Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Daniel Scheller | 11219 | 99.67% | 5 | 41.67% |
Nathan Chancellor | 22 | 0.20% | 1 | 8.33% |
Mauro Carvalho Chehab | 9 | 0.08% | 2 | 16.67% |
Gustavo A. R. Silva | 2 | 0.02% | 1 | 8.33% |
Luc Van Oostenryck | 2 | 0.02% | 1 | 8.33% |
caihuoqing | 1 | 0.01% | 1 | 8.33% |
Julia Lawall | 1 | 0.01% | 1 | 8.33% |
Total | 11256 | 12 |
// SPDX-License-Identifier: GPL-2.0 /* * Driver for the MaxLinear MxL5xx family of tuners/demods * * Copyright (C) 2014-2015 Ralph Metzler <rjkm@metzlerbros.de> * Marcus Metzler <mocm@metzlerbros.de> * developed for Digital Devices GmbH * * based on code: * Copyright (c) 2011-2013 MaxLinear, Inc. All rights reserved * which was released under GPL V2 */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/firmware.h> #include <linux/i2c.h> #include <linux/mutex.h> #include <linux/vmalloc.h> #include <asm/div64.h> #include <asm/unaligned.h> #include <media/dvb_frontend.h> #include "mxl5xx.h" #include "mxl5xx_regs.h" #include "mxl5xx_defs.h" #define BYTE0(v) ((v >> 0) & 0xff) #define BYTE1(v) ((v >> 8) & 0xff) #define BYTE2(v) ((v >> 16) & 0xff) #define BYTE3(v) ((v >> 24) & 0xff) static LIST_HEAD(mxllist); struct mxl_base { struct list_head mxllist; struct list_head mxls; u8 adr; struct i2c_adapter *i2c; u32 count; u32 type; u32 sku_type; u32 chipversion; u32 clock; u32 fwversion; u8 *ts_map; u8 can_clkout; u8 chan_bond; u8 demod_num; u8 tuner_num; unsigned long next_tune; struct mutex i2c_lock; struct mutex status_lock; struct mutex tune_lock; u8 buf[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN]; u32 cmd_size; u8 cmd_data[MAX_CMD_DATA]; }; struct mxl { struct list_head mxl; struct mxl_base *base; struct dvb_frontend fe; struct device *i2cdev; u32 demod; u32 tuner; u32 tuner_in_use; u8 xbar[3]; unsigned long tune_time; }; static void convert_endian(u8 flag, u32 size, u8 *d) { u32 i; if (!flag) return; for (i = 0; i < (size & ~3); i += 4) { d[i + 0] ^= d[i + 3]; d[i + 3] ^= d[i + 0]; d[i + 0] ^= d[i + 3]; d[i + 1] ^= d[i + 2]; d[i + 2] ^= d[i + 1]; d[i + 1] ^= d[i + 2]; } switch (size & 3) { case 0: case 1: /* do nothing */ break; case 2: d[i + 0] ^= d[i + 1]; d[i + 1] ^= d[i + 0]; d[i + 0] ^= d[i + 1]; break; case 3: d[i + 0] ^= d[i + 2]; d[i + 2] ^= d[i + 0]; d[i + 0] ^= d[i + 2]; break; } } static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 *data, u32 len) { struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len}; return (i2c_transfer(adap, &msg, 1) == 1) ? 0 : -1; } static int i2c_read(struct i2c_adapter *adap, u8 adr, u8 *data, u32 len) { struct i2c_msg msg = {.addr = adr, .flags = I2C_M_RD, .buf = data, .len = len}; return (i2c_transfer(adap, &msg, 1) == 1) ? 0 : -1; } static int i2cread(struct mxl *state, u8 *data, int len) { return i2c_read(state->base->i2c, state->base->adr, data, len); } static int i2cwrite(struct mxl *state, u8 *data, int len) { return i2c_write(state->base->i2c, state->base->adr, data, len); } static int read_register_unlocked(struct mxl *state, u32 reg, u32 *val) { int stat; u8 data[MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE] = { MXL_HYDRA_PLID_REG_READ, 0x04, GET_BYTE(reg, 0), GET_BYTE(reg, 1), GET_BYTE(reg, 2), GET_BYTE(reg, 3), }; stat = i2cwrite(state, data, MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE); if (stat) dev_err(state->i2cdev, "i2c read error 1\n"); if (!stat) stat = i2cread(state, (u8 *) val, MXL_HYDRA_REG_SIZE_IN_BYTES); le32_to_cpus(val); if (stat) dev_err(state->i2cdev, "i2c read error 2\n"); return stat; } #define DMA_I2C_INTERRUPT_ADDR 0x8000011C #define DMA_INTR_PROT_WR_CMP 0x08 static int send_command(struct mxl *state, u32 size, u8 *buf) { int stat; u32 val, count = 10; mutex_lock(&state->base->i2c_lock); if (state->base->fwversion > 0x02010109) { read_register_unlocked(state, DMA_I2C_INTERRUPT_ADDR, &val); if (DMA_INTR_PROT_WR_CMP & val) dev_info(state->i2cdev, "%s busy\n", __func__); while ((DMA_INTR_PROT_WR_CMP & val) && --count) { mutex_unlock(&state->base->i2c_lock); usleep_range(1000, 2000); mutex_lock(&state->base->i2c_lock); read_register_unlocked(state, DMA_I2C_INTERRUPT_ADDR, &val); } if (!count) { dev_info(state->i2cdev, "%s busy\n", __func__); mutex_unlock(&state->base->i2c_lock); return -EBUSY; } } stat = i2cwrite(state, buf, size); mutex_unlock(&state->base->i2c_lock); return stat; } static int write_register(struct mxl *state, u32 reg, u32 val) { int stat; u8 data[MXL_HYDRA_REG_WRITE_LEN] = { MXL_HYDRA_PLID_REG_WRITE, 0x08, BYTE0(reg), BYTE1(reg), BYTE2(reg), BYTE3(reg), BYTE0(val), BYTE1(val), BYTE2(val), BYTE3(val), }; mutex_lock(&state->base->i2c_lock); stat = i2cwrite(state, data, sizeof(data)); mutex_unlock(&state->base->i2c_lock); if (stat) dev_err(state->i2cdev, "i2c write error\n"); return stat; } static int write_firmware_block(struct mxl *state, u32 reg, u32 size, u8 *reg_data_ptr) { int stat; u8 *buf = state->base->buf; mutex_lock(&state->base->i2c_lock); buf[0] = MXL_HYDRA_PLID_REG_WRITE; buf[1] = size + 4; buf[2] = GET_BYTE(reg, 0); buf[3] = GET_BYTE(reg, 1); buf[4] = GET_BYTE(reg, 2); buf[5] = GET_BYTE(reg, 3); memcpy(&buf[6], reg_data_ptr, size); stat = i2cwrite(state, buf, MXL_HYDRA_I2C_HDR_SIZE + MXL_HYDRA_REG_SIZE_IN_BYTES + size); mutex_unlock(&state->base->i2c_lock); if (stat) dev_err(state->i2cdev, "fw block write failed\n"); return stat; } static int read_register(struct mxl *state, u32 reg, u32 *val) { int stat; u8 data[MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE] = { MXL_HYDRA_PLID_REG_READ, 0x04, GET_BYTE(reg, 0), GET_BYTE(reg, 1), GET_BYTE(reg, 2), GET_BYTE(reg, 3), }; mutex_lock(&state->base->i2c_lock); stat = i2cwrite(state, data, MXL_HYDRA_REG_SIZE_IN_BYTES + MXL_HYDRA_I2C_HDR_SIZE); if (stat) dev_err(state->i2cdev, "i2c read error 1\n"); if (!stat) stat = i2cread(state, (u8 *) val, MXL_HYDRA_REG_SIZE_IN_BYTES); mutex_unlock(&state->base->i2c_lock); le32_to_cpus(val); if (stat) dev_err(state->i2cdev, "i2c read error 2\n"); return stat; } static int read_register_block(struct mxl *state, u32 reg, u32 size, u8 *data) { int stat; u8 *buf = state->base->buf; mutex_lock(&state->base->i2c_lock); buf[0] = MXL_HYDRA_PLID_REG_READ; buf[1] = size + 4; buf[2] = GET_BYTE(reg, 0); buf[3] = GET_BYTE(reg, 1); buf[4] = GET_BYTE(reg, 