Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Krzysztof Hałasa | 5590 | 89.53% | 1 | 6.25% |
Jacopo Mondi | 640 | 10.25% | 9 | 56.25% |
Yang Yingliang | 6 | 0.10% | 1 | 6.25% |
Sakari Ailus | 4 | 0.06% | 2 | 12.50% |
Randy Dunlap | 2 | 0.03% | 1 | 6.25% |
Uwe Kleine-König | 2 | 0.03% | 2 | 12.50% |
Total | 6244 | 16 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2021 Sieć Badawcza Łukasiewicz * - Przemysłowy Instytut Automatyki i Pomiarów PIAP * Written by Krzysztof Hałasa */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/pm_runtime.h> #include <media/v4l2-ctrls.h> #include <media/v4l2-fwnode.h> #include <media/v4l2-subdev.h> /* External clock (extclk) frequencies */ #define AR0521_EXTCLK_MIN (10 * 1000 * 1000) #define AR0521_EXTCLK_MAX (48 * 1000 * 1000) /* PLL and PLL2 */ #define AR0521_PLL_MIN (320 * 1000 * 1000) #define AR0521_PLL_MAX (1280 * 1000 * 1000) /* Effective pixel sample rate on the pixel array. */ #define AR0521_PIXEL_CLOCK_RATE (184 * 1000 * 1000) #define AR0521_PIXEL_CLOCK_MIN (168 * 1000 * 1000) #define AR0521_PIXEL_CLOCK_MAX (414 * 1000 * 1000) #define AR0521_NATIVE_WIDTH 2604u #define AR0521_NATIVE_HEIGHT 1964u #define AR0521_MIN_X_ADDR_START 0u #define AR0521_MIN_Y_ADDR_START 0u #define AR0521_MAX_X_ADDR_END 2603u #define AR0521_MAX_Y_ADDR_END 1955u #define AR0521_WIDTH_MIN 8u #define AR0521_WIDTH_MAX 2592u #define AR0521_HEIGHT_MIN 8u #define AR0521_HEIGHT_MAX 1944u #define AR0521_WIDTH_BLANKING_MIN 572u #define AR0521_HEIGHT_BLANKING_MIN 38u /* must be even */ #define AR0521_TOTAL_HEIGHT_MAX 65535u /* max_frame_length_lines */ #define AR0521_TOTAL_WIDTH_MAX 65532u /* max_line_length_pck */ #define AR0521_ANA_GAIN_MIN 0x00 #define AR0521_ANA_GAIN_MAX 0x3f #define AR0521_ANA_GAIN_STEP 0x01 #define AR0521_ANA_GAIN_DEFAULT 0x00 /* AR0521 registers */ #define AR0521_REG_VT_PIX_CLK_DIV 0x0300 #define AR0521_REG_FRAME_LENGTH_LINES 0x0340 #define AR0521_REG_CHIP_ID 0x3000 #define AR0521_REG_COARSE_INTEGRATION_TIME 0x3012 #define AR0521_REG_ROW_SPEED 0x3016 #define AR0521_REG_EXTRA_DELAY 0x3018 #define AR0521_REG_RESET 0x301A #define AR0521_REG_RESET_DEFAULTS 0x0238 #define AR0521_REG_RESET_GROUP_PARAM_HOLD 0x8000 #define AR0521_REG_RESET_STREAM BIT(2) #define AR0521_REG_RESET_RESTART BIT(1) #define AR0521_REG_RESET_INIT BIT(0) #define AR0521_REG_ANA_GAIN_CODE_GLOBAL 0x3028 #define AR0521_REG_GREEN1_GAIN 0x3056 #define AR0521_REG_BLUE_GAIN 0x3058 #define AR0521_REG_RED_GAIN 0x305A #define AR0521_REG_GREEN2_GAIN 0x305C #define AR0521_REG_GLOBAL_GAIN 0x305E #define AR0521_REG_HISPI_TEST_MODE 0x3066 #define AR0521_REG_HISPI_TEST_MODE_LP11 0x0004 #define AR0521_REG_TEST_PATTERN_MODE 0x3070 #define AR0521_REG_SERIAL_FORMAT 0x31AE #define AR0521_REG_SERIAL_FORMAT_MIPI 0x0200 #define AR0521_REG_HISPI_CONTROL_STATUS 0x31C6 #define AR0521_REG_HISPI_CONTROL_STATUS_FRAMER_TEST_MODE_ENABLE 0x80 #define be cpu_to_be16 static const char * const ar0521_supply_names[] = { "vdd_io", /* I/O (1.8V) supply */ "vdd", /* Core, PLL and MIPI (1.2V) supply */ "vaa", /* Analog (2.7V) supply */ }; static const s64 ar0521_link_frequencies[] = { 184000000, }; struct ar0521_ctrls { struct v4l2_ctrl_handler handler; struct { struct v4l2_ctrl *gain; struct v4l2_ctrl *red_balance; struct v4l2_ctrl *blue_balance; }; struct { struct v4l2_ctrl *hblank; struct v4l2_ctrl *vblank; }; struct v4l2_ctrl *pixrate; struct v4l2_ctrl *exposure; struct v4l2_ctrl *test_pattern; }; struct ar0521_dev { struct i2c_client *i2c_client; struct v4l2_subdev sd; struct media_pad pad; struct clk *extclk; u32 extclk_freq; struct regulator *supplies[ARRAY_SIZE(ar0521_supply_names)]; struct gpio_desc *reset_gpio; /* lock to protect all members below */ struct mutex lock; struct v4l2_mbus_framefmt fmt; struct ar0521_ctrls ctrls; unsigned int lane_count; struct { u16 pre; u16 mult; u16 pre2; u16 mult2; u16 vt_pix; } pll; }; static inline struct ar0521_dev *to_ar0521_dev(struct v4l2_subdev *sd) { return container_of(sd, struct ar0521_dev, sd); } static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl) { return &container_of(ctrl->handler, struct ar0521_dev, ctrls.handler)->sd; } static u32 div64_round(u64 v, u32 d) { return div_u64(v + (d >> 1), d); } static u32 div64_round_up(u64 v, u32 d) { return div_u64(v + d - 1, d); } static int ar0521_code_to_bpp(struct ar0521_dev *sensor) { switch (sensor->fmt.code) { case MEDIA_BUS_FMT_SGRBG8_1X8: return 8; } return -EINVAL; } /* Data must be BE16, the first value is the register address */ static int ar0521_write_regs(struct ar0521_dev *sensor, const __be16 *data, unsigned int count) { struct i2c_client *client = sensor->i2c_client; struct i2c_msg msg; int ret; msg.addr = client->addr; msg.flags = client->flags; msg.buf = (u8 *)data; msg.len = count * sizeof(*data); ret = i2c_transfer(client->adapter, &msg, 1); if (ret < 0) { v4l2_err(&sensor->sd, "%s: I2C write error\n", __func__); return ret; } return 0; } static int ar0521_write_reg(struct ar0521_dev *sensor, u16 reg, u16 val) { __be16 buf[2] = {be(reg), be(val)}; return ar0521_write_regs(sensor, buf, 2); } static int ar0521_set_geometry(struct ar0521_dev *sensor) { /* Center the image in the visible output window. */ u16 x = clamp((AR0521_WIDTH_MAX - sensor->fmt.width) / 2, AR0521_MIN_X_ADDR_START, AR0521_MAX_X_ADDR_END); u16 y = clamp(((AR0521_HEIGHT_MAX - sensor->fmt.height) / 2) & ~1, AR0521_MIN_Y_ADDR_START, AR0521_MAX_Y_ADDR_END); /* All dimensions are unsigned 12-bit integers */ __be16 regs[] = { be(AR0521_REG_FRAME_LENGTH_LINES), be(sensor->fmt.height + sensor->ctrls.vblank->val), be(sensor->fmt.width + sensor->ctrls.hblank->val), be(x), be(y), be(x + sensor->fmt.width - 1), be(y + sensor->fmt.height - 1), be(sensor->fmt.width), be(sensor->fmt.height) }; return ar0521_write_regs(sensor, regs, ARRAY_SIZE(regs)); } static int ar0521_set_gains(struct ar0521_dev *sensor) { int green = sensor->ctrls.gain->val; int red = max(green + sensor->ctrls.red_balance->val, 0); int blue = max(green + sensor->ctrls.blue_balance->val, 0); unsigned int gain = min(red, min(green, blue)); unsigned int analog = min(gain, 64u); /* range is 0 - 127 */ __be16 regs[5]; red = min(red - analog + 64, 511u); green = min(green - analog + 64, 511u); blue = min(blue - analog + 64, 511u); regs[0] = be(AR0521_REG_GREEN1_GAIN); regs[1] = be(green << 7 | analog); regs[2] = be(blue << 7 | analog); regs[3] = be(red << 7 | analog); regs[4] = be(green << 7 | analog); return ar0521_write_regs(sensor, regs, ARRAY_SIZE(regs)); } static u32 calc_pll(struct ar0521_dev *sensor, u32 freq, u16 *pre_ptr, u16 *mult_ptr) { u16 pre = 1, mult = 1, new_pre; u32 pll = AR0521_PLL_MAX + 1; for (new_pre = 1; new_pre < 64; new_pre++) { u32 new_pll; u32 new_mult = div64_round_up((u64)freq * new_pre, sensor->extclk_freq); if (new_mult < 32) continue; /* Minimum value */ if (new_mult > 254) break; /* Maximum, larger pre won't work either */ if (sensor->extclk_freq * (u64)new_mult < AR0521_PLL_MIN * new_pre) continue; if (sensor->extclk_freq * (u64)new_mult > AR0521_PLL_MAX * new_pre) break; /* Larger pre won't work either */ new_pll = div64_round_up(sensor->extclk_freq * (u64)new_mult, new_pre); if (new_pll < pll) { pll = new_pll; pre = new_pre; mult = new_mult; } } pll = div64_round(sensor->extclk_freq * (u64)mult, pre); *pre_ptr = pre; *mult_ptr = mult; return pll; } static void ar0521_calc_pll(struct ar0521_dev *sensor) { unsigned int pixel_clock; u16 pre, mult; u32 vco; int bpp; /* * PLL1 and PLL2 are computed equally even if the application note * suggests a slower PLL1 clock. Maintain pll1 and pll2 divider and * multiplier separated to later specialize the calculation procedure. * * PLL1: * - mclk -> / pre_div1 * pre_mul1 = VCO1 = COUNTER_CLOCK * * PLL2: * - mclk -> / pre_div * pre_mul = VCO * * VCO -> / vt_pix = PIXEL_CLOCK * VCO -> / vt_pix / 2 = WORD_CLOCK * VCO -> / op_sys = SERIAL_CLOCK * * With: * - vt_pix = bpp / 2 * - WORD_CLOCK = PIXEL_CLOCK / 2 * - SERIAL_CLOCK = MIPI data rate (Mbps / lane) = WORD_CLOCK * bpp * NOTE: this implies the MIPI clock is divided internally by 2 * to account for DDR. * * As