Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Olivier Grenie | 14227 | 92.11% | 9 | 19.15% |
Patrick Boettcher | 983 | 6.36% | 12 | 25.53% |
Mauro Carvalho Chehab | 182 | 1.18% | 9 | 19.15% |
Michael Ira Krufky | 27 | 0.17% | 4 | 8.51% |
Hans Verkuil | 6 | 0.04% | 2 | 4.26% |
Randy Dunlap | 4 | 0.03% | 1 | 2.13% |
Gustavo A. R. Silva | 3 | 0.02% | 2 | 4.26% |
Dan Gopstein | 3 | 0.02% | 1 | 2.13% |
Greg Kroah-Hartman | 2 | 0.01% | 1 | 2.13% |
Michael Hunold | 2 | 0.01% | 1 | 2.13% |
Linus Torvalds (pre-git) | 2 | 0.01% | 1 | 2.13% |
Thomas Gleixner | 2 | 0.01% | 1 | 2.13% |
Sean Young | 1 | 0.01% | 1 | 2.13% |
Linus Torvalds | 1 | 0.01% | 1 | 2.13% |
Colin Ian King | 1 | 0.01% | 1 | 2.13% |
Total | 15446 | 47 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Linux-DVB Driver for DiBcom's DiB0090 base-band RF Tuner. * * Copyright (C) 2005-9 DiBcom (http://www.dibcom.fr/) * * This code is more or less generated from another driver, please * excuse some codingstyle oddities. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/kernel.h> #include <linux/slab.h> #include <linux/i2c.h> #include <linux/mutex.h> #include <media/dvb_frontend.h> #include "dib0090.h" #include "dibx000_common.h" static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); #define dprintk(fmt, arg...) do { \ if (debug) \ printk(KERN_DEBUG pr_fmt("%s: " fmt), \ __func__, ##arg); \ } while (0) #define CONFIG_SYS_DVBT #define CONFIG_SYS_ISDBT #define CONFIG_BAND_CBAND #define CONFIG_BAND_VHF #define CONFIG_BAND_UHF #define CONFIG_DIB0090_USE_PWM_AGC #define EN_LNA0 0x8000 #define EN_LNA1 0x4000 #define EN_LNA2 0x2000 #define EN_LNA3 0x1000 #define EN_MIX0 0x0800 #define EN_MIX1 0x0400 #define EN_MIX2 0x0200 #define EN_MIX3 0x0100 #define EN_IQADC 0x0040 #define EN_PLL 0x0020 #define EN_TX 0x0010 #define EN_BB 0x0008 #define EN_LO 0x0004 #define EN_BIAS 0x0001 #define EN_IQANA 0x0002 #define EN_DIGCLK 0x0080 /* not in the 0x24 reg, only in 0x1b */ #define EN_CRYSTAL 0x0002 #define EN_UHF 0x22E9 #define EN_VHF 0x44E9 #define EN_LBD 0x11E9 #define EN_SBD 0x44E9 #define EN_CAB 0x88E9 /* Calibration defines */ #define DC_CAL 0x1 #define WBD_CAL 0x2 #define TEMP_CAL 0x4 #define CAPTRIM_CAL 0x8 #define KROSUS_PLL_LOCKED 0x800 #define KROSUS 0x2 /* Use those defines to identify SOC version */ #define SOC 0x02 #define SOC_7090_P1G_11R1 0x82 #define SOC_7090_P1G_21R1 0x8a #define SOC_8090_P1G_11R1 0x86 #define SOC_8090_P1G_21R1 0x8e /* else use thos ones to check */ #define P1A_B 0x0 #define P1C 0x1 #define P1D_E_F 0x3 #define P1G 0x7 #define P1G_21R2 0xf #define MP001 0x1 /* Single 9090/8096 */ #define MP005 0x4 /* Single Sband */ #define MP008 0x6 /* Dual diversity VHF-UHF-LBAND */ #define MP009 0x7 /* Dual diversity 29098 CBAND-UHF-LBAND-SBAND */ #define pgm_read_word(w) (*w) struct dc_calibration; struct dib0090_tuning { u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */ u8 switch_trim; u8 lna_tune; u16 lna_bias; u16 v2i; u16 mix; u16 load; u16 tuner_enable; }; struct dib0090_pll { u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */ u8 vco_band; u8 hfdiv_code; u8 hfdiv; u8 topresc; }; struct dib0090_identity { u8 version; u8 product; u8 p1g; u8 in_soc; }; struct dib0090_state { struct i2c_adapter *i2c; struct dvb_frontend *fe; const struct dib0090_config *config; u8 current_band; enum frontend_tune_state tune_state; u32 current_rf; u16 wbd_offset; s16 wbd_target; /* in dB */ s16 rf_gain_limit; /* take-over-point: where to split between bb and rf gain */ s16 current_gain; /* keeps the currently programmed gain */ u8 agc_step; /* new binary search */ u16 gain[2]; /* for channel monitoring */ const u16 *rf_ramp; const u16 *bb_ramp; /* for the software AGC ramps */ u16 bb_1_def; u16 rf_lt_def; u16 gain_reg[4]; /* for the captrim/dc-offset search */ s8 step; s16 adc_diff; s16 min_adc_diff; s8 captrim; s8 fcaptrim; const struct dc_calibration *dc; u16 bb6, bb7; const struct dib0090_tuning *current_tune_table_index; const struct dib0090_pll *current_pll_table_index; u8 tuner_is_tuned; u8 agc_freeze; struct dib0090_identity identity; u32 rf_request; u8 current_standard; u8 calibrate; u32 rest; u16 bias; s16 temperature; u8 wbd_calibration_gain; const struct dib0090_wbd_slope *current_wbd_table; u16 wbdmux; /* for the I2C transfer */ struct i2c_msg msg[2]; u8 i2c_write_buffer[3]; u8 i2c_read_buffer[2]; struct mutex i2c_buffer_lock; }; struct dib0090_fw_state { struct i2c_adapter *i2c; struct dvb_frontend *fe; struct dib0090_identity identity; const struct dib0090_config *config; /* for the I2C transfer */ struct i2c_msg msg; u8 i2c_write_buffer[2]; u8 i2c_read_buffer[2]; struct mutex i2c_buffer_lock; }; static u16 dib0090_read_reg(struct dib0090_state *state, u8 reg) { u16 ret; if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { dprintk("could not acquire lock\n"); return 0; } state->i2c_write_buffer[0] = reg; memset(state->msg, 0, 2 * sizeof(struct i2c_msg)); state->msg[0].addr = state->config->i2c_address; state->msg[0].flags = 0; state->msg[0].buf = state->i2c_write_buffer; state->msg[0].len = 1; state->msg[1].addr = state->config->i2c_address; state->msg[1].flags = I2C_M_RD; state->msg[1].buf = state->i2c_read_buffer; state->msg[1].len = 2; if (i2c_transfer(state->i2c, state->msg, 2) != 2) { pr_warn("DiB0090 I2C read failed\n"); ret = 0; } else ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; mutex_unlock(&state->i2c_buffer_lock); return ret; } static int dib0090_write_reg(struct dib0090_state *state, u32 reg, u16 val) { int ret; if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { dprintk("could not acquire lock\n"); return -EINVAL; } state->i2c_write_buffer[0] = reg & 0xff; state->i2c_write_buffer[1] = val >> 8; state->i2c_write_buffer[2] = val & 0xff; memset(state->msg, 0, sizeof(struct i2c_msg)); state->msg[0].addr = state->config->i2c_address; state->msg[0].flags = 0; state->msg[0].buf = state->i2c_write_buffer; state->msg[0].len = 3; if (i2c_transfer(state->i2c, state->msg, 1) != 1) { pr_warn("DiB0090 I2C write failed\n"); ret = -EREMOTEIO; } else ret = 0; mutex_unlock(&state->i2c_buffer_lock); return ret; } static u16 dib0090_fw_read_reg(struct dib0090_fw_state *state, u8 reg) { u16 ret; if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { dprintk("could not acquire lock\n"); return 0; } state->i2c_write_buffer[0] = reg; memset(&state->msg, 0, sizeof(struct i2c_msg)); state->msg.addr = reg; state->msg.flags = I2C_M_RD; state->msg.buf = state->i2c_read_buffer; state->msg.len = 2; if (i2c_transfer(state->i2c, &state->msg, 1) != 1) { pr_warn("DiB0090 I2C read failed\n"); ret = 0; } else ret = (state->i2c_read_buffer[0] << 8) | state->i2c_read_buffer[1]; mutex_unlock(&state->i2c_buffer_lock); return ret; } static int dib0090_fw_write_reg(struct dib0090_fw_state *state, u8 reg, u16 val) { int ret; if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { dprintk("could not acquire lock\n"); return -EINVAL; } state->i2c_write_buffer[0] = val >> 8; state->i2c_write_buffer[1] = val & 0xff; memset(&state->msg, 0, sizeof(struct i2c_msg)); state->msg.addr = reg; state->msg.flags = 0; state->msg.buf = state->i2c_write_buffer; state->msg.len = 2; if (i2c_transfer(state->i2c, &state->msg, 1) != 1) { pr_warn("DiB0090 I2C write failed\n"); ret = -EREMOTEIO; } else ret = 0; mutex_unlock(&state->i2c_buffer_lock); return ret; } #define HARD_RESET(state) do { if (cfg->reset) { if (cfg->sleep) cfg->sleep(fe, 0); msleep(10); cfg->reset(fe, 1); msleep(10); cfg->reset(fe, 0); msleep(10); } } while (0) #define ADC_TARGET -220 #define GAIN_ALPHA 5 #define WBD_ALPHA 6 #define LPF 100 static void dib0090_write_regs(struct dib0090_state *state, u8 r, const u16 * b, u8 c) { do { dib0090_write_reg(state, r++, *b++); } while (--c); } static int dib0090_identify(struct dvb_frontend *fe) { struct dib0090_state *state = fe->tuner_priv; u16 v; struct dib0090_identity *identity = &state->identity; v = dib0090_read_reg(state, 0x1a); identity->p1g = 0; identity->in_soc = 0; dprintk("Tuner identification (Version = 0x%04x)\n", v); /* without PLL lock info */ v &= ~KROSUS_PLL_LOCKED; identity->version = v & 0xff; identity->product = (v >> 8) & 0xf; if (identity->product != KROSUS) goto identification_error; if ((identity->version & 0x3) == SOC) { identity->in_soc = 1; switch (identity->version) { case SOC_8090_P1G_11R1: dprintk("SOC 8090 P1-G11R1 Has been detected\n"); identity->p1g = 1; break; case SOC_8090_P1G_21R1: dprintk("SOC 8090 P1-G21R1 Has been detected\n"); identity->p1g = 1; break; case SOC_7090_P1G_11R1: dprintk("SOC 7090 P1-G11R1 Has been detected\n"); identity->p1g = 1; break; case SOC_7090_P1G_21R1: dprintk("SOC 7090 P1-G21R1 Has been detected\n"); identity->p1g = 1; break; default: goto identification_error; } } else { switch ((identity->version >> 5) & 0x7) { case MP001: dprintk("MP001 : 9090/8096\n"); break; case MP005: dprintk("MP005 : Single Sband\n"); break; case MP008: dprintk("MP008 : diversity