Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Samuel Holland | 2631 | 97.84% | 1 | 25.00% |
Andy Shevchenko | 46 | 1.71% | 2 | 50.00% |
Arnd Bergmann | 12 | 0.45% | 1 | 25.00% |
Total | 2689 | 4 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2021-2023 Samuel Holland <samuel@sholland.org> * * Partly based on drivers/leds/leds-turris-omnia.c, which is: * Copyright (c) 2020 by Marek Behún <kabel@kernel.org> */ #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/interrupt.h> #include <linux/io.h> #include <linux/led-class-multicolor.h> #include <linux/leds.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/platform_device.h> #include <linux/pm.h> #include <linux/property.h> #include <linux/reset.h> #include <linux/spinlock.h> #define LEDC_CTRL_REG 0x0000 #define LEDC_CTRL_REG_DATA_LENGTH GENMASK(28, 16) #define LEDC_CTRL_REG_RGB_MODE GENMASK(8, 6) #define LEDC_CTRL_REG_LEDC_EN BIT(0) #define LEDC_T01_TIMING_CTRL_REG 0x0004 #define LEDC_T01_TIMING_CTRL_REG_T1H GENMASK(26, 21) #define LEDC_T01_TIMING_CTRL_REG_T1L GENMASK(20, 16) #define LEDC_T01_TIMING_CTRL_REG_T0H GENMASK(10, 6) #define LEDC_T01_TIMING_CTRL_REG_T0L GENMASK(5, 0) #define LEDC_RESET_TIMING_CTRL_REG 0x000c #define LEDC_RESET_TIMING_CTRL_REG_TR GENMASK(28, 16) #define LEDC_RESET_TIMING_CTRL_REG_LED_NUM GENMASK(9, 0) #define LEDC_DATA_REG 0x0014 #define LEDC_DMA_CTRL_REG 0x0018 #define LEDC_DMA_CTRL_REG_DMA_EN BIT(5) #define LEDC_DMA_CTRL_REG_FIFO_TRIG_LEVEL GENMASK(4, 0) #define LEDC_INT_CTRL_REG 0x001c #define LEDC_INT_CTRL_REG_GLOBAL_INT_EN BIT(5) #define LEDC_INT_CTRL_REG_FIFO_CPUREQ_INT_EN BIT(1) #define LEDC_INT_CTRL_REG_TRANS_FINISH_INT_EN BIT(0) #define LEDC_INT_STS_REG 0x0020 #define LEDC_INT_STS_REG_FIFO_WLW GENMASK(15, 10) #define LEDC_INT_STS_REG_FIFO_CPUREQ_INT BIT(1) #define LEDC_INT_STS_REG_TRANS_FINISH_INT BIT(0) #define LEDC_FIFO_DEPTH 32U #define LEDC_MAX_LEDS 1024 #define LEDC_CHANNELS_PER_LED 3 /* RGB */ #define LEDS_TO_BYTES(n) ((n) * sizeof(u32)) struct sun50i_a100_ledc_led { struct led_classdev_mc mc_cdev; struct mc_subled subled_info[LEDC_CHANNELS_PER_LED]; u32 addr; }; #define to_ledc_led(mc) container_of(mc, struct sun50i_a100_ledc_led, mc_cdev) struct sun50i_a100_ledc_timing { u32 t0h_ns; u32 t0l_ns; u32 t1h_ns; u32 t1l_ns; u32 treset_ns; }; struct sun50i_a100_ledc { struct device *dev; void __iomem *base; struct clk *bus_clk; struct clk *mod_clk; struct reset_control *reset; u32 *buffer; struct dma_chan *dma_chan; dma_addr_t dma_handle; unsigned int pio_length; unsigned int pio_offset; spinlock_t lock; unsigned int next_length; bool xfer_active; u32 format; struct sun50i_a100_ledc_timing timing; u32 max_addr; u32 num_leds; struct sun50i_a100_ledc_led leds[] __counted_by(num_leds); }; static int sun50i_a100_ledc_dma_xfer(struct sun50i_a100_ledc *priv, unsigned int length) { struct dma_async_tx_descriptor *desc; dma_cookie_t cookie; desc = dmaengine_prep_slave_single(priv->dma_chan, priv->dma_handle, LEDS_TO_BYTES(length), DMA_MEM_TO_DEV, 0); if (!desc) return -ENOMEM; cookie = dmaengine_submit(desc); if (dma_submit_error(cookie)) return -EIO; dma_async_issue_pending(priv->dma_chan); return 0; } static void sun50i_a100_ledc_pio_xfer(struct sun50i_a100_ledc *priv, unsigned int fifo_used) { unsigned int burst, length, offset; u32 control; length = priv->pio_length; offset = priv->pio_offset; burst = min(length, LEDC_FIFO_DEPTH - fifo_used); iowrite32_rep(priv->base + LEDC_DATA_REG, priv->buffer + offset, burst); if (burst < length) { priv->pio_length = length - burst; priv->pio_offset = offset + burst; if (!offset) { control = readl(priv->base + LEDC_INT_CTRL_REG); control |= LEDC_INT_CTRL_REG_FIFO_CPUREQ_INT_EN; writel(control, priv->base + LEDC_INT_CTRL_REG); } } else { /* Disable the request IRQ once all data is written. */ control = readl(priv->base + LEDC_INT_CTRL_REG); control &= ~LEDC_INT_CTRL_REG_FIFO_CPUREQ_INT_EN; writel(control, priv->base + LEDC_INT_CTRL_REG); } } static void sun50i_a100_ledc_start_xfer(struct sun50i_a100_ledc *priv, unsigned int length) { bool use_dma = false; u32 control; if (priv->dma_chan && length > LEDC_FIFO_DEPTH) { int ret; ret = sun50i_a100_ledc_dma_xfer(priv, length); if (ret) dev_warn(priv->dev, "Failed to set up DMA (%d), using PIO\n", ret); else use_dma = true; } /* The DMA trigger level must be at least the burst length. */ control = FIELD_PREP(LEDC_DMA_CTRL_REG_DMA_EN, use_dma) | FIELD_PREP_CONST(LEDC_DMA_CTRL_REG_FIFO_TRIG_LEVEL, LEDC_FIFO_DEPTH / 2); writel(control, priv->base + LEDC_DMA_CTRL_REG); control = readl(priv->base + LEDC_CTRL_REG); control &= ~LEDC_CTRL_REG_DATA_LENGTH; control |= FIELD_PREP(LEDC_CTRL_REG_DATA_LENGTH, length) | LEDC_CTRL_REG_LEDC_EN; writel(control, priv->base + LEDC_CTRL_REG); if (!use_dma) { /* The FIFO is empty when starting a new transfer. */ unsigned int fifo_used = 0; priv->pio_length = length; priv->pio_offset = 0; sun50i_a100_ledc_pio_xfer(priv, fifo_used); } } static irqreturn_t sun50i_a100_ledc_irq(int irq, void *data) { struct sun50i_a100_ledc *priv = data; u32 status; status = readl(priv->base + LEDC_INT_STS_REG); if (status & LEDC_INT_STS_REG_TRANS_FINISH_INT) { unsigned int next_length; spin_lock(&priv->lock); /* If another transfer is queued, dequeue and start it. */ next_length = priv->next_length; if (next_length) priv->next_length = 0; else priv->xfer_active = false; spin_unlock(&priv->lock); if (next_length) sun50i_a100_ledc_start_xfer(priv, next_length); } else if (status & LEDC_INT_STS_REG_FIFO_CPUREQ_INT) { /* Continue the current transfer. */ sun50i_a100_ledc_pio_xfer(priv, FIELD_GET(LEDC_INT_STS_REG_FIFO_WLW, status)); } /* Clear the W1C status bits. */ writel(status, priv->base + LEDC_INT_STS_REG); return IRQ_HANDLED; } static void sun50i_a100_ledc_brightness_set(struct led_classdev *cdev, enum led_brightness brightness) { struct sun50i_a100_ledc *priv = dev_get_drvdata(cdev->dev->parent); struct led_classdev_mc *mc_cdev = lcdev_to_mccdev(cdev); struct sun50i_a100_ledc_led *led = to_ledc_led(mc_cdev); unsigned int next_length; unsigned long flags; bool