op_sys_div is fixed to 1: * * SERIAL_CLOCK = VCO * VCO = 2 * MIPI_CLK * VCO = PIXEL_CLOCK * bpp / 2 * * In the clock tree: * MIPI_CLK = PIXEL_CLOCK * bpp / 2 / 2 * * Generic pixel_rate to bus clock frequency equation: * MIPI_CLK = V4L2_CID_PIXEL_RATE * bpp / lanes / 2 * * From which we derive the PIXEL_CLOCK to use in the clock tree: * PIXEL_CLOCK = V4L2_CID_PIXEL_RATE * 2 / lanes * * Documented clock ranges: * WORD_CLOCK = (35MHz - 120 MHz) * PIXEL_CLOCK = (84MHz - 207MHz) * VCO = (320MHz - 1280MHz) * * TODO: in case we have less data lanes we have to reduce the desired * VCO not to exceed the limits specified by the datasheet and * consequently reduce the obtained pixel clock. */ pixel_clock = AR0521_PIXEL_CLOCK_RATE * 2 / sensor->lane_count; bpp = ar0521_code_to_bpp(sensor); sensor->pll.vt_pix = bpp / 2; vco = pixel_clock * sensor->pll.vt_pix; calc_pll(sensor, vco, &pre, &mult); sensor->pll.pre = sensor->pll.pre2 = pre; sensor->pll.mult = sensor->pll.mult2 = mult; } static int ar0521_pll_config(struct ar0521_dev *sensor) { __be16 pll_regs[] = { be(AR0521_REG_VT_PIX_CLK_DIV), /* 0x300 */ be(sensor->pll.vt_pix), /* vt_pix_clk_div = bpp / 2 */ /* 0x302 */ be(1), /* vt_sys_clk_div */ /* 0x304 */ be((sensor->pll.pre2 << 8) | sensor->pll.pre), /* 0x306 */ be((sensor->pll.mult2 << 8) | sensor->pll.mult), /* 0x308 */ be(sensor->pll.vt_pix * 2), /* op_pix_clk_div = 2 * vt_pix_clk_div */ /* 0x30A */ be(1) /* op_sys_clk_div */ }; ar0521_calc_pll(sensor); return ar0521_write_regs(sensor, pll_regs, ARRAY_SIZE(pll_regs)); } static int ar0521_set_stream(struct ar0521_dev *sensor, bool on) { int ret; if (on) { ret = pm_runtime_resume_and_get(&sensor->i2c_client->dev); if (ret < 0) return ret; /* Stop streaming for just a moment */ ret = ar0521_write_reg(sensor, AR0521_REG_RESET, AR0521_REG_RESET_DEFAULTS); if (ret) return ret; ret = ar0521_set_geometry(sensor); if (ret) return ret; ret = ar0521_pll_config(sensor); if (ret) goto err; ret = __v4l2_ctrl_handler_setup(&sensor->ctrls.handler); if (ret) goto err; /* Exit LP-11 mode on clock and data lanes */ ret = ar0521_write_reg(sensor, AR0521_REG_HISPI_CONTROL_STATUS, 0); if (ret) goto err; /* Start streaming */ ret = ar0521_write_reg(sensor, AR0521_REG_RESET, AR0521_REG_RESET_DEFAULTS | AR0521_REG_RESET_STREAM); if (ret) goto err; return 0; err: pm_runtime_put(&sensor->i2c_client->dev); return ret; } else { /* * Reset gain, the sensor may produce all white pixels without * this */ ret = ar0521_write_reg(sensor, AR0521_REG_GLOBAL_GAIN, 0x2000); if (ret) return ret; /* Stop streaming */ ret = ar0521_write_reg(sensor, AR0521_REG_RESET, AR0521_REG_RESET_DEFAULTS); if (ret) return ret; pm_runtime_put(&sensor->i2c_client->dev); return 0; } } static void ar0521_adj_fmt(struct v4l2_mbus_framefmt *fmt) { fmt->width = clamp(ALIGN(fmt->width, 4), AR0521_WIDTH_MIN, AR0521_WIDTH_MAX); fmt->height = clamp(ALIGN(fmt->height, 4), AR0521_HEIGHT_MIN, AR0521_HEIGHT_MAX); fmt->code = MEDIA_BUS_FMT_SGRBG8_1X8; fmt->field = V4L2_FIELD_NONE; fmt->colorspace = V4L2_COLORSPACE_SRGB; fmt->ycbcr_enc = V4L2_YCBCR_ENC_DEFAULT; fmt->quantization = V4L2_QUANTIZATION_FULL_RANGE; fmt->xfer_func = V4L2_XFER_FUNC_DEFAULT; } static int ar0521_get_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *format) { struct ar0521_dev *sensor = to_ar0521_dev(sd); struct v4l2_mbus_framefmt *fmt; mutex_lock(&sensor->lock); if (format->which == V4L2_SUBDEV_FORMAT_TRY) fmt = v4l2_subdev_state_get_format(sd_state, 0); else fmt = &sensor->fmt; format->format = *fmt; mutex_unlock(&sensor->lock); return 0; } static int ar0521_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *format) { struct ar0521_dev *sensor = to_ar0521_dev(sd); int max_vblank, max_hblank, exposure_max; int ret; ar0521_adj_fmt(&format->format); mutex_lock(&sensor->lock); if (format->which == V4L2_SUBDEV_FORMAT_TRY) { struct v4l2_mbus_framefmt *fmt; fmt = v4l2_subdev_state_get_format(sd_state, 0); *fmt = format->format; mutex_unlock(&sensor->lock); return 0; } sensor->fmt = format->format; ar0521_calc_pll(sensor); /* * Update