VHF-UHF-LBAND\n"); break; case MP009: dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND\n"); break; default: goto identification_error; } switch (identity->version & 0x1f) { case P1G_21R2: dprintk("P1G_21R2 detected\n"); identity->p1g = 1; break; case P1G: dprintk("P1G detected\n"); identity->p1g = 1; break; case P1D_E_F: dprintk("P1D/E/F detected\n"); break; case P1C: dprintk("P1C detected\n"); break; case P1A_B: dprintk("P1-A/B detected: driver is deactivated - not available\n"); goto identification_error; break; default: goto identification_error; } } return 0; identification_error: return -EIO; } static int dib0090_fw_identify(struct dvb_frontend *fe) { struct dib0090_fw_state *state = fe->tuner_priv; struct dib0090_identity *identity = &state->identity; u16 v = dib0090_fw_read_reg(state, 0x1a); identity->p1g = 0; identity->in_soc = 0; dprintk("FE: Tuner identification (Version = 0x%04x)\n", v); /* without PLL lock info */ v &= ~KROSUS_PLL_LOCKED; identity->version = v & 0xff; identity->product = (v >> 8) & 0xf; if (identity->product != KROSUS) goto identification_error; if ((identity->version & 0x3) == SOC) { identity->in_soc = 1; switch (identity->version) { case SOC_8090_P1G_11R1: dprintk("SOC 8090 P1-G11R1 Has been detected\n"); identity->p1g = 1; break; case SOC_8090_P1G_21R1: dprintk("SOC 8090 P1-G21R1 Has been detected\n"); identity->p1g = 1; break; case SOC_7090_P1G_11R1: dprintk("SOC 7090 P1-G11R1 Has been detected\n"); identity->p1g = 1; break; case SOC_7090_P1G_21R1: dprintk("SOC 7090 P1-G21R1 Has been detected\n"); identity->p1g = 1; break; default: goto identification_error; } } else { switch ((identity->version >> 5) & 0x7) { case MP001: dprintk("MP001 : 9090/8096\n"); break; case MP005: dprintk("MP005 : Single Sband\n"); break; case MP008: dprintk("MP008 : diversity VHF-UHF-LBAND\n"); break; case MP009: dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND\n"); break; default: goto identification_error; } switch (identity->version & 0x1f) { case P1G_21R2: dprintk("P1G_21R2 detected\n"); identity->p1g = 1; break; case P1G: dprintk("P1G detected\n"); identity->p1g = 1; break; case P1D_E_F: dprintk("P1D/E/F detected\n"); break; case P1C: dprintk("P1C detected\n"); break; case P1A_B: dprintk("P1-A/B detected: driver is deactivated - not available\n"); goto identification_error; break; default: goto identification_error; } } return 0; identification_error: return -EIO; } static void dib0090_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg) { struct dib0090_state *state = fe->tuner_priv; u16 PllCfg, i, v; HARD_RESET(state); dib0090_write_reg(state, 0x24, EN_PLL | EN_CRYSTAL); if (cfg->in_soc) return; dib0090_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL); /* PLL, DIG_CLK and CRYSTAL remain */ /* adcClkOutRatio=8->7, release reset */ dib0090_write_reg(state, 0x20, ((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (0 << 4) | 0); if (cfg->clkoutdrive != 0) dib0090_write_reg(state, 0x23, (0 << 15) | ((!cfg->analog_output) << 14) | (2 << 10) | (1 << 9) | (0 << 8) | (cfg->clkoutdrive << 5) | (cfg->clkouttobamse << 4) | (0 << 2) | (0)); else dib0090_write_reg(state, 0x23, (0 << 15) | ((!cfg->analog_output) << 14) | (2 << 10) | (1 << 9) | (0 << 8) | (7 << 5) | (cfg->clkouttobamse << 4) | (0 << 2) | (0)); /* Read Pll current config * */ PllCfg = dib0090_read_reg(state, 0x21); /** Reconfigure PLL if current setting is different from default setting **/ if ((PllCfg & 0x1FFF) != ((cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv)) && (!cfg->in_soc) && !cfg->io.pll_bypass) { /* Set Bypass mode */ PllCfg |= (1 << 15); dib0090_write_reg(state, 0x21, PllCfg); /* Set Reset Pll */ PllCfg &= ~(1 << 13); dib0090_write_reg(state, 0x21, PllCfg); /*** Set new Pll configuration in bypass and reset state ***/ PllCfg = (1 << 15) | (0 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv); dib0090_write_reg(state, 0x21, PllCfg); /* Remove Reset Pll */ PllCfg |= (1 << 13); dib0090_write_reg(state, 0x21, PllCfg); /*** Wait for PLL lock ***/ i = 100; do { v = !!(dib0090_read_reg(state, 0x1a) & 0x800); if (v) break; } while (--i); if (i == 0) { dprintk("Pll: Unable to lock Pll\n"); return; } /* Finally Remove Bypass mode */ PllCfg &= ~(1 << 15); dib0090_write_reg(state, 0x21, PllCfg); } if (cfg->io.pll_bypass) { PllCfg |= (cfg->io.pll_bypass << 15); dib0090_write_reg(state, 0x21, PllCfg); } } static int dib0090_fw_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg) { struct dib0090_fw_state *state = fe->tuner_priv; u16 PllCfg; u16 v; int i; dprintk("fw reset digital\n"); HARD_RESET(state); dib0090_fw_write_reg(state, 0x24, EN_PLL | EN_CRYSTAL); dib0090_fw_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL); /* PLL, DIG_CLK and CRYSTAL remain */ dib0090_fw_write_reg(state, 0x20, ((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (cfg->data_tx_drv << 4) | cfg->ls_cfg_pad_drv); v = (0 << 15) | ((!cfg->analog_output) << 14) | (1 << 9) | (0 << 8) | (cfg->clkouttobamse << 4) | (0 << 2) | (0); if (cfg->clkoutdrive != 0) v |= cfg->clkoutdrive << 5; else v |= 7 << 5; v |= 2 << 10; dib0090_fw_write_reg(state, 0x23, v); /* Read Pll current config * */ PllCfg = dib0090_fw_read_reg(state, 0x21); /** Reconfigure PLL if current setting is different from default setting **/ if ((PllCfg & 0x1FFF) != ((cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv)) && !cfg->io.pll_bypass) { /* Set Bypass mode */ PllCfg |= (1 << 15); dib0090_fw_write_reg(state, 0x21, PllCfg); /* Set Reset Pll */ PllCfg &= ~(1 << 13); dib0090_fw_write_reg(state, 0x21, PllCfg); /*** Set new Pll configuration in bypass and reset state ***/ PllCfg = (1 << 15) | (0 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv); dib0090_fw_write_reg(state, 0x21, PllCfg); /* Remove Reset Pll */ PllCfg |= (1 << 13); dib0090_fw_write_reg(state, 0x21, PllCfg); /*** Wait for PLL lock ***/ i = 100; do { v = !!(dib0090_fw_read_reg(state, 0x1a) & 0x800); if (v) break; } while (--i); if (i == 0) { dprintk("Pll: Unable to lock Pll\n"); return -EIO; } /* Finally Remove Bypass mode */ PllCfg &= ~(1 << 15); dib0090_fw_write_reg(state, 0x21, PllCfg); } if (cfg->io.pll_bypass) { PllCfg |= (cfg->io.pll_bypass << 15); dib0090_fw_write_reg(state, 0x21, PllCfg); } return dib0090_fw_identify(fe); } static int dib0090_wakeup(struct dvb_frontend *fe) { struct dib0090_state *state = fe->tuner_priv; if (state->config->sleep) state->config->sleep(fe, 0); /* enable dataTX in case we have been restarted in the wrong moment */ dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14)); return 0; } static int dib0090_sleep(struct dvb_frontend *fe) { struct dib0090_state *state = fe->tuner_priv; if (state->config->sleep) state->config->sleep(fe, 1); return 0; } void dib0090_dcc_freq(struct dvb_frontend *fe, u8 fast) { struct dib0090_state *state = fe->tuner_priv; if (fast) dib0090_write_reg(state, 0x04, 0); else dib0090_write_reg(state, 0x04, 1); } EXPORT_SYMBOL(dib0090_dcc_freq); static const u16 bb_ramp_pwm_normal_socs[] = { 550, /* max BB gain in 10th of dB */ (1<<9) | 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */ 440, (4 << 9) | 0, /* BB_RAMP3 = 26dB */ (0 << 9) | 208, /* BB_RAMP4 */ (4 << 9) | 208, /* BB_RAMP5 = 29dB */ (0 << 9) | 440, /* BB_RAMP6 */ }; static const u16 rf_ramp_pwm_cband_7090p[] = { 280, /* max RF gain in 10th of dB */ 18, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ 504, /* ramp_max = maximum X used on the ramp */ (29 << 10) | 364, /* RF_RAMP5, LNA 1 = 8dB */ (0 << 10) | 504, /* RF_RAMP6, LNA 1 */ (60 << 10) | 228, /* RF_RAMP7, LNA 2 = 7.7dB */ (0 << 10) | 364, /* RF_RAMP8, LNA 2 */ (34 << 10) | 109, /* GAIN_4_1, LNA 3 = 6.8dB */ (0 << 10) | 228, /* GAIN_4_2, LNA 3 */ (37 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */ (0 << 10) | 109, /* RF_RAMP4, LNA 4 */ }; static const u16 rf_ramp_pwm_cband_7090e_sensitivity[] = { 186, /* max RF gain in 10th of dB */ 40, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ 746, /* ramp_max = maximum X used on the ramp */ (10 << 10) | 345, /* RF_RAMP5, LNA 1 = 10dB */ (0 << 10) | 746, /* RF_RAMP6, LNA 1 */ (0 << 10) | 0, /* RF_RAMP7, LNA 2 = 0 dB */ (0 << 10) | 0, /* RF_RAMP8, LNA 2 */ (28 << 10) | 200, /* GAIN_4_1, LNA 3 = 6.8dB */ /* 3.61 dB */ (0 << 10) | 345, /* GAIN_4_2, LNA 3 */ (20 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */ /* 4.96 dB */ (0 << 10) | 200, /* RF_RAMP4, LNA 4 */ }; static const u16 rf_ramp_pwm_cband_7090e_aci[] = { 86, /* max RF gain in 10th of dB */ 40, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ 345, /* ramp_max = maximum X used on the ramp */ (0 << 10) | 0, /* RF_RAMP5, LNA 1 = 8dB */ /* 7.47 dB */ (0 << 10) | 0, /* RF_RAMP6, LNA 1 */ (0 << 10) | 0, /* RF_RAMP7, LNA 2 = 0 dB */ (0 << 10) | 0, /* RF_RAMP8, LNA 2 */ (28 << 10) | 200, /* GAIN_4_1, LNA 3 = 6.8dB */ /* 3.61 dB */ (0 << 10) | 345, /* GAIN_4_2, LNA 3 */ (20 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */ /* 4.96 dB */ (0 << 10) | 200, /* RF_RAMP4, LNA 4 */ }; static const u16 rf_ramp_pwm_cband_8090[] = { 345, /* max RF gain in 10th of dB */ 29, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ 1000, /* ramp_max = maximum X used on the ramp */ (35 << 10) | 772, /* RF_RAMP3, LNA 1 = 8dB */ (0 << 10) | 1000, /* RF_RAMP4, LNA 1 */ (58 << 10) | 496, /* RF_RAMP5, LNA 2 = 9.5dB */ (0 << 10) | 772, /* RF_RAMP6, LNA 2 */ (27 << 10) | 200, /* RF_RAMP7, LNA 3 = 10.5dB */ (0 << 10) | 496, /* RF_RAMP8, LNA 3 */ (40 << 10) | 0, /* GAIN_4_1, LNA 4 = 7dB */ (0 << 10) | 200, /* GAIN_4_2, LNA 4 */ }; static const u16 rf_ramp_pwm_uhf_7090[] = { 407, /* max RF gain in 10th of dB */ 13, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ 529, /* ramp_max = maximum X used on the ramp */ (23 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */ (0 << 10) | 176, /* RF_RAMP4, LNA 1 */ (63 << 10) | 400, /* RF_RAMP5, LNA 2 = 8dB */ (0 << 10) | 529, /* RF_RAMP6, LNA 2 */ (48 << 10) | 316, /* RF_RAMP7, LNA 3 = 6.8dB */ (0 << 10) | 400, /* RF_RAMP8, LNA 3 */ (29 << 10) | 176, /* GAIN_4_1, LNA 4 = 11.5dB */ (0 << 10) | 316, /* GAIN_4_2, LNA 4 */ }; static const u16 rf_ramp_pwm_uhf_8090[] = { 388, /* max RF gain in 10th of dB */ 26, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ 1008, /* ramp_max = maximum X used on the ramp */ (11 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */ (0 << 10) | 369, /* RF_RAMP4, LNA 1 */ (41 << 10) | 809, /* RF_RAMP5, LNA 2 = 8dB */ (0 << 10) | 1008, /* RF_RAMP6, LNA 2 */ (27 << 10) | 659, /* RF_RAMP7, LNA 3 = 6dB */ (0 << 10) | 809, /* RF_RAMP8, LNA 3 */ (14 << 10) | 369, /* GAIN_4_1, LNA 4 = 11.5dB */ (0 << 10) | 659, /* GAIN_4_2, LNA 4 */ }; /* GENERAL PWM ramp definition for all other Krosus */ static const u16 bb_ramp_pwm_normal[] = { 500, /* max BB gain in 10th of dB */ 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */ 400, (2 << 9) | 0, /* BB_RAMP3 = 21dB */ (0 << 9) | 168, /* BB_RAMP4 */ (2 << 9) | 168, /* BB_RAMP5 = 29dB */ (0 << 9) | 400, /* BB_RAMP6 */ }; #if 0 /* Currently unused */ static const u16 bb_ramp_pwm_boost[] = { 550, /* max BB gain in 10th of dB */ 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */ 440, (2 << 9) | 0, /* BB_RAMP3 = 26dB */ (0 << 9) | 208, /* BB_RAMP4 */ (2 << 9) | 208, /* BB_RAMP5 = 29dB */ (0 << 9) | 440, /* BB_RAMP6 */ }; #endif static const u16 rf_ramp_pwm_cband[] = { 314, /* max RF gain in 10th of dB */ 33, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ 1023, /* ramp_max = maximum X used on the ramp */ (8 << 10) | 743, /* RF_RAMP3, LNA 1 = 0dB */ (0 << 10) | 1023, /* RF_RAMP4, LNA 1 */ (15 << 10) | 469, /* RF_RAMP5, LNA 2 = 0dB */ (0 << 10) | 742, /* RF_RAMP6, LNA 2 */ (9 << 10) | 234, /* RF_RAMP7, LNA 3 = 0dB */ (0 << 10) | 468, /* RF_RAMP8, LNA 3 */ (9 << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */ (0 << 10) | 233, /* GAIN_4_2, LNA 4 */ }; static const u16 rf_ramp_pwm_vhf[] = { 398, /* max RF gain in 10th of dB */ 24, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ 954, /* ramp_max = maximum X used on the ramp */ (7 << 10) | 0, /* RF_RAMP3, LNA 1 = 13.2dB */ (0 << 10) | 290, /* RF_RAMP4, LNA 1 */ (16 << 10) | 699, /* RF_RAMP5, LNA 2 = 10.5dB */ (0 << 10) | 954, /* RF_RAMP6, LNA 2 */ (17 << 10) | 580, /* RF_RAMP7, LNA 3 = 5dB */ (0 << 10) | 699, /* RF_RAMP8, LNA 3 */ (7 << 10) | 290, /* GAIN_4_1, LNA 4 = 12.5dB */ (0 << 10) | 580, /* GAIN_4_2, LNA 4 */ }; static const u16 rf_ramp_pwm_uhf[] = { 398, /* max RF gain in 10th of dB */ 24, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ 954, /* ramp_max = maximum X used on the ramp */ (7 << 10) | 0, /* RF_RAMP3, LNA 1 = 13.2dB */ (0 << 10) | 290, /* RF_RAMP4, LNA 1 */ (16 << 10) | 699, /* RF_RAMP5, LNA 2 = 10.5dB */ (0 << 10) | 954, /* RF_RAMP6, LNA 2 */ (17 << 10) | 580, /* RF_RAMP7, LNA 3 = 5dB */ (0 << 10) | 699, /* RF_RAMP8, LNA 3 */ (7 << 10) | 290, /* GAIN_4_1, LNA 4 = 12.5dB */ (0 << 10) | 580, /* GAIN_4_2, LNA 4 */ }; #if 0 /* Currently unused */ static const u16 rf_ramp_pwm_sband[] = { 253, /* max RF gain in 10th of dB */ 38, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ 961, (4 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.1dB */ (0 << 10) | 508, /* RF_RAMP4, LNA 1 */ (9 << 10) | 508, /* RF_RAMP5, LNA 2 = 11.2dB */ (0 << 10) | 961, /* RF_RAMP6, LNA 2 */ (0 << 10) | 0, /* RF_RAMP7, LNA 3 = 0dB */ (0 << 10) | 0, /* RF_RAMP8, LNA 3 */ (0 << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */ (0 << 10) | 0, /* GAIN_4_2, LNA 4 */ }; #endif struct slope { s16 range; s16 slope; }; static u16 slopes_to_scale(const struct slope *slopes, u8 num, s16 val) { u8 i; u16 rest; u16 ret = 0; for (i = 0; i < num; i++) { if (val > slopes[i].range) rest = slopes[i].range; else rest = val; ret += (rest * slopes[i].slope) / slopes[i].range; val -= rest; } return ret; } static const struct slope dib0090_wbd_slopes[3] = { {66, 120}, /* -64,-52: offset - 65 */ {600, 170}, /* -52,-35: 65 - 665 */ {170, 250}, /* -45,-10: 665 - 835 */ }; static s16 dib0090_wbd_to_db(struct dib0090_state *state, u16 wbd) { wbd &= 0x3ff; if (wbd < state->wbd_offset) wbd = 0; else wbd -= state->wbd_offset; /* -64dB is the floor */ return -640 + (s16) slopes_to_scale(dib0090_wbd_slopes, ARRAY_SIZE(dib0090_wbd_slopes), wbd); } static void dib0090_wbd_target(struct dib0090_state *state, u32 rf) { u16 offset = 250; /* TODO : DAB digital N+/-1 interferer perfs : offset = 10 */ if (state->current_band == BAND_VHF) offset = 650; #ifndef FIRMWARE_FIREFLY if (state->current_band == BAND_VHF) offset = state->config->wbd_vhf_offset; if (state->current_band == BAND_CBAND) offset = state->config->wbd_cband_offset; #endif state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + offset); dprintk("wbd-target: %d dB\n", (u32) state->wbd_target); } static const int gain_reg_addr[4] = { 0x08, 0x0a, 0x0f, 0x01 }; static void dib0090_gain_apply(struct dib0090_state *state, s16 gain_delta, s16 top_delta, u8 force) { u16 rf, bb, ref; u16 i, v, gain_reg[4] = { 0 }, gain; const u16 *g; if (top_delta < -511) top_delta = -511; if (top_delta > 511) top_delta = 511; if (force) { top_delta *= (1 << WBD_ALPHA); gain_delta *= (1 << GAIN_ALPHA); } if (top_delta >= ((s16) (state->rf_ramp[0] << WBD_ALPHA) - state->rf_gain_limit)) /* overflow */ state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA; else state->rf_gain_limit += top_delta; if (state->rf_gain_limit < 0) /*underflow */ state->rf_gain_limit = 0; /* use gain as a temporary variable and correct current_gain */ gain = ((state->rf_gain_limit >> WBD_ALPHA) + state->bb_ramp[0]) << GAIN_ALPHA; if (gain_delta >= ((s16) gain - state->current_gain)) /* overflow */ state->current_gain = gain; else state->current_gain += gain_delta; /* cannot be less than 0 (only if gain_delta is less than 0 we can have current_gain < 0) */ if (state->current_gain < 0) state->current_gain = 0; /* now split total gain to rf and bb gain */ gain = state->current_gain >> GAIN_ALPHA; /* requested gain is bigger than rf gain limit - ACI/WBD adjustment */ if (gain > (state->rf_gain_limit >> WBD_ALPHA)) { rf = state->rf_gain_limit >> WBD_ALPHA; bb = gain - rf; if (bb > state->bb_ramp[0]) bb = state->bb_ramp[0]; } else { /* high signal level -> all gains put on RF */ rf = gain; bb = 0; } state->gain[0] = rf; state->gain[1] = bb; /* software ramp */ /* Start with RF gains */ g = state->rf_ramp + 1; /* point on RF LNA1 max gain */ ref = rf; for (i = 0; i < 7; i++) { /* Go over all amplifiers => 5RF amps + 2 BB amps = 7 amps */ if (g[0] == 0 || ref < (g[1] - g[0])) /* if total gain of the current amp is null or this amp is not concerned because it starts to work from an higher gain value */ v = 0; /* force the gain to write for the current amp to be null */ else if (ref >= g[1]) /* Gain to set is higher than the high working point of this amp */ v = g[2]; /* force this amp to be full gain */ else /* compute the value to set to this amp because we are somewhere in his range */ v = ((ref - (g[1] - g[0])) * g[2]) / g[0]; if (i == 0) /* LNA 1 reg mapping */ gain_reg[0] = v; else if (i == 1) /* LNA 2 reg mapping */ gain_reg[0] |= v << 7; else if (i == 2) /* LNA 3 reg mapping */ gain_reg[1] = v; else if (i == 3) /* LNA 4 reg mapping */ gain_reg[1] |= v << 7; else if (i == 4) /* CBAND LNA reg mapping */ gain_reg[2] = v | state->rf_lt_def; else if (i == 5) /* BB gain 1 reg mapping */ gain_reg[3] = v << 3; else if (i == 6) /* BB gain 2 reg mapping */ gain_reg[3] |= v << 8; g += 3; /* go to next gain bloc */ /* When RF is finished, start with BB */ if (i == 4) { g = state->bb_ramp + 1; /* point on BB gain 1 max gain */ ref = bb; } } gain_reg[3] |= state->bb_1_def; gain_reg[3] |= ((bb % 10) * 100) / 125; #ifdef DEBUG_AGC dprintk("GA CALC: DB: %3d(rf) + %3d(bb) = %3d gain_reg[0]=%04x gain_reg[1]=%04x gain_reg[2]=%04x gain_reg[0]=%04x\n", rf, bb, rf + bb, gain_reg[0], gain_reg[1], gain_reg[2], gain_reg[3]); #endif /* Write the amplifier regs */ for (i = 0; i < 4; i++) { v = gain_reg[i]; if (force || state->gain_reg[i] != v) { state->gain_reg[i] = v; dib0090_write_reg(state, gain_reg_addr[i], v); } } } static void dib0090_set_boost(struct dib0090_state *state, int onoff) { state->bb_1_def &= 0xdfff; state->bb_1_def |= onoff << 13; } static void dib0090_set_rframp(struct dib0090_state *state, const u16 * cfg) { state->rf_ramp = cfg; } static void dib0090_set_rframp_pwm(struct dib0090_state *state, const u16 * cfg) { state->rf_ramp = cfg; dib0090_write_reg(state, 0x2a, 0xffff); dprintk("total RF gain: %ddB, step: %d\n", (u32) cfg[0], dib0090_read_reg(state, 0x2a)); dib0090_write_regs(state, 0x2c, cfg + 3, 6); dib0090_write_regs(state, 0x3e, cfg + 9, 2); } static void dib0090_set_bbramp(struct dib0090_state *state, const u16 * cfg) { state->bb_ramp = cfg; dib0090_set_boost(state, cfg[0] > 500); /* we want the boost if the gain is higher that 50dB */ } static void dib0090_set_bbramp_pwm(struct dib0090_state *state, const u16 * cfg) { state->bb_ramp = cfg; dib0090_set_boost(state, cfg[0] > 500); /* we want the boost if the gain is higher that 50dB */ dib0090_write_reg(state, 0x33, 0xffff); dprintk("total BB gain: %ddB, step: %d\n", (u32) cfg[0], dib0090_read_reg(state, 0x33)); dib0090_write_regs(state, 0x35, cfg + 3, 4); } void dib0090_pwm_gain_reset(struct dvb_frontend *fe) { struct dib0090_state *state = fe->tuner_priv; const u16 *bb_ramp = bb_ramp_pwm_normal; /* default baseband config */ const u16 *rf_ramp = NULL; u8 en_pwm_rf_mux = 1; /* reset the AGC */ if (state->config->use_pwm_agc) { if (state->current_band == BAND_CBAND) { if (state->identity.in_soc) { bb_ramp = bb_ramp_pwm_normal_socs; if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1) rf_ramp = rf_ramp_pwm_cband_8090; else if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1) { if (state->config->is_dib7090e) { if (state->rf_ramp == NULL) rf_ramp = rf_ramp_pwm_cband_7090e_sensitivity; else rf_ramp = state->rf_ramp; } else rf_ramp = rf_ramp_pwm_cband_7090p; } } else rf_ramp = rf_ramp_pwm_cband; } else if (state->current_band == BAND_VHF) { if (state->identity.in_soc) { bb_ramp = bb_ramp_pwm_normal_socs; /* rf_ramp = &rf_ramp_pwm_vhf_socs; */ /* TODO */ } else rf_ramp = rf_ramp_pwm_vhf; } else if (state->current_band == BAND_UHF) { if (state->identity.in_soc) { bb_ramp = bb_ramp_pwm_normal_socs; if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1) rf_ramp = rf_ramp_pwm_uhf_8090; else if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1) rf_ramp = rf_ramp_pwm_uhf_7090; } else rf_ramp = rf_ramp_pwm_uhf; } if (rf_ramp) dib0090_set_rframp_pwm(state, rf_ramp); dib0090_set_bbramp_pwm(state, bb_ramp); /* activate the ramp generator using PWM control */ if (state->rf_ramp) dprintk("ramp RF gain = %d BAND = %s version = %d\n", state->rf_ramp[0], (state->current_band == BAND_CBAND) ? "CBAND" : "NOT CBAND", state->identity.version & 0x1f); if (rf_ramp && ((state->rf_ramp && state->rf_ramp[0] == 0) || (state->current_band == BAND_CBAND && (state->identity.version & 0x1f) <= P1D_E_F))) { dprintk("DE-Engage mux for direct gain reg control\n"); en_pwm_rf_mux = 0; } else dprintk("Engage mux for PWM control\n"); dib0090_write_reg(state, 0x32, (en_pwm_rf_mux << 12) | (en_pwm_rf_mux << 11)); /* Set fast servo cutoff to start AGC; 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast*/ if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1) dib0090_write_reg(state, 0x04, 3); else dib0090_write_reg(state, 0x04, 1); dib0090_write_reg(state, 0x39, (1 << 10)); /* 0 gain by default */ } } EXPORT_SYMBOL(dib0090_pwm_gain_reset); void dib0090_set_dc_servo(struct dvb_frontend *fe, u8 DC_servo_cutoff) { struct dib0090_state *state = fe->tuner_priv; if (DC_servo_cutoff < 4) dib0090_write_reg(state, 0x04, DC_servo_cutoff); } EXPORT_SYMBOL(dib0090_set_dc_servo); static u32 dib0090_get_slow_adc_val(struct dib0090_state *state) { u16 adc_val = dib0090_read_reg(state, 0x1d); if (state->identity.in_soc) adc_val >>= 2; return adc_val; } int dib0090_gain_control(struct dvb_frontend *fe) { struct dib0090_state *state = fe->tuner_priv; enum frontend_tune_state *tune_state = &state->tune_state; int ret = 10; u16 wbd_val = 0; u8 apply_gain_immediatly = 1; s16 wbd_error = 0, adc_error = 0; if (*tune_state == CT_AGC_START) { state->agc_freeze = 0; dib0090_write_reg(state, 0x04, 0x0); #ifdef CONFIG_BAND_SBAND if (state->current_band == BAND_SBAND) { dib0090_set_rframp(state, rf_ramp_sband); dib0090_set_bbramp(state, bb_ramp_boost); } else #endif #ifdef CONFIG_BAND_VHF if (state->current_band == BAND_VHF && !state->identity.p1g) { dib0090_set_rframp(state, rf_ramp_pwm_vhf); dib0090_set_bbramp(state, bb_ramp_pwm_normal); } else #endif #ifdef CONFIG_BAND_CBAND if (state->current_band == BAND_CBAND && !state->identity.p1g) { dib0090_set_rframp(state, rf_ramp_pwm_cband); dib0090_set_bbramp(state, bb_ramp_pwm_normal); } else #endif if ((state->current_band == BAND_CBAND || state->current_band == BAND_VHF) && state->identity.p1g) { dib0090_set_rframp(state, rf_ramp_pwm_cband_7090p); dib0090_set_bbramp(state, bb_ramp_pwm_normal_socs); } else { dib0090_set_rframp(state, rf_ramp_pwm_uhf); dib0090_set_bbramp(state, bb_ramp_pwm_normal); } dib0090_write_reg(state, 0x32, 0); dib0090_write_reg(state, 0x39, 0); dib0090_wbd_target(state, state->current_rf); state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA; state->current_gain = ((state->rf_ramp[0] + state->bb_ramp[0]) / 2) << GAIN_ALPHA; *tune_state = CT_AGC_STEP_0; } else if (!state->agc_freeze) { s16 wbd = 0, i, cnt; int adc; wbd_val = dib0090_get_slow_adc_val(state); if (*tune_state == CT_AGC_STEP_0) cnt = 5; else cnt = 1; for (i = 0; i < cnt; i++) { wbd_val = dib0090_get_slow_adc_val(state); wbd += dib0090_wbd_to_db(state, wbd_val); } wbd /= cnt; wbd_error = state->wbd_target - wbd; if (*tune_state == CT_AGC_STEP_0) { if (wbd_error < 0 && state->rf_gain_limit > 0 && !state->identity.p1g) { #ifdef CONFIG_BAND_CBAND /* in case of CBAND tune reduce first the lt_gain2 before adjusting the RF gain */ u8 ltg2 = (state->rf_lt_def >> 10) & 0x7; if (state->current_band == BAND_CBAND && ltg2) { ltg2 >>= 1; state->rf_lt_def &= ltg2 << 10; /* reduce in 3 steps from 7 to 0 */ } #endif } else { state->agc_step = 0; *tune_state = CT_AGC_STEP_1; } } else { /* calc the adc power */ adc = state->config->get_adc_power(fe); adc = (adc * ((s32) 355774) + (((s32) 1) << 20)) >> 21; /* included in [0:-700] */ adc_error = (s16) (((s32) ADC_TARGET) - adc); #ifdef CONFIG_STANDARD_DAB if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB) adc_error -= 10; #endif #ifdef CONFIG_STANDARD_DVBT if (state->fe->dtv_property_cache.delivery_system == STANDARD_DVBT && (state->fe->dtv_property_cache.modulation == QAM_64 || state->fe->dtv_property_cache.modulation == QAM_16)) adc_error += 60; #endif #ifdef CONFIG_SYS_ISDBT if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT) && (((state->fe->dtv_property_cache.layer[0].segment_count > 0) && ((state->fe->dtv_property_cache.layer[0].modulation == QAM_64) || (state->fe->dtv_property_cache. layer[0].modulation == QAM_16))) || ((state->fe->dtv_property_cache.layer[1].segment_count > 0) && ((state->fe->dtv_property_cache.layer[1].modulation == QAM_64) || (state->fe->dtv_property_cache. layer[1].modulation == QAM_16))) || ((state->fe->dtv_property_cache.layer[2].segment_count > 0) && ((state->fe->dtv_property_cache.layer[2].modulation == QAM_64) || (state->fe->dtv_property_cache. layer[2].modulation == QAM_16))) ) ) adc_error += 60; #endif if (*tune_state == CT_AGC_STEP_1) { /* quickly go to the correct range of the ADC power */ if (abs(adc_error) < 50 || state->agc_step++ > 5) { #ifdef CONFIG_STANDARD_DAB if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB) { dib0090_write_reg(state, 0x02, (1 << 15) | (15 << 11) | (31 << 6) | (63)); /* cap value = 63 : narrow BB filter : Fc = 1.8MHz */ dib0090_write_reg(state, 0x04, 0x0); } else #endif { dib0090_write_reg(state, 0x02, (1 << 15) | (3 << 11) | (6 << 6) | (32)); dib0090_write_reg(state, 0x04, 0x01); /*0 = 1KHz ; 1 = 150Hz ; 2 = 50Hz ; 3 = 50KHz ; 4 = servo fast */ } *tune_state = CT_AGC_STOP; } } else { /* everything higher than or equal to CT_AGC_STOP means tracking */ ret = 100; /* 10ms interval */ apply_gain_immediatly = 0; } } #ifdef DEBUG_AGC dprintk ("tune state %d, ADC = %3ddB (ADC err %3d) WBD %3ddB (WBD err %3d, WBD val SADC: %4d), RFGainLimit (TOP): %3d, signal: %3ddBm", (u32) *tune_state, (u32) adc, (u32) adc_error, (u32) wbd, (u32) wbd_error, (u32) wbd_val, (u32) state->rf_gain_limit >> WBD_ALPHA, (s32) 200 + adc - (state->current_gain >> GAIN_ALPHA)); #endif } /* apply gain */ if (!state->agc_freeze) dib0090_gain_apply(state, adc_error, wbd_error, apply_gain_immediatly); return ret; } EXPORT_SYMBOL(dib0090_gain_control); void dib0090_get_current_gain(struct dvb_frontend *fe, u16 * rf, u16 * bb, u16 * rf_gain_limit, u16 * rflt) { struct dib0090_state *state = fe->tuner_priv; if (rf) *rf = state->gain[0]; if (bb) *bb = state->gain[1]; if (rf_gain_limit) *rf_gain_limit = state->rf_gain_limit; if (rflt) *rflt = (state->rf_lt_def >> 10) & 0x7; } EXPORT_SYMBOL(dib0090_get_current_gain); u16 dib0090_get_wbd_target(struct dvb_frontend *fe) { struct dib0090_state *state = fe->tuner_priv; u32 f_MHz = state->fe->dtv_property_cache.frequency / 1000000; s32 current_temp = state->temperature; s32 wbd_thot, wbd_tcold; const struct dib0090_wbd_slope *wbd = state->current_wbd_table; while (f_MHz > wbd->max_freq) wbd++; dprintk("using wbd-table-entry with max freq %d\n", wbd->max_freq); if (current_temp < 0) current_temp = 0; if (current_temp > 128) current_temp = 128; state->wbdmux &= ~(7 << 13); if (wbd->wbd_gain != 0) state->wbdmux |= (wbd->wbd_gain << 13); else state->wbdmux |= (4 << 13); dib0090_write_reg(state, 0x10, state->wbdmux); wbd_thot = wbd->offset_hot - (((u32) wbd->slope_hot * f_MHz) >> 6); wbd_tcold = wbd->offset_cold - (((u32) wbd->slope_cold * f_MHz) >> 6); wbd_tcold += ((wbd_thot - wbd_tcold) * current_temp) >> 7; state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + wbd_tcold); dprintk("wbd-target: %d dB\n", (u32) state->wbd_target); dprintk("wbd offset applied is %d\n", wbd_tcold); return state->wbd_offset + wbd_tcold; } EXPORT_SYMBOL(dib0090_get_wbd_target); u16 dib0090_get_wbd_offset(struct dvb_frontend *fe) { struct dib0090_state *state = fe->tuner_priv; return state->wbd_offset; } EXPORT_SYMBOL(dib0090_get_wbd_offset); int dib0090_set_switch(struct dvb_frontend *fe, u8 sw1, u8 sw2, u8 sw3) { struct dib0090_state *state = fe->tuner_priv; dib0090_write_reg(state, 0x0b, (dib0090_read_reg(state, 0x0b) & 0xfff8) | ((sw3 & 1) << 2) | ((sw2 & 1) << 1) | (sw1 & 1)); return 0; } EXPORT_SYMBOL(dib0090_set_switch); int dib0090_set_vga(struct dvb_frontend *fe, u8 onoff) { struct dib0090_state *state = fe->tuner_priv; dib0090_write_reg(state, 0x09, (dib0090_read_reg(state, 0x09) & 0x7fff) | ((onoff & 1) << 15)); return 0; } EXPORT_SYMBOL(dib0090_set_vga); int dib0090_update_rframp_7090(struct dvb_frontend *fe, u8 cfg_sensitivity) { struct dib0090_state *state = fe->tuner_priv; if ((!state->identity.p1g) || (!state->identity.in_soc) || ((state->identity.version != SOC_7090_P1G_21R1) && (state->identity.version != SOC_7090_P1G_11R1))) { dprintk("%s() function can only be used for dib7090P\n", __func__); return -ENODEV; } if (cfg_sensitivity) state->rf_ramp = rf_ramp_pwm_cband_7090e_sensitivity; else state->rf_ramp = rf_ramp_pwm_cband_7090e_aci; dib0090_pwm_gain_reset(fe); return 0; } EXPORT_SYMBOL(dib0090_update_rframp_7090); static const u16 dib0090_defaults[] = { 25, 0x01, 0x0000, 0x99a0, 0x6008, 0x0000, 0x8bcb, 0x0000, 0x0405, 0x0000, 0x0000, 0x0000, 0xb802, 0x0300, 0x2d12, 0xbac0, 0x7c00, 0xdbb9, 0x0954, 0x0743, 0x8000, 0x0001, 0x0040, 0x0100, 0x0000, 0xe910, 0x149e, 1, 0x1c, 0xff2d, 1, 0x39, 0x0000, 2, 0x1e, 0x07FF, 0x0007, 1, 0x24, EN_UHF | EN_CRYSTAL, 2, 0x3c, 0x3ff, 0x111, 0 }; static const u16 dib0090_p1g_additionnal_defaults[] = { 1, 0x05, 0xabcd, 1, 0x11, 0x00b4, 1, 0x1c, 0xfffd, 1, 0x40, 0x108, 0 }; static void dib0090_set_default_config(struct dib0090_state *state, const u16 * n) { u16 l, r; l = pgm_read_word(n++); while (l) { r = pgm_read_word(n++); do { dib0090_write_reg(state, r, pgm_read_word(n++)); r++; } while (--l); l = pgm_read_word(n++); } } #define CAP_VALUE_MIN (u8) 9 #define CAP_VALUE_MAX (u8) 40 #define HR_MIN (u8) 25 #define HR_MAX (u8) 40 #define POLY_MIN (u8) 0 #define POLY_MAX (u8) 8 static void dib0090_set_EFUSE(struct dib0090_state *state) { u8 c, h, n; u16 e2, e4; u16 cal; e2 = dib0090_read_reg(state, 0x26); e4 = dib0090_read_reg(state, 0x28); if ((state->identity.version == P1D_E_F) || (state->identity.version == P1G) || (e2 == 0xffff)) { dib0090_write_reg(state, 0x22, 0x10); cal = (dib0090_read_reg(state, 0x22) >> 6) & 0x3ff; if ((cal < 670) || (cal == 1023)) cal = 850; n = 165 - ((cal * 10)>>6) ; e2 = e4 = (3<<12) | (34<<6) | (n); } if (e2 != e4) e2 &= e4; /* Remove the redundancy */ if (e2 != 0xffff) { c = e2 & 0x3f; n = (e2 >> 12) & 0xf; h = (e2 >> 6) & 0x3f; if ((c >= CAP_VALUE_MAX) || (c <= CAP_VALUE_MIN)) c = 32; else c += 14; if ((h >= HR_MAX) || (h <= HR_MIN)) h = 34; if ((n >= POLY_MAX) || (n <= POLY_MIN)) n = 3; dib0090_write_reg(state, 0x13, (h << 10)); e2 = (n << 11) | ((h >> 2)<<6) | c; dib0090_write_reg(state, 0x2, e2); /* Load the BB_2 */ } } static int dib0090_reset(struct dvb_frontend *fe) { struct dib0090_state *state = fe->tuner_priv; dib0090_reset_digital(fe, state->config); if (dib0090_identify(fe) < 0) return -EIO; #ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT if (!(state->identity.version & 0x1)) /* it is P1B - reset is already done */ return 0; #endif if (!state->identity.in_soc) { if ((dib0090_read_reg(state, 0x1a) >> 5) & 0x2) dib0090_write_reg(state, 0x1b, (EN_IQADC | EN_BB | EN_BIAS | EN_DIGCLK | EN_PLL | EN_CRYSTAL)); else dib0090_write_reg(state, 0x1b, (EN_DIGCLK | EN_PLL | EN_CRYSTAL)); } dib0090_set_default_config(state, dib0090_defaults); if (state->identity.in_soc) dib0090_write_reg(state, 0x18, 0x2910); /* charge pump current = 0 */ if (state->identity.p1g) dib0090_set_default_config(state, dib0090_p1g_additionnal_defaults); /* Update the efuse : Only available for KROSUS > P1C and SOC as well*/ if (((state->identity.version & 0x1f) >= P1D_E_F) || (state->identity.in_soc)) dib0090_set_EFUSE(state); /* Congigure in function of the crystal */ if (state->config->force_crystal_mode != 0) dib0090_write_reg(state, 0x14, state->config->force_crystal_mode & 3); else if (state->config->io.clock_khz >= 24000) dib0090_write_reg(state, 0x14, 1); else dib0090_write_reg(state, 0x14, 2); dprintk("Pll lock : %d\n", (dib0090_read_reg(state, 0x1a) >> 11) & 0x1); state->calibrate = DC_CAL | WBD_CAL | TEMP_CAL; /* enable iq-offset-calibration and wbd-calibration when tuning next time */ return 0; } #define steps(u) (((u) > 15) ? ((u)-16) : (u)) #define INTERN_WAIT 10 static int dib0090_get_offset(struct dib0090_state *state, enum frontend_tune_state *tune_state) { int ret = INTERN_WAIT * 10; switch (*tune_state) { case CT_TUNER_STEP_2: /* Turns to positive */ dib0090_write_reg(state, 0x1f, 0x7); *tune_state = CT_TUNER_STEP_3; break; case CT_TUNER_STEP_3: state->adc_diff = dib0090_read_reg(state, 0x1d); /* Turns to negative */ dib0090_write_reg(state, 0x1f, 0x4); *tune_state = CT_TUNER_STEP_4; break; case CT_TUNER_STEP_4: state->adc_diff -= dib0090_read_reg(state, 0x1d); *tune_state = CT_TUNER_STEP_5; ret = 0; break; default: break; } return ret; } struct dc_calibration { u8 addr; u8 offset; u8 pga:1; u16 bb1; u8 i:1; }; static const struct dc_calibration dc_table[] = { /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */ {0x06, 5, 1, (1 << 13) | (0 << 8) | (26 << 3), 1}, {0x07, 11, 1, (1 << 13) | (0 << 8) | (26 << 3), 0}, /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */ {0x06, 0, 0, (1 << 13) | (29 << 8) | (26 << 3), 1}, {0x06, 10, 0, (1 << 13) | (29 << 8) | (26 << 3), 0}, {0}, }; static const struct dc_calibration dc_p1g_table[] = { /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */ /* addr ; trim reg offset ; pga ; CTRL_BB1 value ; i or q */ {0x06, 5, 1, (1 << 13) | (0 << 8) | (15 << 3), 1}, {0x07, 11, 1, (1 << 13) | (0 << 8) | (15 << 3), 0}, /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */ {0x06, 0, 0, (1 << 13) | (29 << 8) | (15 << 3), 1}, {0x06, 10, 0, (1 << 13) | (29 << 8) | (15 << 3), 0}, {0}, }; static void dib0090_set_trim(struct dib0090_state *state) { u16 *val; if (state->dc->addr == 0x07) val = &state->bb7; else val = &state->bb6; *val &= ~(0x1f << state->dc->offset); *val |= state->step << state->dc->offset; dib0090_write_reg(state, state->dc->addr, *val); } static int dib0090_dc_offset_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state) { int ret = 0; u16 reg; switch (*tune_state) { case CT_TUNER_START: dprintk("Start DC offset calibration"); /* force vcm2 = 0.8V */ state->bb6 = 0; state->bb7 = 0x040d; /* the LNA AND LO are off */ reg = dib0090_read_reg(state, 0x24) & 0x0ffb; /* shutdown lna and lo */ dib0090_write_reg(state, 0x24, reg); state->wbdmux = dib0090_read_reg(state, 0x10); dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x7 << 3) | 0x3); dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14)); state->dc = dc_table; if (state->identity.p1g) state->dc = dc_p1g_table; fallthrough; case CT_TUNER_STEP_0: dprintk("Start/continue DC calibration for %s path\n", (state->dc->i == 1) ? "I" : "Q"); dib0090_write_reg(state, 0x01, state->dc->bb1); dib0090_write_reg(state, 0x07, state->bb7 | (state->dc->i << 7)); state->step = 0; state->min_adc_diff = 1023; *tune_state = CT_TUNER_STEP_1; ret = 50; break; case CT_TUNER_STEP_1: dib0090_set_trim(state); *tune_state = CT_TUNER_STEP_2; break; case CT_TUNER_STEP_2: case CT_TUNER_STEP_3: case CT_TUNER_STEP_4: ret = dib0090_get_offset(state, tune_state); break; case CT_TUNER_STEP_5: /* found an offset */ dprintk("adc_diff = %d, current step= %d\n", (u32) state->adc_diff, state->step); if (state->step == 0 && state->adc_diff < 0) { state->min_adc_diff = -1023; dprintk("Change of sign of the minimum adc diff\n"); } dprintk("adc_diff = %d, min_adc_diff = %d current_step = %d\n", state->adc_diff, state->min_adc_diff, state->step); /* first turn for this frequency */ if (state->step == 0) { if (state->dc->pga && state->adc_diff < 0) state->step = 0x10; if (state->dc->pga == 0 && state->adc_diff > 0) state->step = 0x10; } /* Look for a change of Sign in the Adc_diff.min_adc_diff is used to STORE the setp N-1 */ if ((state->adc_diff & 0x8000) == (state->min_adc_diff & 0x8000) && steps(state->step) < 15) { /* stop search when the delta the sign is changing and Steps =15 and Step=0 is force for continuance */ state->step++; state->min_adc_diff = state->adc_diff; *tune_state = CT_TUNER_STEP_1; } else { /* the minimum was what we have seen in the step before */ if (abs(state->adc_diff) > abs(state->min_adc_diff)) { dprintk("Since adc_diff N = %d > adc_diff step N-1 = %d, Come back one step\n", state->adc_diff, state->min_adc_diff); state->step--; } dib0090_set_trim(state); dprintk("BB Offset Cal, BBreg=%u,Offset=%d,Value Set=%d\n", state->dc->addr, state->adc_diff, state->step); state->dc++; if (state->dc->addr == 0) /* done */ *tune_state = CT_TUNER_STEP_6; else *tune_state = CT_TUNER_STEP_0; } break; case CT_TUNER_STEP_6: dib0090_write_reg(state, 0x07, state->bb7 & ~0x0008); dib0090_write_reg(state, 0x1f, 0x7); *tune_state = CT_TUNER_START; /* reset done -> real tuning can now begin */ state->calibrate &= ~DC_CAL; break; default: break; } return ret; } static int dib0090_wbd_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state) { u8 wbd_gain; const struct dib0090_wbd_slope *wbd = state->current_wbd_table; switch (*tune_state) { case CT_TUNER_START: while (state->current_rf / 1000 > wbd->max_freq) wbd++; if (wbd->wbd_gain != 0) wbd_gain = wbd->wbd_gain; else { wbd_gain = 4; #if defined(CONFIG_BAND_LBAND) || defined(CONFIG_BAND_SBAND) if ((state->current_band == BAND_LBAND) || (state->current_band == BAND_SBAND)) wbd_gain = 2; #endif } if (wbd_gain == state->wbd_calibration_gain) { /* the WBD calibration has already been done */ *tune_state = CT_TUNER_START; state->calibrate &= ~WBD_CAL; return 0; } dib0090_write_reg(state, 0x10, 0x1b81 | (1 << 10) | (wbd_gain << 13) | (1 << 3)); dib0090_write_reg(state, 0x24, ((EN_UHF & 0x0fff) | (1 << 1))); *tune_state = CT_TUNER_STEP_0; state->wbd_calibration_gain = wbd_gain; return 90; /* wait for the WBDMUX to switch and for the ADC to sample */ case CT_TUNER_STEP_0: state->wbd_offset = dib0090_get_slow_adc_val(state); dprintk("WBD calibration offset = %d\n", state->wbd_offset); *tune_state = CT_TUNER_START; /* reset done -> real tuning can now begin */ state->calibrate &= ~WBD_CAL; break; default: break; } return 0; } static void dib0090_set_bandwidth(struct dib0090_state *state) { u16 tmp; if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 5000) tmp = (3 << 14); else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 6000) tmp = (2 << 14); else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 7000) tmp = (1 << 14); else tmp = (0 << 14); state->bb_1_def &= 0x3fff; state->bb_1_def |= tmp; dib0090_write_reg(state, 0x01, state->bb_1_def); /* be sure that we have the right bb-filter */ dib0090_write_reg(state, 0x03, 0x6008); /* = 0x6008 : vcm3_trim = 1 ; filter2_gm1_trim = 8 ; filter2_cutoff_freq = 0 */ dib0090_write_reg(state, 0x04, 0x1); /* 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast */ if (state->identity.in_soc) { dib0090_write_reg(state, 0x05, 0x9bcf); /* attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 1 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 15 */ } else { dib0090_write_reg(state, 0x02, (5 << 11) | (8 << 6) | (22 & 0x3f)); /* 22 = cap_value */ dib0090_write_reg(state, 0x05, 0xabcd); /* = 0xabcd : attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 2 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 13 */ } } static const struct dib0090_pll dib0090_pll_table[] = { #ifdef CONFIG_BAND_CBAND {56000, 0, 9, 48, 6}, {70000, 1, 9, 48, 6}, {87000, 0, 8, 32, 4}, {105000, 1, 8, 32, 4}, {115000, 0, 7, 24, 6}, {140000, 1, 7, 24, 6}, {170000, 0, 6, 16, 4}, #endif #ifdef CONFIG_BAND_VHF {200000, 1, 6, 16, 4}, {230000, 0, 5, 12, 6}, {280000, 1, 5, 12, 6}, {340000, 0, 4, 8, 4}, {380000, 1, 4, 8, 4}, {450000, 0, 3, 6, 6}, #endif #ifdef CONFIG_BAND_UHF {580000, 1, 3, 6, 6}, {700000, 0, 2, 4, 4}, {860000, 1, 2, 4, 4}, #endif #ifdef CONFIG_BAND_LBAND {1800000, 1, 0, 2, 4}, #endif #ifdef CONFIG_BAND_SBAND {2900000, 0, 14, 1, 4}, #endif }; static const struct dib0090_tuning dib0090_tuning_table_fm_vhf_on_cband[] = { #ifdef CONFIG_BAND_CBAND {184000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, {227000, 4, 3, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, {380000, 4, 7, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, #endif #ifdef CONFIG_BAND_UHF {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, #endif #ifdef CONFIG_BAND_LBAND {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, #endif #ifdef CONFIG_BAND_SBAND {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD}, {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD}, #endif }; static const struct dib0090_tuning dib0090_tuning_table[] = { #ifdef CONFIG_BAND_CBAND {170000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, #endif #ifdef CONFIG_BAND_VHF {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, #endif #ifdef CONFIG_BAND_UHF {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, #endif #ifdef CONFIG_BAND_LBAND {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, #endif #ifdef CONFIG_BAND_SBAND {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD}, {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD}, #endif }; static const struct dib0090_tuning dib0090_p1g_tuning_table[] = { #ifdef CONFIG_BAND_CBAND {170000, 4, 1, 0x820f, 0x300, 0x2d22, 0x82cb, EN_CAB}, #endif #ifdef CONFIG_BAND_VHF {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, #endif #ifdef CONFIG_BAND_UHF {510000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {540000, 2, 1, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {600000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {630000, 2, 4, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {680000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {720000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, #endif #ifdef CONFIG_BAND_LBAND {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, #endif #ifdef CONFIG_BAND_SBAND {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD}, {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD}, #endif }; static const struct dib0090_pll dib0090_p1g_pll_table[] = { #ifdef CONFIG_BAND_CBAND {57000, 0, 11, 48, 6}, {70000, 1, 11, 48, 6}, {86000, 0, 10, 32, 4}, {105000, 1, 10, 32, 4}, {115000, 0, 9, 24, 6}, {140000, 1, 9, 24, 6}, {170000, 0, 8, 16, 4}, #endif #ifdef CONFIG_BAND_VHF {200000, 1, 8, 16, 4}, {230000, 0, 7, 12, 6}, {280000, 1, 7, 12, 6}, {340000, 0, 6, 8, 4}, {380000, 1, 6, 8, 4}, {455000, 0, 5, 6, 6}, #endif #ifdef CONFIG_BAND_UHF {580000, 1, 5, 6, 6}, {680000, 0, 4, 4, 4}, {860000, 1, 4, 4, 4}, #endif #ifdef CONFIG_BAND_LBAND {1800000, 1, 2, 2, 4}, #endif #ifdef CONFIG_BAND_SBAND {2900000, 0, 1, 1, 6}, #endif }; static const struct dib0090_tuning dib0090_p1g_tuning_table_fm_vhf_on_cband[] = { #ifdef CONFIG_BAND_CBAND {184000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB}, {227000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB}, {380000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB}, #endif #ifdef CONFIG_BAND_UHF {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, #endif #ifdef CONFIG_BAND_LBAND {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, #endif #ifdef CONFIG_BAND_SBAND {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD}, {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD}, #endif }; static const struct dib0090_tuning dib0090_tuning_table_cband_7090[] = { #ifdef CONFIG_BAND_CBAND {300000, 4, 3, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB}, {380000, 4, 10, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB}, {570000, 4, 10, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB}, {858000, 4, 5, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB}, #endif }; static const struct dib0090_tuning dib0090_tuning_table_cband_7090e_sensitivity[] = { #ifdef CONFIG_BAND_CBAND { 300000, 0 , 3, 0x8105, 0x2c0, 0x2d12, 0xb84e, EN_CAB }, { 380000, 0 , 10, 0x810F, 0x2c0, 0x2d12, 0xb84e, EN_CAB }, { 600000, 0 , 10, 0x815E, 0x280, 0x2d12, 0xb84e, EN_CAB }, { 660000, 0 , 5, 0x85E3, 0x280, 0x2d12, 0xb84e, EN_CAB }, { 720000, 0 , 5, 0x852E, 0x280, 0x2d12, 0xb84e, EN_CAB }, { 860000, 0 , 4, 0x85E5, 0x280, 0x2d12, 0xb84e, EN_CAB }, #endif }; int dib0090_update_tuning_table_7090(struct dvb_frontend *fe, u8 cfg_sensitivity) { struct dib0090_state *state = fe->tuner_priv; const struct