vec; int cpu, i; /* Allocate per-CPU private state */ imsic->lpriv = alloc_percpu(typeof(*imsic->lpriv)); if (!imsic->lpriv) return -ENOMEM; /* Setup per-CPU private state */ for_each_possible_cpu(cpu) { lpriv = per_cpu_ptr(imsic->lpriv, cpu); raw_spin_lock_init(&lpriv->lock); /* Allocate dirty bitmap */ lpriv->dirty_bitmap = bitmap_zalloc(global->nr_ids + 1, GFP_KERNEL); if (!lpriv->dirty_bitmap) goto fail_local_cleanup; #ifdef CONFIG_SMP /* Setup lazy timer for synchronization */ timer_setup(&lpriv->timer, imsic_local_timer_callback, TIMER_PINNED); #endif /* Allocate vector array */ lpriv->vectors = kcalloc(global->nr_ids + 1, sizeof(*lpriv->vectors), GFP_KERNEL); if (!lpriv->vectors) goto fail_local_cleanup; /* Setup vector array */ for (i = 0; i <= global->nr_ids; i++) { vec = &lpriv->vectors[i]; vec->cpu = cpu; vec->local_id = i; vec->hwirq = UINT_MAX; } } return 0; fail_local_cleanup: imsic_local_cleanup(); return -ENOMEM; } void imsic_state_online(void) { unsigned long flags; raw_spin_lock_irqsave(&imsic->matrix_lock, flags); irq_matrix_online(imsic->matrix); raw_spin_unlock_irqrestore(&imsic->matrix_lock, flags); } void imsic_state_offline(void) { unsigned long flags; raw_spin_lock_irqsave(&imsic->matrix_lock, flags); irq_matrix_offline(imsic->matrix); raw_spin_unlock_irqrestore(&imsic->matrix_lock, flags); #ifdef CONFIG_SMP struct imsic_local_priv *lpriv = this_cpu_ptr(imsic->lpriv); raw_spin_lock_irqsave(&lpriv->lock, flags); WARN_ON_ONCE(try_to_del_timer_sync(&lpriv->timer) < 0); raw_spin_unlock_irqrestore(&lpriv->lock, flags); #endif } static int __init imsic_matrix_init(void) { struct imsic_global_config *global = &imsic->global; raw_spin_lock_init(&imsic->matrix_lock); imsic->matrix = irq_alloc_matrix(global->nr_ids + 1, 0, global->nr_ids + 1); if (!imsic->matrix) return -ENOMEM; /* Reserve ID#0 because it is special and never implemented */ irq_matrix_assign_system(imsic->matrix, 0, false); /* Reserve IPI ID because it is special and used internally */ irq_matrix_assign_system(imsic->matrix, IMSIC_IPI_ID, false); return 0; } static int __init imsic_get_parent_hartid(struct fwnode_handle *fwnode, u32 index, unsigned long *hartid) { struct of_phandle_args parent; int rc; /* * Currently, only OF fwnode is supported so extend this * function for ACPI support. */ if (!is_of_node(fwnode)) return -EINVAL; rc = of_irq_parse_one(to_of_node(fwnode), index, &parent); if (rc) return rc; /* * Skip interrupts other than external interrupts for * current privilege level. */ if (parent.args[0] != RV_IRQ_EXT) return -EINVAL; return riscv_of_parent_hartid(parent.np, hartid); } static int __init imsic_get_mmio_resource(struct fwnode_handle *fwnode, u32 index, struct resource *res) { /* * Currently, only OF fwnode is supported so extend this * function for ACPI support. */ if (!is_of_node(fwnode)) return -EINVAL; return of_address_to_resource(to_of_node(fwnode), index, res); } static int __init imsic_parse_fwnode(struct fwnode_handle *fwnode, struct imsic_global_config *global, u32 *nr_parent_irqs, u32 *nr_mmios) { unsigned long hartid; struct resource res; int rc; u32 i; /* * Currently, only OF fwnode is supported so extend this * function for ACPI support. */ if (!is_of_node(fwnode)) return -EINVAL; *nr_parent_irqs = 0; *nr_mmios = 0; /* Find number of parent interrupts */ while (!imsic_get_parent_hartid(fwnode, *nr_parent_irqs, &hartid)) (*nr_parent_irqs)++; if (!