the exposure and blankings limits. Blankings are also reset * to the minimum. */ max_hblank = AR0521_TOTAL_WIDTH_MAX - sensor->fmt.width; ret = __v4l2_ctrl_modify_range(sensor->ctrls.hblank, sensor->ctrls.hblank->minimum, max_hblank, sensor->ctrls.hblank->step, sensor->ctrls.hblank->minimum); if (ret) goto unlock; ret = __v4l2_ctrl_s_ctrl(sensor->ctrls.hblank, sensor->ctrls.hblank->minimum); if (ret) goto unlock; max_vblank = AR0521_TOTAL_HEIGHT_MAX - sensor->fmt.height; ret = __v4l2_ctrl_modify_range(sensor->ctrls.vblank, sensor->ctrls.vblank->minimum, max_vblank, sensor->ctrls.vblank->step, sensor->ctrls.vblank->minimum); if (ret) goto unlock; ret = __v4l2_ctrl_s_ctrl(sensor->ctrls.vblank, sensor->ctrls.vblank->minimum); if (ret) goto unlock; exposure_max = sensor->fmt.height + AR0521_HEIGHT_BLANKING_MIN - 4; ret = __v4l2_ctrl_modify_range(sensor->ctrls.exposure, sensor->ctrls.exposure->minimum, exposure_max, sensor->ctrls.exposure->step, sensor->ctrls.exposure->default_value); unlock: mutex_unlock(&sensor->lock); return ret; } static int ar0521_s_ctrl(struct v4l2_ctrl *ctrl) { struct v4l2_subdev *sd = ctrl_to_sd(ctrl); struct ar0521_dev *sensor = to_ar0521_dev(sd); int exp_max; int ret; /* v4l2_ctrl_lock() locks our own mutex */ switch (ctrl->id) { case V4L2_CID_VBLANK: exp_max = sensor->fmt.height + ctrl->val - 4; __v4l2_ctrl_modify_range(sensor->ctrls.exposure, sensor->ctrls.exposure->minimum, exp_max, sensor->ctrls.exposure->step, sensor->ctrls.exposure->default_value); break; } /* access the sensor only if it's powered up */ if (!pm_runtime_get_if_in_use(&sensor->i2c_client->dev)) return 0; switch (ctrl->id) { case V4L2_CID_HBLANK: case V4L2_CID_VBLANK: ret = ar0521_set_geometry(sensor); break; case V4L2_CID_ANALOGUE_GAIN: ret = ar0521_write_reg(sensor, AR0521_REG_ANA_GAIN_CODE_GLOBAL, ctrl->val); break; case V4L2_CID_GAIN: case V4L2_CID_RED_BALANCE: case V4L2_CID_BLUE_BALANCE: ret = ar0521_set_gains(sensor); break; case V4L2_CID_EXPOSURE: ret = ar0521_write_reg(sensor, AR0521_REG_COARSE_INTEGRATION_TIME, ctrl->val); break; case V4L2_CID_TEST_PATTERN: ret = ar0521_write_reg(sensor, AR0521_REG_TEST_PATTERN_MODE, ctrl->val); break; default: dev_err(&sensor->i2c_client->dev, "Unsupported control %x\n", ctrl->id); ret = -EINVAL; break; } pm_runtime_put(&sensor->i2c_client->dev); return ret; } static const struct v4l2_ctrl_ops ar0521_ctrl_ops = { .s_ctrl = ar0521_s_ctrl, }; static const char * const test_pattern_menu[] = { "Disabled", "Solid color", "Color bars", "Faded color bars" }; static int ar0521_init_controls(struct ar0521_dev *sensor) { const struct v4l2_ctrl_ops *ops = &ar0521_ctrl_ops; struct ar0521_ctrls *ctrls = &sensor->ctrls; struct v4l2_ctrl_handler *hdl = &ctrls->handler; int max_vblank, max_hblank, exposure_max; struct v4l2_ctrl *link_freq; int ret; v4l2_ctrl_handler_init(hdl, 32); /* We can use our own mutex for the ctrl lock */ hdl->lock = &sensor->lock; /* Analog gain */ v4l2_ctrl_new_std(hdl, ops, V4L2_CID_ANALOGUE_GAIN, AR0521_ANA_GAIN_MIN, AR0521_ANA_GAIN_MAX, AR0521_ANA_GAIN_STEP, AR0521_ANA_GAIN_DEFAULT); /* Manual gain */ ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_GAIN, 0, 511, 1, 0); ctrls->red_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_RED_BALANCE, -512, 511, 1, 0); ctrls->blue_balance = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_BLUE_BALANCE, -512, 511, 1, 0); v4l2_ctrl_cluster(3, &ctrls->gain); /* Initialize blanking limits using the default 2592x1944 format. */ max_hblank = AR0521_TOTAL_WIDTH_MAX - AR0521_WIDTH_MAX; ctrls->hblank = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HBLANK, AR0521_WIDTH_BLANKING_MIN, max_hblank, 1, AR0521_WIDTH_BLANKING_MIN); max_vblank = AR0521_TOTAL_HEIGHT_MAX - AR0521_HEIGHT_MAX; ctrls->vblank = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VBLANK, AR0521_HEIGHT_BLANKING_MIN, max_vblank, 2, AR0521_HEIGHT_BLANKING_MIN); v4l2_ctrl_cluster(2, &ctrls->hblank); /* Read-only */ ctrls->pixrate = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_PIXEL_RATE, AR0521_PIXEL_CLOCK_MIN, AR0521_PIXEL_CLOCK_MAX, 