Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Ralph Metzler | 2824 | 77.18% | 3 | 10.71% |
Daniel Scheller | 439 | 12.00% | 8 | 28.57% |
Mauro Carvalho Chehab | 278 | 7.60% | 1 | 3.57% |
Toshiaki Yamane | 33 | 0.90% | 1 | 3.57% |
Devin Heitmueller | 32 | 0.87% | 2 | 7.14% |
Matthias Benesch | 29 | 0.79% | 1 | 3.57% |
Oliver Endriss | 8 | 0.22% | 2 | 7.14% |
Tapasweni Pathak | 4 | 0.11% | 1 | 3.57% |
Christoph Fanelsa | 3 | 0.08% | 1 | 3.57% |
Tamara Diaconita | 2 | 0.05% | 1 | 3.57% |
Uwe Kleine-König | 2 | 0.05% | 2 | 7.14% |
Devendra Naga | 2 | 0.05% | 2 | 7.14% |
Nishka Dasgupta | 1 | 0.03% | 1 | 3.57% |
Greg Kroah-Hartman | 1 | 0.03% | 1 | 3.57% |
caihuoqing | 1 | 0.03% | 1 | 3.57% |
Total | 3659 | 28 |
// SPDX-License-Identifier: GPL-2.0 /* * cxd2099.c: Driver for the Sony CXD2099AR Common Interface Controller * * Copyright (C) 2010-2013 Digital Devices GmbH */ #include <linux/slab.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/i2c.h> #include <linux/regmap.h> #include <linux/wait.h> #include <linux/delay.h> #include <linux/mutex.h> #include <linux/io.h> #include "cxd2099.h" static int buffermode; module_param(buffermode, int, 0444); MODULE_PARM_DESC(buffermode, "Enable CXD2099AR buffer mode (default: disabled)"); static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount); struct cxd { struct dvb_ca_en50221 en; struct cxd2099_cfg cfg; struct i2c_client *client; struct regmap *regmap; u8 regs[0x23]; u8 lastaddress; u8 clk_reg_f; u8 clk_reg_b; int mode; int ready; int dr; int write_busy; int slot_stat; u8 amem[1024]; int amem_read; int cammode; struct mutex lock; /* device access lock */ u8 rbuf[1028]; u8 wbuf[1028]; }; static int read_block(struct cxd *ci, u8 adr, u8 *data, u16 n) { int status = 0; if (ci->lastaddress != adr) status = regmap_write(ci->regmap, 0, adr); if (!status) { ci->lastaddress = adr; while (n) { int len = n; if (ci->cfg.max_i2c && len > ci->cfg.max_i2c) len = ci->cfg.max_i2c; status = regmap_raw_read(ci->regmap, 1, data, len); if (status) return status; data += len; n -= len; } } return status; } static int read_reg(struct cxd *ci, u8 reg, u8 *val) { return read_block(ci, reg, val, 1); } static int read_pccard(struct cxd *ci, u16 address, u8 *data, u8 n) { int status; u8 addr[2] = {address & 0xff, address >> 8}; status = regmap_raw_write(ci->regmap, 2, addr, 2); if (!status) status = regmap_raw_read(ci->regmap, 3, data, n); return status; } static int write_pccard(struct cxd *ci, u16 address, u8 *data, u8 n) { int status; u8 addr[2] = {address & 0xff, address >> 8}; status = regmap_raw_write(ci->regmap, 2, addr, 2); if (!status) { u8 buf[256]; memcpy(buf, data, n); status = regmap_raw_write(ci->regmap, 3, buf, n); } return status; } static int read_io(struct cxd *ci, u16 address, unsigned int *val) { int status; u8 addr[2] = {address & 0xff, address >> 8}; status = regmap_raw_write(ci->regmap, 2, addr, 2); if (!status) status = regmap_read(ci->regmap, 3, val); return status; } static int write_io(struct cxd *ci, u16 address, u8 val) { int status; u8 addr[2] = {address & 0xff, address >> 8}; status = regmap_raw_write(ci->regmap, 2, addr, 2); if (!status) status = regmap_write(ci->regmap, 3, val); return status; } static int write_regm(struct cxd *ci, u8 reg, u8 val, u8 mask) { int status = 0; unsigned int regval; if (ci->lastaddress != reg) status = regmap_write(ci->regmap, 0, reg); if (!status && reg >= 6 && reg <= 8 && mask != 0xff) { status = regmap_read(ci->regmap, 1, ®val); ci->regs[reg] = regval; } ci->lastaddress = reg; ci->regs[reg] = (ci->regs[reg] & (~mask)) | val; if (!status) status = regmap_write(ci->regmap, 1, ci->regs[reg]); if (reg == 0x20) ci->regs[reg] &= 0x7f; return status; } static int write_reg(struct cxd *ci, u8 reg, u8 val) { return write_regm(ci, reg, val, 0xff); } static int write_block(struct cxd *ci, u8 adr, u8 *data, u16 n) { int status = 0; u8 *buf = ci->wbuf; if (ci->lastaddress != adr) status = regmap_write(ci->regmap, 0, adr); if (status) return status; ci->lastaddress = adr; while (n) { int len = n; if (ci->cfg.max_i2c && (len + 1 > ci->cfg.max_i2c)) len = ci->cfg.max_i2c - 1; memcpy(buf, data, len); status = regmap_raw_write(ci->regmap, 1, buf, len); if (status) return status; n -= len; data += len; } return status; } static void set_mode(struct cxd *ci, int mode) { if (mode == ci->mode) return; switch (mode) { case 0x00: /* IO mem */ write_regm(ci, 0x06, 0x00, 0x07); break; case 0x01: /* ATT mem */ write_regm(ci, 0x06, 0x02, 0x07); break; default: break; } ci->mode = mode; } static void cam_mode(struct cxd *ci, int mode) { u8 dummy; if (mode == ci->cammode) return; switch (mode) { case 0x00: write_regm(ci, 0x20, 0x80, 0x80); break; case 0x01: if (!ci->en.read_data) return; ci->write_busy = 0; dev_info(&ci->client->dev, "enable cam buffer mode\n"); write_reg(ci, 0x0d, 0x00); write_reg(ci, 0x0e, 0x01); write_regm(ci, 0x08, 0x40, 0x40); read_reg(ci, 0x12, &dummy); write_regm(ci, 0x08, 0x80, 0x80); break; default: break; } ci->cammode = mode; } static int init(struct cxd *ci) { int status; mutex_lock(&ci->lock); ci->mode = -1; do { status = write_reg(ci, 0x00, 0x00); if (status < 0) break; status = write_reg(ci, 0x01, 0x00); if (status < 0) break; status = write_reg(ci, 0x02, 0x10); if (status < 0) break; status = write_reg(ci, 0x03, 0x00); if (status < 0) break; status = write_reg(ci, 0x05, 0xFF); if (status < 0) break; status = write_reg(ci, 0x06, 0x1F); if (status < 0) break; status = write_reg(ci, 0x07, 0x1F); if (status < 0) break; status = write_reg(ci, 0x08, 0x28); if (status < 0) break; status = write_reg(ci, 0x14, 0x20); if (status < 0) break; /* TOSTRT = 8, Mode B (gated clock), falling Edge, * Serial, POL=HIGH, MSB */ status = write_reg(ci, 0x0A, 0xA7); if (status < 0) break; status = write_reg(ci, 0x0B, 0x33); if (status < 0) break; status = write_reg(ci, 0x0C, 0x33); if (status < 0) break; status = write_regm(ci, 0x14, 0x00, 0x0F); if (status < 0) break; status = write_reg(ci, 0x15, ci->clk_reg_b); if (status < 0) break; status = write_regm(ci, 0x16, 0x00, 0x0F); if (status < 0) break; status = write_reg(ci, 0x17, ci->clk_reg_f); if (status < 0) break; if (ci->cfg.clock_mode == 2) { /* bitrate*2^13/ 72000 */ u32 reg = ((ci->cfg.bitrate << 13) + 71999) / 72000; if (ci->cfg.polarity) { status = write_reg(ci, 0x09, 0x6f); if (status < 0) break; } else { status = write_reg(ci, 0x09, 0x6d); if (status < 0) break; } status = write_reg(ci, 0x20, 0x08); if (status < 0) break; status = write_reg(ci, 0x21, (reg >> 8) & 0xff); if (status < 0) break; status = write_reg(ci, 0x22, reg & 0xff); if (status < 0) break; } else if (ci->cfg.clock_mode == 1) { if (ci->cfg.polarity) { status = write_reg(ci, 0x09, 0x6f); /* D */ if (status < 0) break; } else { status = write_reg(ci, 0x09, 0x6d); if (status < 0) break; } status = write_reg(ci, 0x20, 0x68); if (status < 0) break; status = write_reg(ci, 