xfer_active; led_mc_calc_color_components(mc_cdev, brightness); priv->buffer[led->addr] = led->subled_info[0].brightness << 16 | led->subled_info[1].brightness << 8 | led->subled_info[2].brightness; spin_lock_irqsave(&priv->lock, flags); /* Start, enqueue, or extend an enqueued transfer, as appropriate. */ next_length = max(priv->next_length, led->addr + 1); xfer_active = priv->xfer_active; if (xfer_active) priv->next_length = next_length; else priv->xfer_active = true; spin_unlock_irqrestore(&priv->lock, flags); if (!xfer_active) sun50i_a100_ledc_start_xfer(priv, next_length); } static const char *const sun50i_a100_ledc_formats[] = { "rgb", "rbg", "grb", "gbr", "brg", "bgr", }; static int sun50i_a100_ledc_parse_format(struct device *dev, struct sun50i_a100_ledc *priv) { const char *format = "grb"; int i; device_property_read_string(dev, "allwinner,pixel-format", &format); i = match_string(sun50i_a100_ledc_formats, ARRAY_SIZE(sun50i_a100_ledc_formats), format); if (i < 0) return dev_err_probe(dev, i, "Bad pixel format '%s'\n", format); priv->format = i; return 0; } static void sun50i_a100_ledc_set_format(struct sun50i_a100_ledc *priv) { u32 control; control = readl(priv->base + LEDC_CTRL_REG); control &= ~LEDC_CTRL_REG_RGB_MODE; control |= FIELD_PREP(LEDC_CTRL_REG_RGB_MODE, priv->format); writel(control, priv->base + LEDC_CTRL_REG); } static const struct sun50i_a100_ledc_timing sun50i_a100_ledc_default_timing = { .t0h_ns = 336, .t0l_ns = 840, .t1h_ns = 882, .t1l_ns = 294, .treset_ns = 300000, }; static int sun50i_a100_ledc_parse_timing(struct device *dev, struct sun50i_a100_ledc *priv) { struct sun50i_a100_ledc_timing *timing = &priv->timing; *timing = sun50i_a100_ledc_default_timing; device_property_read_u32(dev, "allwinner,t0h-ns", &timing->t0h_ns); device_property_read_u32(dev, "allwinner,t0l-ns", &timing->t0l_ns); device_property_read_u32(dev, "allwinner,t1h-ns", &timing->t1h_ns); device_property_read_u32(dev, "allwinner,t1l-ns", &timing->t1l_ns); device_property_read_u32(dev, "allwinner,treset-ns", &timing->treset_ns); return 0; } static void sun50i_a100_ledc_set_timing(struct sun50i_a100_ledc *priv) { const struct sun50i_a100_ledc_timing *timing = &priv->timing; unsigned long mod_freq = clk_get_rate(priv->mod_clk); u32 cycle_ns; u32 control; if (!mod_freq) return; cycle_ns = NSEC_PER_SEC / mod_freq; control = FIELD_PREP(LEDC_T01_TIMING_CTRL_REG_T1H, timing->t1h_ns / cycle_ns) | FIELD_PREP(LEDC_T01_TIMING_CTRL_REG_T1L, timing->t1l_ns / cycle_ns) | FIELD_PREP(LEDC_T01_TIMING_CTRL_REG_T0H, timing->t0h_ns / cycle_ns) | FIELD_PREP(LEDC_T01_TIMING_CTRL_REG_T0L, timing->t0l_ns / cycle_ns); writel(control, priv->base + LEDC_T01_TIMING_CTRL_REG); control = FIELD_PREP(LEDC_RESET_TIMING_CTRL_REG_TR, timing->treset_ns / cycle_ns) | FIELD_PREP(LEDC_RESET_TIMING_CTRL_REG_LED_NUM, priv->max_addr); writel(control, priv->base + LEDC_RESET_TIMING_CTRL_REG); } static int sun50i_a100_ledc_resume(struct device *dev) { struct sun50i_a100_ledc *priv = dev_get_drvdata(dev); int ret; ret = reset_control_deassert(priv->reset); if (ret) return ret; ret = clk_prepare_enable(priv->bus_clk); if (ret) goto err_assert_reset; ret = clk_prepare_enable(priv->mod_clk); if (ret) goto err_disable_bus_clk; sun50i_a100_ledc_set_format(priv); sun50i_a100_ledc_set_timing(priv); writel(LEDC_INT_CTRL_REG_GLOBAL_INT_EN | LEDC_INT_CTRL_REG_TRANS_FINISH_INT_EN, priv->base + LEDC_INT_CTRL_REG); return 0; err_disable_bus_clk: clk_disable_unprepare(priv->bus_clk); err_assert_reset: reset_control_assert(priv->reset); return ret; } static int sun50i_a100_ledc_suspend(struct device *dev) { struct sun50i_a100_ledc *priv = dev_get_drvdata(dev); /* Wait for all transfers to complete. */ for (;;) { unsigned long flags; bool xfer_active; spin_lock_irqsave(&priv->lock, flags); xfer_active = priv->xfer_active; spin_unlock_irqrestore(&priv->lock, flags); if (!xfer_active) break; msleep(1); } clk_disable_unprepare(priv->mod_clk); clk_disable_unprepare(priv->bus_clk); reset_control_assert(priv->reset); return 0; } static void sun50i_a100_ledc_dma_cleanup(void *data) { struct sun50i_a100_ledc *priv = data; dma_release_channel(priv->dma_chan); } static int sun50i_a100_ledc_probe(struct platform_device *pdev) { struct dma_slave_config dma_cfg = {}; struct led_init_data init_data = {}; struct sun50i_a100_ledc_led *led; struct device *dev = &pdev->dev; struct sun50i_a100_ledc *priv; struct fwnode_handle *child; struct resource *mem; u32 max_addr = 0; u32 num_leds = 0; int irq, ret; /* * The maximum LED address must be known in sun50i_a100_ledc_resume() before * class device registration, so parse and validate the subnodes up front. */ device_for_each_child_node(dev, child) { u32 addr, color; ret = fwnode_property_read_u32(child, "reg", &addr); if (ret || addr >= LEDC_MAX_LEDS) { fwnode_handle_put(child); return dev_err_probe(dev, -EINVAL, "'reg' must be between 0 and %d\n", LEDC_MAX_LEDS - 1); } ret = fwnode_property_read_u32(child, "color", &color); if (ret || color != LED_COLOR_ID_RGB) { fwnode_handle_put(child); return dev_err_probe(dev, -EINVAL, "'color' must be LED_COLOR_ID_RGB\n"); } max_addr = max(max_addr, addr); num_leds++; } if (!num_leds) return -ENODEV; priv = devm_kzalloc(dev, struct_size(priv, leds, num_leds), GFP_KERNEL); if (!priv) return -ENOMEM; priv->dev = dev; priv->max_addr = max_addr; priv->num_leds = num_leds; spin_lock_init(&priv->lock); dev_set_drvdata(dev, priv); ret = sun50i_a100_ledc_parse_format(dev, priv); if (ret) return ret; ret = sun50i_a100_ledc_parse_timing(dev, priv); if (ret) return ret; priv->base = devm_platform_get_and_ioremap_resource(pdev, 0, &mem); if (IS_ERR(priv->base)) return PTR_ERR(priv->base); priv->bus_clk = devm_clk_get(dev, "bus"); if (IS_ERR(priv->bus_clk)) return PTR_ERR(priv->bus_clk); priv->mod_clk = devm_clk_get(dev, "mod"); if (IS_ERR(priv->mod_clk)) return PTR_ERR(priv->mod_clk); priv->reset = devm_reset_control_get_exclusive(dev, NULL); if (IS_ERR(priv->reset)) return PTR_ERR(priv->reset); priv->dma_chan = dma_request_chan(dev, "tx"); if (IS_ERR(priv->dma_chan)) { if (PTR_ERR(priv->dma_chan) != -ENODEV) return