1, AR0521_PIXEL_CLOCK_RATE); /* Manual exposure time: max exposure time = visible + blank - 4 */ exposure_max = AR0521_HEIGHT_MAX + AR0521_HEIGHT_BLANKING_MIN - 4; ctrls->exposure = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE, 0, exposure_max, 1, 0x70); link_freq = v4l2_ctrl_new_int_menu(hdl, ops, V4L2_CID_LINK_FREQ, ARRAY_SIZE(ar0521_link_frequencies) - 1, 0, ar0521_link_frequencies); if (link_freq) link_freq->flags |= V4L2_CTRL_FLAG_READ_ONLY; ctrls->test_pattern = v4l2_ctrl_new_std_menu_items(hdl, ops, V4L2_CID_TEST_PATTERN, ARRAY_SIZE(test_pattern_menu) - 1, 0, 0, test_pattern_menu); if (hdl->error) { ret = hdl->error; goto free_ctrls; } sensor->sd.ctrl_handler = hdl; return 0; free_ctrls: v4l2_ctrl_handler_free(hdl); return ret; } #define REGS_ENTRY(a) {(a), ARRAY_SIZE(a)} #define REGS(...) REGS_ENTRY(((const __be16[]){__VA_ARGS__})) static const struct initial_reg { const __be16 *data; /* data[0] is register address */ unsigned int count; } initial_regs[] = { REGS(be(0x0112), be(0x0808)), /* 8-bit/8-bit mode */ /* PEDESTAL+2 :+2 is a workaround for 10bit mode +0.5 rounding */ REGS(be(0x301E), be(0x00AA)), /* corrections_recommended_bayer */ REGS(be(0x3042), be(0x0004), /* 3042: RNC: enable b/w rnc mode */ be(0x4580)), /* 3044: RNC: enable row noise correction */ REGS(be(0x30D2), be(0x0000), /* 30D2: CRM/CC: enable crm on Visible and CC rows */ be(0x0000), /* 30D4: CC: CC enabled with 16 samples per column */ /* 30D6: CC: bw mode enabled/12 bit data resolution/bw mode */ be(0x2FFF)), REGS(be(0x30DA), be(0x0FFF), /* 30DA: CC: column correction clip level 2 is 0 */ be(0x0FFF), /* 30DC: CC: column correction clip level 3 is 0 */ be(0x0000)), /* 30DE: CC: Group FPN correction */ /* RNC: rnc scaling factor = * 54 / 64 (32 / 38 * 64 = 53.9) */ REGS(be(0x30EE), be(0x1136)), REGS(be(0x30FA), be(0xFD00)), /* GPIO0 = flash, GPIO1 = shutter */ REGS(be(0x3120), be(0x0005)), /* p1 dither enabled for 10bit mode */ REGS(be(0x3172), be(0x0206)), /* txlo clk divider options */ /* FDOC:fdoc settings with fdoc every frame turned of */ REGS(be(0x3180), be(0x9434)), REGS(be(0x31B0), be(0x008B), /* 31B0: frame_preamble - FIXME check WRT lanes# */ be(0x0050)), /* 31B2: line_preamble - FIXME check WRT lanes# */ /* don't use continuous clock mode while shut down */ REGS(be(0x31BC), be(0x068C)), REGS(be(0x31E0), be(0x0781)), /* Fuse/2DDC: enable 2ddc */ /* analog_setup_recommended_10bit */ REGS(be(0x341A), be(0x4735)), /* Samp&Hold pulse in ADC */ REGS(be(0x3420), be(0x4735)), /* Samp&Hold pulse in ADC */ REGS(be(0x3426), be(0x8A1A)), /* ADC offset distribution pulse */ REGS(be(0x342A), be(0x0018)), /* pulse_config */ /* pixel_timing_recommended */ REGS(be(0x3D00), /* 3D00 */ be(0x043E), be(0x4760), be(0xFFFF), be(0xFFFF), /* 3D08 */ be(0x8000), be(0x0510), be(0xAF08), be(0x0252), /* 3D10 */ be(0x486F), be(0x5D5D), be(0x8056), be(0x8313), /* 3D18 */ be(0x0087), be(0x6A48), be(0x6982), be(0x0280), /* 3D20 */ be(0x8359), be(0x8D02), be(0x8020), be(0x4882), /* 3D28 */ be(0x4269), be(0x6A95), be(0x5988), be(0x5A83), /* 3D30 */ be(0x5885), be(0x6280), be(0x6289), be(0x6097), /* 3D38 */ be(0x5782), be(0x605C), be(0xBF18), be(0x0961), /* 3D40 */ be(0x5080), be(0x2090), be(0x4390), be(0x4382), /* 3D48 */ be(0x5F8A), be(0x5D5D), be(0x9C63), be(0x8063), /* 3D50 */ be(0xA960), be(0x9757), be(0x8260), be(0x5CFF), /* 3D58 */ be(0xBF10), be(0x1681), be(0x0802), be(0x8000), /* 3D60 */ be(0x141C), be(0x6000), be(0x6022), be(0x4D80), /* 3D68 */ be(0x5C97), be(0x6A69), be(0xAC6F), be(0x4645), /* 3D70 */ be(0x4400), be(0x0513), be(0x8069), be(0x6AC6), /* 3D78 */ be(0x5F95), be(0x5F70), be(0x8040), be(0x4A81), /* 3D80 */ be(0x0300), be(0xE703), be(0x0088), be(0x4A83), /* 3D88 */ be(0x40FF), be(0xFFFF), be(0xFD70), be(0x8040), /* 3D90 */ be(0x4A85), be(0x4FA8), be(0x4F8C), be(0x0070), /* 3D98 */ be(0xBE47), be(0x8847), be(0xBC78), be(0x6B89), /* 3DA0 */ be(0x6A80), be(0x6986), be(0x6B8E), be(0x6B80), /* 3DA8 */ be(0x6980), be(0x6A88), be(0x7C9F), be(0x866B), /* 