2); buf[5] = GET_BYTE(reg, 3); stat = i2cwrite(state, buf, MXL_HYDRA_I2C_HDR_SIZE + MXL_HYDRA_REG_SIZE_IN_BYTES); if (!stat) { stat = i2cread(state, data, size); convert_endian(MXL_ENABLE_BIG_ENDIAN, size, data); } mutex_unlock(&state->base->i2c_lock); return stat; } static int read_by_mnemonic(struct mxl *state, u32 reg, u8 lsbloc, u8 numofbits, u32 *val) { u32 data = 0, mask = 0; int stat; stat = read_register(state, reg, &data); if (stat) return stat; mask = MXL_GET_REG_MASK_32(lsbloc, numofbits); data &= mask; data >>= lsbloc; *val = data; return 0; } static int update_by_mnemonic(struct mxl *state, u32 reg, u8 lsbloc, u8 numofbits, u32 val) { u32 data, mask; int stat; stat = read_register(state, reg, &data); if (stat) return stat; mask = MXL_GET_REG_MASK_32(lsbloc, numofbits); data = (data & ~mask) | ((val << lsbloc) & mask); stat = write_register(state, reg, data); return stat; } static int firmware_is_alive(struct mxl *state) { u32 hb0, hb1; if (read_register(state, HYDRA_HEAR_BEAT, &hb0)) return 0; msleep(20); if (read_register(state, HYDRA_HEAR_BEAT, &hb1)) return 0; if (hb1 == hb0) return 0; return 1; } static int init(struct dvb_frontend *fe) { struct dtv_frontend_properties *p = &fe->dtv_property_cache; /* init fe stats */ p->strength.len = 1; p->strength.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->cnr.len = 1; p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->pre_bit_error.len = 1; p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->pre_bit_count.len = 1; p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->post_bit_error.len = 1; p->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->post_bit_count.len = 1; p->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; return 0; } static void release(struct dvb_frontend *fe) { struct mxl *state = fe->demodulator_priv; list_del(&state->mxl); /* Release one frontend, two more shall take its place! */ state->base->count--; if (state->base->count == 0) { list_del(&state->base->mxllist); kfree(state->base); } kfree(state); } static enum dvbfe_algo get_algo(struct dvb_frontend *fe) { return DVBFE_ALGO_HW; } static u32 gold2root(u32 gold) { u32 x, g, tmp = gold; if (tmp >= 0x3ffff) tmp = 0; for (g = 0, x = 1; g < tmp; g++) x = (((x ^ (x >> 7)) & 1) << 17) | (x >> 1); return x; } static int cfg_scrambler(struct mxl *state, u32 gold) { u32 root; u8 buf[26] = { MXL_HYDRA_PLID_CMD_WRITE, 24, 0, MXL_HYDRA_DEMOD_SCRAMBLE_CODE_CMD, 0, 0, state->demod, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, }; root = gold2root(gold); buf[25] = (root >> 24) & 0xff; buf[24] = (root >> 16) & 0xff; buf[23] = (root >> 8) & 0xff; buf[22] = root & 0xff; return send_command(state, sizeof(buf), buf); } static int cfg_demod_abort_tune(struct mxl *state) { struct MXL_HYDRA_DEMOD_ABORT_TUNE_T abort_tune_cmd; u8 cmd_size = sizeof(abort_tune_cmd); u8 cmd_buff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN]; abort_tune_cmd.demod_id = state->demod; BUILD_HYDRA_CMD(MXL_HYDRA_ABORT_TUNE_CMD, MXL_CMD_WRITE, cmd_size, &abort_tune_cmd, cmd_buff); return send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE, &cmd_buff[0]); } static int send_master_cmd(struct dvb_frontend *fe, struct dvb_diseqc_master_cmd *cmd) { /*struct mxl *state = fe->demodulator_priv;*/ return 0; /*CfgDemodAbortTune(state);*/ } static int set_parameters(struct dvb_frontend *fe) { struct mxl *state = fe->demodulator_priv; struct dtv_frontend_properties *p = &fe->dtv_property_cache; struct MXL_HYDRA_DEMOD_PARAM_T demod_chan_cfg; u8 cmd_size = sizeof(demod_chan_cfg); u8 cmd_buff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN]; u32 srange = 10; int stat; if (p->frequency < 950000 || p->frequency > 2150000) return -EINVAL; if (p->symbol_rate < 1000000 || p->symbol_rate > 45000000) return -EINVAL; /* CfgDemodAbortTune(state); */ switch (p->delivery_system) { case SYS_DSS: demod_chan_cfg.standard = MXL_HYDRA_DSS; demod_chan_cfg.roll_off = MXL_HYDRA_ROLLOFF_AUTO; break; case SYS_DVBS: srange = p->symbol_rate / 1000000; if (srange > 10) srange = 10; demod_chan_cfg.standard = MXL_HYDRA_DVBS; demod_chan_cfg.roll_off = MXL_HYDRA_ROLLOFF_0_35; demod_chan_cfg.modulation_scheme = MXL_HYDRA_MOD_QPSK; demod_chan_cfg.pilots = MXL_HYDRA_PILOTS_OFF; break; case SYS_DVBS2: demod_chan_cfg.standard = MXL_HYDRA_DVBS2; demod_chan_cfg.roll_off = MXL_HYDRA_ROLLOFF_AUTO; demod_chan_cfg.modulation_scheme = MXL_HYDRA_MOD_AUTO; demod_chan_cfg.pilots = MXL_HYDRA_PILOTS_AUTO; cfg_scrambler(state, p->scrambling_sequence_index); break; default: return -EINVAL; } demod_chan_cfg.tuner_index = state->tuner; demod_chan_cfg.demod_index = state->demod; demod_chan_cfg.frequency_in_hz = p->frequency * 1000; demod_chan_cfg.symbol_rate_in_hz = p->symbol_rate; demod_chan_cfg.max_carrier_offset_in_mhz = srange; demod_chan_cfg.spectrum_inversion = MXL_HYDRA_SPECTRUM_AUTO; demod_chan_cfg.fec_code_rate = MXL_HYDRA_FEC_AUTO; mutex_lock(&state->base->tune_lock); if (time_after(jiffies + msecs_to_jiffies(200), state->base->next_tune)) while (time_before(jiffies, state->base->next_tune)) usleep_range(10000, 11000); state->base->next_tune = jiffies + msecs_to_jiffies(100); state->tuner_in_use = state->tuner; BUILD_HYDRA_CMD(MXL_HYDRA_DEMOD_SET_PARAM_CMD, MXL_CMD_WRITE, cmd_size, &demod_chan_cfg, cmd_buff); stat = send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE, &cmd_buff[0]); mutex_unlock(&state->base->tune_lock); return stat; } static int enable_tuner(struct mxl *state, u32 tuner, u32 enable); static int sleep(struct dvb_frontend *fe) { struct mxl *state = fe->demodulator_priv; struct mxl *p; cfg_demod_abort_tune(state); if (state->tuner_in_use != 0xffffffff) { mutex_lock(&state->base->tune_lock); state->tuner_in_use = 0xffffffff; list_for_each_entry(p, &state->base->mxls, mxl) { if (p->tuner_in_use == state->tuner) break; } if (&p->mxl == &state->base->mxls) enable_tuner(state, state->tuner, 0); mutex_unlock(&state->base->tune_lock); } return 0; } static int read_snr(struct dvb_frontend *fe) { struct mxl *state = fe->demodulator_priv; int stat; u32 reg_data = 0; struct dtv_frontend_properties *p = &fe->dtv_property_cache; mutex_lock(&state->base->status_lock); HYDRA_DEMOD_STATUS_LOCK(state, state->demod); stat = read_register(state, (HYDRA_DMD_SNR_ADDR_OFFSET + HYDRA_DMD_STATUS_OFFSET(state->demod)), ®_data); HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod); mutex_unlock(&state->base->status_lock); p->cnr.stat[0].scale = FE_SCALE_DECIBEL; p->cnr.stat[0].svalue = (s16)reg_data * 10; return stat; } static int read_ber(struct dvb_frontend *fe) { struct mxl *state = fe->demodulator_priv; struct dtv_frontend_properties *p = &fe->dtv_property_cache; u32 reg[8]; mutex_lock(&state->base->status_lock); HYDRA_DEMOD_STATUS_LOCK(state, state->demod); read_register_block(state, (HYDRA_DMD_DVBS_1ST_CORR_RS_ERRORS_ADDR_OFFSET + HYDRA_DMD_STATUS_OFFSET(state->demod)), (4 * sizeof(u32)), (u8 *) ®[0]); HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod); switch (p->delivery_system) { case SYS_DSS: case SYS_DVBS: p->pre_bit_error.stat[0].scale = FE_SCALE_COUNTER; p->pre_bit_error.stat[0].uvalue = reg[2]; p->pre_bit_count.stat[0].scale = FE_SCALE_COUNTER; p->pre_bit_count.stat[0].uvalue = reg[3]; break; default: break; } read_register_block(state, (HYDRA_DMD_DVBS2_CRC_ERRORS_ADDR_OFFSET + HYDRA_DMD_STATUS_OFFSET(state->demod)), (7 * sizeof(u32)), (u8 *) ®[0]); switch (p->delivery_system) { case SYS_DSS: case SYS_DVBS: p->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; p->post_bit_error.stat[0].uvalue = reg[5]; p->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; p->post_bit_count.stat[0].uvalue = reg[6]; break; case SYS_DVBS2: p->post_bit_error.stat[0].scale = FE_SCALE_COUNTER; p->post_bit_error.stat[0].uvalue = reg[1]; p->post_bit_count.stat[0].scale = FE_SCALE_COUNTER; p->post_bit_count.stat[0].uvalue = reg[2]; break; default: break; } mutex_unlock(&state->base->status_lock); return 0; } static int read_signal_strength(struct dvb_frontend *fe) { struct mxl *state = fe->demodulator_priv; struct dtv_frontend_properties *p = &fe->dtv_property_cache; int stat; u32 reg_data = 0; mutex_lock(&state->base->status_lock); HYDRA_DEMOD_STATUS_LOCK(state, state->demod); stat = read_register(state, (HYDRA_DMD_STATUS_INPUT_POWER_ADDR + HYDRA_DMD_STATUS_OFFSET(state->demod)), ®_data); HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod); mutex_unlock(&state->base->status_lock); p->strength.stat[0].scale = FE_SCALE_DECIBEL; p->strength.stat[0].svalue = (s16) reg_data * 10; /* fix scale */ return stat; } static int read_status(struct dvb_frontend *fe, enum fe_status *status) { struct mxl *state = fe->demodulator_priv; struct dtv_frontend_properties *p = &fe->dtv_property_cache; u32 reg_data = 0; mutex_lock(&state->base->status_lock); HYDRA_DEMOD_STATUS_LOCK(state, state->demod); read_register(state, (HYDRA_DMD_LOCK_STATUS_ADDR_OFFSET + HYDRA_DMD_STATUS_OFFSET(state->demod)), ®_data); HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod); mutex_unlock(&state->base->status_lock); *status = (reg_data == 1) ? 0x1f : 0; /* signal statistics */ /* signal strength is always available */ read_signal_strength(fe); if (*status & FE_HAS_CARRIER) read_snr(fe); else p->cnr.stat[0].scale = FE_SCALE_NOT_AVAILABLE; if (*status & FE_HAS_SYNC) read_ber(fe); else { p->pre_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->pre_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->post_bit_error.stat[0].scale = FE_SCALE_NOT_AVAILABLE; p->post_bit_count.stat[0].scale = FE_SCALE_NOT_AVAILABLE; } return 0; } static int tune(struct dvb_frontend *fe, bool re_tune, unsigned int mode_flags, unsigned int *delay, enum fe_status *status) { struct mxl *state = fe->demodulator_priv; int r = 0; *delay = HZ / 2; if (re_tune) { r = set_parameters(fe); if (r) return r; state->tune_time = jiffies; } return read_status(fe, status); } static enum fe_code_rate conv_fec(enum MXL_HYDRA_FEC_E fec) { enum fe_code_rate fec2fec[11] = { FEC_NONE, FEC_1_2, FEC_3_5, FEC_2_3, FEC_3_4, FEC_4_5, FEC_5_6, FEC_6_7, FEC_7_8, FEC_8_9, FEC_9_10 }; if (fec > MXL_HYDRA_FEC_9_10) return FEC_NONE; return fec2fec[fec]; } static int get_frontend(struct dvb_frontend *fe, struct dtv_frontend_properties *p) { struct mxl *state = fe->demodulator_priv; u32 reg_data[MXL_DEMOD_CHAN_PARAMS_BUFF_SIZE]; u32 freq; mutex_lock(&state->base->status_lock); HYDRA_DEMOD_STATUS_LOCK(state, state->demod); read_register_block(state, (HYDRA_DMD_STANDARD_ADDR_OFFSET + HYDRA_DMD_STATUS_OFFSET(state->demod)), (MXL_DEMOD_CHAN_PARAMS_BUFF_SIZE * 4), /* 25 * 4 bytes */ (u8 *) ®_data[0]); /* read demod channel parameters */ read_register_block(state, (HYDRA_DMD_STATUS_CENTER_FREQ_IN_KHZ_ADDR + HYDRA_DMD_STATUS_OFFSET(state->demod)), (4), /* 4 bytes */ (u8 *) &freq); HYDRA_DEMOD_STATUS_UNLOCK(state, state->demod); mutex_unlock(&state->base->status_lock); dev_dbg(state->i2cdev, "freq=%u delsys=%u srate=%u\n", freq * 1000, reg_data[DMD_STANDARD_ADDR], reg_data[DMD_SYMBOL_RATE_ADDR]); p->symbol_rate = reg_data[DMD_SYMBOL_RATE_ADDR]; p->frequency = freq; /* * p->delivery_system = * (MXL_HYDRA_BCAST_STD_E) regData[DMD_STANDARD_ADDR]; * p->inversion = * (MXL_HYDRA_SPECTRUM_E) regData[DMD_SPECTRUM_INVERSION_ADDR]; * freqSearchRangeKHz = * (regData[DMD_FREQ_SEARCH_RANGE_IN_KHZ_ADDR]); */ p->fec_inner = conv_fec(reg_data[DMD_FEC_CODE_RATE_ADDR]); switch (p->delivery_system) { case SYS_DSS: break; case SYS_DVBS2: switch ((enum MXL_HYDRA_PILOTS_E) reg_data[DMD_DVBS2_PILOT_ON_OFF_ADDR]) { case MXL_HYDRA_PILOTS_OFF: p->pilot = PILOT_OFF; break; case MXL_HYDRA_PILOTS_ON: p->pilot = PILOT_ON; break; default: break; } fallthrough; case SYS_DVBS: switch ((enum MXL_HYDRA_MODULATION_E) reg_data[DMD_MODULATION_SCHEME_ADDR]) { case MXL_HYDRA_MOD_QPSK: p->modulation = QPSK; break; case MXL_HYDRA_MOD_8PSK: p->modulation = PSK_8; break; default: break; } switch ((enum MXL_HYDRA_ROLLOFF_E) reg_data[DMD_SPECTRUM_ROLL_OFF_ADDR]) { case MXL_HYDRA_ROLLOFF_0_20: p->rolloff = ROLLOFF_20; break; case MXL_HYDRA_ROLLOFF_0_35: p->rolloff = ROLLOFF_35; break; case MXL_HYDRA_ROLLOFF_0_25: p->rolloff = ROLLOFF_25; break; default: break; } break; default: return -EINVAL; } return 0; } static int set_input(struct dvb_frontend *fe, int input) { struct mxl *state = fe->demodulator_priv; state->tuner = input; return 0; } static const struct dvb_frontend_ops mxl_ops = { .delsys = { SYS_DVBS, SYS_DVBS2, SYS_DSS }, .info = { .name = "MaxLinear MxL5xx DVB-S/S2 tuner-demodulator", .frequency_min_hz = 300 * MHz, .frequency_max_hz = 2350 * MHz, .symbol_rate_min = 1000000, .symbol_rate_max = 45000000, .caps = FE_CAN_INVERSION_AUTO | FE_CAN_FEC_AUTO | FE_CAN_QPSK | FE_CAN_2G_MODULATION }, .init = init, .release = release, .get_frontend_algo = get_algo, .tune = tune, .read_status = read_status, .sleep = sleep, .get_frontend = get_frontend, .diseqc_send_master_cmd = send_master_cmd, }; static struct mxl_base *match_base(struct i2c_adapter *i2c, u8 adr) { struct mxl_base *p; list_for_each_entry(p, &mxllist, mxllist) if (p->i2c == i2c && p->adr == adr) return p; return NULL; } static void cfg_dev_xtal(struct mxl *state, u32 freq, u32 cap, u32 enable) { if (state->base->can_clkout || !enable) update_by_mnemonic(state, 0x90200054, 23, 1, enable); if (freq == 24000000) write_register(state, HYDRA_CRYSTAL_SETTING, 0); else write_register(state, HYDRA_CRYSTAL_SETTING, 1); write_register(state, HYDRA_CRYSTAL_CAP, cap); } static u32 get_big_endian(u8 num_of_bits, const u8 buf[]) { u32 ret_value = 0; switch (num_of_bits) { case 24: ret_value = (((u32) buf[0]) << 16) | (((u32) buf[1]) << 8) | buf[2]; break; case 32: ret_value = (((u32) buf[0]) << 24) | (((u32) buf[1]) << 16) | (((u32) buf[2]) << 8) | buf[3]; break; default: break; } return ret_value; } static int write_fw_segment(struct mxl *state, u32 mem_addr, u32 total_size, u8 *data_ptr) { int status; u32 data_count = 0; u32 size = 0; u32 orig_size = 0; u8 *w_buf_ptr = NULL; u32 block_size = ((MXL_HYDRA_OEM_MAX_BLOCK_WRITE_LENGTH - (MXL_HYDRA_I2C_HDR_SIZE + MXL_HYDRA_REG_SIZE_IN_BYTES)) / 4) * 4; u8 w_msg_buffer[MXL_HYDRA_OEM_MAX_BLOCK_WRITE_LENGTH - (MXL_HYDRA_I2C_HDR_SIZE + MXL_HYDRA_REG_SIZE_IN_BYTES)]; do { size = orig_size = (((u32)(data_count + block_size)) > total_size) ? (total_size - data_count) : block_size; if (orig_size & 3) size = (orig_size + 4) & ~3; w_buf_ptr = &w_msg_buffer[0]; memset((void *) w_buf_ptr, 0, size); memcpy((void *) w_buf_ptr, (void *) data_ptr, orig_size); convert_endian(1, size, w_buf_ptr); status = write_firmware_block(state, mem_addr, size, w_buf_ptr); if (status) return status; data_count += size; mem_addr += size; data_ptr += size; } while (data_count < total_size); return status; } static int do_firmware_download(struct mxl *state, u8 *mbin_buffer_ptr, u32 mbin_buffer_size) { int status; u32 index = 0; u32 seg_length = 0; u32 seg_address = 0; struct MBIN_FILE_T *mbin_ptr = (struct MBIN_FILE_T *)mbin_buffer_ptr; struct MBIN_SEGMENT_T *segment_ptr; enum MXL_BOOL_E xcpu_fw_flag = MXL_FALSE; if (mbin_ptr->header.id != MBIN_FILE_HEADER_ID) { dev_err(state->i2cdev, "%s: Invalid file header ID (%c)\n", __func__, mbin_ptr->header.id); return -EINVAL; } status = write_register(state, FW_DL_SIGN_ADDR, 0); if (status) return status; segment_ptr = (struct MBIN_SEGMENT_T *) (&mbin_ptr->data[0]); for (index = 0; index < mbin_ptr->header.num_segments; index++) { if (segment_ptr->header.id != MBIN_SEGMENT_HEADER_ID) { dev_err(state->i2cdev, "%s: Invalid segment header ID (%c)\n", __func__, segment_ptr->header.id); return -EINVAL; } seg_length = get_big_endian(24, &(segment_ptr->header.len24[0])); seg_address = get_big_endian(32, &(segment_ptr->header.address[0])); if (state->base->type == MXL_HYDRA_DEVICE_568) { if ((((seg_address & 0x90760000) == 0x90760000) || ((seg_address & 0x90740000) == 0x90740000)) && (xcpu_fw_flag == MXL_FALSE)) { update_by_mnemonic(state, 0x8003003C, 0, 1, 1); msleep(200); write_register(state, 0x90720000, 0); usleep_range(10000, 11000); xcpu_fw_flag = MXL_TRUE; } status = write_fw_segment(state, seg_address, seg_length, (u8 *) segment_ptr->data); } else { if (((seg_address & 0x90760000) != 0x90760000) && ((seg_address & 0x90740000) != 0x90740000)) status = write_fw_segment(state, seg_address, seg_length, (u8 *) segment_ptr->data); } if (status) return status; segment_ptr = (struct MBIN_SEGMENT_T *) &(segment_ptr->data[((seg_length + 3) / 4) * 4]); } return status; } static int check_fw(struct mxl *state, u8 *mbin, u32 mbin_len) { struct MBIN_FILE_HEADER_T *fh = (struct MBIN_FILE_HEADER_T *) mbin; u32 flen = (fh->image_size24[0] << 16) | (fh->image_size24[1] << 8) | fh->image_size24[2]; u8 *fw, cs = 0; u32 i; if (fh->id != 'M' || fh->fmt_version != '1' || flen > 0x3FFF0) { dev_info(state->i2cdev, "Invalid FW Header\n"); return -1; } fw = mbin + sizeof(struct MBIN_FILE_HEADER_T); for (i = 0; i < flen; i += 1) cs += fw[i]; if (cs != fh->image_checksum) { dev_info(state->i2cdev, "Invalid FW Checksum\n"); return -1; } return 0; } static int firmware_download(struct mxl *state, u8 *mbin, u32 mbin_len) { int status; u32 reg_data = 0; struct MXL_HYDRA_SKU_COMMAND_T dev_sku_cfg; u8 cmd_size = sizeof(struct MXL_HYDRA_SKU_COMMAND_T); u8 cmd_buff[sizeof(struct MXL_HYDRA_SKU_COMMAND_T) + 6]; if (check_fw(state, mbin, mbin_len)) return -1; /* put CPU into reset */ status = update_by_mnemonic(state, 0x8003003C, 0, 1, 0); if (status) return status; usleep_range(1000, 2000); /* Reset TX FIFO's, BBAND, XBAR */ status = write_register(state, HYDRA_RESET_TRANSPORT_FIFO_REG, HYDRA_RESET_TRANSPORT_FIFO_DATA); if (status) return status; status = write_register(state, HYDRA_RESET_BBAND_REG, HYDRA_RESET_BBAND_DATA); if (status) return status; status = write_register(state, HYDRA_RESET_XBAR_REG, HYDRA_RESET_XBAR_DATA); if (status) return status; /* Disable clock to Baseband, Wideband, SerDes, * Alias ext & Transport modules */ status = write_register(state, HYDRA_MODULES_CLK_2_REG, HYDRA_DISABLE_CLK_2); if (status) return status; /* Clear Software & Host interrupt status - (Clear on read) */ status = read_register(state, HYDRA_PRCM_ROOT_CLK_REG, ®_data); if (status) return status; status = do_firmware_download(state, mbin, mbin_len); if (status) return status; if (state->base->type == MXL_HYDRA_DEVICE_568) { usleep_range(10000, 11000); /* bring XCPU out of reset */ status = write_register(state, 0x90720000, 1); if (status) return status; msleep(500); /* Enable XCPU UART message processing in MCPU */ status = write_register(state, 0x9076B510, 1); if (status) return status; } else { /* Bring CPU out of reset */ status = update_by_mnemonic(state, 0x8003003C, 0, 1, 1); if (status) return status; /* Wait until FW boots */ msleep(150); } /* Initialize XPT XBAR */ status = write_register(state, XPT_DMD0_BASEADDR, 0x76543210); if (status) return status; if (!firmware_is_alive(state)) return -1; dev_info(state->i2cdev, "Hydra FW alive. Hail!