0x21, 0x00); if (status < 0) break; status = write_reg(ci, 0x22, 0x02); if (status < 0) break; } else { if (ci->cfg.polarity) { status = write_reg(ci, 0x09, 0x4f); /* C */ if (status < 0) break; } else { status = write_reg(ci, 0x09, 0x4d); if (status < 0) break; } status = write_reg(ci, 0x20, 0x28); if (status < 0) break; status = write_reg(ci, 0x21, 0x00); if (status < 0) break; status = write_reg(ci, 0x22, 0x07); if (status < 0) break; } status = write_regm(ci, 0x20, 0x80, 0x80); if (status < 0) break; status = write_regm(ci, 0x03, 0x02, 0x02); if (status < 0) break; status = write_reg(ci, 0x01, 0x04); if (status < 0) break; status = write_reg(ci, 0x00, 0x31); if (status < 0) break; /* Put TS in bypass */ status = write_regm(ci, 0x09, 0x08, 0x08); if (status < 0) break; ci->cammode = -1; cam_mode(ci, 0); } while (0); mutex_unlock(&ci->lock); return 0; } static int read_attribute_mem(struct dvb_ca_en50221 *ca, int slot, int address) { struct cxd *ci = ca->data; u8 val; mutex_lock(&ci->lock); set_mode(ci, 1); read_pccard(ci, address, &val, 1); mutex_unlock(&ci->lock); return val; } static int write_attribute_mem(struct dvb_ca_en50221 *ca, int slot, int address, u8 value) { struct cxd *ci = ca->data; mutex_lock(&ci->lock); set_mode(ci, 1); write_pccard(ci, address, &value, 1); mutex_unlock(&ci->lock); return 0; } static int read_cam_control(struct dvb_ca_en50221 *ca, int slot, u8 address) { struct cxd *ci = ca->data; unsigned int val; mutex_lock(&ci->lock); set_mode(ci, 0); read_io(ci, address, &val); mutex_unlock(&ci->lock); return val; } static int write_cam_control(struct dvb_ca_en50221 *ca, int slot, u8 address, u8 value) { struct cxd *ci = ca->data; mutex_lock(&ci->lock); set_mode(ci, 0); write_io(ci, address, value); mutex_unlock(&ci->lock); return 0; } static int slot_reset(struct dvb_ca_en50221 *ca, int slot) { struct cxd *ci = ca->data; if (ci->cammode) read_data(ca, slot, ci->rbuf, 0); mutex_lock(&ci->lock); cam_mode(ci, 0); write_reg(ci, 0x00, 0x21); write_reg(ci, 0x06, 0x1F); write_reg(ci, 0x00, 0x31); write_regm(ci, 0x20, 0x80, 0x80); write_reg(ci, 0x03, 0x02); ci->ready = 0; ci->mode = -1; { int i; for (i = 0; i < 100; i++) { usleep_range(10000, 11000); if (ci->ready) break; } } mutex_unlock(&ci->lock); return 0; } static int slot_shutdown(struct dvb_ca_en50221 *ca, int slot) { struct cxd *ci = ca->data; dev_dbg(&ci->client->dev, "%s\n", __func__); if (ci->cammode) read_data(ca, slot, ci->rbuf, 0); mutex_lock(&ci->lock); write_reg(ci, 0x00, 0x21); write_reg(ci, 0x06, 0x1F); msleep(300); write_regm(ci, 0x09, 0x08, 0x08); write_regm(ci, 0x20, 0x80, 0x80); /* Reset CAM Mode */ write_regm(ci, 0x06, 0x07, 0x07); /* Clear IO Mode */ ci->mode = -1; ci->write_busy = 0; mutex_unlock(&ci->lock); return 0; } static int slot_ts_enable(struct dvb_ca_en50221 *ca, int slot) { struct cxd *ci = ca->data; mutex_lock(&ci->lock); write_regm(ci, 0x09, 0x00, 0x08); set_mode(ci, 0); cam_mode(ci, 1); mutex_unlock(&ci->lock); return 0; } static int campoll(struct cxd *ci) { u8 istat; read_reg(ci, 0x04, &istat); if (!istat) return 0; write_reg(ci, 0x05, istat); if (istat & 0x40) ci->dr = 1; if (istat & 0x20) ci->write_busy = 0; if (istat & 2) { u8 slotstat; read_reg(ci, 0x01, &slotstat); if (!