3DB0 */ be(0x8765), be(0x46FF), be(0xE365), be(0xA679), /* 3DB8 */ be(0x4A40), be(0x4580), be(0x44BC), be(0x7000), /* 3DC0 */ be(0x8040), be(0x0802), be(0x10EF), be(0x0104), /* 3DC8 */ be(0x3860), be(0x5D5D), be(0x5682), be(0x1300), /* 3DD0 */ be(0x8648), be(0x8202), be(0x8082), be(0x598A), /* 3DD8 */ be(0x0280), be(0x2048), be(0x3060), be(0x8042), /* 3DE0 */ be(0x9259), be(0x865A), be(0x8258), be(0x8562), /* 3DE8 */ be(0x8062), be(0x8560), be(0x9257), be(0x8221), /* 3DF0 */ be(0x10FF), be(0xB757), be(0x9361), be(0x1019), /* 3DF8 */ be(0x8020), be(0x9043), be(0x8E43), be(0x845F), /* 3E00 */ be(0x835D), be(0x805D), be(0x8163), be(0x8063), /* 3E08 */ be(0xA060), be(0x9157), be(0x8260), be(0x5CFF), /* 3E10 */ be(0xFFFF), be(0xFFE5), be(0x1016), be(0x2048), /* 3E18 */ be(0x0802), be(0x1C60), be(0x0014), be(0x0060), /* 3E20 */ be(0x2205), be(0x8120), be(0x908F), be(0x6A80), /* 3E28 */ be(0x6982), be(0x5F9F), be(0x6F46), be(0x4544), /* 3E30 */ be(0x0005), be(0x8013), be(0x8069), be(0x6A80), /* 3E38 */ be(0x7000), be(0x0000), be(0x0000), be(0x0000), /* 3E40 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000), /* 3E48 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000), /* 3E50 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000), /* 3E58 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000), /* 3E60 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000), /* 3E68 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000), /* 3E70 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000), /* 3E78 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000), /* 3E80 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000), /* 3E88 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000), /* 3E90 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000), /* 3E98 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000), /* 3EA0 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000), /* 3EA8 */ be(0x0000), be(0x0000), be(0x0000), be(0x0000), /* 3EB0 */ be(0x0000), be(0x0000), be(0x0000)), REGS(be(0x3EB6), be(0x004C)), /* ECL */ REGS(be(0x3EBA), be(0xAAAD), /* 3EBA */ be(0x0086)), /* 3EBC: Bias currents for FSC/ECL */ REGS(be(0x3EC0), be(0x1E00), /* 3EC0: SFbin/SH mode settings */ be(0x100A), /* 3EC2: CLK divider for ramp for 10 bit 400MH */ /* 3EC4: FSC clamps for HDR mode and adc comp power down co */ be(0x3300), be(0xEA44), /* 3EC6: VLN and clk gating controls */ be(0x6F6F), /* 3EC8: Txl0 and Txlo1 settings for normal mode */ be(0x2F4A), /* 3ECA: CDAC/Txlo2/RSTGHI/RSTGLO settings */ be(0x0506), /* 3ECC: RSTDHI/RSTDLO/CDAC/TXHI settings */ /* 3ECE: Ramp buffer settings and Booster enable (bits 0-5) */ be(0x203B), be(0x13F0), /* 3ED0: TXLO from atest/sf bin settings */ be(0xA53D), /* 3ED2: Ramp offset */ be(0x862F), /* 3ED4: TXLO open loop/row driver settings */ be(0x4081), /* 3ED6: Txlatch fr cfpn rows/vln bias */ be(0x8003), /* 3ED8: Ramp step setting for 10 bit 400 Mhz */ be(0xA580), /* 3EDA: Ramp Offset */ be(0xC000), /* 3EDC: over range for rst and under range for sig */ be(0xC103)), /* 3EDE: over range for sig and col dec clk settings */ /* corrections_recommended_bayer */ REGS(be(0x3F00), be(0x0017), /* 3F00: BM_T0 */ be(0x02DD), /* 3F02: BM_T1 */ /* 3F04: if Ana_gain less than 2, use noise_floor0, multiply */ be(0x0020), /* 3F06: if Ana_gain between 4 and 7, use noise_floor2 and */ be(0x0040), /* 3F08: if Ana_gain between 4 and 7, use noise_floor2 and */ be(0x0070), /* 3F0A: Define noise_floor0(low address) and noise_floor1 */ be(0x0101), be(0x0302)), /* 3F0C: Define noise_floor2 and noise_floor3 */ REGS(be(0x3F10), be(0x0505), /* 3F10: single k factor 0 */ be(0x0505), /* 3F12: single k factor 1 */ be(0x0505), /* 3F14: single k factor 2 */ be(0x01FF), /* 3F16: cross factor 0 */ be(0x01FF), /* 3F18: cross factor 1 */ be(0x01FF), /* 3F1A: cross factor 2 */ be(0x0022)), /* 3F1E */ /* GTH_THRES_RTN: 4max,4min filtered out of every 46 samples and */ REGS(be(0x3F2C), be(0x442E)), REGS(be(0x3F3E), be(0x0000), /* 3F3E: Switch ADC from 