\n"); /* sometimes register values are wrong shortly * after first heart beats */ msleep(50); dev_sku_cfg.sku_type = state->base->sku_type; BUILD_HYDRA_CMD(MXL_HYDRA_DEV_CFG_SKU_CMD, MXL_CMD_WRITE, cmd_size, &dev_sku_cfg, cmd_buff); status = send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE, &cmd_buff[0]); return status; } static int cfg_ts_pad_mux(struct mxl *state, enum MXL_BOOL_E enable_serial_ts) { int status = 0; u32 pad_mux_value = 0; if (enable_serial_ts == MXL_TRUE) { pad_mux_value = 0; if ((state->base->type == MXL_HYDRA_DEVICE_541) || (state->base->type == MXL_HYDRA_DEVICE_541S)) pad_mux_value = 2; } else { if ((state->base->type == MXL_HYDRA_DEVICE_581) || (state->base->type == MXL_HYDRA_DEVICE_581S)) pad_mux_value = 2; else pad_mux_value = 3; } switch (state->base->type) { case MXL_HYDRA_DEVICE_561: case MXL_HYDRA_DEVICE_581: case MXL_HYDRA_DEVICE_541: case MXL_HYDRA_DEVICE_541S: case MXL_HYDRA_DEVICE_561S: case MXL_HYDRA_DEVICE_581S: status |= update_by_mnemonic(state, 0x90000170, 24, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000170, 28, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000174, 0, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000174, 4, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000174, 8, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000174, 12, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000174, 16, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000174, 20, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000174, 24, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000174, 28, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000178, 0, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000178, 4, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000178, 8, 3, pad_mux_value); break; case MXL_HYDRA_DEVICE_544: case MXL_HYDRA_DEVICE_542: status |= update_by_mnemonic(state, 0x9000016C, 4, 3, 1); status |= update_by_mnemonic(state, 0x9000016C, 8, 3, 0); status |= update_by_mnemonic(state, 0x9000016C, 12, 3, 0); status |= update_by_mnemonic(state, 0x9000016C, 16, 3, 0); status |= update_by_mnemonic(state, 0x90000170, 0, 3, 0); status |= update_by_mnemonic(state, 0x90000178, 12, 3, 1); status |= update_by_mnemonic(state, 0x90000178, 16, 3, 1); status |= update_by_mnemonic(state, 0x90000178, 20, 3, 1); status |= update_by_mnemonic(state, 0x90000178, 24, 3, 1); status |= update_by_mnemonic(state, 0x9000017C, 0, 3, 1); status |= update_by_mnemonic(state, 0x9000017C, 4, 3, 1); if (enable_serial_ts == MXL_ENABLE) { status |= update_by_mnemonic(state, 0x90000170, 4, 3, 0); status |= update_by_mnemonic(state, 0x90000170, 8, 3, 0); status |= update_by_mnemonic(state, 0x90000170, 12, 3, 0); status |= update_by_mnemonic(state, 0x90000170, 16, 3, 0); status |= update_by_mnemonic(state, 0x90000170, 20, 3, 1); status |= update_by_mnemonic(state, 0x90000170, 24, 3, 1); status |= update_by_mnemonic(state, 0x90000170, 28, 3, 2); status |= update_by_mnemonic(state, 0x90000174, 0, 3, 2); status |= update_by_mnemonic(state, 0x90000174, 4, 3, 2); status |= update_by_mnemonic(state, 0x90000174, 8, 3, 2); status |= update_by_mnemonic(state, 0x90000174, 12, 3, 2); status |= update_by_mnemonic(state, 0x90000174, 16, 3, 2); status |= update_by_mnemonic(state, 0x90000174, 20, 3, 2); status |= update_by_mnemonic(state, 0x90000174, 24, 3, 2); status |= update_by_mnemonic(state, 0x90000174, 28, 3, 2); status |= update_by_mnemonic(state, 0x90000178, 0, 3, 2); status |= update_by_mnemonic(state, 0x90000178, 4, 3, 2); status |= update_by_mnemonic(state, 0x90000178, 8, 3, 2); } else { status |= update_by_mnemonic(state, 0x90000170, 4, 3, 3); status |= update_by_mnemonic(state, 0x90000170, 8, 3, 3); status |= update_by_mnemonic(state, 0x90000170, 12, 3, 3); status |= update_by_mnemonic(state, 0x90000170, 16, 3, 3); status |= update_by_mnemonic(state, 0x90000170, 20, 3, 3); status |= update_by_mnemonic(state, 0x90000170, 24, 3, 3); status |= update_by_mnemonic(state, 0x90000170, 28, 3, 3); status |= update_by_mnemonic(state, 0x90000174, 0, 3, 3); status |= update_by_mnemonic(state, 0x90000174, 4, 3, 3); status |= update_by_mnemonic(state, 0x90000174, 8, 3, 3); status |= update_by_mnemonic(state, 0x90000174, 12, 3, 3); status |= update_by_mnemonic(state, 0x90000174, 16, 3, 3); status |= update_by_mnemonic(state, 0x90000174, 20, 3, 1); status |= update_by_mnemonic(state, 0x90000174, 24, 3, 1); status |= update_by_mnemonic(state, 0x90000174, 28, 3, 1); status |= update_by_mnemonic(state, 0x90000178, 0, 3, 1); status |= update_by_mnemonic(state, 0x90000178, 4, 3, 1); status |= update_by_mnemonic(state, 0x90000178, 8, 3, 1); } break; case MXL_HYDRA_DEVICE_568: if (enable_serial_ts == MXL_FALSE) { status |= update_by_mnemonic(state, 0x9000016C, 8, 3, 5); status |= update_by_mnemonic(state, 0x9000016C, 12, 3, 5); status |= update_by_mnemonic(state, 0x9000016C, 16, 3, 5); status |= update_by_mnemonic(state, 0x9000016C, 20, 3, 5); status |= update_by_mnemonic(state, 0x9000016C, 24, 3, 5); status |= update_by_mnemonic(state, 0x9000016C, 28, 3, 5); status |= update_by_mnemonic(state, 0x90000170, 0, 3, 5); status |= update_by_mnemonic(state, 0x90000170, 4, 3, 5); status |= update_by_mnemonic(state, 0x90000170, 8, 3, 5); status |= update_by_mnemonic(state, 0x90000170, 12, 3, 5); status |= update_by_mnemonic(state, 0x90000170, 16, 3, 5); status |= update_by_mnemonic(state, 0x90000170, 20, 3, 5); status |= update_by_mnemonic(state, 0x90000170, 24, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000174, 0, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000174, 4, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000174, 8, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000174, 12, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000174, 16, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000174, 20, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000174, 24, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000174, 28, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000178, 0, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000178, 4, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000178, 