Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Matthew Sakai | 1345 | 96.35% | 1 | 12.50% |
Mike Snitzer | 49 | 3.51% | 6 | 75.00% |
Susan LeGendre-McGhee | 2 | 0.14% | 1 | 12.50% |
Total | 1396 | 8 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright 2023 Red Hat */ #include <linux/delay.h> #include <linux/mm.h> #include <linux/sched/mm.h> #include <linux/slab.h> #include <linux/vmalloc.h> #include "logger.h" #include "memory-alloc.h" #include "permassert.h" /* * UDS and VDO keep track of which threads are allowed to allocate memory freely, and which threads * must be careful to not do a memory allocation that does an I/O request. The 'allocating_threads' * thread_registry and its associated methods implement this tracking. */ static struct thread_registry allocating_threads; static inline bool allocations_allowed(void) { return vdo_lookup_thread(&allocating_threads) != NULL; } /* * Register the current thread as an allocating thread. * * An optional flag location can be supplied indicating whether, at any given point in time, the * threads associated with that flag should be allocating storage. If the flag is false, a message * will be logged. * * If no flag is supplied, the thread is always allowed to allocate storage without complaint. * * @new_thread: registered_thread structure to use for the current thread * @flag_ptr: Location of the allocation-allowed flag */ void vdo_register_allocating_thread(struct registered_thread *new_thread, const bool *flag_ptr) { if (flag_ptr == NULL) { static const bool allocation_always_allowed = true; flag_ptr = &allocation_always_allowed; } vdo_register_thread(&allocating_threads, new_thread, flag_ptr); } /* Unregister the current thread as an allocating thread. */ void vdo_unregister_allocating_thread(void) { vdo_unregister_thread(&allocating_threads); } /* * We track how much memory has been allocated and freed. When we unload the module, we log an * error if we have not freed all the memory that we allocated. Nearly all memory allocation and * freeing is done using this module. * * We do not use kernel functions like the kvasprintf() method, which allocate memory indirectly * using kmalloc. * * These data structures and methods are used to track the amount of memory used. */ /* * We allocate very few large objects, and allocation/deallocation isn't done in a * performance-critical stage for us, so a linked list should be fine. */ struct vmalloc_block_info { void *ptr; size_t size; struct vmalloc_block_info *next; }; static struct { spinlock_t lock; size_t kmalloc_blocks; size_t kmalloc_bytes; size_t vmalloc_blocks; size_t vmalloc_bytes; size_t peak_bytes; struct vmalloc_block_info *vmalloc_list; } memory_stats __cacheline_aligned; static void update_peak_usage(void) { size_t total_bytes = memory_stats.kmalloc_bytes + memory_stats.vmalloc_bytes; if (total_bytes > memory_stats.peak_bytes) memory_stats.peak_bytes = total_bytes; } static void add_kmalloc_block(size_t size) { unsigned long flags; spin_lock_irqsave(&memory_stats.lock, flags); memory_stats.kmalloc_blocks++; memory_stats.kmalloc_bytes += size; update_peak_usage(); spin_unlock_irqrestore(&memory_stats.lock, flags); } static void remove_kmalloc_block(size_t size) { unsigned long flags; spin_lock_irqsave(&memory_stats.lock, flags); memory_stats.kmalloc_blocks--; memory_stats.kmalloc_bytes -= size; spin_unlock_irqrestore(&memory_stats.lock, flags); } static void add_vmalloc_block(struct vmalloc_block_info *block) { unsigned long flags; spin_lock_irqsave(&memory_stats.lock, flags); block->next = memory_stats.vmalloc_list; memory_stats.vmalloc_list = block; memory_stats.vmalloc_blocks++; memory_stats.vmalloc_bytes += block->size; update_peak_usage(); spin_unlock_irqrestore(&memory_stats.lock, flags); } static void remove_vmalloc_block(void *ptr) { struct vmalloc_block_info *block; struct vmalloc_block_info **block_ptr; unsigned long flags; spin_lock_irqsave(&memory_stats.lock, flags); for (block_ptr = &memory_stats.vmalloc_list; (block = *block_ptr) != NULL; block_ptr = &block->next) { if (block->ptr == ptr) { *block_ptr = block->next; memory_stats.vmalloc_blocks--; memory_stats.vmalloc_bytes -= block->size; break; } } spin_unlock_irqrestore(&memory_stats.lock, flags); if (block != NULL) vdo_free(block); else vdo_log_info("attempting to remove ptr %px not found in vmalloc list", ptr); } /* * Determine whether allocating a memory block should