Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Hans Verkuil | 7708 | 39.24% | 53 | 41.41% |
Steven Toth | 6885 | 35.05% | 9 | 7.03% |
Andy Walls | 1877 | 9.56% | 9 | 7.03% |
Maciej S. Szmigiero | 1808 | 9.20% | 7 | 5.47% |
Mauro Carvalho Chehab | 628 | 3.20% | 17 | 13.28% |
Sri Deevi | 207 | 1.05% | 1 | 0.78% |
Devin Heitmueller | 149 | 0.76% | 4 | 3.12% |
Brad Love | 90 | 0.46% | 2 | 1.56% |
Aleksandr V. Piskunov | 69 | 0.35% | 1 | 0.78% |
David T. L. Wong | 41 | 0.21% | 1 | 0.78% |
Jean Delvare | 29 | 0.15% | 1 | 0.78% |
Tyler Trafford | 22 | 0.11% | 1 | 0.78% |
Laurent Pinchart | 21 | 0.11% | 3 | 2.34% |
Pan Bian | 18 | 0.09% | 1 | 0.78% |
Joe Perches | 16 | 0.08% | 1 | 0.78% |
Christopher Neufeld | 16 | 0.08% | 1 | 0.78% |
Cody P Schafer | 14 | 0.07% | 1 | 0.78% |
Sylwester Nawrocki | 9 | 0.05% | 1 | 0.78% |
Kusanagi Kouichi | 7 | 0.04% | 1 | 0.78% |
Trent Piepho | 5 | 0.03% | 1 | 0.78% |
Lad Prabhakar | 4 | 0.02% | 1 | 0.78% |
Sven Barth | 4 | 0.02% | 1 | 0.78% |
Michael Ira Krufky | 3 | 0.02% | 1 | 0.78% |
Axel Lin | 2 | 0.01% | 1 | 0.78% |
Tomi Valkeinen | 2 | 0.01% | 1 | 0.78% |
Uwe Kleine-König | 2 | 0.01% | 2 | 1.56% |
Lucas De Marchi | 2 | 0.01% | 1 | 0.78% |
Colin Ian King | 2 | 0.01% | 1 | 0.78% |
Thomas Gleixner | 1 | 0.01% | 1 | 0.78% |
Boris Brezillon | 1 | 0.01% | 1 | 0.78% |
Adrian Bunk | 1 | 0.01% | 1 | 0.78% |
Total | 19643 | 128 |
// SPDX-License-Identifier: GPL-2.0-or-later /* cx25840 - Conexant CX25840 audio/video decoder driver * * Copyright (C) 2004 Ulf Eklund * * Based on the saa7115 driver and on the first version of Chris Kennedy's * cx25840 driver. * * Changes by Tyler Trafford <tatrafford@comcast.net> * - cleanup/rewrite for V4L2 API (2005) * * VBI support by Hans Verkuil <hverkuil@xs4all.nl>. * * NTSC sliced VBI support by Christopher Neufeld <television@cneufeld.ca> * with additional fixes by Hans Verkuil <hverkuil@xs4all.nl>. * * CX23885 support by Steven Toth <stoth@linuxtv.org>. * * CX2388[578] IRQ handling, IO Pin mux configuration and other small fixes are * Copyright (C) 2010 Andy Walls <awalls@md.metrocast.net> * * CX23888 DIF support for the HVR1850 * Copyright (C) 2011 Steven Toth <stoth@kernellabs.com> * * CX2584x pin to pad mapping and output format configuration support are * Copyright (C) 2011 Maciej S. Szmigiero <mail@maciej.szmigiero.name> */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/videodev2.h> #include <linux/i2c.h> #include <linux/delay.h> #include <linux/math64.h> #include <media/v4l2-common.h> #include <media/drv-intf/cx25840.h> #include "cx25840-core.h" MODULE_DESCRIPTION("Conexant CX25840 audio/video decoder driver"); MODULE_AUTHOR("Ulf Eklund, Chris Kennedy, Hans Verkuil, Tyler Trafford"); MODULE_LICENSE("GPL"); #define CX25840_VID_INT_STAT_REG 0x410 #define CX25840_VID_INT_STAT_BITS 0x0000ffff #define CX25840_VID_INT_MASK_BITS 0xffff0000 #define CX25840_VID_INT_MASK_SHFT 16 #define CX25840_VID_INT_MASK_REG 0x412 #define CX23885_AUD_MC_INT_MASK_REG 0x80c #define CX23885_AUD_MC_INT_STAT_BITS 0xffff0000 #define CX23885_AUD_MC_INT_CTRL_BITS 0x0000ffff #define CX23885_AUD_MC_INT_STAT_SHFT 16 #define CX25840_AUD_INT_CTRL_REG 0x812 #define CX25840_AUD_INT_STAT_REG 0x813 #define CX23885_PIN_CTRL_IRQ_REG 0x123 #define CX23885_PIN_CTRL_IRQ_IR_STAT 0x40 #define CX23885_PIN_CTRL_IRQ_AUD_STAT 0x20 #define CX23885_PIN_CTRL_IRQ_VID_STAT 0x10 #define CX25840_IR_STATS_REG 0x210 #define CX25840_IR_IRQEN_REG 0x214 static int cx25840_debug; module_param_named(debug, cx25840_debug, int, 0644); MODULE_PARM_DESC(debug, "Debugging messages [0=Off (default) 1=On]"); /* ----------------------------------------------------------------------- */ static void cx23888_std_setup(struct i2c_client *client); int cx25840_write(struct i2c_client *client, u16 addr, u8 value) { u8 buffer[3]; buffer[0] = addr >> 8; buffer[1] = addr & 0xff; buffer[2] = value; return i2c_master_send(client, buffer, 3); } int cx25840_write4(struct i2c_client *client, u16 addr, u32 value) { u8 buffer[6]; buffer[0] = addr >> 8; buffer[1] = addr & 0xff; buffer[2] = value & 0xff; buffer[3] = (value >> 8) & 0xff; buffer[4] = (value >> 16) & 0xff; buffer[5] = value >> 24; return i2c_master_send(client, buffer, 6); } u8 cx25840_read(struct i2c_client *client, u16 addr) { struct i2c_msg msgs[2]; u8 tx_buf[2], rx_buf[1]; /* Write register address */ tx_buf[0] = addr >> 8; tx_buf[1] = addr & 0xff; msgs[0].addr = client->addr; msgs[0].flags = 0; msgs[0].len = 2; msgs[0].buf = (char *)tx_buf; /* Read data from register */ msgs[1].addr = client->addr; msgs[1].flags = I2C_M_RD; msgs[1].len = 1; msgs[1].buf = (char *)rx_buf; if (i2c_transfer(client->adapter, msgs, 2) < 2) return 0; return rx_buf[0]; } u32 cx25840_read4(struct i2c_client *client, u16 addr) { struct i2c_msg msgs[2]; u8 tx_buf[2], rx_buf[4]; /* Write register address */ tx_buf[0] = addr >> 8; tx_buf[1] = addr & 0xff; msgs[0].addr = client->addr; msgs[0].flags = 0; msgs[0].len = 2; msgs[0].buf = (char *)tx_buf; /* Read data from registers */ msgs[1].addr = client->addr; msgs[1].flags = I2C_M_RD; msgs[1].len = 4; msgs[1].buf = (char *)rx_buf; if (i2c_transfer(client->adapter, msgs, 2) < 2) return 0; return (rx_buf[3] << 24) | (rx_buf[2] << 16) | (rx_buf[1] << 8) | rx_buf[0]; } int cx25840_and_or(struct i2c_client *client, u16 addr, unsigned int and_mask, u8 or_value) { return cx25840_write(client, addr, (cx25840_read(client, addr) & and_mask) | or_value); } int cx25840_and_or4(struct i2c_client *client, u16 addr, u32 and_mask, u32 or_value) { return cx25840_write4(client, addr, (cx25840_read4(client, addr) & and_mask) | or_value); } /* ----------------------------------------------------------------------- */ static int set_input(struct i2c_client *client, enum cx25840_video_input vid_input, enum cx25840_audio_input aud_input); /* ----------------------------------------------------------------------- */ static int cx23885_s_io_pin_config(struct v4l2_subdev *sd, size_t n, struct v4l2_subdev_io_pin_config *p) { struct i2c_client *client = v4l2_get_subdevdata(sd); int i; u32 pin_ctrl; u8 gpio_oe, gpio_data, strength; pin_ctrl = cx25840_read4(client, 0x120); gpio_oe = cx25840_read(client, 0x160); gpio_data = cx25840_read(client, 0x164); for (i = 0; i < n; i++) { strength = p[i].strength; if (strength > CX25840_PIN_DRIVE_FAST) strength = CX25840_PIN_DRIVE_FAST; switch (p[i].pin) { case CX23885_PIN_IRQ_N_GPIO16: if (p[i].function != CX23885_PAD_IRQ_N) { /* GPIO16 */ pin_ctrl &= ~(0x1 << 25); } else { /* IRQ_N */ if (p[i].flags & (BIT(V4L2_SUBDEV_IO_PIN_DISABLE) | BIT(V4L2_SUBDEV_IO_PIN_INPUT))) { pin_ctrl &= ~(0x1 << 25); } else { pin_ctrl |= (0x1 << 25); } if (p[i].flags & BIT(V4L2_SUBDEV_IO_PIN_ACTIVE_LOW)) { pin_ctrl &= ~(0x1 << 24); } else { pin_ctrl |= (0x1 << 24); } } break; case CX23885_PIN_IR_RX_GPIO19: if (p[i].function != CX23885_PAD_GPIO19) { /* IR_RX */ gpio_oe |= (0x1 << 0); pin_ctrl &= ~(0x3 << 18); pin_ctrl |= (strength << 18); } else { /* GPIO19 */ gpio_oe &= ~(0x1 << 0); if (p[i].flags & BIT(V4L2_SUBDEV_IO_PIN_SET_VALUE)) { gpio_data &= ~(0x1 << 0); gpio_data |= ((p[i].value & 0x1) << 0); } pin_ctrl &= ~(0x3 << 12); pin_ctrl |= (strength << 12); } break; case CX23885_PIN_IR_TX_GPIO20: if (p[i].function != CX23885_PAD_GPIO20) { /* IR_TX */ gpio_oe |= (0x1 << 1); if (p[i].flags & BIT(V4L2_SUBDEV_IO_PIN_DISABLE)) pin_ctrl &= ~(0x1 << 10); else pin_ctrl |= (0x1 << 10); pin_ctrl &= ~(0x3 << 18); pin_ctrl |= (strength << 18); } else { /* GPIO20 */ gpio_oe &= ~(0x1 << 1); if (p[i].flags & BIT(V4L2_SUBDEV_IO_PIN_SET_VALUE)) { gpio_data &= ~(0x1 << 1); gpio_data |= ((p[i].value & 0x1) << 1); } pin_ctrl &= ~(0x3 << 12); pin_ctrl |= (strength << 12); } break; case CX23885_PIN_I2S_SDAT_GPIO21: if (p[i].function != CX23885_PAD_GPIO21) { /* I2S_SDAT */ /* TODO: Input or Output config */ gpio_oe |= (0x1 << 2); pin_ctrl &= ~(0x3 << 22); pin_ctrl |= (strength << 22); } else { /* GPIO21 */ gpio_oe &= ~(0x1 << 2); if (p[i].flags & BIT(V4L2_SUBDEV_IO_PIN_SET_VALUE)) { gpio_data &= ~(0x1 << 2); gpio_data |= ((p[i].value & 0x1) << 2); } pin_ctrl &= ~(0x3 << 12); pin_ctrl |= (strength << 12); } break; case CX23885_PIN_I2S_WCLK_GPIO22: if (p[i].function != CX23885_PAD_GPIO22) { /* I2S_WCLK */ /* TODO: Input or Output config */ gpio_oe |= (0x1 << 3); pin_ctrl &= ~(0x3 << 22); pin_ctrl |= (strength << 22); } else { /* GPIO22 */ gpio_oe &= ~(0x1 << 3); if (p[i].flags & BIT(V4L2_SUBDEV_IO_PIN_SET_VALUE)) { gpio_data &= ~(0x1 << 3); gpio_data |= ((p[i].value & 0x1) << 3); } pin_ctrl &= ~(0x3 << 12); pin_ctrl |= (strength << 12); } break; case CX23885_PIN_I2S_BCLK_GPIO23: if (p[i].function != CX23885_PAD_GPIO23) { /* I2S_BCLK */ /* TODO: Input or Output config */ gpio_oe |= (0x1 << 4); pin_ctrl &= ~(0x3 << 22); pin_ctrl |= (strength << 22); } else { /* GPIO23 */ gpio_oe &= ~(0x1 << 4); if (p[i].flags & BIT(V4L2_SUBDEV_IO_PIN_SET_VALUE)) { gpio_data &= ~(0x1 << 4); gpio_data |= ((p[i].value & 0x1) << 4); } pin_ctrl &= ~(0x3 << 12); pin_ctrl |= (strength << 12); } break; } } cx25840_write(client, 0x164, gpio_data); cx25840_write(client, 0x160, gpio_oe); cx25840_write4(client, 0x120, pin_ctrl); return 0; } static u8 cx25840_function_to_pad(struct i2c_client *client, u8 function) { if (function > CX25840_PAD_VRESET) { v4l_err(client, "invalid function %u, assuming default\n", (unsigned int)function); return 0; } return function; } static void cx25840_set_invert(u8 *pinctrl3, u8 *voutctrl4, u8 function, u8 pin, bool invert) { switch (function) { case CX25840_PAD_IRQ_N: if (invert) *pinctrl3 &= ~2; else *pinctrl3 |= 2; break; case CX25840_PAD_ACTIVE: if (invert) *voutctrl4 |= BIT(2); else *voutctrl4 &= ~BIT(2); break; case CX25840_PAD_VACTIVE: if (invert) *voutctrl4 |= BIT(5); else *voutctrl4 &= ~BIT(5); break; case CX25840_PAD_CBFLAG: if (invert) *voutctrl4 |= BIT(4); else *voutctrl4 &= ~BIT(4); break; case CX25840_PAD_VRESET: if (invert) *voutctrl4 |= BIT(0); else *voutctrl4 &= ~BIT(0); break; } if (function != CX25840_PAD_DEFAULT) return; switch (pin) { case CX25840_PIN_DVALID_PRGM0: if (invert) *voutctrl4 |= BIT(6); else *voutctrl4 &= ~BIT(6); break; case CX25840_PIN_HRESET_PRGM2: if (invert) *voutctrl4 |= BIT(1); else *voutctrl4 &= ~BIT(1); break; } } static int cx25840_s_io_pin_config(struct v4l2_subdev *sd, size_t n, struct v4l2_subdev_io_pin_config *p) { struct i2c_client *client = v4l2_get_subdevdata(sd); unsigned int i; u8 pinctrl[6], pinconf[10], voutctrl4; for (i = 0; i < 6; i++) pinctrl[i] = cx25840_read(client, 0x114 + i); for (i = 0; i < 10; i++) pinconf[i] = cx25840_read(client, 0x11c + i); voutctrl4 = cx25840_read(client, 0x407); for (i = 0; i < n; i++) { u8 strength = p[i].strength; if (strength != CX25840_PIN_DRIVE_SLOW && strength != CX25840_PIN_DRIVE_MEDIUM && strength != CX25840_PIN_DRIVE_FAST) { v4l_err(client, "invalid drive speed for pin %u (%u), assuming fast\n", (unsigned int)p[i].pin, (unsigned int)strength); strength = CX25840_PIN_DRIVE_FAST; } switch (p[i].pin) { case CX25840_PIN_DVALID_PRGM0: if (p[i].flags & BIT(V4L2_SUBDEV_IO_PIN_DISABLE)) pinctrl[0] &= ~BIT(6); else pinctrl[0] |= BIT(6); pinconf[3] &= 0xf0; pinconf[3] |= cx25840_function_to_pad(client, p[i].function); cx25840_set_invert(&pinctrl[3], &voutctrl4, p[i].function, CX25840_PIN_DVALID_PRGM0, p[i].flags & BIT(V4L2_SUBDEV_IO_PIN_ACTIVE_LOW)); pinctrl[4] &= ~(3 << 2); /* CX25840_PIN_DRIVE_MEDIUM */ switch (strength) { case CX25840_PIN_DRIVE_SLOW: pinctrl[4] |= 1 << 2; break; case CX25840_PIN_DRIVE_FAST: pinctrl[4] |= 2 << 2; break; } break; case CX25840_PIN_HRESET_PRGM2: if (p[i].flags & BIT(V4L2_SUBDEV_IO_PIN_DISABLE)) pinctrl[1] &= ~BIT(0); else pinctrl[1] |= BIT(0); pinconf[4] &= 0xf0; pinconf[4] |= cx25840_function_to_pad(client, p[i].function); cx25840_set_invert(&pinctrl[3], &voutctrl4, p[i].function, CX25840_PIN_HRESET_PRGM2, p[i].flags & BIT(V4L2_SUBDEV_IO_PIN_ACTIVE_LOW)); pinctrl[4] &= ~(3 << 2); /* CX25840_PIN_DRIVE_MEDIUM */ switch (strength) { case CX25840_PIN_DRIVE_SLOW: pinctrl[4] |= 1 << 2; break; case CX25840_PIN_DRIVE_FAST: pinctrl[4] |= 2 << 2; break; } break; case CX25840_PIN_PLL_CLK_PRGM7: if (p[i].flags & BIT(V4L2_SUBDEV_IO_PIN_DISABLE)) pinctrl[2] &= ~BIT(2); else pinctrl[2] |= BIT(2); switch (p[i].function) { case CX25840_PAD_XTI_X5_DLL: pinconf[6] = 0; break; case CX25840_PAD_AUX_PLL: pinconf[6] = 1; break; case CX25840_PAD_VID_PLL: pinconf[6] = 5; break; case CX25840_PAD_XTI: pinconf[6] = 2; break; default: pinconf[6] = 3; pinconf[6] |= cx25840_function_to_pad(client, p[i].function) << 4; } break; default: v4l_err(client, "invalid or unsupported pin %u\n", (unsigned int)p[i].pin); break; } } cx25840_write(client, 0x407, voutctrl4); for (i = 0; i < 6; i++) cx25840_write(client, 0x114 + i, pinctrl[i]); for (i = 0; i < 10; i++) cx25840_write(client, 0x11c + i, pinconf[i]); return 0; } static int common_s_io_pin_config(struct v4l2_subdev *sd, size_t n, struct v4l2_subdev_io_pin_config *pincfg) { struct cx25840_state *state = to_state(sd); if (is_cx2388x(state)) return cx23885_s_io_pin_config(sd, n, pincfg); else if (is_cx2584x(state)) return cx25840_s_io_pin_config(sd, n, pincfg); return 0; } /* ----------------------------------------------------------------------- */ static void init_dll1(struct i2c_client *client) { /* * This is the Hauppauge sequence used to * initialize the Delay Lock Loop 1 (ADC DLL). */ cx25840_write(client, 0x159, 0x23); cx25840_write(client, 0x15a, 0x87); cx25840_write(client, 0x15b, 0x06); udelay(10); cx25840_write(client, 0x159, 0xe1); udelay(10); cx25840_write(client, 0x15a, 0x86); cx25840_write(client, 0x159, 0xe0); cx25840_write(client, 0x159, 0xe1); cx25840_write(client, 0x15b, 0x10); } static void init_dll2(struct i2c_client *client) { /* * This is the Hauppauge sequence used to * initialize the Delay Lock Loop 2 (ADC DLL). */ cx25840_write(client, 0x15d, 0xe3); cx25840_write(client, 0x15e, 0x86); cx25840_write(client, 0x15f, 0x06); udelay(10); cx25840_write(client, 0x15d, 0xe1); cx25840_write(client, 0x15d, 0xe0); cx25840_write(client, 0x15d, 0xe1); } static void cx25836_initialize(struct i2c_client *client) { /* *reset configuration is described on page 3-77 * of the CX25836 datasheet */ /* 2. */ cx25840_and_or(client, 0x000, ~0x01, 0x01); cx25840_and_or(client, 0x000, ~0x01, 0x00); /* 3a. */ cx25840_and_or(client, 0x15a, ~0x70, 0x00); /* 3b. */ cx25840_and_or(client, 0x15b, ~0x1e, 0x06); /* 3c. */ cx25840_and_or(client, 0x159, ~0x02, 0x02); /* 3d. */ udelay(10); /* 3e. */ cx25840_and_or(client, 0x159, ~0x02, 0x00); /* 3f. */ cx25840_and_or(client, 0x159, ~0xc0, 0xc0); /* 3g. */ cx25840_and_or(client, 0x159, ~0x01, 0x00); cx25840_and_or(client, 0x159, ~0x01, 0x01); /* 3h. */ cx25840_and_or(client, 0x15b, ~0x1e, 0x10); } static void cx25840_work_handler(struct work_struct *work) { struct cx25840_state *state = container_of(work, struct cx25840_state, fw_work); cx25840_loadfw(state->c); wake_up(&state->fw_wait); } #define CX25840_VCONFIG_SET_BIT(state, opt_msk, voc, idx, bit, oneval) \ do { \ if ((state)->vid_config & (opt_msk)) { \ if (((state)->vid_config & (opt_msk)) == \ (oneval)) \ (voc)[idx] |= BIT(bit); \ else \ (voc)[idx] &= ~BIT(bit); \ } \ } while (0) /* apply current vconfig to hardware regs */ static void cx25840_vconfig_apply(struct i2c_client *client) { struct cx25840_state *state = to_state(i2c_get_clientdata(client)); u8 voutctrl[3]; unsigned int i; for (i = 0; i < 3; i++) voutctrl[i] = cx25840_read(client, 0x404 + i); if (state->vid_config & CX25840_VCONFIG_FMT_MASK) voutctrl[0] &= ~3; switch (state->vid_config & CX25840_VCONFIG_FMT_MASK) { case CX25840_VCONFIG_FMT_BT656: voutctrl[0] |= 1; break; case CX25840_VCONFIG_FMT_VIP11: voutctrl[0] |= 2; break; case CX25840_VCONFIG_FMT_VIP2: voutctrl[0] |= 3; break; case CX25840_VCONFIG_FMT_BT601: /* zero */ default: break; } CX25840_VCONFIG_SET_BIT(state, CX25840_VCONFIG_RES_MASK, voutctrl, 0, 2, CX25840_VCONFIG_RES_10BIT); CX25840_VCONFIG_SET_BIT(state, CX25840_VCONFIG_VBIRAW_MASK, voutctrl, 0, 3, CX25840_VCONFIG_VBIRAW_ENABLED); CX25840_VCONFIG_SET_BIT(state, CX25840_VCONFIG_ANCDATA_MASK, voutctrl, 0, 4, CX25840_VCONFIG_ANCDATA_ENABLED); CX25840_VCONFIG_SET_BIT(state, CX25840_VCONFIG_TASKBIT_MASK, voutctrl, 0, 5, CX25840_VCONFIG_TASKBIT_ONE); CX25840_VCONFIG_SET_BIT(state, CX25840_VCONFIG_ACTIVE_MASK, voutctrl, 1, 2, CX25840_VCONFIG_ACTIVE_HORIZONTAL); CX25840_VCONFIG_SET_BIT(state, CX25840_VCONFIG_VALID_MASK, voutctrl, 1, 3, CX25840_VCONFIG_VALID_ANDACTIVE); CX25840_VCONFIG_SET_BIT(state, CX25840_VCONFIG_HRESETW_MASK, voutctrl, 1, 4, CX25840_VCONFIG_HRESETW_PIXCLK); if (state->vid_config & CX25840_VCONFIG_CLKGATE_MASK) voutctrl[1] &= ~(3 << 6); switch (state->vid_config & CX25840_VCONFIG_CLKGATE_MASK) { case CX25840_VCONFIG_CLKGATE_VALID: voutctrl[1] |= 2; break; case CX25840_VCONFIG_CLKGATE_VALIDACTIVE: voutctrl[1] |= 3; break; case CX25840_VCONFIG_CLKGATE_NONE: /* zero */ default: break; } CX25840_VCONFIG_SET_BIT(state, CX25840_VCONFIG_DCMODE_MASK, voutctrl, 2, 0, CX25840_VCONFIG_DCMODE_BYTES); CX25840_VCONFIG_SET_BIT(state, CX25840_VCONFIG_IDID0S_MASK, voutctrl, 