8, 3, 5); status |= update_by_mnemonic(state, 0x90000178, 12, 3, 5); status |= update_by_mnemonic(state, 0x90000178, 16, 3, 5); status |= update_by_mnemonic(state, 0x90000178, 20, 3, 5); status |= update_by_mnemonic(state, 0x90000178, 24, 3, 5); status |= update_by_mnemonic(state, 0x90000178, 28, 3, 5); status |= update_by_mnemonic(state, 0x9000017C, 0, 3, 5); status |= update_by_mnemonic(state, 0x9000017C, 4, 3, 5); } else { status |= update_by_mnemonic(state, 0x90000170, 4, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000170, 8, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000170, 12, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000170, 16, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000170, 20, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000170, 24, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000170, 28, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000174, 0, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000174, 4, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000174, 8, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000174, 12, 3, pad_mux_value); } break; case MXL_HYDRA_DEVICE_584: default: status |= update_by_mnemonic(state, 0x90000170, 4, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000170, 8, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000170, 12, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000170, 16, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000170, 20, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000170, 24, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000170, 28, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000174, 0, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000174, 4, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000174, 8, 3, pad_mux_value); status |= update_by_mnemonic(state, 0x90000174, 12, 3, pad_mux_value); break; } return status; } static int set_drive_strength(struct mxl *state, enum MXL_HYDRA_TS_DRIVE_STRENGTH_E ts_drive_strength) { int stat = 0; u32 val; read_register(state, 0x90000194, &val); dev_info(state->i2cdev, "DIGIO = %08x\n", val); dev_info(state->i2cdev, "set drive_strength = %u\n", ts_drive_strength); stat |= update_by_mnemonic(state, 0x90000194, 0, 3, ts_drive_strength); stat |= update_by_mnemonic(state, 0x90000194, 20, 3, ts_drive_strength); stat |= update_by_mnemonic(state, 0x90000194, 24, 3, ts_drive_strength); stat |= update_by_mnemonic(state, 0x90000198, 12, 3, ts_drive_strength); stat |= update_by_mnemonic(state, 0x90000198, 16, 3, ts_drive_strength); stat |= update_by_mnemonic(state, 0x90000198, 20, 3, ts_drive_strength); stat |= update_by_mnemonic(state, 0x90000198, 24, 3, ts_drive_strength); stat |= update_by_mnemonic(state, 0x9000019C, 0, 3, ts_drive_strength); stat |= update_by_mnemonic(state, 0x9000019C, 4, 3, ts_drive_strength); stat |= update_by_mnemonic(state, 0x9000019C, 8, 3, ts_drive_strength); stat |= update_by_mnemonic(state, 0x9000019C, 24, 3, ts_drive_strength); stat |= update_by_mnemonic(state, 0x9000019C, 28, 3, ts_drive_strength); stat |= update_by_mnemonic(state, 0x900001A0, 0, 3, ts_drive_strength); stat |= update_by_mnemonic(state, 0x900001A0, 4, 3, ts_drive_strength); stat |= update_by_mnemonic(state, 0x900001A0, 20, 3, ts_drive_strength); stat |= update_by_mnemonic(state, 0x900001A0, 24, 3, ts_drive_strength); stat |= update_by_mnemonic(state, 0x900001A0, 28, 3, ts_drive_strength); return stat; } static int enable_tuner(struct mxl *state, u32 tuner, u32 enable) { int stat = 0; struct MXL_HYDRA_TUNER_CMD ctrl_tuner_cmd; u8 cmd_size = sizeof(ctrl_tuner_cmd); u8 cmd_buff[MXL_HYDRA_OEM_MAX_CMD_BUFF_LEN]; u32 val, count = 10; ctrl_tuner_cmd.tuner_id = tuner; ctrl_tuner_cmd.enable = enable; BUILD_HYDRA_CMD(MXL_HYDRA_TUNER_ACTIVATE_CMD, MXL_CMD_WRITE, cmd_size, &ctrl_tuner_cmd, cmd_buff); stat = send_command(state, cmd_size + MXL_HYDRA_CMD_HEADER_SIZE, &cmd_buff[0]); if (stat) return stat; read_register(state, HYDRA_TUNER_ENABLE_COMPLETE, &val); while (--count && ((val >> tuner) & 1) != enable) { msleep(20); read_register(state, HYDRA_TUNER_ENABLE_COMPLETE, &val); } if (!count) return -1; read_register(state, HYDRA_TUNER_ENABLE_COMPLETE, &val); dev_dbg(state->i2cdev, "tuner %u ready = %u\n", tuner, (val >> tuner) & 1); return 0; } static int config_ts(struct mxl *state, enum MXL_HYDRA_DEMOD_ID_E demod_id, struct MXL_HYDRA_MPEGOUT_PARAM_T *mpeg_out_param_ptr) { int status = 0; u32 nco_count_min = 0; u32 clk_type = 0; static const struct MXL_REG_FIELD_T xpt_sync_polarity[MXL_HYDRA_DEMOD_MAX] = { {0x90700010, 8, 1}, {0x90700010, 9, 1}, {0x90700010, 10, 1}, {0x90700010, 11, 1}, {0x90700010, 12, 1}, {0x90700010, 13, 1}, {0x90700010, 14, 1}, {0x90700010, 15, 1} }; static const struct MXL_REG_FIELD_T xpt_clock_polarity[MXL_HYDRA_DEMOD_MAX] = { {0x90700010, 16, 1}, {0x90700010, 17, 1}, {0x90700010, 18, 1}, {0x90700010, 19, 1}, {0x90700010, 20, 1}, {0x90700010, 21, 1}, {0x90700010, 22, 1}, {0x90700010, 23, 1} }; static const struct MXL_REG_FIELD_T xpt_valid_polarity[MXL_HYDRA_DEMOD_MAX] = { {0x90700014, 0, 1}, {0x90700014, 1, 1}, {0x90700014, 2, 1}, {0x90700014, 3, 1}, {0x90700014, 4, 1}, {0x90700014, 5, 1}, {0x90700014, 6, 1}, {0x90700014, 7, 1} }; static const struct MXL_REG_FIELD_T xpt_ts_clock_phase[MXL_HYDRA_DEMOD_MAX] = { {0x90700018, 0, 3}, {0x90700018, 4, 3}, {0x90700018, 8, 3}, {0x90700018, 12, 3}, {0x90700018, 16, 3}, {0x90700018, 20, 3}, {0x90700018, 24, 3}, {0x90700018, 28, 3} }; static const struct MXL_REG_FIELD_T xpt_lsb_first[MXL_HYDRA_DEMOD_MAX] = { {0x9070000C, 16, 1}, {0x9070000C, 17, 1}, {0x9070000C, 18, 1}, {0x9070000C, 19, 1}, {0x9070000C, 20, 1}, {0x9070000C, 21, 1}, {0x9070000C, 22, 1}, {0x9070000C, 23, 1} }; static const struct MXL_REG_FIELD_T xpt_sync_byte[MXL_HYDRA_DEMOD_MAX] = { {0x90700010, 0, 1}, {0x90700010, 1, 1}, {0x90700010, 2, 1}, {0x90700010, 3, 1}, {0x90700010, 4, 1}, {0x90700010, 5, 1}, {0x90700010, 6, 1}, {0x90700010, 7, 1} }; static const struct MXL_REG_FIELD_T xpt_enable_output[MXL_HYDRA_DEMOD_MAX] = { {0x9070000C, 0, 1}, {0x9070000C, 1, 1}, {0x9070000C, 2, 1}, {0x9070000C, 3, 1}, {0x9070000C, 4, 1}, {0x9070000C, 5, 1}, {0x9070000C, 6, 1}, {0x9070000C, 7, 1} }; static const struct MXL_REG_FIELD_T