PTR_ERR(priv->dma_chan); priv->dma_chan = NULL; priv->buffer = devm_kzalloc(dev, LEDS_TO_BYTES(LEDC_MAX_LEDS), GFP_KERNEL); if (!priv->buffer) return -ENOMEM; } else { ret = devm_add_action_or_reset(dev, sun50i_a100_ledc_dma_cleanup, priv); if (ret) return ret; dma_cfg.dst_addr = mem->start + LEDC_DATA_REG; dma_cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; dma_cfg.dst_maxburst = LEDC_FIFO_DEPTH / 2; ret = dmaengine_slave_config(priv->dma_chan, &dma_cfg); if (ret) return ret; priv->buffer = dmam_alloc_attrs(dmaengine_get_dma_device(priv->dma_chan), LEDS_TO_BYTES(LEDC_MAX_LEDS), &priv->dma_handle, GFP_KERNEL, DMA_ATTR_WRITE_COMBINE); if (!priv->buffer) return -ENOMEM; } irq = platform_get_irq(pdev, 0); if (irq < 0) return irq; ret = devm_request_irq(dev, irq, sun50i_a100_ledc_irq, 0, dev_name(dev), priv); if (ret) return ret; ret = sun50i_a100_ledc_resume(dev); if (ret) return ret; led = priv->leds; device_for_each_child_node(dev, child) { struct led_classdev *cdev; /* The node was already validated above. */ fwnode_property_read_u32(child, "reg", &led->addr); led->subled_info[0].color_index = LED_COLOR_ID_RED; led->subled_info[0].channel = 0; led->subled_info[1].color_index = LED_COLOR_ID_GREEN; led->subled_info[1].channel = 1; led->subled_info[2].color_index = LED_COLOR_ID_BLUE; led->subled_info[2].channel = 2; led->mc_cdev.num_colors = ARRAY_SIZE(led->subled_info); led->mc_cdev.subled_info = led->subled_info; cdev = &led->mc_cdev.led_cdev; cdev->max_brightness = U8_MAX; cdev->brightness_set = sun50i_a100_ledc_brightness_set; init_data.fwnode = child; ret = led_classdev_multicolor_register_ext(dev, &led->mc_cdev, &init_data); if (ret) { dev_err_probe(dev, ret, "Failed to register multicolor LED %u", led->addr); goto err_put_child; } led++; } dev_info(dev, "Registered %u LEDs\n", num_leds); return 0; err_put_child: fwnode_handle_put(child); while (led-- > priv->leds) led_classdev_multicolor_unregister(&led->mc_cdev); sun50i_a100_ledc_suspend(&pdev->dev); return ret; } static void sun50i_a100_ledc_remove(struct platform_device *pdev) { struct sun50i_a100_ledc *priv = platform_get_drvdata(pdev); for (u32 i = 0; i < priv->num_leds; i++) led_classdev_multicolor_unregister(&priv->leds[i].mc_cdev); sun50i_a100_ledc_suspend(&pdev->dev); } static const struct of_device_id sun50i_a100_ledc_of_match[] = { { .compatible = "allwinner,sun50i-a100-ledc" }, {} }; MODULE_DEVICE_TABLE(of, sun50i_a100_ledc_of_match); static DEFINE_SIMPLE_DEV_PM_OPS(sun50i_a100_ledc_pm, sun50i_a100_ledc_suspend, sun50i_a100_ledc_resume); static struct platform_driver sun50i_a100_ledc_driver = { .probe = sun50i_a100_ledc_probe, .remove_new = sun50i_a100_ledc_remove, .shutdown = sun50i_a100_ledc_remove, .driver = { .name = "sun50i-a100-ledc", .of_match_table = sun50i_a100_ledc_of_match, .pm = pm_ptr(&sun50i_a100_ledc_pm), }, }; module_platform_driver(sun50i_a100_ledc_driver); MODULE_AUTHOR("Samuel Holland <samuel@sholland.org>"); MODULE_DESCRIPTION("Allwinner A100 LED controller driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1