2, 1, CX25840_VCONFIG_IDID0S_LINECNT); CX25840_VCONFIG_SET_BIT(state, CX25840_VCONFIG_VIPCLAMP_MASK, voutctrl, 2, 4, CX25840_VCONFIG_VIPCLAMP_ENABLED); for (i = 0; i < 3; i++) cx25840_write(client, 0x404 + i, voutctrl[i]); } static void cx25840_initialize(struct i2c_client *client) { DEFINE_WAIT(wait); struct cx25840_state *state = to_state(i2c_get_clientdata(client)); struct workqueue_struct *q; /* datasheet startup in numbered steps, refer to page 3-77 */ /* 2. */ cx25840_and_or(client, 0x803, ~0x10, 0x00); /* * The default of this register should be 4, but I get 0 instead. * Set this register to 4 manually. */ cx25840_write(client, 0x000, 0x04); /* 3. */ init_dll1(client); init_dll2(client); cx25840_write(client, 0x136, 0x0a); /* 4. */ cx25840_write(client, 0x13c, 0x01); cx25840_write(client, 0x13c, 0x00); /* 5. */ /* * Do the firmware load in a work handler to prevent. * Otherwise the kernel is blocked waiting for the * bit-banging i2c interface to finish uploading the * firmware. */ INIT_WORK(&state->fw_work, cx25840_work_handler); init_waitqueue_head(&state->fw_wait); q = create_singlethread_workqueue("cx25840_fw"); if (q) { prepare_to_wait(&state->fw_wait, &wait, TASK_UNINTERRUPTIBLE); queue_work(q, &state->fw_work); schedule(); finish_wait(&state->fw_wait, &wait); destroy_workqueue(q); } /* 6. */ cx25840_write(client, 0x115, 0x8c); cx25840_write(client, 0x116, 0x07); cx25840_write(client, 0x118, 0x02); /* 7. */ cx25840_write(client, 0x4a5, 0x80); cx25840_write(client, 0x4a5, 0x00); cx25840_write(client, 0x402, 0x00); /* 8. */ cx25840_and_or(client, 0x401, ~0x18, 0); cx25840_and_or(client, 0x4a2, ~0x10, 0x10); /* steps 8c and 8d are done in change_input() */ /* 10. */ cx25840_write(client, 0x8d3, 0x1f); cx25840_write(client, 0x8e3, 0x03); cx25840_std_setup(client); /* trial and error says these are needed to get audio */ cx25840_write(client, 0x914, 0xa0); cx25840_write(client, 0x918, 0xa0); cx25840_write(client, 0x919, 0x01); /* stereo preferred */ cx25840_write(client, 0x809, 0x04); /* AC97 shift */ cx25840_write(client, 0x8cf, 0x0f); /* (re)set input */ set_input(client, state->vid_input, state->aud_input); if (state->generic_mode) cx25840_vconfig_apply(client); /* start microcontroller */ cx25840_and_or(client, 0x803, ~0x10, 0x10); } static void cx23885_initialize(struct i2c_client *client) { DEFINE_WAIT(wait); struct cx25840_state *state = to_state(i2c_get_clientdata(client)); u32 clk_freq = 0; struct workqueue_struct *q; /* cx23885 sets hostdata to clk_freq pointer */ if (v4l2_get_subdev_hostdata(&state->sd)) clk_freq = *((u32 *)v4l2_get_subdev_hostdata(&state->sd)); /* * Come out of digital power down * The CX23888, at least, needs this, otherwise registers aside from * 0x0-0x2 can't be read or written. */ cx25840_write(client, 0x000, 0); /* Internal Reset */ cx25840_and_or(client, 0x102, ~0x01, 0x01); cx25840_and_or(client, 0x102, ~0x01, 0x00); /* Stop microcontroller */ cx25840_and_or(client, 0x803, ~0x10, 0x00); /* DIF in reset? */ cx25840_write(client, 0x398, 0); /* * Trust the default xtal, no division * '885: 28.636363... MHz * '887: 25.000000 MHz * '888: 50.000000 MHz */ cx25840_write(client, 0x2, 0x76); /* Power up all the PLL's and DLL */ cx25840_write(client, 0x1, 0x40); /* Sys PLL */ switch (state->id) { case CX23888_AV: /* * 50.0 MHz * (0xb + 0xe8ba26/0x2000000)/4 = 5 * 28.636363 MHz * 572.73 MHz before post divide */ if (clk_freq == 25000000) { /* 888/ImpactVCBe or 25Mhz xtal */ ; /* nothing to do */ } else { /* HVR1850 or 50MHz xtal */ cx25840_write(client, 0x2, 0x71); } cx25840_write4(client, 0x11c, 0x01d1744c); cx25840_write4(client, 0x118, 0x00000416); cx25840_write4(client, 0x404, 0x0010253e); cx25840_write4(client, 0x42c, 0x42600000); cx25840_write4(client, 0x44c, 0x161f1000); break; case CX23887_AV: /* * 25.0 MHz * (0x16 + 0x1d1744c/0x2000000)/4 = 5 * 28.636363 MHz * 572.73 MHz before post divide */ cx25840_write4(client, 0x11c, 0x01d1744c); cx25840_write4(client, 0x118, 0x00000416); break; case CX23885_AV: default: /* * 28.636363 MHz * (0x14 + 0x0/0x2000000)/4 = 5 * 28.636363 MHz * 572.73 MHz before post divide */ cx25840_write4(client, 0x11c, 0x00000000); cx25840_write4(client, 0x118, 0x00000414); break; } /* Disable DIF bypass */ cx25840_write4(client, 0x33c, 0x00000001); /* DIF Src phase inc */ cx25840_write4(client, 0x340, 0x0df7df83); /* * Vid PLL * Setup for a BT.656 pixel clock of 13.5 Mpixels/second * * 28.636363 MHz * (0xf + 0x02be2c9/0x2000000)/4 = 8 * 13.5 MHz * 432.0 MHz before post divide */ /* HVR1850 */ switch (state->id) { case CX23888_AV: if (clk_freq == 25000000) { /* 888/ImpactVCBe or 25MHz xtal */ cx25840_write4(client, 0x10c, 0x01b6db7b); cx25840_write4(client, 0x108, 0x00000512); } else { /* 888/HVR1250 or 50MHz xtal */ cx25840_write4(client, 0x10c, 0x13333333); cx25840_write4(client, 0x108, 0x00000515); } break; default: cx25840_write4(client, 0x10c, 0x002be2c9); cx25840_write4(client, 0x108, 0x0000040f); } /* Luma */ cx25840_write4(client, 0x414, 0x00107d12); /* Chroma */ if (is_cx23888(state)) cx25840_write4(client, 0x418, 0x1d008282); else cx25840_write4(client, 0x420, 0x3d008282); /* * Aux PLL * Initial setup for audio sample clock: * 48 ksps, 16 bits/sample, x160 multiplier = 122.88 MHz * Initial I2S output/master clock(?): * 48 ksps, 16 bits/sample, x16 multiplier = 12.288 MHz */ switch (state->id) { case CX23888_AV: /* * 50.0 MHz * (0x7 + 0x0bedfa4/0x2000000)/3 = 122.88 MHz * 368.64 MHz before post divide * 122.88 MHz / 0xa = 12.288 MHz */ /* HVR1850 or 50MHz xtal or 25MHz xtal */ cx25840_write4(client, 0x114, 0x017dbf48); cx25840_write4(client, 0x110, 0x000a030e); break; case CX23887_AV: /* * 25.0 MHz * (0xe + 0x17dbf48/0x2000000)/3 = 122.88 MHz * 368.64 MHz before post divide * 122.88 MHz / 0xa = 12.288 MHz */ cx25840_write4(client, 0x114, 0x017dbf48); cx25840_write4(client, 0x110, 0x000a030e); break; case CX23885_AV: default: /* * 28.636363 MHz * (0xc + 0x1bf0c9e/0x2000000)/3 = 122.88 MHz * 368.64 MHz before post divide * 122.88 MHz / 0xa = 12.288 MHz */ cx25840_write4(client, 0x114, 0x01bf0c9e); cx25840_write4(client, 0x110, 0x000a030c); break; } /* ADC2 input select */ cx25840_write(client, 0x102, 0x10); /* VIN1 & VIN5 */ cx25840_write(client, 0x103, 0x11); /* Enable format auto detect */ cx25840_write(client, 0x400, 0); /* Fast subchroma lock */ /* White crush, Chroma AGC & Chroma Killer enabled */ cx25840_write(client, 0x401, 0xe8); /* Select AFE clock pad output source */ cx25840_write(client, 0x144, 0x05); /* Drive GPIO2 direction and values for HVR1700 * where an onboard mux selects the output of demodulator * vs the 417. Failure to set this results in no DTV. * It's safe to set this across all Hauppauge boards * currently, regardless of the board type. */ cx25840_write(client, 0x160, 0x1d); cx25840_write(client, 0x164, 0x00); /* * Do the firmware load in a work handler to prevent. * Otherwise the kernel is blocked waiting for the * bit-banging i2c interface to finish uploading the * firmware. */ INIT_WORK(&state->fw_work, cx25840_work_handler); init_waitqueue_head(&state->fw_wait); q = create_singlethread_workqueue("cx25840_fw"); if (q) { prepare_to_wait(&state->fw_wait, &wait, TASK_UNINTERRUPTIBLE); queue_work(q, &state->fw_work); schedule(); finish_wait(&state->fw_wait, &wait); destroy_workqueue(q); } /* * Call the cx23888 specific std setup func, we no longer rely on * the generic cx24840 func. */ if (is_cx23888(state)) cx23888_std_setup(client); else cx25840_std_setup(client); /* (re)set input */ set_input(client, state->vid_input, state->aud_input); /* start microcontroller */ cx25840_and_or(client, 0x803, ~0x10, 0x10); /* Disable and clear video interrupts - we don't use them */ cx25840_write4(client, CX25840_VID_INT_STAT_REG, 0xffffffff); /* Disable and clear audio interrupts - we don't use them */ cx25840_write(client, CX25840_AUD_INT_CTRL_REG, 0xff); cx25840_write(client, CX25840_AUD_INT_STAT_REG, 0xff); /* CC raw enable */ /* * - VIP 1.1 control codes - 10bit, blue field enable. * - enable raw data during vertical blanking. * - enable ancillary Data insertion for 656 or VIP. */ cx25840_write4(client, 0x404, 0x0010253e); /* CC on - VBI_LINE_CTRL3, FLD_VBI_MD_LINE12 */ cx25840_write(client, state->vbi_regs_offset + 0x42f, 0x66); /* HVR-1250 / HVR1850 DIF related */ /* Power everything up */ cx25840_write4(client, 0x130, 0x0); /* SRC_COMB_CFG */ if (is_cx23888(state)) cx25840_write4(client, 0x454, 0x6628021F); else