xpt_err_replace_sync[MXL_HYDRA_DEMOD_MAX] = { {0x9070000C, 24, 1}, {0x9070000C, 25, 1}, {0x9070000C, 26, 1}, {0x9070000C, 27, 1}, {0x9070000C, 28, 1}, {0x9070000C, 29, 1}, {0x9070000C, 30, 1}, {0x9070000C, 31, 1} }; static const struct MXL_REG_FIELD_T xpt_err_replace_valid[MXL_HYDRA_DEMOD_MAX] = { {0x90700014, 8, 1}, {0x90700014, 9, 1}, {0x90700014, 10, 1}, {0x90700014, 11, 1}, {0x90700014, 12, 1}, {0x90700014, 13, 1}, {0x90700014, 14, 1}, {0x90700014, 15, 1} }; static const struct MXL_REG_FIELD_T xpt_continuous_clock[MXL_HYDRA_DEMOD_MAX] = { {0x907001D4, 0, 1}, {0x907001D4, 1, 1}, {0x907001D4, 2, 1}, {0x907001D4, 3, 1}, {0x907001D4, 4, 1}, {0x907001D4, 5, 1}, {0x907001D4, 6, 1}, {0x907001D4, 7, 1} }; static const struct MXL_REG_FIELD_T xpt_nco_clock_rate[MXL_HYDRA_DEMOD_MAX] = { {0x90700044, 16, 80}, {0x90700044, 16, 81}, {0x90700044, 16, 82}, {0x90700044, 16, 83}, {0x90700044, 16, 84}, {0x90700044, 16, 85}, {0x90700044, 16, 86}, {0x90700044, 16, 87} }; demod_id = state->base->ts_map[demod_id]; if (mpeg_out_param_ptr->enable == MXL_ENABLE) { if (mpeg_out_param_ptr->mpeg_mode == MXL_HYDRA_MPEG_MODE_PARALLEL) { } else { cfg_ts_pad_mux(state, MXL_TRUE); update_by_mnemonic(state, 0x90700010, 27, 1, MXL_FALSE); } } nco_count_min = (u32)(MXL_HYDRA_NCO_CLK / mpeg_out_param_ptr->max_mpeg_clk_rate); if (state->base->chipversion >= 2) { status |= update_by_mnemonic(state, xpt_nco_clock_rate[demod_id].reg_addr, /* Reg Addr */ xpt_nco_clock_rate[demod_id].lsb_pos, /* LSB pos */ xpt_nco_clock_rate[demod_id].num_of_bits, /* Num of bits */ nco_count_min); /* Data */ } else update_by_mnemonic(state, 0x90700044, 16, 8, nco_count_min); if (mpeg_out_param_ptr->mpeg_clk_type == MXL_HYDRA_MPEG_CLK_CONTINUOUS) clk_type = 1; if (mpeg_out_param_ptr->mpeg_mode < MXL_HYDRA_MPEG_MODE_PARALLEL) { status |= update_by_mnemonic(state, xpt_continuous_clock[demod_id].reg_addr, xpt_continuous_clock[demod_id].lsb_pos, xpt_continuous_clock[demod_id].num_of_bits, clk_type); } else update_by_mnemonic(state, 0x907001D4, 8, 1, clk_type); status |= update_by_mnemonic(state, xpt_sync_polarity[demod_id].reg_addr, xpt_sync_polarity[demod_id].lsb_pos, xpt_sync_polarity[demod_id].num_of_bits, mpeg_out_param_ptr->mpeg_sync_pol); status |= update_by_mnemonic(state, xpt_valid_polarity[demod_id].reg_addr, xpt_valid_polarity[demod_id].lsb_pos, xpt_valid_polarity[demod_id].num_of_bits, mpeg_out_param_ptr->mpeg_valid_pol); status |= update_by_mnemonic(state, xpt_clock_polarity[demod_id].reg_addr, xpt_clock_polarity[demod_id].lsb_pos, xpt_clock_polarity[demod_id].num_of_bits, mpeg_out_param_ptr->mpeg_clk_pol); status |= update_by_mnemonic(state, xpt_sync_byte[demod_id].reg_addr, xpt_sync_byte[demod_id].lsb_pos, xpt_sync_byte[demod_id].num_of_bits, mpeg_out_param_ptr->mpeg_sync_pulse_width); status |= update_by_mnemonic(state, xpt_ts_clock_phase[demod_id].reg_addr, xpt_ts_clock_phase[demod_id].lsb_pos, xpt_ts_clock_phase[demod_id].num_of_bits, mpeg_out_param_ptr->mpeg_clk_phase); status |= update_by_mnemonic(state, xpt_lsb_first[demod_id].reg_addr, xpt_lsb_first[demod_id].lsb_pos, xpt_lsb_first[demod_id].num_of_bits, mpeg_out_param_ptr->lsb_or_msb_first); switch (mpeg_out_param_ptr->mpeg_error_indication) { case MXL_HYDRA_MPEG_ERR_REPLACE_SYNC: status |= update_by_mnemonic(state, xpt_err_replace_sync[demod_id].reg_addr, xpt_err_replace_sync[demod_id].lsb_pos, xpt_err_replace_sync[demod_id].num_of_bits, MXL_TRUE); status |= update_by_mnemonic(state, xpt_err_replace_valid[demod_id].reg_addr, xpt_err_replace_valid[demod_id].lsb_pos, xpt_err_replace_valid[demod_id].num_of_bits, MXL_FALSE); break; case MXL_HYDRA_MPEG_ERR_REPLACE_VALID: status |= update_by_mnemonic(state, xpt_err_replace_sync[demod_id].reg_addr, xpt_err_replace_sync[demod_id].lsb_pos, xpt_err_replace_sync[demod_id].num_of_bits, MXL_FALSE); status |= update_by_mnemonic(state, xpt_err_replace_valid[demod_id].reg_addr, xpt_err_replace_valid[demod_id].lsb_pos, xpt_err_replace_valid[demod_id].num_of_bits, MXL_TRUE); break; case MXL_HYDRA_MPEG_ERR_INDICATION_DISABLED: default: status |= update_by_mnemonic(state, xpt_err_replace_sync[demod_id].reg_addr, xpt_err_replace_sync[demod_id].lsb_pos, xpt_err_replace_sync[demod_id].num_of_bits, MXL_FALSE); status |= update_by_mnemonic(state, xpt_err_replace_valid[demod_id].reg_addr, xpt_err_replace_valid[demod_id].lsb_pos, xpt_err_replace_valid[demod_id].num_of_bits, MXL_FALSE); break; } if (mpeg_out_param_ptr->mpeg_mode != MXL_HYDRA_MPEG_MODE_PARALLEL) { status |= update_by_mnemonic(state, xpt_enable_output[demod_id].reg_addr, xpt_enable_output[demod_id].lsb_pos, xpt_enable_output[demod_id].num_of_bits, mpeg_out_param_ptr->enable); } return status; } static int config_mux(struct mxl *state) { update_by_mnemonic(state, 0x9070000C, 0, 1, 0); update_by_mnemonic(state, 0x9070000C, 1, 1, 0); update_by_mnemonic(state, 0x9070000C, 2, 1, 0); update_by_mnemonic(state, 0x9070000C, 3, 1, 0); update_by_mnemonic(state, 0x9070000C, 4, 1, 0); update_by_mnemonic(state, 0x9070000C, 5, 1, 0); update_by_mnemonic(state, 0x9070000C, 6, 1, 0); update_by_mnemonic(state, 0x9070000C, 7, 1, 0); update_by_mnemonic(state, 0x90700008, 0, 2, 1); update_by_mnemonic(state, 0x90700008, 2, 2, 1); return 0; } static int load_fw(struct mxl *state, struct mxl5xx_cfg *cfg) { int stat = 0; u8 *buf; if (cfg->fw) return firmware_download(state, cfg->fw, cfg->fw_len); if (!cfg->fw_read) return -1; buf = vmalloc(0x40000); if (!buf) return -ENOMEM; cfg->fw_read(cfg->fw_priv, buf, 0x40000); stat = firmware_download(state, buf, 0x40000); vfree(buf); return stat; } static int validate_sku(struct mxl *state) { u32 pad_mux_bond = 0, prcm_chip_id = 0, prcm_so_cid = 0; int status; u32 type = state->base->type; status = read_by_mnemonic(state, 0x90000190, 0, 3, &pad_mux_bond); status |= read_by_mnemonic(state, 0x80030000, 0, 12, &prcm_chip_id); status |= read_by_mnemonic(state, 0x80030004, 24, 8, &prcm_so_cid); if (status) return -1; dev_info(state->i2cdev, "padMuxBond=%08x, prcmChipId=%08x, prcmSoCId=%08x\n", pad_mux_bond, prcm_chip_id, prcm_so_cid); if (prcm_chip_id != 0x560) { switch (pad_mux_bond) { case MXL_HYDRA_SKU_ID_581: if (type == MXL_HYDRA_DEVICE_581) return 0; if (type == MXL_HYDRA_DEVICE_581S) { state->base->type = MXL_HYDRA_DEVICE_581; return 