(2 & slotstat)) { if (!ci->slot_stat) { ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_PRESENT; write_regm(ci, 0x03, 0x08, 0x08); } } else { if (ci->slot_stat) { ci->slot_stat = 0; write_regm(ci, 0x03, 0x00, 0x08); dev_info(&ci->client->dev, "NO CAM\n"); ci->ready = 0; } } if ((istat & 8) && ci->slot_stat == DVB_CA_EN50221_POLL_CAM_PRESENT) { ci->ready = 1; ci->slot_stat |= DVB_CA_EN50221_POLL_CAM_READY; } } return 0; } static int poll_slot_status(struct dvb_ca_en50221 *ca, int slot, int open) { struct cxd *ci = ca->data; u8 slotstat; mutex_lock(&ci->lock); campoll(ci); read_reg(ci, 0x01, &slotstat); mutex_unlock(&ci->lock); return ci->slot_stat; } static int read_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount) { struct cxd *ci = ca->data; u8 msb, lsb; u16 len; mutex_lock(&ci->lock); campoll(ci); mutex_unlock(&ci->lock); if (!ci->dr) return 0; mutex_lock(&ci->lock); read_reg(ci, 0x0f, &msb); read_reg(ci, 0x10, &lsb); len = ((u16)msb << 8) | lsb; if (len > ecount || len < 2) { /* read it anyway or cxd may hang */ read_block(ci, 0x12, ci->rbuf, len); mutex_unlock(&ci->lock); return -EIO; } read_block(ci, 0x12, ebuf, len); ci->dr = 0; mutex_unlock(&ci->lock); return len; } static int write_data(struct dvb_ca_en50221 *ca, int slot, u8 *ebuf, int ecount) { struct cxd *ci = ca->data; if (ci->write_busy) return -EAGAIN; mutex_lock(&ci->lock); write_reg(ci, 0x0d, ecount >> 8); write_reg(ci, 0x0e, ecount & 0xff); write_block(ci, 0x11, ebuf, ecount); ci->write_busy = 1; mutex_unlock(&ci->lock); return ecount; } static const struct dvb_ca_en50221 en_templ = { .read_attribute_mem = read_attribute_mem, .write_attribute_mem = write_attribute_mem, .read_cam_control = read_cam_control, .write_cam_control = write_cam_control, .slot_reset = slot_reset, .slot_shutdown = slot_shutdown, .slot_ts_enable = slot_ts_enable, .poll_slot_status = poll_slot_status, .read_data = read_data, .write_data = write_data, }; static int cxd2099_probe(struct i2c_client *client) { struct cxd *ci; struct cxd2099_cfg *cfg = client->dev.platform_data; static const struct regmap_config rm_cfg = { .reg_bits = 8, .val_bits = 8, }; unsigned int val; int ret; ci = kzalloc(sizeof(*ci), GFP_KERNEL); if (!ci) { ret = -ENOMEM; goto err; } ci->client = client; memcpy(&ci->cfg, cfg, sizeof(ci->cfg)); ci->regmap = regmap_init_i2c(client, &rm_cfg); if (IS_ERR(ci->regmap)) { ret = PTR_ERR(ci->regmap); goto err_kfree; } ret = regmap_read(ci->regmap, 0x00, &val); if (ret < 0) { dev_info(&client->dev, "No CXD2099AR detected at 0x%02x\n", client->addr); goto err_rmexit; } mutex_init(&ci->lock); ci->lastaddress = 0xff; ci->clk_reg_b = 0x4a; ci->clk_reg_f = 0x1b; ci->en = en_templ; ci->en.data = ci; init(ci); dev_info(&client->dev, "Attached CXD2099AR at 0x%02x\n", client->addr); *cfg->en = &ci->en; if (!buffermode) { ci->en.read_data = NULL; ci->en.write_data = NULL; } else { dev_info(&client->dev, "Using CXD2099AR buffer mode"); } i2c_set_clientdata(client, ci); return 0; err_rmexit: regmap_exit(ci->regmap); err_kfree: kfree(ci); err: return ret; } static void cxd2099_remove(struct i2c_client *client) { struct cxd *ci = i2c_get_clientdata(client); regmap_exit(ci->regmap); kfree(ci); } static const struct i2c_device_id cxd2099_id[] = { {"cxd2099", 0}, {} }; MODULE_DEVICE_TABLE(i2c, cxd2099_id); static struct i2c_driver cxd2099_driver = { .driver = { .name = "cxd2099", }, .probe = cxd2099_probe, .remove = cxd2099_remove, .id_table = cxd2099_id, }; module_i2c_driver(cxd2099_driver); MODULE_DESCRIPTION("Sony CXD2099AR Common Interface controller driver"); MODULE_AUTHOR("Ralph Metzler"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1