*nr_parent_irqs) { pr_err("%pfwP: no parent irqs available\n", fwnode); return -EINVAL; } /* Find number of guest index bits in MSI address */ rc = of_property_read_u32(to_of_node(fwnode), "riscv,guest-index-bits", &global->guest_index_bits); if (rc) global->guest_index_bits = 0; /* Find number of HART index bits */ rc = of_property_read_u32(to_of_node(fwnode), "riscv,hart-index-bits", &global->hart_index_bits); if (rc) { /* Assume default value */ global->hart_index_bits = __fls(*nr_parent_irqs); if (BIT(global->hart_index_bits) < *nr_parent_irqs) global->hart_index_bits++; } /* Find number of group index bits */ rc = of_property_read_u32(to_of_node(fwnode), "riscv,group-index-bits", &global->group_index_bits); if (rc) global->group_index_bits = 0; /* * Find first bit position of group index. * If not specified assumed the default APLIC-IMSIC configuration. */ rc = of_property_read_u32(to_of_node(fwnode), "riscv,group-index-shift", &global->group_index_shift); if (rc) global->group_index_shift = IMSIC_MMIO_PAGE_SHIFT * 2; /* Find number of interrupt identities */ rc = of_property_read_u32(to_of_node(fwnode), "riscv,num-ids", &global->nr_ids); if (rc) { pr_err("%pfwP: number of interrupt identities not found\n", fwnode); return rc; } /* Find number of guest interrupt identities */ rc = of_property_read_u32(to_of_node(fwnode), "riscv,num-guest-ids", &global->nr_guest_ids); if (rc) global->nr_guest_ids = global->nr_ids; /* Sanity check guest index bits */ i = BITS_PER_LONG - IMSIC_MMIO_PAGE_SHIFT; if (i < global->guest_index_bits) { pr_err("%pfwP: guest index bits too big\n", fwnode); return -EINVAL; } /* Sanity check HART index bits */ i = BITS_PER_LONG - IMSIC_MMIO_PAGE_SHIFT - global->guest_index_bits; if (i < global->hart_index_bits) { pr_err("%pfwP: HART index bits too big\n", fwnode); return -EINVAL; } /* Sanity check group index bits */ i = BITS_PER_LONG - IMSIC_MMIO_PAGE_SHIFT - global->guest_index_bits - global->hart_index_bits; if (i < global->group_index_bits) { pr_err("%pfwP: group index bits too big\n", fwnode); return -EINVAL; } /* Sanity check group index shift */ i = global->group_index_bits + global->group_index_shift - 1; if (i >= BITS_PER_LONG) { pr_err("%pfwP: group index shift too big\n", fwnode); return -EINVAL; } /* Sanity check number of interrupt identities */ if (global->nr_ids < IMSIC_MIN_ID || global->nr_ids >= IMSIC_MAX_ID || (global->nr_ids & IMSIC_MIN_ID) != IMSIC_MIN_ID) { pr_err("%pfwP: invalid number of interrupt identities\n", fwnode); return -EINVAL; } /* Sanity check number of guest interrupt identities */ if (global->nr_guest_ids < IMSIC_MIN_ID || global->nr_guest_ids >= IMSIC_MAX_ID || (global->nr_guest_ids & IMSIC_MIN_ID) != IMSIC_MIN_ID) { pr_err("%pfwP: invalid number of guest interrupt identities\n", fwnode); return -EINVAL; } /* Compute base address */ rc = imsic_get_mmio_resource(fwnode, 0, &res); if (rc) { pr_err("%pfwP: first MMIO resource not found\n", fwnode); return -EINVAL; } global->base_addr = res.start; global->base_addr &= ~(BIT(global->guest_index_bits + global->hart_index_bits + IMSIC_MMIO_PAGE_SHIFT) - 1); global->base_addr &= ~((BIT(global->group_index_bits) - 1) << global->group_index_shift); /* Find number of MMIO register sets */ while (!imsic_get_mmio_resource(fwnode, *nr_mmios, &res)) (*nr_mmios)++; return 0; } int __init imsic_setup_state(struct fwnode_handle *fwnode) { u32 i, j, index, nr_parent_irqs, nr_mmios, nr_handlers = 0; struct imsic_global_config *global; struct imsic_local_config *local; void __iomem **mmios_va = NULL; struct resource *mmios = NULL; unsigned long reloff, hartid; phys_addr_t base_addr; int rc, cpu; /* * Only one IMSIC instance allowed in a platform for clean * implementation of SMP IRQ affinity and per-CPU IPIs. * * This means on a multi-socket (or