0; } break; case MXL_HYDRA_SKU_ID_584: if (type == MXL_HYDRA_DEVICE_584) return 0; break; case MXL_HYDRA_SKU_ID_544: if (type == MXL_HYDRA_DEVICE_544) return 0; if (type == MXL_HYDRA_DEVICE_542) return 0; break; case MXL_HYDRA_SKU_ID_582: if (type == MXL_HYDRA_DEVICE_582) return 0; break; default: return -1; } } return -1; } static int get_fwinfo(struct mxl *state) { int status; u32 val = 0; status = read_by_mnemonic(state, 0x90000190, 0, 3, &val); if (status) return status; dev_info(state->i2cdev, "chipID=%08x\n", val); status = read_by_mnemonic(state, 0x80030004, 8, 8, &val); if (status) return status; dev_info(state->i2cdev, "chipVer=%08x\n", val); status = read_register(state, HYDRA_FIRMWARE_VERSION, &val); if (status) return status; dev_info(state->i2cdev, "FWVer=%08x\n", val); state->base->fwversion = val; return status; } static u8 ts_map1_to_1[MXL_HYDRA_DEMOD_MAX] = { MXL_HYDRA_DEMOD_ID_0, MXL_HYDRA_DEMOD_ID_1, MXL_HYDRA_DEMOD_ID_2, MXL_HYDRA_DEMOD_ID_3, MXL_HYDRA_DEMOD_ID_4, MXL_HYDRA_DEMOD_ID_5, MXL_HYDRA_DEMOD_ID_6, MXL_HYDRA_DEMOD_ID_7, }; static u8 ts_map54x[MXL_HYDRA_DEMOD_MAX] = { MXL_HYDRA_DEMOD_ID_2, MXL_HYDRA_DEMOD_ID_3, MXL_HYDRA_DEMOD_ID_4, MXL_HYDRA_DEMOD_ID_5, MXL_HYDRA_DEMOD_MAX, MXL_HYDRA_DEMOD_MAX, MXL_HYDRA_DEMOD_MAX, MXL_HYDRA_DEMOD_MAX, }; static int probe(struct mxl *state, struct mxl5xx_cfg *cfg) { u32 chipver; int fw, status, j; struct MXL_HYDRA_MPEGOUT_PARAM_T mpeg_interface_cfg; state->base->ts_map = ts_map1_to_1; switch (state->base->type) { case MXL_HYDRA_DEVICE_581: case MXL_HYDRA_DEVICE_581S: state->base->can_clkout = 1; state->base->demod_num = 8; state->base->tuner_num = 1; state->base->sku_type = MXL_HYDRA_SKU_TYPE_581; break; case MXL_HYDRA_DEVICE_582: state->base->can_clkout = 1; state->base->demod_num = 8; state->base->tuner_num = 3; state->base->sku_type = MXL_HYDRA_SKU_TYPE_582; break; case MXL_HYDRA_DEVICE_585: state->base->can_clkout = 0; state->base->demod_num = 8; state->base->tuner_num = 4; state->base->sku_type = MXL_HYDRA_SKU_TYPE_585; break; case MXL_HYDRA_DEVICE_544: state->base->can_clkout = 0; state->base->demod_num = 4; state->base->tuner_num = 4; state->base->sku_type = MXL_HYDRA_SKU_TYPE_544; state->base->ts_map = ts_map54x; break; case MXL_HYDRA_DEVICE_541: case MXL_HYDRA_DEVICE_541S: state->base->can_clkout = 0; state->base->demod_num = 4; state->base->tuner_num = 1; state->base->sku_type = MXL_HYDRA_SKU_TYPE_541; state->base->ts_map = ts_map54x; break; case MXL_HYDRA_DEVICE_561: case MXL_HYDRA_DEVICE_561S: state->base->can_clkout = 0; state->base->demod_num = 6; state->base->tuner_num = 1; state->base->sku_type = MXL_HYDRA_SKU_TYPE_561; break; case MXL_HYDRA_DEVICE_568: state->base->can_clkout = 0; state->base->demod_num = 8; state->base->tuner_num = 1; state->base->chan_bond = 1; state->base->sku_type = MXL_HYDRA_SKU_TYPE_568; break; case MXL_HYDRA_DEVICE_542: state->base->can_clkout = 1; state->base->demod_num = 4; state->base->tuner_num = 3; state->base->sku_type = MXL_HYDRA_SKU_TYPE_542; state->base->ts_map = ts_map54x; break; case MXL_HYDRA_DEVICE_TEST: case MXL_HYDRA_DEVICE_584: default: state->base->can_clkout = 0; state->base->demod_num = 8; state->base->tuner_num = 4; state->base->sku_type = MXL_HYDRA_SKU_TYPE_584; break; } status = validate_sku(state); if (status) return status; update_by_mnemonic(state, 0x80030014, 9, 1, 1); update_by_mnemonic(state, 0x8003003C, 12, 1, 1); status = read_by_mnemonic(state, 0x80030000, 12, 4, &chipver); if (status) state->base->chipversion = 0; else state->base->chipversion = (chipver == 2) ? 2 : 1; dev_info(state->i2cdev, "Hydra chip version %u\n", state->base->chipversion); cfg_dev_xtal(state, cfg->clk, cfg->cap, 0); fw = firmware_is_alive(state); if (!fw) { status = load_fw(state, cfg); if (status) return status; } get_fwinfo(state); config_mux(state); mpeg_interface_cfg.enable = MXL_ENABLE; mpeg_interface_cfg.lsb_or_msb_first = MXL_HYDRA_MPEG_SERIAL_MSB_1ST; /* supports only (0-104&139)MHz */ if (cfg->ts_clk) mpeg_interface_cfg.max_mpeg_clk_rate = cfg->ts_clk; else mpeg_interface_cfg.max_mpeg_clk_rate = 69; /* 139; */ mpeg_interface_cfg.mpeg_clk_phase = MXL_HYDRA_MPEG_CLK_PHASE_SHIFT_0_DEG; mpeg_interface_cfg.mpeg_clk_pol = MXL_HYDRA_MPEG_CLK_IN_PHASE; /* MXL_HYDRA_MPEG_CLK_GAPPED; */ mpeg_interface_cfg.mpeg_clk_type = MXL_HYDRA_MPEG_CLK_CONTINUOUS; mpeg_interface_cfg.mpeg_error_indication = MXL_HYDRA_MPEG_ERR_INDICATION_DISABLED; mpeg_interface_cfg.mpeg_mode = MXL_HYDRA_MPEG_MODE_SERIAL_3_WIRE; mpeg_interface_cfg.mpeg_sync_pol = MXL_HYDRA_MPEG_ACTIVE_HIGH; mpeg_interface_cfg.mpeg_sync_pulse_width = MXL_HYDRA_MPEG_SYNC_WIDTH_BIT; mpeg_interface_cfg.mpeg_valid_pol = MXL_HYDRA_MPEG_ACTIVE_HIGH; for (j = 0; j < state->base->demod_num; j++) { status = config_ts(state, (enum MXL_HYDRA_DEMOD_ID_E) j, &mpeg_interface_cfg); if (status) return status; } set_drive_strength(state, 1); return 0; } struct dvb_frontend *mxl5xx_attach(struct i2c_adapter *i2c, struct mxl5xx_cfg *cfg, u32 demod, u32 tuner, int (**fn_set_input)(struct dvb_frontend *, int)) { struct mxl *state; struct mxl_base *base; state = kzalloc(sizeof(struct mxl), GFP_KERNEL); if (!state) return NULL; state->demod = demod; state->tuner = tuner; state->tuner_in_use = 0xffffffff; state->i2cdev = &i2c->dev; base = match_base(i2c, cfg->adr); if (base) { base->count++; if (base->count > base->demod_num) goto fail; state->base = base; } else { base = kzalloc(sizeof(struct mxl_base), GFP_KERNEL); if (!base) goto fail; base->i2c = i2c; base->adr = cfg->adr; base->type = cfg->type; base->count = 1; mutex_init(&base->i2c_lock); mutex_init(&base->status_lock); mutex_init(&base->tune_lock); INIT_LIST_HEAD(&base->mxls); state->base = base; if (probe(state, cfg) < 0) { kfree(base); goto fail; } list_add(&base->mxllist, &mxllist); } state->fe.ops = mxl_ops; state->xbar[0] = 4; state->xbar[1] = demod; state->xbar[2] = 8; state->fe.demodulator_priv = state; *fn_set_input = set_input; list_add(&state->mxl, &base->mxls); return &state->fe; fail: kfree(state); return NULL; } EXPORT_SYMBOL_GPL(mxl5xx_attach); MODULE_DESCRIPTION("MaxLinear MxL5xx DVB-S/S2 tuner-demodulator driver"); MODULE_AUTHOR("Ralph and Marcus Metzler, Metzler Brothers Systementwicklung GbR"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1