use kmalloc or __vmalloc. * * vmalloc can allocate any integral number of pages. * * kmalloc can allocate any number of bytes up to a configured limit, which defaults to 8 megabytes * on some systems. kmalloc is especially good when memory is being both allocated and freed, and * it does this efficiently in a multi CPU environment. * * kmalloc usually rounds the size of the block up to the next power of two, so when the requested * block is bigger than PAGE_SIZE / 2 bytes, kmalloc will never give you less space than the * corresponding vmalloc allocation. Sometimes vmalloc will use less overhead than kmalloc. * * The advantages of kmalloc do not help out UDS or VDO, because we allocate all our memory up * front and do not free and reallocate it. Sometimes we have problems using kmalloc, because the * Linux memory page map can become so fragmented that kmalloc will not give us a 32KB chunk. We * have used vmalloc as a backup to kmalloc in the past, and a follow-up vmalloc of 32KB will work. * But there is no strong case to be made for using kmalloc over vmalloc for these size chunks. * * The kmalloc/vmalloc boundary is set at 4KB, and kmalloc gets the 4KB requests. There is no * strong reason for favoring either kmalloc or vmalloc for 4KB requests, except that tracking * vmalloc statistics uses a linked list implementation. Using a simple test, this choice of * boundary results in 132 vmalloc calls. Using vmalloc for requests of exactly 4KB results in an * additional 6374 vmalloc calls, which is much less efficient for tracking. * * @size: How many bytes to allocate */ static inline bool use_kmalloc(size_t size) { return size <= PAGE_SIZE; } /* * Allocate storage based on memory size and alignment, logging an error if the allocation fails. * The memory will be zeroed. * * @size: The size of an object * @align: The required alignment * @what: What is being allocated (for error logging) * @ptr: A pointer to hold the allocated memory * * Return: VDO_SUCCESS or an error code */ int vdo_allocate_memory(size_t size, size_t align, const char *what, void *ptr) { /* * The __GFP_RETRY_MAYFAIL flag means the VM implementation will retry memory reclaim * procedures that have previously failed if there is some indication that progress has * been made elsewhere. It can wait for other tasks to attempt high level approaches to * freeing memory such as compaction (which removes fragmentation) and page-out. There is * still a definite limit to the number of retries, but it is a larger limit than with * __GFP_NORETRY. Allocations with this flag may fail, but only when there is genuinely * little unused memory. While these allocations do not directly trigger the OOM killer, * their failure indicates that the system is likely to need to use the OOM killer soon. * The caller must handle failure, but can reasonably do so by failing a higher-level * request, or completing it only in a much less efficient manner. */ const gfp_t gfp_flags = GFP_KERNEL | __GFP_ZERO | __GFP_RETRY_MAYFAIL; unsigned int noio_flags; bool allocations_restricted = !allocations_allowed(); unsigned long start_time; void *p = NULL; if (unlikely(ptr == NULL)) return -EINVAL; if (size == 0) { *((void **) ptr) = NULL; return VDO_SUCCESS; } if (allocations_restricted) noio_flags = memalloc_noio_save(); start_time = jiffies; if (use_kmalloc(size) && (align < PAGE_SIZE)) { p = kmalloc(size, gfp_flags | __GFP_NOWARN); if (p == NULL) { /* * It is possible for kmalloc to fail to allocate memory because there is * no page available. A short sleep may allow the page reclaimer to * free a page. */ fsleep(1000); p = kmalloc(size, gfp_flags); } if (p != NULL) add_kmalloc_block(ksize(p)); } else { struct vmalloc_block_info *block; if (vdo_allocate(1, struct vmalloc_block_info, __func__, &block) == VDO_SUCCESS) { /* * It is possible for __vmalloc to fail to allocate memory because there * are no pages available. A short sleep may allow the page reclaimer * to free enough pages for a small allocation. * * For larger allocations, the page_alloc code is racing against the page * reclaimer. If the page reclaimer can stay ahead of page_alloc, the * __vmalloc will succeed. But if page_alloc overtakes the page reclaimer, * the allocation fails. It is possible that more retries will succeed. */ for (;;) { p = __vmalloc(size, gfp_flags | __GFP_NOWARN); if (p != NULL) break; if (jiffies_to_msecs(jiffies - start_time) > 