12 bit to 10 bit mode */ be(0x1511), /* 3F40: couple k factor 0 */ be(0x1511), /* 3F42: couple k factor 1 */ be(0x0707)), /* 3F44: couple k factor 2 */ }; static int ar0521_power_off(struct device *dev) { struct v4l2_subdev *sd = dev_get_drvdata(dev); struct ar0521_dev *sensor = to_ar0521_dev(sd); int i; clk_disable_unprepare(sensor->extclk); if (sensor->reset_gpio) gpiod_set_value(sensor->reset_gpio, 1); /* assert RESET signal */ for (i = ARRAY_SIZE(ar0521_supply_names) - 1; i >= 0; i--) { if (sensor->supplies[i]) regulator_disable(sensor->supplies[i]); } return 0; } static int ar0521_power_on(struct device *dev) { struct v4l2_subdev *sd = dev_get_drvdata(dev); struct ar0521_dev *sensor = to_ar0521_dev(sd); unsigned int cnt; int ret; for (cnt = 0; cnt < ARRAY_SIZE(ar0521_supply_names); cnt++) if (sensor->supplies[cnt]) { ret = regulator_enable(sensor->supplies[cnt]); if (ret < 0) goto off; usleep_range(1000, 1500); /* min 1 ms */ } ret = clk_prepare_enable(sensor->extclk); if (ret < 0) { v4l2_err(&sensor->sd, "error enabling sensor clock\n"); goto off; } usleep_range(1000, 1500); /* min 1 ms */ if (sensor->reset_gpio) /* deassert RESET signal */ gpiod_set_value(sensor->reset_gpio, 0); usleep_range(4500, 5000); /* min 45000 clocks */ for (cnt = 0; cnt < ARRAY_SIZE(initial_regs); cnt++) { ret = ar0521_write_regs(sensor, initial_regs[cnt].data, initial_regs[cnt].count); if (ret) goto off; } ret = ar0521_write_reg(sensor, AR0521_REG_SERIAL_FORMAT, AR0521_REG_SERIAL_FORMAT_MIPI | sensor->lane_count); if (ret) goto off; /* set MIPI test mode - disabled for now */ ret = ar0521_write_reg(sensor, AR0521_REG_HISPI_TEST_MODE, ((0x40 << sensor->lane_count) - 0x40) | AR0521_REG_HISPI_TEST_MODE_LP11); if (ret) goto off; ret = ar0521_write_reg(sensor, AR0521_REG_ROW_SPEED, 0x110 | 4 / sensor->lane_count); if (ret) goto off; return 0; off: ar0521_power_off(dev); return ret; } static int ar0521_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) { struct ar0521_dev *sensor = to_ar0521_dev(sd); if (code->index) return -EINVAL; code->code = sensor->fmt.code; return 0; } static int ar0521_enum_frame_size(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_size_enum *fse) { if (fse->index) return -EINVAL; if (fse->code != MEDIA_BUS_FMT_SGRBG8_1X8) return -EINVAL; fse->min_width = AR0521_WIDTH_MIN; fse->max_width = AR0521_WIDTH_MAX; fse->min_height = AR0521_HEIGHT_MIN; fse->max_height = AR0521_HEIGHT_MAX; return 0; } static int ar0521_pre_streamon(struct v4l2_subdev *sd, u32 flags) { struct ar0521_dev *sensor = to_ar0521_dev(sd); int ret; if (!(flags & V4L2_SUBDEV_PRE_STREAMON_FL_MANUAL_LP)) return -EACCES; ret = pm_runtime_resume_and_get(&sensor->i2c_client->dev); if (ret < 0) return ret; /* Set LP-11 on clock and data lanes */ ret = ar0521_write_reg(sensor, AR0521_REG_HISPI_CONTROL_STATUS, AR0521_REG_HISPI_CONTROL_STATUS_FRAMER_TEST_MODE_ENABLE); if (ret) goto err; /* Start streaming LP-11 */ ret = ar0521_write_reg(sensor, AR0521_REG_RESET, AR0521_REG_RESET_DEFAULTS | AR0521_REG_RESET_STREAM); if (ret) goto err; return 0; err: pm_runtime_put(&sensor->i2c_client->dev); return ret; } static int ar0521_post_streamoff(struct v4l2_subdev *sd) { struct ar0521_dev *sensor = to_ar0521_dev(sd); pm_runtime_put(&sensor->i2c_client->dev); return 0; } static int ar0521_s_stream(struct v4l2_subdev *sd, int enable) { struct ar0521_dev *sensor = to_ar0521_dev(sd); int ret; mutex_lock(&sensor->lock); ret = ar0521_set_stream(sensor, enable); mutex_unlock(&sensor->lock); return ret; } static const struct v4l2_subdev_core_ops ar0521_core_ops = { .log_status = v4l2_ctrl_subdev_log_status, }; static const struct v4l2_subdev_video_ops ar0521_video_ops = { .s_stream = ar0521_s_stream, .pre_streamon = ar0521_pre_streamon, .post_streamoff = ar0521_post_streamoff, }; static const struct v4l2_subdev_pad_ops ar0521_pad_ops = { .enum_mbus_code = ar0521_enum_mbus_code, .enum_frame_size = ar0521_enum_frame_size, .get_fmt = ar0521_get_fmt, .set_fmt = ar0521_set_fmt, }; static const struct v4l2_subdev_ops ar0521_subdev_ops = { .core = &ar0521_core_ops, .video = &ar0521_video_ops, .pad = &ar0521_pad_ops, }; static int ar0521_probe(struct i2c_client *client) { struct v4l2_fwnode_endpoint ep = { .bus_type = V4L2_MBUS_CSI2_DPHY }; struct device *dev = &client->dev; struct fwnode_handle *endpoint; struct ar0521_dev *sensor; unsigned int cnt; int ret; sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL); if (!sensor) return -ENOMEM; sensor->i2c_client = client; sensor->fmt.width = AR0521_WIDTH_MAX; sensor->fmt.height = AR0521_HEIGHT_MAX; endpoint = fwnode_graph_get_endpoint_by_id(dev_fwnode(dev), 0, 0, FWNODE_GRAPH_ENDPOINT_NEXT); if (!endpoint) { dev_err(dev, "endpoint node not found\n"); return -EINVAL; } ret = v4l2_fwnode_endpoint_parse(endpoint, &ep); fwnode_handle_put(endpoint); if (ret) { dev_err(dev, "could not parse endpoint\n"); return ret; } if (ep.bus_type != V4L2_MBUS_CSI2_DPHY) { dev_err(dev, "invalid bus type, must be MIPI CSI2\n"); return -EINVAL; } sensor->lane_count = ep.bus.mipi_csi2.num_data_lanes; switch (sensor->lane_count) { case 1: case 2: case 4: break; default: dev_err(dev, "invalid number of MIPI data lanes\n"); return -EINVAL; } /* Get master clock (extclk) */ sensor->extclk = devm_clk_get(dev, "extclk"); if (IS_ERR(sensor->extclk)) { dev_err(dev, "failed to get extclk\n"); return PTR_ERR(sensor->extclk); } sensor->extclk_freq = clk_get_rate(sensor->extclk); if (sensor->extclk_freq < AR0521_EXTCLK_MIN || sensor->extclk_freq > AR0521_EXTCLK_MAX) { dev_err(dev, "extclk frequency out of range: %u Hz\n", sensor->extclk_freq); return -EINVAL; } /* Request optional reset pin (usually active low) and assert it */ sensor->reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); v4l2_i2c_subdev_init(&sensor->sd, client, &ar0521_subdev_ops); sensor->sd.flags = V4L2_SUBDEV_FL_HAS_DEVNODE; sensor->pad.flags = MEDIA_PAD_FL_SOURCE; sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR; ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad); if (ret) return ret; for (cnt = 0; cnt < ARRAY_SIZE(ar0521_supply_names); cnt++) { struct regulator *supply = devm_regulator_get(dev, ar0521_supply_names[cnt]); if (IS_ERR(supply)) { dev_info(dev, "no %s regulator found: %li\n", ar0521_supply_names[cnt], PTR_ERR(supply)); return PTR_ERR(supply); } sensor->supplies[cnt] = supply; } mutex_init(&sensor->lock); ret = ar0521_init_controls(sensor); if (ret) goto entity_cleanup; ar0521_adj_fmt(&sensor->fmt); ret = v4l2_async_register_subdev(&sensor->sd); if (ret) goto free_ctrls; /* Turn on the device and enable runtime PM */ ret = ar0521_power_on(&client->dev); if (ret) goto disable; pm_runtime_set_active(&client->dev); pm_runtime_enable(&client->dev); pm_runtime_idle(&client->dev); return 0; disable: v4l2_async_unregister_subdev(&sensor->sd); media_entity_cleanup(&sensor->sd.entity); free_ctrls: v4l2_ctrl_handler_free(&sensor->ctrls.handler); entity_cleanup: media_entity_cleanup(&sensor->sd.entity); mutex_destroy(&sensor->lock); return ret; } static void ar0521_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct ar0521_dev *sensor = to_ar0521_dev(sd); v4l2_async_unregister_subdev(&sensor->sd); media_entity_cleanup(&sensor->sd.entity); v4l2_ctrl_handler_free(&sensor->ctrls.handler); pm_runtime_disable(&client->dev); if (!pm_runtime_status_suspended(&client->dev)) ar0521_power_off(&client->dev); pm_runtime_set_suspended(&client->dev); mutex_destroy(&sensor->lock); } static const struct dev_pm_ops ar0521_pm_ops = { SET_RUNTIME_PM_OPS(ar0521_power_off, ar0521_power_on, NULL) }; static const struct of_device_id ar0521_dt_ids[] = { {.compatible = "onnn,ar0521"}, {} }; MODULE_DEVICE_TABLE(of, ar0521_dt_ids); static struct i2c_driver ar0521_i2c_driver = { .driver = { .name = "ar0521", .pm = &ar0521_pm_ops, .of_match_table = ar0521_dt_ids, }, .probe = ar0521_probe, .remove = ar0521_remove, }; module_i2c_driver(ar0521_i2c_driver); MODULE_DESCRIPTION("AR0521 MIPI Camera subdev driver"); MODULE_AUTHOR("Krzysztof Hałasa <khalasa@piap.pl>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1