cx25840_write4(client, 0x478, 0x6628021F); /* AFE_CLK_OUT_CTRL - Select the clock output source as output */ cx25840_write4(client, 0x144, 0x5); /* I2C_OUT_CTL - I2S output configuration as * Master, Sony, Left justified, left sample on WS=1 */ cx25840_write4(client, 0x918, 0x1a0); /* AFE_DIAG_CTRL1 */ cx25840_write4(client, 0x134, 0x000a1800); /* AFE_DIAG_CTRL3 - Inverted Polarity for Audio and Video */ cx25840_write4(client, 0x13c, 0x00310000); } /* ----------------------------------------------------------------------- */ static void cx231xx_initialize(struct i2c_client *client) { DEFINE_WAIT(wait); struct cx25840_state *state = to_state(i2c_get_clientdata(client)); struct workqueue_struct *q; /* Internal Reset */ cx25840_and_or(client, 0x102, ~0x01, 0x01); cx25840_and_or(client, 0x102, ~0x01, 0x00); /* Stop microcontroller */ cx25840_and_or(client, 0x803, ~0x10, 0x00); /* DIF in reset? */ cx25840_write(client, 0x398, 0); /* Trust the default xtal, no division */ /* This changes for the cx23888 products */ cx25840_write(client, 0x2, 0x76); /* Bring down the regulator for AUX clk */ cx25840_write(client, 0x1, 0x40); /* Disable DIF bypass */ cx25840_write4(client, 0x33c, 0x00000001); /* DIF Src phase inc */ cx25840_write4(client, 0x340, 0x0df7df83); /* Luma */ cx25840_write4(client, 0x414, 0x00107d12); /* Chroma */ cx25840_write4(client, 0x420, 0x3d008282); /* ADC2 input select */ cx25840_write(client, 0x102, 0x10); /* VIN1 & VIN5 */ cx25840_write(client, 0x103, 0x11); /* Enable format auto detect */ cx25840_write(client, 0x400, 0); /* Fast subchroma lock */ /* White crush, Chroma AGC & Chroma Killer enabled */ cx25840_write(client, 0x401, 0xe8); /* * Do the firmware load in a work handler to prevent. * Otherwise the kernel is blocked waiting for the * bit-banging i2c interface to finish uploading the * firmware. */ INIT_WORK(&state->fw_work, cx25840_work_handler); init_waitqueue_head(&state->fw_wait); q = create_singlethread_workqueue("cx25840_fw"); if (q) { prepare_to_wait(&state->fw_wait, &wait, TASK_UNINTERRUPTIBLE); queue_work(q, &state->fw_work); schedule(); finish_wait(&state->fw_wait, &wait); destroy_workqueue(q); } cx25840_std_setup(client); /* (re)set input */ set_input(client, state->vid_input, state->aud_input); /* start microcontroller */ cx25840_and_or(client, 0x803, ~0x10, 0x10); /* CC raw enable */ cx25840_write(client, 0x404, 0x0b); /* CC on */ cx25840_write(client, 0x42f, 0x66); cx25840_write4(client, 0x474, 0x1e1e601a); } /* ----------------------------------------------------------------------- */ void cx25840_std_setup(struct i2c_client *client) { struct cx25840_state *state = to_state(i2c_get_clientdata(client)); v4l2_std_id std = state->std; int hblank, hactive, burst, vblank, vactive, sc; int vblank656, src_decimation; int luma_lpf, uv_lpf, comb; u32 pll_int, pll_frac, pll_post; /* datasheet startup, step 8d */ if (std & ~V4L2_STD_NTSC) cx25840_write(client, 0x49f, 0x11); else cx25840_write(client, 0x49f, 0x14); /* generic mode uses the values that the chip autoconfig would set */ if (std & V4L2_STD_625_50) { hblank = 132; hactive = 720; burst = 93; if (state->generic_mode) { vblank = 34; vactive = 576; vblank656 = 38; } else { vblank = 36; vactive = 580; vblank656 = 40; } src_decimation = 0x21f; luma_lpf = 2; if (std & V4L2_STD_SECAM) { uv_lpf = 0; comb = 0; sc = 0x0a425f; } else if (std == V4L2_STD_PAL_Nc) { if (state->generic_mode) { burst = 95; luma_lpf = 1; } uv_lpf = 1; comb = 0x20; sc = 556453; } else { uv_lpf = 1; comb = 0x20; sc = 688739; } } else { hactive = 720; hblank = 122; vactive = 487; luma_lpf = 1; uv_lpf = 1; if (state->generic_mode) { vblank = 20; vblank656 = 24; } src_decimation = 0x21f; if (std == V4L2_STD_PAL_60) { if (!state->generic_mode) { vblank = 26; vblank656 = 26; burst = 0x5b; } else { burst = 0x59; } luma_lpf = 2; comb = 0x20; sc = 688739; } else if (std == V4L2_STD_PAL_M) { vblank = 20; vblank656 = 24; burst = 0x61; comb = 0x20; sc = 555452; } else { if (!state->generic_mode) { vblank = 26; vblank656 = 26; } burst = 0x5b; comb = 0x66; sc = 556063; } } /* DEBUG: Displays configured PLL frequency */ if (!is_cx231xx(state)) { pll_int = cx25840_read(client, 0x108); pll_frac = cx25840_read4(client, 0x10c) & 0x1ffffff; pll_post = cx25840_read(client, 0x109); v4l_dbg(1, cx25840_debug, client, "PLL regs = int: %u, frac: %u, post: %u\n", pll_int, pll_frac, pll_post); if (pll_post) { int fin, fsc; int pll = (28636363L * ((((u64)pll_int) << 25L) + pll_frac)) >> 25L; pll /= pll_post; v4l_dbg(1, cx25840_debug, client, "PLL = %d.%06d MHz\n", pll / 1000000, pll % 1000000); v4l_dbg(1, cx25840_debug, client, "PLL/8 = %d.%06d MHz\n", pll / 8000000, (pll / 8) % 1000000); fin = ((u64)src_decimation * pll) >> 12; v4l_dbg(1, cx25840_debug, client, "ADC Sampling freq = %d.%06d MHz\n", fin / 1000000, fin % 1000000); fsc = (((u64)sc) * pll) >> 24L; v4l_dbg(1, cx25840_debug, client, "Chroma sub-carrier freq = %d.%06d MHz\n", fsc / 1000000, fsc % 1000000); v4l_dbg(1, cx25840_debug, client, "hblank %i, hactive %i, vblank %i, vactive %i, vblank656 %i, src_dec %i, burst 0x%02x, luma_lpf %i, uv_lpf %i, comb 0x%02x, sc 0x%06x\n", hblank, hactive, vblank, vactive, vblank656, src_decimation, burst, luma_lpf, uv_lpf, comb, sc); } } /* Sets horizontal blanking delay and active lines */ cx25840_write(client, 0x470, hblank); cx25840_write(client, 0x471, (((hblank >> 8) & 0x3) | (hactive << 4)) & 0xff); cx25840_write(client, 0x472, hactive >> 4); /* Sets burst gate delay */ cx25840_write(client, 0x473, burst); /* Sets vertical blanking delay and active duration */ cx25840_write(client, 0x474, vblank); cx25840_write(client, 0x475, (((vblank >> 8) & 0x3) | (vactive << 4)) & 0xff); cx25840_write(client, 0x476, vactive >> 4); cx25840_write(client, 0x477, vblank656); /* Sets src decimation rate */ cx25840_write(client, 0x478, src_decimation & 0xff); cx25840_write(client, 0x479, (src_decimation >> 8) & 0xff); /* Sets Luma and UV Low pass filters */ cx25840_write(client, 0x47a, luma_lpf << 6 | ((uv_lpf << 4) & 0x30)); /* Enables comb filters */ cx25840_write(client, 0x47b, comb); /* Sets SC Step*/ cx25840_write(client, 0x47c, sc); cx25840_write(client, 0x47d, (sc >> 8) & 0xff); cx25840_write(client, 0x47e, (sc >> 16) & 0xff); /* Sets VBI parameters */ if (std & V4L2_STD_625_50) { cx25840_write(client, 0x47f, 0x01); state->vbi_line_offset = 5; } else { cx25840_write(client, 0x47f, 0x00); state->vbi_line_offset = 8; } } /* ----------------------------------------------------------------------- */ static void input_change(struct i2c_client *client) { struct cx25840_state *state = to_state(i2c_get_clientdata(client)); v4l2_std_id std = state->std; /* Follow step 8c and 8d of section 3.16 in the cx25840 datasheet */ if (std & V4L2_STD_SECAM) { cx25840_write(client, 0x402, 0); } else { cx25840_write(client, 0x402, 0x04); cx25840_write(client, 0x49f, (std & V4L2_STD_NTSC) ? 0x14 : 0x11); } cx25840_and_or(client, 0x401, ~0x60, 0); cx25840_and_or(client, 0x401, ~0x60, 0x60); /* Don't write into audio registers on cx2583x chips */ if (is_cx2583x(state)) return; cx25840_and_or(client, 0x810, ~0x01, 1); if (state->radio) { cx25840_write(client, 0x808, 0xf9); cx25840_write(client, 0x80b, 0x00); } else if (std & V4L2_STD_525_60) { /* * Certain Hauppauge PVR150 models have a hardware bug * that causes audio to drop out. For these models the * audio standard must be set explicitly. * To be precise: it affects cards with tuner models * 85, 99 and 112 (model numbers from tveeprom). */ int hw_fix = state->pvr150_workaround; if (std == V4L2_STD_NTSC_M_JP) { /* Japan uses EIAJ audio standard */ cx25840_write(client, 0x808, hw_fix ? 0x2f : 0xf7); } else if (std == V4L2_STD_NTSC_M_KR) { /* South Korea uses A2 audio standard */ cx25840_write(client, 0x808, hw_fix ? 0x3f : 0xf8); } else { /* Others use the BTSC audio standard */ cx25840_write(client, 0x808, hw_fix ? 0x1f : 0xf6); } cx25840_write(client, 0x80b, 0x00); } else if (std & V4L2_STD_PAL) { /* Autodetect audio standard and audio system */ cx25840_write(client, 0x808, 0xff); /* * Since system PAL-L is pretty much non-existent and * not used by any public broadcast network, force * 6.5 MHz carrier to be interpreted as System DK, * this avoids DK audio detection instability */ cx25840_write(client, 0x80b, 0x00); } else if (std & V4L2_STD_SECAM) { /* Autodetect audio standard and audio system */ cx25840_write(client, 0x808, 0xff); /* * If only one of SECAM-DK / SECAM-L is required, then force * 6.5MHz carrier, else autodetect it */ if ((std & V4L2_STD_SECAM_DK) && !