1000) { /* Try one more time, logging a failure for this call. */ p = __vmalloc(size, gfp_flags); break; } fsleep(1000); } if (p == NULL) { vdo_free(block); } else { block->ptr = p; block->size = PAGE_ALIGN(size); add_vmalloc_block(block); } } } if (allocations_restricted) memalloc_noio_restore(noio_flags); if (unlikely(p == NULL)) { vdo_log_error("Could not allocate %zu bytes for %s in %u msecs", size, what, jiffies_to_msecs(jiffies - start_time)); return -ENOMEM; } *((void **) ptr) = p; return VDO_SUCCESS; } /* * Allocate storage based on memory size, failing immediately if the required memory is not * available. The memory will be zeroed. * * @size: The size of an object. * @what: What is being allocated (for error logging) * * Return: pointer to the allocated memory, or NULL if the required space is not available. */ void *vdo_allocate_memory_nowait(size_t size, const char *what __maybe_unused) { void *p = kmalloc(size, GFP_NOWAIT | __GFP_ZERO); if (p != NULL) add_kmalloc_block(ksize(p)); return p; } void vdo_free(void *ptr) { if (ptr != NULL) { if (is_vmalloc_addr(ptr)) { remove_vmalloc_block(ptr); vfree(ptr); } else { remove_kmalloc_block(ksize(ptr)); kfree(ptr); } } } /* * Reallocate dynamically allocated memory. There are no alignment guarantees for the reallocated * memory. If the new memory is larger than the old memory, the new space will be zeroed. * * @ptr: The memory to reallocate. * @old_size: The old size of the memory * @size: The new size to allocate * @what: What is being allocated (for error logging) * @new_ptr: A pointer to hold the reallocated pointer * * Return: VDO_SUCCESS or an error code */ int vdo_reallocate_memory(void *ptr, size_t old_size, size_t size, const char *what, void *new_ptr) { int result; if (size == 0) { vdo_free(ptr); *(void **) new_ptr = NULL; return VDO_SUCCESS; } result = vdo_allocate(size, char, what, new_ptr); if (result != VDO_SUCCESS) return result; if (ptr != NULL) { if (old_size < size) size = old_size; memcpy(*((void **) new_ptr), ptr, size); vdo_free(ptr); } return VDO_SUCCESS; } int vdo_duplicate_string(const char *string, const char *what, char **new_string) { int result; u8 *dup; result = vdo_allocate(strlen(string) + 1, u8, what, &dup); if (result != VDO_SUCCESS) return result; memcpy(dup, string, strlen(string) + 1); *new_string = dup; return VDO_SUCCESS; } void vdo_memory_init(void) { spin_lock_init(&memory_stats.lock); vdo_initialize_thread_registry(&allocating_threads); } void vdo_memory_exit(void) { VDO_ASSERT_LOG_ONLY(memory_stats.kmalloc_bytes == 0, "kmalloc memory used (%zd bytes in %zd blocks) is returned to the kernel", memory_stats.kmalloc_bytes, memory_stats.kmalloc_blocks); VDO_ASSERT_LOG_ONLY(memory_stats.vmalloc_bytes == 0, "vmalloc memory used (%zd bytes in %zd blocks) is returned to the kernel", memory_stats.vmalloc_bytes, memory_stats.vmalloc_blocks); vdo_log_debug("peak usage %zd bytes", memory_stats.peak_bytes); } void vdo_get_memory_stats(u64 *bytes_used, u64 *peak_bytes_used) { unsigned long flags; spin_lock_irqsave(&memory_stats.lock, flags); *bytes_used = memory_stats.kmalloc_bytes + memory_stats.vmalloc_bytes; *peak_bytes_used = memory_stats.peak_bytes; spin_unlock_irqrestore(&memory_stats.lock, flags); } /* * Report stats on any allocated memory that we're tracking. Not all allocation types are * guaranteed to be tracked in bytes (e.g., bios). */ void vdo_report_memory_usage(void) { unsigned long flags; u64 kmalloc_blocks; u64 kmalloc_bytes; u64 vmalloc_blocks; u64 vmalloc_bytes; u64 peak_usage; u64 total_bytes; spin_lock_irqsave(&memory_stats.lock, flags); kmalloc_blocks = memory_stats.kmalloc_blocks; kmalloc_bytes = memory_stats.kmalloc_bytes; vmalloc_blocks = memory_stats.vmalloc_blocks; vmalloc_bytes = memory_stats.vmalloc_bytes; peak_usage = memory_stats.peak_bytes; spin_unlock_irqrestore(&memory_stats.lock, flags); total_bytes = kmalloc_bytes + vmalloc_bytes; vdo_log_info("current module memory tracking (actual allocation sizes, not requested):"); vdo_log_info(" %llu bytes in %llu kmalloc blocks", (unsigned long long) kmalloc_bytes, (unsigned long long) kmalloc_blocks); vdo_log_info(" %llu bytes in %llu vmalloc blocks", (unsigned long long) vmalloc_bytes, (unsigned long long) vmalloc_blocks); vdo_log_info(" total %llu bytes, peak usage %llu bytes", (unsigned long long) total_bytes, (unsigned long long) peak_usage); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1