multi-die) platform we * will have multiple MMIO regions for one IMSIC instance. */ if (imsic) { pr_err("%pfwP: already initialized hence ignoring\n", fwnode); return -EALREADY; } if (!riscv_isa_extension_available(NULL, SxAIA)) { pr_err("%pfwP: AIA support not available\n", fwnode); return -ENODEV; } imsic = kzalloc(sizeof(*imsic), GFP_KERNEL); if (!imsic) return -ENOMEM; imsic->fwnode = fwnode; global = &imsic->global; global->local = alloc_percpu(typeof(*global->local)); if (!global->local) { rc = -ENOMEM; goto out_free_priv; } /* Parse IMSIC fwnode */ rc = imsic_parse_fwnode(fwnode, global, &nr_parent_irqs, &nr_mmios); if (rc) goto out_free_local; /* Allocate MMIO resource array */ mmios = kcalloc(nr_mmios, sizeof(*mmios), GFP_KERNEL); if (!mmios) { rc = -ENOMEM; goto out_free_local; } /* Allocate MMIO virtual address array */ mmios_va = kcalloc(nr_mmios, sizeof(*mmios_va), GFP_KERNEL); if (!mmios_va) { rc = -ENOMEM; goto out_iounmap; } /* Parse and map MMIO register sets */ for (i = 0; i < nr_mmios; i++) { rc = imsic_get_mmio_resource(fwnode, i, &mmios[i]); if (rc) { pr_err("%pfwP: unable to parse MMIO regset %d\n", fwnode, i); goto out_iounmap; } base_addr = mmios[i].start; base_addr &= ~(BIT(global->guest_index_bits + global->hart_index_bits + IMSIC_MMIO_PAGE_SHIFT) - 1); base_addr &= ~((BIT(global->group_index_bits) - 1) << global->group_index_shift); if (base_addr != global->base_addr) { rc = -EINVAL; pr_err("%pfwP: address mismatch for regset %d\n", fwnode, i); goto out_iounmap; } mmios_va[i] = ioremap(mmios[i].start, resource_size(&mmios[i])); if (!mmios_va[i]) { rc = -EIO; pr_err("%pfwP: unable to map MMIO regset %d\n", fwnode, i); goto out_iounmap; } } /* Initialize local (or per-CPU )state */ rc = imsic_local_init(); if (rc) { pr_err("%pfwP: failed to initialize local state\n", fwnode); goto out_iounmap; } /* Configure handlers for target CPUs */ for (i = 0; i < nr_parent_irqs; i++) { rc = imsic_get_parent_hartid(fwnode, i, &hartid); if (rc) { pr_warn("%pfwP: hart ID for parent irq%d not found\n", fwnode, i); continue; } cpu = riscv_hartid_to_cpuid(hartid); if (cpu < 0) { pr_warn("%pfwP: invalid cpuid for parent irq%d\n", fwnode, i); continue; } /* Find MMIO location of MSI page */ index = nr_mmios; reloff = i * BIT(global->guest_index_bits) * IMSIC_MMIO_PAGE_SZ; for (j = 0; nr_mmios; j++) { if (reloff < resource_size(&mmios[j])) { index = j; break; } /* * MMIO region size may not be aligned to * BIT(global->guest_index_bits) * IMSIC_MMIO_PAGE_SZ * if holes are present. */ reloff -= ALIGN(resource_size(&mmios[j]), BIT(global->guest_index_bits) * IMSIC_MMIO_PAGE_SZ); } if (index >= nr_mmios) { pr_warn("%pfwP: MMIO not found for parent irq%d\n", fwnode, i); continue; } local = per_cpu_ptr(global->local, cpu); local->msi_pa = mmios[index].start + reloff; local->msi_va = mmios_va[index] + reloff; nr_handlers++; } /* If no CPU handlers found then can't take interrupts */ if (!nr_handlers) { pr_err("%pfwP: No CPU handlers found\n", fwnode); rc = -ENODEV; goto out_local_cleanup; } /* Initialize matrix allocator */ rc = imsic_matrix_init(); if (rc) { pr_err("%pfwP: failed to create matrix allocator\n", fwnode); goto out_local_cleanup; } /* We don't need MMIO arrays anymore so let's free-up */ kfree(mmios_va); kfree(mmios); return 0; out_local_cleanup: imsic_local_cleanup(); out_iounmap: for (i = 0; i < nr_mmios; i++) { if (mmios_va[i]) iounmap(mmios_va[i]); } kfree(mmios_va); kfree(mmios); out_free_local: free_percpu(imsic->global.local); out_free_priv: kfree(imsic); imsic = NULL; return rc; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1