dib0090_tuning *tune = dib0090_tuning_table_cband_7090e_sensitivity; static const struct dib0090_tuning dib0090_tuning_table_cband_7090e_aci[] = { { 300000, 0 , 3, 0x8165, 0x2c0, 0x2d12, 0xb84e, EN_CAB }, { 650000, 0 , 4, 0x815B, 0x280, 0x2d12, 0xb84e, EN_CAB }, { 860000, 0 , 5, 0x84EF, 0x280, 0x2d12, 0xb84e, EN_CAB }, }; if ((!state->identity.p1g) || (!state->identity.in_soc) || ((state->identity.version != SOC_7090_P1G_21R1) && (state->identity.version != SOC_7090_P1G_11R1))) { dprintk("%s() function can only be used for dib7090\n", __func__); return -ENODEV; } if (cfg_sensitivity) tune = dib0090_tuning_table_cband_7090e_sensitivity; else tune = dib0090_tuning_table_cband_7090e_aci; while (state->rf_request > tune->max_freq) tune++; dib0090_write_reg(state, 0x09, (dib0090_read_reg(state, 0x09) & 0x8000) | (tune->lna_bias & 0x7fff)); dib0090_write_reg(state, 0x0b, (dib0090_read_reg(state, 0x0b) & 0xf83f) | ((tune->lna_tune << 6) & 0x07c0)); return 0; } EXPORT_SYMBOL(dib0090_update_tuning_table_7090); static int dib0090_captrim_search(struct dib0090_state *state, enum frontend_tune_state *tune_state) { int ret = 0; u16 lo4 = 0xe900; s16 adc_target; u16 adc; s8 step_sign; u8 force_soft_search = 0; if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1) force_soft_search = 1; if (*tune_state == CT_TUNER_START) { dprintk("Start Captrim search : %s\n", (force_soft_search == 1) ? "FORCE SOFT SEARCH" : "AUTO"); dib0090_write_reg(state, 0x10, 0x2B1); dib0090_write_reg(state, 0x1e, 0x0032); if (!state->tuner_is_tuned) { /* prepare a complete captrim */ if (!state->identity.p1g || force_soft_search) state->step = state->captrim = state->fcaptrim = 64; state->current_rf = state->rf_request; } else { /* we are already tuned to this frequency - the configuration is correct */ if (!state->identity.p1g || force_soft_search) { /* do a minimal captrim even if the frequency has not changed */ state->step = 4; state->captrim = state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7f; } } state->adc_diff = 3000; *tune_state = CT_TUNER_STEP_0; } else if (*tune_state == CT_TUNER_STEP_0) { if (state->identity.p1g && !force_soft_search) { u8 ratio = 31; dib0090_write_reg(state, 0x40, (3 << 7) | (ratio << 2) | (1 << 1) | 1); dib0090_read_reg(state, 0x40); ret = 50; } else { state->step /= 2; dib0090_write_reg(state, 0x18, lo4 | state->captrim); if (state->identity.in_soc) ret = 25; } *tune_state = CT_TUNER_STEP_1; } else if (*tune_state == CT_TUNER_STEP_1) { if (state->identity.p1g && !force_soft_search) { dib0090_write_reg(state, 0x40, 0x18c | (0 << 1) | 0); dib0090_read_reg(state, 0x40); state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7F; dprintk("***Final Captrim= 0x%x\n", state->fcaptrim); *tune_state = CT_TUNER_STEP_3; } else { /* MERGE for all krosus before P1G */ adc = dib0090_get_slow_adc_val(state); dprintk("CAPTRIM=%d; ADC = %d (ADC) & %dmV\n", (u32) state->captrim, (u32) adc, (u32) (adc) * (u32) 1800 / (u32) 1024); if (state->rest == 0 || state->identity.in_soc) { /* Just for 8090P SOCS where auto captrim HW bug : TO CHECK IN ACI for SOCS !!! if 400 for 8090p SOC => tune issue !!! */ adc_target = 200; } else adc_target = 400; if (adc >= adc_target) { adc -= adc_target; step_sign = -1; } else { adc = adc_target - adc; step_sign = 1; } if (adc < state->adc_diff) { dprintk("CAPTRIM=%d is closer to target (%d/%d)\n", (u32) state->captrim, (u32) adc, (u32) state->adc_diff); state->adc_diff = adc; state->fcaptrim = state->captrim; } state->captrim += step_sign * state->step; if (state->step >= 1) *tune_state = CT_TUNER_STEP_0; else *tune_state = CT_TUNER_STEP_2; ret = 25; } } else if (*tune_state == CT_TUNER_STEP_2) { /* this step is only used by krosus < P1G */ /*write the final cptrim config */ dib0090_write_reg(state, 0x18, lo4 | state->fcaptrim); *tune_state = CT_TUNER_STEP_3; } else if (*tune_state == CT_TUNER_STEP_3) { state->calibrate &= ~CAPTRIM_CAL; *tune_state = CT_TUNER_STEP_0; } return ret; } static int dib0090_get_temperature(struct dib0090_state *state, enum frontend_tune_state *tune_state) { int ret = 15; s16 val; switch (*tune_state) { case CT_TUNER_START: state->wbdmux = dib0090_read_reg(state, 0x10); dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x8 << 3)); state->bias = dib0090_read_reg(state, 0x13); dib0090_write_reg(state, 0x13, state->bias | (0x3 << 8)); *tune_state = CT_TUNER_STEP_0; /* wait for the WBDMUX to switch and for the ADC to sample */ break; case CT_TUNER_STEP_0: state->adc_diff = dib0090_get_slow_adc_val(state); dib0090_write_reg(state, 0x13, (state->bias & ~(0x3 << 8)) | (0x2 << 8)); *tune_state = CT_TUNER_STEP_1; break; case CT_TUNER_STEP_1: val = dib0090_get_slow_adc_val(state); state->temperature = ((s16) ((val - state->adc_diff) * 180) >> 8) + 55; dprintk("temperature: %d C\n", state->temperature - 30); *tune_state = CT_TUNER_STEP_2; break; case CT_TUNER_STEP_2: dib0090_write_reg(state, 0x13, state->bias); dib0090_write_reg(state, 0x10, state->wbdmux); /* write back original WBDMUX */ *tune_state = CT_TUNER_START; state->calibrate &= ~TEMP_CAL; if (state->config->analog_output == 0) dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14)); break; default: ret = 0; break; } return ret; } #define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */ static int dib0090_tune(struct dvb_frontend *fe) { struct dib0090_state *state = fe->tuner_priv; const struct dib0090_tuning *tune = state->current_tune_table_index; const struct dib0090_pll *pll = state->current_pll_table_index; enum frontend_tune_state *tune_state = &state->tune_state; u16 lo5, lo6, Den, tmp; u32 FBDiv, Rest, FREF, VCOF_kHz = 0; int ret = 10; /* 1ms is the default delay most of the time */ u8 c, i; /************************* VCO ***************************/ /* Default values for FG */ /* from these are needed : */ /* Cp,HFdiv,VCOband,SD,Num,Den,FB and REFDiv */ /* in any case we first need to do a calibration if needed */ if (*tune_state == CT_TUNER_START) { /* deactivate DataTX before some calibrations */ if (state->calibrate & (DC_CAL | TEMP_CAL | WBD_CAL)) dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14)); else /* Activate DataTX in case a calibration has been done before */ if (state->config->analog_output == 0) dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14)); } if (state->calibrate & DC_CAL) return dib0090_dc_offset_calibration(state, tune_state); else if (state->calibrate & WBD_CAL) { if (state->current_rf == 0) state->current_rf = state->fe->dtv_property_cache.frequency / 1000; return dib0090_wbd_calibration(state, tune_state); } else if (state->calibrate & TEMP_CAL) return dib0090_get_temperature(state, tune_state); else if (state->calibrate & CAPTRIM_CAL) return dib0090_captrim_search(state, tune_state); if (*tune_state == CT_TUNER_START) { /* if soc and AGC pwm control, disengage mux to be able to R/W access to 0x01 register to set the right filter (cutoff_freq_select) during the tune sequence, otherwise, SOC SERPAR error when accessing to 0x01 */ if (state->config->use_pwm_agc && state->identity.in_soc) { tmp = dib0090_read_reg(state, 0x39); if ((tmp >> 10) & 0x1) dib0090_write_reg(state, 0x39, tmp & ~(1 << 10)); } state->current_band = (u8) BAND_OF_FREQUENCY(state->fe->dtv_property_cache.frequency / 1000); state->rf_request = state->fe->dtv_property_cache.frequency / 1000 + (state->current_band == BAND_UHF ? state->config->freq_offset_khz_uhf : state->config-> freq_offset_khz_vhf); /* in ISDB-T 1seg we shift tuning frequency */ if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT && state->fe->dtv_property_cache.isdbt_sb_mode == 1 && state->fe->dtv_property_cache.isdbt_partial_reception == 0)) { const struct dib0090_low_if_offset_table *LUT_offset = state->config->low_if; u8 found_offset = 0; u32 margin_khz = 100; if (LUT_offset != NULL) { while (LUT_offset->RF_freq != 0xffff) { if (((state->rf_request > (LUT_offset->RF_freq - margin_khz)) && (state->rf_request < (LUT_offset->RF_freq + margin_khz))) && LUT_offset->std == state->fe->dtv_property_cache.delivery_system) { state->rf_request += LUT_offset->offset_khz; found_offset = 1; break; } LUT_offset++; } } if (found_offset == 0) state->rf_request += 400; } if (state->current_rf != state->rf_request || (state->current_standard != state->fe->dtv_property_cache.delivery_system)) { state->tuner_is_tuned = 0; state->current_rf = 0; state->current_standard = 0; tune = dib0090_tuning_table; if (state->identity.p1g) tune = dib0090_p1g_tuning_table; tmp = (state->identity.version >> 5) & 0x7; if (state->identity.in_soc) { if (state->config->force_cband_input) { /* Use the CBAND input for all band */ if (state->current_band & BAND_CBAND || state->current_band & BAND_FM || state->current_band & BAND_VHF || state->current_band & BAND_UHF) { state->current_band = BAND_CBAND; if (state->config->is_dib7090e) tune = dib0090_tuning_table_cband_7090e_sensitivity; else tune = dib0090_tuning_table_cband_7090; } } else { /* Use the CBAND input for all band under UHF */ if (state->current_band & BAND_CBAND || state->current_band & BAND_FM || state->current_band & BAND_VHF) { state->current_band = BAND_CBAND; if (state->config->is_dib7090e) tune = dib0090_tuning_table_cband_7090e_sensitivity; else tune = dib0090_tuning_table_cband_7090; } } } else if (tmp == 0x4 || tmp == 0x7) { /* CBAND tuner version for VHF */ if (state->current_band == BAND_FM || state->current_band == BAND_CBAND || state->current_band == BAND_VHF) { state->current_band = BAND_CBAND; /* Force CBAND */ tune = dib0090_tuning_table_fm_vhf_on_cband; if (state->identity.p1g) tune = dib0090_p1g_tuning_table_fm_vhf_on_cband; } } pll = dib0090_pll_table; if (state->identity.p1g) pll = dib0090_p1g_pll_table; /* Look for the interval */ while (state->rf_request > tune->max_freq) tune++; while (state->rf_request > pll->max_freq) pll++; state->current_tune_table_index = tune; state->current_pll_table_index = pll; dib0090_write_reg(state, 0x0b, 0xb800 | (tune->switch_trim)); VCOF_kHz = (pll->hfdiv * state->rf_request) * 2; FREF = state->config->io.clock_khz; if (state->config->fref_clock_ratio != 0) FREF /= state->config->fref_clock_ratio; FBDiv = (VCOF_kHz / pll->topresc / FREF); Rest = (VCOF_kHz / pll->topresc) - FBDiv * FREF; if (Rest < LPF) Rest = 0; else if (Rest < 2 * LPF) Rest = 2 * LPF; else if (Rest > (FREF - LPF)) { Rest = 0; FBDiv += 1; } else if (Rest > (FREF - 2 * LPF)) Rest = FREF - 2 * LPF; Rest = (Rest * 6528) / (FREF / 10); state->rest = Rest; /* external loop filter, otherwise: * lo5 = (0 << 15) | (0 << 12) | (0 << 11) | (3 << 9) | (4 << 6) | (3 << 4) | 4; * lo6 = 0x0e34 */ if (Rest == 0) { if (pll->vco_band) lo5 = 0x049f; else lo5 = 0x041f; } else { if (pll->vco_band) lo5 = 0x049e; else if (state->config->analog_output) lo5 = 0x041d; else lo5 = 0x041c; } if (state->identity.p1g) { /* Bias is done automatically in P1G */ if (state->identity.in_soc) { if (state->identity.version == SOC_8090_P1G_11R1) lo5 = 0x46f; else lo5 = 0x42f; } else lo5 = 0x42c; } lo5 |= (pll->hfdiv_code << 11) | (pll->vco_band << 7); /* bit 15 is the split to the slave, we do not do it here */ if (!state->config->io.pll_int_loop_filt) { if (state->identity.in_soc) lo6 = 0xff98; else if (state->identity.p1g || (Rest == 0)) lo6 = 0xfff8; else lo6 = 0xff28; } else lo6 = (state->config->io.pll_int_loop_filt << 3); Den = 1; if (Rest > 0) { lo6 |= (1 << 2) | 2; Den = 255; } dib0090_write_reg(state, 0x15, (u16) FBDiv); if (state->config->fref_clock_ratio != 0) dib0090_write_reg(state, 0x16, (Den << 8) | state->config->fref_clock_ratio); else dib0090_write_reg(state, 0x16, (Den << 8) | 1); dib0090_write_reg(state, 0x17, (u16) Rest); dib0090_write_reg(state, 0x19, lo5); dib0090_write_reg(state, 0x1c, lo6); lo6 = tune->tuner_enable; if (state->config->analog_output) lo6 = (lo6 & 0xff9f) | 0x2; dib0090_write_reg(state, 0x24, lo6 | EN_LO | state->config->use_pwm_agc * EN_CRYSTAL); } state->current_rf = state->rf_request; state->current_standard = state->fe->dtv_property_cache.delivery_system; ret = 20; state->calibrate = CAPTRIM_CAL; /* captrim search now */ } else if (*tune_state == CT_TUNER_STEP_0) { /* Warning : because of captrim cal, if you change this step, change it also in _cal.c file because it is the step following captrim cal state machine */ const struct dib0090_wbd_slope *wbd = state->current_wbd_table; while (state->current_rf / 1000 > wbd->max_freq) wbd++; dib0090_write_reg(state, 0x1e, 0x07ff); dprintk("Final Captrim: %d\n", (u32) state->fcaptrim); dprintk("HFDIV code: %d\n", (u32) pll->hfdiv_code); dprintk("VCO = %d\n", (u32) pll->vco_band); dprintk("VCOF in kHz: %d ((%d*%d) << 1))\n", (u32) ((pll->hfdiv * state->rf_request) * 2), (u32) pll->hfdiv, (u32) state->rf_request); dprintk("REFDIV: %d, FREF: %d\n", (u32) 1, (u32) state->config->io.clock_khz); dprintk("FBDIV: %d, Rest: %d\n", (u32) dib0090_read_reg(state, 0x15), (u32) dib0090_read_reg(state, 0x17)); dprintk("Num: %d, Den: %d, SD: %d\n", (u32) dib0090_read_reg(state, 0x17), (u32) (dib0090_read_reg(state, 0x16) >> 8), (u32) dib0090_read_reg(state, 0x1c) & 0x3); #define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */ c = 4; i = 3; if (wbd->wbd_gain != 0) c = wbd->wbd_gain; state->wbdmux = (c << 13) | (i << 11) | (WBD | (state->config->use_pwm_agc << 1)); dib0090_write_reg(state, 0x10, state->wbdmux); if ((tune->tuner_enable == EN_CAB) && state->identity.p1g) { dprintk("P1G : The cable band is selected and lna_tune = %d\n", tune->lna_tune); dib0090_write_reg(state, 0x09, tune->lna_bias); dib0090_write_reg(state, 0x0b, 0xb800 | (tune->lna_tune << 6) | (tune->switch_trim)); } else dib0090_write_reg(state, 0x09, (tune->lna_tune << 5) | tune->lna_bias); dib0090_write_reg(state, 0x0c, tune->v2i); dib0090_write_reg(state, 0x0d, tune->mix); dib0090_write_reg(state, 0x0e, tune->load); *tune_state = CT_TUNER_STEP_1; } else if (*tune_state == CT_TUNER_STEP_1) { /* initialize the lt gain register */ state->rf_lt_def = 0x7c00; dib0090_set_bandwidth(state); state->tuner_is_tuned = 1; state->calibrate |= WBD_CAL; state->calibrate |= TEMP_CAL; *tune_state = CT_TUNER_STOP; } else ret = FE_CALLBACK_TIME_NEVER; return ret; } static void dib0090_release(struct dvb_frontend *fe) { kfree(fe->tuner_priv); fe->tuner_priv = NULL; } enum frontend_tune_state dib0090_get_tune_state(struct dvb_frontend *fe) { struct dib0090_state *state = fe->tuner_priv; return state->tune_state; } EXPORT_SYMBOL(dib0090_get_tune_state); int dib0090_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state) { struct dib0090_state *state = fe->tuner_priv; state->tune_state = tune_state; return 0; } EXPORT_SYMBOL(dib0090_set_tune_state); static int dib0090_get_frequency(struct dvb_frontend *fe, u32 * frequency) { struct dib0090_state *state = fe->tuner_priv; *frequency = 1000 * state->current_rf; return 0; } static int dib0090_set_params(struct dvb_frontend *fe) { struct dib0090_state *state = fe->tuner_priv; u32 ret; state->tune_state = CT_TUNER_START; do { ret = dib0090_tune(fe); if (ret == FE_CALLBACK_TIME_NEVER) break; /* * Despite dib0090_tune returns time at a 0.1 ms range, * the actual sleep time depends on CONFIG_HZ. The worse case * is when CONFIG_HZ=100. In such case, the minimum granularity * is 10ms. On some real field tests, the tuner sometimes don't * lock when this timer is lower than 10ms. So, enforce a 10ms * granularity and use usleep_range() instead of msleep(). */ ret = 10 * (ret + 99)/100; usleep_range(ret * 1000, (ret + 1) * 1000); } while (state->tune_state != CT_TUNER_STOP); return 0; } static const struct dvb_tuner_ops dib0090_ops = { .info = { .name = "DiBcom DiB0090", .frequency_min_hz = 45 * MHz, .frequency_max_hz = 860 * MHz, .frequency_step_hz = 1 * kHz, }, .release = dib0090_release, .init = dib0090_wakeup, .sleep = dib0090_sleep, .set_params = dib0090_set_params, .get_frequency = dib0090_get_frequency, }; static const struct dvb_tuner_ops dib0090_fw_ops = { .info = { .name = "DiBcom DiB0090", .frequency_min_hz = 45 * MHz, .frequency_max_hz = 860 * MHz, .frequency_step_hz = 1 * kHz, }, .release = dib0090_release, .init = NULL, .sleep = NULL, .set_params = NULL, .get_frequency = NULL, }; static const struct dib0090_wbd_slope dib0090_wbd_table_default[] = { {470, 0, 250, 0, 100, 4}, {860, 51, 866, 21, 375, 4}, {1700, 0, 800, 0, 850, 4}, {2900, 0, 250, 0, 100, 6}, {0xFFFF, 0, 0, 0, 0, 0}, }; struct dvb_frontend *dib0090_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config) { struct dib0090_state *st = kzalloc(sizeof(struct dib0090_state), GFP_KERNEL); if (st == NULL) return NULL; st->config = config; st->i2c = i2c; st->fe = fe; mutex_init(&st->i2c_buffer_lock); fe->tuner_priv = st; if (config->wbd == NULL) st->current_wbd_table = dib0090_wbd_table_default; else st->current_wbd_table = config->wbd; if (dib0090_reset(fe) != 0) goto free_mem; pr_info("DiB0090: successfully identified\n"); memcpy(&fe->ops.tuner_ops, &dib0090_ops, sizeof(struct dvb_tuner_ops)); return fe; free_mem: kfree(st); fe->tuner_priv = NULL; return NULL; } EXPORT_SYMBOL_GPL(dib0090_register); struct dvb_frontend *dib0090_fw_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config) { struct dib0090_fw_state *st = kzalloc(sizeof(struct dib0090_fw_state), GFP_KERNEL); if (st == NULL) return NULL; st->config = config; st->i2c = i2c; st->fe = fe; mutex_init(&st->i2c_buffer_lock); fe->tuner_priv = st; if (dib0090_fw_reset_digital(fe, st->config) != 0) goto free_mem; dprintk("DiB0090 FW: successfully identified\n"); memcpy(&fe->ops.tuner_ops, &dib0090_fw_ops, sizeof(struct dvb_tuner_ops)); return fe; free_mem: kfree(st); fe->tuner_priv = NULL; return NULL; } EXPORT_SYMBOL_GPL(dib0090_fw_register); MODULE_AUTHOR("Patrick Boettcher <patrick.boettcher@posteo.de>"); MODULE_AUTHOR("Olivier Grenie <olivier.grenie@parrot.com>"); MODULE_DESCRIPTION("Driver for the DiBcom 0090 base-band RF Tuner"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1