(std & (V4L2_STD_SECAM_L | V4L2_STD_SECAM_LC))) { /* 6.5 MHz carrier to be interpreted as System DK */ cx25840_write(client, 0x80b, 0x00); } else if (!(std & V4L2_STD_SECAM_DK) && (std & (V4L2_STD_SECAM_L | V4L2_STD_SECAM_LC))) { /* 6.5 MHz carrier to be interpreted as System L */ cx25840_write(client, 0x80b, 0x08); } else { /* 6.5 MHz carrier to be autodetected */ cx25840_write(client, 0x80b, 0x10); } } cx25840_and_or(client, 0x810, ~0x01, 0); } static int set_input(struct i2c_client *client, enum cx25840_video_input vid_input, enum cx25840_audio_input aud_input) { struct cx25840_state *state = to_state(i2c_get_clientdata(client)); u8 is_composite = (vid_input >= CX25840_COMPOSITE1 && vid_input <= CX25840_COMPOSITE8); u8 is_component = (vid_input & CX25840_COMPONENT_ON) == CX25840_COMPONENT_ON; u8 is_dif = (vid_input & CX25840_DIF_ON) == CX25840_DIF_ON; u8 is_svideo = (vid_input & CX25840_SVIDEO_ON) == CX25840_SVIDEO_ON; int luma = vid_input & 0xf0; int chroma = vid_input & 0xf00; u8 reg; u32 val; v4l_dbg(1, cx25840_debug, client, "decoder set video input %d, audio input %d\n", vid_input, aud_input); if (vid_input >= CX25840_VIN1_CH1) { v4l_dbg(1, cx25840_debug, client, "vid_input 0x%x\n", vid_input); reg = vid_input & 0xff; is_composite = !is_component && ((vid_input & CX25840_SVIDEO_ON) != CX25840_SVIDEO_ON); v4l_dbg(1, cx25840_debug, client, "mux cfg 0x%x comp=%d\n", reg, is_composite); } else if (is_composite) { reg = 0xf0 + (vid_input - CX25840_COMPOSITE1); } else { if ((vid_input & ~0xff0) || luma < CX25840_SVIDEO_LUMA1 || luma > CX25840_SVIDEO_LUMA8 || chroma < CX25840_SVIDEO_CHROMA4 || chroma > CX25840_SVIDEO_CHROMA8) { v4l_err(client, "0x%04x is not a valid video input!\n", vid_input); return -EINVAL; } reg = 0xf0 + ((luma - CX25840_SVIDEO_LUMA1) >> 4); if (chroma >= CX25840_SVIDEO_CHROMA7) { reg &= 0x3f; reg |= (chroma - CX25840_SVIDEO_CHROMA7) >> 2; } else { reg &= 0xcf; reg |= (chroma - CX25840_SVIDEO_CHROMA4) >> 4; } } /* The caller has previously prepared the correct routing * configuration in reg (for the cx23885) so we have no * need to attempt to flip bits for earlier av decoders. */ if (!is_cx2388x(state) && !is_cx231xx(state)) { switch (aud_input) { case CX25840_AUDIO_SERIAL: /* do nothing, use serial audio input */ break; case CX25840_AUDIO4: reg &= ~0x30; break; case CX25840_AUDIO5: reg &= ~0x30; reg |= 0x10; break; case CX25840_AUDIO6: reg &= ~0x30; reg |= 0x20; break; case CX25840_AUDIO7: reg &= ~0xc0; break; case CX25840_AUDIO8: reg &= ~0xc0; reg |= 0x40; break; default: v4l_err(client, "0x%04x is not a valid audio input!\n", aud_input); return -EINVAL; } } cx25840_write(client, 0x103, reg); /* Set INPUT_MODE to Composite, S-Video or Component */ if (is_component) cx25840_and_or(client, 0x401, ~0x6, 0x6); else cx25840_and_or(client, 0x401, ~0x6, is_composite ? 0 : 0x02); if (is_cx2388x(state)) { /* Enable or disable the DIF for tuner use */ if (is_dif) { cx25840_and_or(client, 0x102, ~0x80, 0x80); /* Set of defaults for NTSC and PAL */ cx25840_write4(client, 0x31c, 0xc2262600); cx25840_write4(client, 0x320, 0xc2262600); /* 18271 IF - Nobody else yet uses a different * tuner with the DIF, so these are reasonable * assumptions (HVR1250 and HVR1850 specific). */ cx25840_write4(client, 0x318, 0xda262600); cx25840_write4(client, 0x33c, 0x2a24c800); cx25840_write4(client, 0x104, 0x0704dd00); } else { cx25840_write4(client, 0x300, 0x015c28f5); cx25840_and_or(client, 0x102, ~0x80, 0); cx25840_write4(client, 0x340, 0xdf7df83); cx25840_write4(client, 0x104, 0x0704dd80); cx25840_write4(client, 0x314, 0x22400600); cx25840_write4(client, 0x318, 0x40002600); cx25840_write4(client, 0x324, 0x40002600); cx25840_write4(client, 0x32c, 0x0250e620); cx25840_write4(client, 0x39c, 0x01FF0B00); cx25840_write4(client, 0x410, 0xffff0dbf); cx25840_write4(client, 0x414, 0x00137d03); if (is_cx23888(state)) { /* 888 MISC_TIM_CTRL */ cx25840_write4(client, 0x42c, 0x42600000); /* 888 FIELD_COUNT */ cx25840_write4(client, 0x430, 0x0000039b); /* 888 VSCALE_CTRL */ cx25840_write4(client, 0x438, 0x00000000); /* 888 DFE_CTRL1 */ cx25840_write4(client, 0x440, 0xF8E3E824); /* 888 DFE_CTRL2 */ cx25840_write4(client, 0x444, 0x401040dc); /* 888 DFE_CTRL3 */ cx25840_write4(client, 0x448, 0xcd3f02a0); /* 888 PLL_CTRL */ cx25840_write4(client, 0x44c, 0x161f1000); /* 888 HTL_CTRL */ cx25840_write4(client, 0x450, 0x00000802); } cx25840_write4(client, 0x91c, 0x01000000); cx25840_write4(client, 0x8e0, 0x03063870); cx25840_write4(client, 0x8d4, 0x7FFF0024); cx25840_write4(client, 0x8d0, 0x00063073); cx25840_write4(client, 0x8c8, 0x00010000); cx25840_write4(client, 0x8cc, 0x00080023); /* DIF BYPASS */ cx25840_write4(client, 0x33c, 0x2a04c800); } /* Reset the DIF */ cx25840_write4(client, 0x398, 0); } if (!is_cx2388x(state) && !is_cx231xx(state)) { /* Set CH_SEL_ADC2 to 1 if input comes from CH3 */ cx25840_and_or(client, 0x102, ~0x2, (reg & 0x80) == 0 ? 2 : 0); /* Set DUAL_MODE_ADC2 to 1 if input comes from both CH2&CH3 */ if ((reg & 0xc0) != 0xc0 && (reg & 0x30) != 0x30) cx25840_and_or(client, 0x102, ~0x4, 4); else cx25840_and_or(client, 0x102, ~0x4, 0); } else { /* Set DUAL_MODE_ADC2 to 1 if component*/ cx25840_and_or(client, 0x102, ~0x4, is_component ? 0x4 : 0x0); if (is_composite) { /* ADC2 input select channel 2 */ cx25840_and_or(client, 0x102, ~0x2, 0); } else if (!is_component) { /* S-Video */ if (chroma >= CX25840_SVIDEO_CHROMA7) { /* ADC2 input select channel 3 */ cx25840_and_or(client, 0x102, ~0x2, 2); } else { /* ADC2 input select channel 2 */ cx25840_and_or(client, 0x102, ~0x2, 0); } } /* cx23885 / SVIDEO */ if (is_cx2388x(state) && is_svideo) { #define AFE_CTRL (0x104) #define MODE_CTRL (0x400) cx25840_and_or(client, 0x102, ~0x2, 0x2); val = cx25840_read4(client, MODE_CTRL); val &= 0xFFFFF9FF; /* YC */ val |= 0x00000200; val &= ~0x2000; cx25840_write4(client, MODE_CTRL, val); val = cx25840_read4(client, AFE_CTRL); /* Chroma in select */ val |= 0x00001000; val &= 0xfffffe7f; /* Clear VGA_SEL_CH2 and VGA_SEL_CH3 (bits 7 and 8). * This sets them to use video rather than audio. * Only one of the two will be in use. */ cx25840_write4(client, AFE_CTRL, val); } else { cx25840_and_or(client, 0x102, ~0x2, 0); } } state->vid_input = vid_input; state->aud_input = aud_input; cx25840_audio_set_path(client); input_change(client); if (is_cx2388x(state)) { /* Audio channel 1 src : Parallel 1 */ cx25840_write(client, 0x124, 0x03); /* Select AFE clock pad output source */ cx25840_write(client, 0x144, 0x05); /* I2S_IN_CTL: I2S_IN_SONY_MODE, LEFT SAMPLE on WS=1 */ cx25840_write(client, 0x914, 0xa0); /* I2S_OUT_CTL: * I2S_IN_SONY_MODE, LEFT SAMPLE on WS=1 * I2S_OUT_MASTER_MODE = Master */ cx25840_write(client, 0x918, 0xa0); cx25840_write(client, 0x919, 0x01); } else if (is_cx231xx(state)) { /* Audio channel 1 src : Parallel 1 */ cx25840_write(client, 0x124, 0x03); /* I2S_IN_CTL: I2S_IN_SONY_MODE, LEFT SAMPLE on WS=1 */ cx25840_write(client, 0x914, 0xa0); /* I2S_OUT_CTL: * I2S_IN_SONY_MODE, LEFT SAMPLE on WS=1 * I2S_OUT_MASTER_MODE = Master */ cx25840_write(client, 0x918, 0xa0); cx25840_write(client, 0x919, 0x01); } if (is_cx2388x(state) && ((aud_input == CX25840_AUDIO7) || (aud_input == CX25840_AUDIO6))) { /* Configure audio from LR1 or LR2 input */ cx25840_write4(client, 0x910, 0); cx25840_write4(client, 0x8d0, 0x63073); } else if (is_cx2388x(state) && (aud_input == CX25840_AUDIO8)) { /* Configure audio from tuner/sif input */ cx25840_write4(client, 0x910, 0x12b000c9); cx25840_write4(client, 0x8d0, 0x1f063870); } if (is_cx23888(state)) { /* * HVR1850 * * AUD_IO_CTRL - I2S Input, Parallel1 * - Channel 1 src - Parallel1 (Merlin out) * - Channel 2 src - Parallel2 (Merlin out) * - Channel 3 src - Parallel3 (Merlin AC97 out) * - I2S source and dir - Merlin, output */ cx25840_write4(client, 0x124, 0x100); if (!is_dif) { /* * Stop microcontroller if we don't need it * to avoid audio popping on svideo/composite use. */ cx25840_and_or(client, 0x803, ~0x10, 0x00); } } return 0; } /* ----------------------------------------------------------------------- */ static int set_v4lstd(struct i2c_client *client) { struct cx25840_state *state = to_state(i2c_get_clientdata(client)); u8 fmt = 0; /* zero is autodetect */ u8 pal_m = 0; /* First tests should be against specific std */ if (state->std == V4L2_STD_NTSC_M_JP) { fmt = 0x2; } else if (state->std == V4L2_STD_NTSC_443) { fmt = 0x3; } else if (state->std == V4L2_STD_PAL_M) { pal_m = 1; fmt = 0x5; } else if (state->std == V4L2_STD_PAL_N) { fmt = 0x6; } else if (state->std == V4L2_STD_PAL_Nc) { fmt = 0x7; } else if (state->std == V4L2_STD_PAL_60) { fmt = 0x8; } else { /* Then, test against generic ones */ if (state->std & V4L2_STD_NTSC) fmt = 0x1; else if (state->std & V4L2_STD_PAL) fmt = 0x4; else if (state->std & V4L2_STD_SECAM) fmt = 0xc; } v4l_dbg(1, cx25840_debug, client, "changing video std to fmt %i\n", fmt); /* * Follow step 9 of section 3.16 in the cx25840 datasheet. * Without this PAL may display a vertical ghosting effect. * This happens for example with the Yuan MPC622. */ if (fmt >= 4 && fmt < 8) { /* Set format to NTSC-M */ cx25840_and_or(client, 0x400, ~0xf, 1); /* Turn off LCOMB */ cx25840_and_or(client, 0x47b, ~6, 0); } cx25840_and_or(client, 0x400, ~0xf, fmt); cx25840_and_or(client, 0x403, ~0x3, pal_m); if (is_cx23888(state)) cx23888_std_setup(client); else cx25840_std_setup(client); if (!is_cx2583x(state)) input_change(client); return 0; } /* ----------------------------------------------------------------------- */ static int cx25840_s_ctrl(struct v4l2_ctrl *ctrl) { struct v4l2_subdev *sd = to_sd(ctrl); struct cx25840_state *state = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); switch (ctrl->id) { case V4L2_CID_BRIGHTNESS: cx25840_write(client, 0x414, ctrl->val - 128); break; case V4L2_CID_CONTRAST: cx25840_write(client, 0x415, ctrl->val << 1); break; case V4L2_CID_SATURATION: if (is_cx23888(state)) { cx25840_write(client, 0x418, ctrl->val << 1); cx25840_write(client, 0x419, ctrl->val << 1); } else { cx25840_write(client, 0x420, ctrl->val << 1); cx25840_write(client, 0x421, ctrl->val << 1); } break; case V4L2_CID_HUE: if (is_cx23888(state)) cx25840_write(client, 0x41a, ctrl->val); else cx25840_write(client, 0x422, ctrl->val); break; default: return -EINVAL; } return 0; } /* ----------------------------------------------------------------------- */ static int cx25840_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *format) { struct v4l2_mbus_framefmt *fmt = &format->format; struct cx25840_state *state = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); u32 hsc, vsc, v_src, h_src, v_add; int filter; int is_50hz = !(state->std & V4L2_STD_525_60); if (format->pad || fmt->code != MEDIA_BUS_FMT_FIXED) return -EINVAL; fmt->field = V4L2_FIELD_INTERLACED; fmt->colorspace = V4L2_COLORSPACE_SMPTE170M; if (is_cx23888(state)) { v_src = (cx25840_read(client, 0x42a) & 0x3f) << 4; v_src |= (cx25840_read(client, 0x429) & 0xf0) >> 4; } else { v_src = (cx25840_read(client, 0x476) & 0x3f) << 4; v_src |= (cx25840_read(client, 0x475) & 0xf0) >> 4; } if (is_cx23888(state)) { h_src = (cx25840_read(client, 0x426) & 0x3f) << 4; h_src |= (cx25840_read(client, 0x425) & 0xf0) >> 4; } else { h_src = (cx25840_read(client, 0x472) & 0x3f) << 4; h_src |= (cx25840_read(client, 0x471) & 0xf0) >> 4; } if (!state->generic_mode) { v_add = is_50hz ? 4 : 7; /* * cx23888 in 525-line mode is programmed for 486 active lines * while other chips use 487 active lines. * * See reg 0x428 bits [21:12] in cx23888_std_setup() vs * vactive in cx25840_std_setup(). */ if (is_cx23888(state) && !is_50hz) v_add--; } else { v_add = 0; } if (h_src == 0 || v_src <= v_add) { v4l_err(client, "chip reported picture size (%u x %u) is far too small\n", (unsigned int)h_src, (unsigned int)v_src); /* * that's the best we can do since the output picture * size is completely unknown in this case */ return -EINVAL; } fmt->width = clamp(fmt->width, (h_src + 15) / 16, h_src); if (v_add * 8 >= v_src) fmt->height = clamp(fmt->height, (u32)1, v_src - v_add); else fmt->height = clamp(fmt->height, (v_src - v_add * 8 + 7) / 8, v_src - v_add); if (format->which == V4L2_SUBDEV_FORMAT_TRY) return 0; hsc = (h_src * (1 << 20)) / fmt->width - (1 << 20); vsc = (1 << 16) - (v_src * (1 << 9) / (fmt->height + v_add) - (1 << 9)); vsc &= 0x1fff; if (fmt->width >= 385) filter = 0; else if (fmt->width > 192) filter = 1; else if (fmt->width > 96) filter = 2; else filter = 3; v4l_dbg(1, cx25840_debug, client, "decoder set size %u x %u with scale %x x %x\n", (unsigned int)fmt->width, (unsigned int)fmt->height, (unsigned int)hsc, (unsigned int)vsc); /* HSCALE=hsc */ if (is_cx23888(state)) { cx25840_write4(client, 0x434, hsc | (1 << 24)); /* VSCALE=vsc VS_INTRLACE=1 VFILT=filter */ cx25840_write4(client, 0x438, vsc | (1 << 19) | (filter << 16)); } else { cx25840_write(client, 0x418, hsc & 0xff); cx25840_write(client, 0x419, (hsc >> 8) & 0xff); cx25840_write(client, 0x41a, hsc >> 16); /* VSCALE=vsc */ cx25840_write(client, 0x41c, vsc & 0xff); cx25840_write(client, 0x41d, vsc >> 8); /* VS_INTRLACE=1 VFILT=filter */ cx25840_write(client, 0x41e, 0x8 | filter); } return 0; } /* ----------------------------------------------------------------------- */ static void log_video_status(struct i2c_client *client) { static const char *const fmt_strs[] = { "0x0", "NTSC-M", "NTSC-J", "NTSC-4.43", "PAL-BDGHI", "PAL-M", "PAL-N", "PAL-Nc", "PAL-60", "0x9", "0xA", "0xB", "SECAM", "0xD", "0xE", "0xF" }; struct cx25840_state *state = to_state(i2c_get_clientdata(client)); u8 vidfmt_sel = cx25840_read(client, 0x400) & 0xf; u8 gen_stat1 = cx25840_read(client, 0x40d); u8 gen_stat2 = cx25840_read(client, 0x40e); int vid_input = state->vid_input; v4l_info(client, "Video signal: %spresent\n", (gen_stat2 & 0x20) ? "" : "not "); v4l_info(client, "Detected format: %s\n", fmt_strs[gen_stat1 & 0xf]); v4l_info(client, "Specified standard: %s\n", vidfmt_sel ? fmt_strs[vidfmt_sel] : "automatic detection"); if (vid_input >= CX25840_COMPOSITE1 && vid_input <= CX25840_COMPOSITE8) { v4l_info(client, "Specified video input: Composite %d\n", vid_input - CX25840_COMPOSITE1 + 1); } else { v4l_info(client, "Specified video input: S-Video (Luma In%d, Chroma In%d)\n", (vid_input & 0xf0) >> 4, (vid_input & 0xf00) >> 8); } v4l_info(client, "Specified audioclock freq: %d Hz\n", state->audclk_freq); } /* ----------------------------------------------------------------------- */ static void log_audio_status(struct i2c_client *client) { struct cx25840_state *state = to_state(i2c_get_clientdata(client)); u8 download_ctl = cx25840_read(client, 0x803); u8 mod_det_stat0 = cx25840_read(client, 0x804); u8 mod_det_stat1 = cx25840_read(client, 0x805); u8 audio_config = cx25840_read(client, 0x808); u8 pref_mode = cx25840_read(client, 0x809); u8 afc0 = cx25840_read(client, 0x80b); u8 mute_ctl = cx25840_read(client, 0x8d3); int aud_input = state->aud_input; char *p; switch (mod_det_stat0) { case 0x00: p = "mono"; break; case 0x01: p = "stereo"; break; case 0x02: p = "dual"; break; case 0x04: p = "tri"; break; case 0x10: p = "mono with SAP"; break; case 0x11: p = "stereo with SAP"; break; case 0x12: p = "dual with SAP"; break; case 0x14: p = "tri with SAP"; break; case 0xfe: p = "forced mode"; break; default: p = "not defined"; } v4l_info(client, "Detected audio mode: %s\n", p); switch (mod_det_stat1) { case 0x00: p = "not defined"; break; case 0x01: p = "EIAJ"; break; case 0x02: p = "A2-M"; break; case 0x03: p = "A2-BG"; break; case 0x04: p = "A2-DK1"; break; case 0x05: p = "A2-DK2"; break; case 0x06: p = "A2-DK3"; break; case 0x07: p = "A1 (6.0 MHz FM Mono)"; break; case 0x08: p = "AM-L"; break; case 0x09: p = "NICAM-BG"; break; case 0x0a: p = "NICAM-DK"; break; case 0x0b: p = "NICAM-I"; break; case 0x0c: p = "NICAM-L"; break; case 0x0d: p = "BTSC/EIAJ/A2-M Mono (4.5 MHz FMMono)"; break; case 0x0e: p = "IF FM Radio"; break; case 0x0f: p = "BTSC"; break; case 0x10: p = "high-deviation FM"; break; case 0x11: p = "very high-deviation FM"; break; case 0xfd: p = "unknown audio standard"; break; case 0xfe: p = "forced audio standard"; break; case 0xff: p = "no detected audio standard"; break; default: p = "not defined"; } v4l_info(client, "Detected audio standard: %s\n", p); v4l_info(client, "Audio microcontroller: %s\n", (download_ctl & 0x10) ? ((mute_ctl & 0x2) ? "detecting" : "running") : "stopped"); switch (audio_config >> 4) { case 0x00: p = "undefined"; break; case 0x01: p = "BTSC"; break; case 0x02: p = "EIAJ"; break; case 0x03: p = "A2-M"; break; case 0x04: p = "A2-BG"; break; case 0x05: p = "A2-DK1"; break; case 0x06: p = "A2-DK2"; break; case 0x07: p = "A2-DK3"; break; case 0x08: p = "A1 (6.0 MHz FM Mono)"; break; case 0x09: p = "AM-L"; break; case 0x0a: p = "NICAM-BG"; break; case 0x0b: p = "NICAM-DK"; break; case 0x0c: p = "NICAM-I"; break; case 0x0d: p = "NICAM-L"; break; case 0x0e: p = "FM radio"; break; case 0x0f: p = "automatic detection"; break; default: p = "undefined"; } v4l_info(client, "Configured audio standard: %s\n", p); if ((audio_config >> 4) < 0xF) { switch (audio_config & 0xF) { case 0x00: p = "MONO1 (LANGUAGE A/Mono L+R channel for BTSC, EIAJ, A2)"; break; case 0x01: p = "MONO2 (LANGUAGE B)"; break; case 0x02: p = "MONO3 (STEREO forced MONO)"; break; case 0x03: p = "MONO4 (NICAM ANALOG-Language C/Analog Fallback)"; break; case 0x04: p = "STEREO"; break; case 0x05: p = "DUAL1 (AB)"; break; case 0x06: p = "DUAL2 (AC) (FM)"; break; case 0x07: p = "DUAL3 (BC) (FM)"; break; case 0x08: p = "DUAL4 (AC) (AM)"; break; case 0x09: p = "DUAL5 (BC) (AM)"; break; case 0x0a: p = "SAP"; break; default: p = "undefined"; } v4l_info(client, "Configured audio mode: %s\n", p); } else { switch (audio_config & 0xF) { case 0x00: p = "BG"; break; case 0x01: p = "DK1"; break; case 0x02: p = "DK2"; break; case 0x03: p = "DK3"; break; case 0x04: p = "I"; break; case 0x05: p = "L"; break; case 0x06: p = "BTSC"; break; case 0x07: p = "EIAJ"; break; case 0x08: p = "A2-M"; break; case 0x09: p = "FM Radio"; break; case 0x0f: p = "automatic standard and mode detection"; break; default: p = "undefined"; } v4l_info(client, "Configured audio system: %s\n", p); } if (aud_input) { v4l_info(client, "Specified audio input: Tuner (In%d)\n", aud_input); } else { v4l_info(client, "Specified audio input: External\n"); } switch (pref_mode & 0xf) { case 0: p = "mono/language A"; break; case 1: p = "language B"; break; case 2: p = "language C"; break; case 3: p = "analog fallback"; break; case 4: p = "stereo"; break; case 5: p = "language AC"; break; case 6: p = "language BC"; break; case 7: p = "language AB"; break; default: p = "undefined"; } v4l_info(client, "Preferred audio mode: %s\n", p); if ((audio_config & 0xf) == 0xf) { switch ((afc0 >> 3) & 0x3) { case 0: p = "system DK"; break; case 1: p = "system L"; break; case 2: p = "autodetect"; break; default: p = "undefined"; } v4l_info(client, "Selected 65 MHz format: %s\n", p); switch (afc0 & 0x7) { case 0: p = "chroma"; break; case 1: p = "BTSC"; break; case 2: p = "EIAJ"; break; case 3: p = "A2-M"; break; case 4: p = "autodetect"; break; default: p = "undefined"; } v4l_info(client, "Selected 45 MHz format: %s\n", p); } } #define CX25840_VCONFIG_OPTION(state, cfg_in, opt_msk) \ do { \ if ((cfg_in) & (opt_msk)) { \ (state)->vid_config &= ~(opt_msk); \ (state)->vid_config |= (cfg_in) & (opt_msk); \ } \ } while (0) /* apply incoming options to the current vconfig */ static void cx25840_vconfig_add(struct cx25840_state *state, u32 cfg_in) { CX25840_VCONFIG_OPTION(state, cfg_in, CX25840_VCONFIG_FMT_MASK); CX25840_VCONFIG_OPTION(state, cfg_in, CX25840_VCONFIG_RES_MASK); CX25840_VCONFIG_OPTION(state, cfg_in, CX25840_VCONFIG_VBIRAW_MASK); CX25840_VCONFIG_OPTION(state, cfg_in, CX25840_VCONFIG_ANCDATA_MASK); CX25840_VCONFIG_OPTION(state, cfg_in, CX25840_VCONFIG_TASKBIT_MASK); CX25840_VCONFIG_OPTION(state, cfg_in, CX25840_VCONFIG_ACTIVE_MASK); CX25840_VCONFIG_OPTION(state, cfg_in, CX25840_VCONFIG_VALID_MASK); CX25840_VCONFIG_OPTION(state, cfg_in, CX25840_VCONFIG_HRESETW_MASK); CX25840_VCONFIG_OPTION(state, cfg_in, CX25840_VCONFIG_CLKGATE_MASK); CX25840_VCONFIG_OPTION(state, cfg_in, CX25840_VCONFIG_DCMODE_MASK); CX25840_VCONFIG_OPTION(state, cfg_in, CX25840_VCONFIG_IDID0S_MASK); CX25840_VCONFIG_OPTION(state, cfg_in, CX25840_VCONFIG_VIPCLAMP_MASK); } /* ----------------------------------------------------------------------- */ /* * Initializes the device in the generic mode. * For cx2584x chips also adds additional video output settings provided * in @val parameter (CX25840_VCONFIG_*). * * The generic mode disables some of the ivtv-related hacks in this driver. * For cx2584x chips it also enables setting video output configuration while * setting it according to datasheet defaults by default. */ static int cx25840_init(struct v4l2_subdev *sd, u32 val) { struct cx25840_state *state = to_state(sd); state->generic_mode = true; if (is_cx2584x(state)) { /* set datasheet video output defaults */ state->vid_config = CX25840_VCONFIG_FMT_BT656 | CX25840_VCONFIG_RES_8BIT | CX25840_VCONFIG_VBIRAW_DISABLED | CX25840_VCONFIG_ANCDATA_ENABLED | CX25840_VCONFIG_TASKBIT_ONE | CX25840_VCONFIG_ACTIVE_HORIZONTAL | CX25840_VCONFIG_VALID_NORMAL | CX25840_VCONFIG_HRESETW_NORMAL | CX25840_VCONFIG_CLKGATE_NONE | CX25840_VCONFIG_DCMODE_DWORDS | CX25840_VCONFIG_IDID0S_NORMAL | CX25840_VCONFIG_VIPCLAMP_DISABLED; /* add additional settings */ cx25840_vconfig_add(state, val); } else { /* TODO: generic mode needs to be developed for other chips */ WARN_ON(1); } return 0; } static int cx25840_reset(struct v4l2_subdev *sd, u32 val) { struct cx25840_state *state = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); if (is_cx2583x(state)) cx25836_initialize(client); else if (is_cx2388x(state)) cx23885_initialize(client); else if (is_cx231xx(state)) cx231xx_initialize(client); else cx25840_initialize(client); state->is_initialized = 1; return 0; } /* * This load_fw operation must be called to load the driver's firmware. * This will load the firmware on the first invocation (further ones are NOP). * Without this the audio standard detection will fail and you will * only get mono. * Alternatively, you can call the reset operation instead of this one. * * Since loading the firmware is often problematic when the driver is * compiled into the kernel I recommend postponing calling this function * until the first open of the video device. Another reason for * postponing it is that loading this firmware takes a long time (seconds) * due to the slow i2c bus speed. So it will speed up the boot process if * you can avoid loading the fw as long as the video device isn't used. */ static int cx25840_load_fw(struct v4l2_subdev *sd) { struct cx25840_state *state = to_state(sd); if (!state->is_initialized) { /* initialize and load firmware */ cx25840_reset(sd, 0); } return 0; } #ifdef CONFIG_VIDEO_ADV_DEBUG static int cx25840_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg) { struct i2c_client *client = v4l2_get_subdevdata(sd); reg->size = 1; reg->val = cx25840_read(client, reg->reg & 0x0fff); return 0; } static int cx25840_s_register(struct v4l2_subdev *sd, const struct v4l2_dbg_register *reg) { struct i2c_client *client = v4l2_get_subdevdata(sd); cx25840_write(client, reg->reg & 0x0fff, reg->val & 0xff); return 0; } #endif static int cx25840_s_audio_stream(struct v4l2_subdev *sd, int enable) { struct cx25840_state *state = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); u8 v; if (is_cx2583x(state) || is_cx2388x(state) || is_cx231xx(state)) return 0; v4l_dbg(1, cx25840_debug, client, "%s audio output\n", enable ? "enable" : "disable"); if (enable) { v = cx25840_read(client, 0x115) | 0x80; cx25840_write(client, 0x115, v); v = cx25840_read(client, 0x116) | 0x03; cx25840_write(client, 0x116, v); } else { v = cx25840_read(client, 0x115) & ~(0x80); cx25840_write(client, 0x115, v); v = cx25840_read(client, 0x116) & ~(0x03); cx25840_write(client, 0x116, v); } return 0; } static int cx25840_s_stream(struct v4l2_subdev *sd, int enable) { struct cx25840_state *state = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); u8 v; v4l_dbg(1, cx25840_debug, client, "%s video output\n", enable ? "enable" : "disable"); /* * It's not clear what should be done for these devices. * The original code used the same addresses as for the cx25840, but * those addresses do something else entirely on the cx2388x and * cx231xx. Since it never did anything in the first place, just do * nothing. */ if (is_cx2388x(state) || is_cx231xx(state)) return 0; if (enable) { v = cx25840_read(client, 0x115) | 0x0c; cx25840_write(client, 0x115, v); v = cx25840_read(client, 0x116) | 0x04; cx25840_write(client, 0x116, v); } else { v = cx25840_read(client, 0x115) & ~(0x0c); cx25840_write(client, 0x115, v); v = cx25840_read(client, 0x116) & ~(0x04); cx25840_write(client, 0x116, v); } return 0; } /* Query the current detected video format */ static int cx25840_querystd(struct v4l2_subdev *sd, v4l2_std_id *std) { struct i2c_client *client = v4l2_get_subdevdata(sd); static const v4l2_std_id stds[] = { /* 0000 */ V4L2_STD_UNKNOWN, /* 0001 */ V4L2_STD_NTSC_M, /* 0010 */ V4L2_STD_NTSC_M_JP, /* 0011 */ V4L2_STD_NTSC_443, /* 0100 */ V4L2_STD_PAL, /* 0101 */ V4L2_STD_PAL_M, /* 0110 */ V4L2_STD_PAL_N, /* 0111 */ V4L2_STD_PAL_Nc, /* 1000 */ V4L2_STD_PAL_60, /* 1001 */ V4L2_STD_UNKNOWN, /* 1010 */ V4L2_STD_UNKNOWN, /* 1011 */ V4L2_STD_UNKNOWN, /* 1100 */ V4L2_STD_SECAM, /* 1101 */ V4L2_STD_UNKNOWN, /* 1110 */ V4L2_STD_UNKNOWN, /* 1111 */ V4L2_STD_UNKNOWN }; u32 fmt = (cx25840_read4(client, 0x40c) >> 8) & 0xf; *std = stds[fmt]; v4l_dbg(1, cx25840_debug, client, "querystd fmt = %x, v4l2_std_id = 0x%x\n", fmt, (unsigned int)stds[fmt]); return 0; } static int cx25840_g_input_status(struct v4l2_subdev *sd, u32 *status) { struct i2c_client *client = v4l2_get_subdevdata(sd); /* * A limited function that checks for signal status and returns * the state. */ /* Check for status of Horizontal lock (SRC lock isn't reliable) */ if ((cx25840_read4(client, 0x40c) & 0x00010000) == 0) *status |= V4L2_IN_ST_NO_SIGNAL; return 0; } static int cx25840_g_std(struct v4l2_subdev *sd, v4l2_std_id *std) { struct cx25840_state *state = to_state(sd); *std = state->std; return 0; } static int cx25840_s_std(struct v4l2_subdev *sd, v4l2_std_id std) { struct cx25840_state *state = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); if (state->radio == 0 && state->std == std) return 0; state->radio = 0; state->std = std; return set_v4lstd(client); } static int cx25840_s_radio(struct v4l2_subdev *sd) { struct cx25840_state *state = to_state(sd); state->radio = 1; return 0; } static int cx25840_s_video_routing(struct v4l2_subdev *sd, u32 input, u32 output, u32 config) { struct cx25840_state *state = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); if (is_cx23888(state)) cx23888_std_setup(client); if (is_cx2584x(state) && state->generic_mode && config) { cx25840_vconfig_add(state, config); cx25840_vconfig_apply(client); } return set_input(client, input, state->aud_input); } static int cx25840_s_audio_routing(struct v4l2_subdev *sd, u32 input, u32 output, u32 config) { struct cx25840_state *state = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); if (is_cx23888(state)) cx23888_std_setup(client); return set_input(client, state->vid_input, input); } static int cx25840_s_frequency(struct v4l2_subdev *sd, const struct v4l2_frequency *freq) { struct i2c_client *client = v4l2_get_subdevdata(sd); input_change(client); return 0; } static int cx25840_g_tuner(struct v4l2_subdev *sd, struct v4l2_tuner *vt) { struct cx25840_state *state = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); u8 vpres = cx25840_read(client, 0x40e) & 0x20; u8 mode; int val = 0; if (state->radio) return 0; vt->signal = vpres ? 0xffff : 0x0; if (is_cx2583x(state)) return 0; vt->capability |= V4L2_TUNER_CAP_STEREO | V4L2_TUNER_CAP_LANG1 | V4L2_TUNER_CAP_LANG2 | V4L2_TUNER_CAP_SAP; mode = cx25840_read(client, 0x804); /* get rxsubchans and audmode */ if ((mode & 0xf) == 1) val |= V4L2_TUNER_SUB_STEREO; else val |= V4L2_TUNER_SUB_MONO; if (mode == 2 || mode == 4) val = V4L2_TUNER_SUB_LANG1 | V4L2_TUNER_SUB_LANG2; if (mode & 0x10) val |= V4L2_TUNER_SUB_SAP; vt->rxsubchans = val; vt->audmode = state->audmode; return 0; } static int cx25840_s_tuner(struct v4l2_subdev *sd, const struct v4l2_tuner *vt) { struct cx25840_state *state = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); if (state->radio || is_cx2583x(state)) return 0; switch (vt->audmode) { case V4L2_TUNER_MODE_MONO: /* * mono -> mono * stereo -> mono * bilingual -> lang1 */ cx25840_and_or(client, 0x809, ~0xf, 0x00); break; case V4L2_TUNER_MODE_STEREO: case V4L2_TUNER_MODE_LANG1: /* * mono -> mono * stereo -> stereo * bilingual -> lang1 */ cx25840_and_or(client, 0x809, ~0xf, 0x04); break; case V4L2_TUNER_MODE_LANG1_LANG2: /* * mono -> mono * stereo -> stereo * bilingual -> lang1/lang2 */ cx25840_and_or(client, 0x809, ~0xf, 0x07); break; case V4L2_TUNER_MODE_LANG2: /* * mono -> mono * stereo -> stereo * bilingual -> lang2 */ cx25840_and_or(client, 0x809, ~0xf, 0x01); break; default: return -EINVAL; } state->audmode = vt->audmode; return 0; } static int cx25840_log_status(struct v4l2_subdev *sd) { struct cx25840_state *state = to_state(sd); struct i2c_client *client = v4l2_get_subdevdata(sd); log_video_status(client); if (!is_cx2583x(state)) log_audio_status(client); cx25840_ir_log_status(sd); v4l2_ctrl_handler_log_status(&state->hdl, sd->name); return 0; } static int cx23885_irq_handler(struct v4l2_subdev *sd, u32 status, bool *handled) { struct cx25840_state *state = to_state(sd); struct i2c_client *c = v4l2_get_subdevdata(sd); u8 irq_stat, aud_stat, aud_en, ir_stat, ir_en; u32 vid_stat, aud_mc_stat; bool block_handled; int ret = 0; irq_stat = cx25840_read(c, CX23885_PIN_CTRL_IRQ_REG); v4l_dbg(2, cx25840_debug, c, "AV Core IRQ status (entry): %s %s %s\n", irq_stat & CX23885_PIN_CTRL_IRQ_IR_STAT ? "ir" : " ", irq_stat & CX23885_PIN_CTRL_IRQ_AUD_STAT ? "aud" : " ", irq_stat & CX23885_PIN_CTRL_IRQ_VID_STAT ? "vid" : " "); if ((is_cx23885(state) || is_cx23887(state))) { ir_stat = cx25840_read(c, CX25840_IR_STATS_REG); ir_en = cx25840_read(c, CX25840_IR_IRQEN_REG); v4l_dbg(2, cx25840_debug, c, "AV Core ir IRQ status: %#04x disables: %#04x\n", ir_stat, ir_en); if (irq_stat & CX23885_PIN_CTRL_IRQ_IR_STAT) { block_handled = false; ret = cx25840_ir_irq_handler(sd, status, &block_handled); if (block_handled) *handled = true; } } aud_stat = cx25840_read(c, CX25840_AUD_INT_STAT_REG); aud_en = cx25840_read(c, CX25840_AUD_INT_CTRL_REG); v4l_dbg(2, cx25840_debug, c, "AV Core audio IRQ status: %#04x disables: %#04x\n", aud_stat, aud_en); aud_mc_stat = cx25840_read4(c, CX23885_AUD_MC_INT_MASK_REG); v4l_dbg(2, cx25840_debug, c, "AV Core audio MC IRQ status: %#06x enables: %#06x\n", aud_mc_stat >> CX23885_AUD_MC_INT_STAT_SHFT, aud_mc_stat & CX23885_AUD_MC_INT_CTRL_BITS); if (irq_stat & CX23885_PIN_CTRL_IRQ_AUD_STAT) { if (aud_stat) { cx25840_write(c, CX25840_AUD_INT_STAT_REG, aud_stat); *handled = true; } } vid_stat = cx25840_read4(c, CX25840_VID_INT_STAT_REG); v4l_dbg(2, cx25840_debug, c, "AV Core video IRQ status: %#06x disables: %#06x\n", vid_stat & CX25840_VID_INT_STAT_BITS, vid_stat >> CX25840_VID_INT_MASK_SHFT); if (irq_stat & CX23885_PIN_CTRL_IRQ_VID_STAT) { if (vid_stat & CX25840_VID_INT_STAT_BITS) { cx25840_write4(c, CX25840_VID_INT_STAT_REG, vid_stat); *handled = true; } } irq_stat = cx25840_read(c, CX23885_PIN_CTRL_IRQ_REG); v4l_dbg(2, cx25840_debug, c, "AV Core IRQ status (exit): %s %s %s\n", irq_stat & CX23885_PIN_CTRL_IRQ_IR_STAT ? "ir" : " ", irq_stat & CX23885_PIN_CTRL_IRQ_AUD_STAT ? "aud" : " ", irq_stat & CX23885_PIN_CTRL_IRQ_VID_STAT ? "vid" : " "); return ret; } static int cx25840_irq_handler(struct v4l2_subdev *sd, u32 status, bool *handled) { struct cx25840_state *state = to_state(sd); *handled = false; /* Only support the CX2388[578] AV Core for now */ if (is_cx2388x(state)) return cx23885_irq_handler(sd, status, handled); return -ENODEV; } /* ----------------------------------------------------------------------- */ #define DIF_PLL_FREQ_WORD (0x300) #define DIF_BPF_COEFF01 (0x348) #define DIF_BPF_COEFF23 (0x34c) #define DIF_BPF_COEFF45 (0x350) #define DIF_BPF_COEFF67 (0x354) #define DIF_BPF_COEFF89 (0x358) #define DIF_BPF_COEFF1011 (0x35c) #define DIF_BPF_COEFF1213 (0x360) #define DIF_BPF_COEFF1415 (0x364) #define DIF_BPF_COEFF1617 (0x368) #define DIF_BPF_COEFF1819 (0x36c) #define DIF_BPF_COEFF2021 (0x370) #define DIF_BPF_COEFF2223 (0x374) #define DIF_BPF_COEFF2425 (0x378) #define DIF_BPF_COEFF2627 (0x37c) #define DIF_BPF_COEFF2829 (0x380) #define DIF_BPF_COEFF3031 (0x384) #define DIF_BPF_COEFF3233 (0x388) #define DIF_BPF_COEFF3435 (0x38c) #define DIF_BPF_COEFF36 (0x390) static const u32 ifhz_coeffs[][19] = { { // 3.0 MHz 0x00000002, 0x00080012, 0x001e0024, 0x001bfff8, 0xffb4ff50, 0xfed8fe68, 0xfe24fe34, 0xfebaffc7, 0x014d031f, 0x04f0065d, 0x07010688, 0x04c901d6, 0xfe00f9d3, 0xf600f342, 0xf235f337, 0xf64efb22, 0x0105070f, 0x0c460fce, 0x110d0000, }, { // 3.1 MHz 0x00000001, 0x00070012, 0x00220032, 0x00370026, 0xfff0ff91, 0xff0efe7c, 0xfe01fdcc, 0xfe0afedb, 0x00440224, 0x0434060c, 0x0738074e, 0x06090361, 0xff99fb39, 0xf6fef3b6, 0xf21af2a5, 0xf573fa33, 0x0034067d, 0x0bfb0fb9, 0x110d0000, }, { // 3.2 MHz 0x00000000, 0x0004000e, 0x00200038, 0x004c004f, 0x002fffdf, 0xff5cfeb6, 0xfe0dfd92, 0xfd7ffe03, 0xff36010a, 0x03410575, 0x072607d2, 0x071804d5, 0x0134fcb7, 0xf81ff451, 0xf223f22e, 0xf4a7f94b, 0xff6405e8, 0x0bae0fa4, 0x110d0000, }, { // 3.3 MHz 0x0000ffff, 0x00000008, 0x001a0036, 0x0056006d, 0x00670030, 0xffbdff10, 0xfe46fd8d, 0xfd25fd4f, 0xfe35ffe0, 0x0224049f, 0x06c9080e, 0x07ef0627, 0x02c9fe45, 0xf961f513, 0xf250f1d2, 0xf3ecf869, 0xfe930552, 0x0b5f0f8f, 0x110d0000, }, { // 3.4 MHz 0xfffffffe, 0xfffd0001, 0x000f002c, 0x0054007d, 0x0093007c, 0x0024ff82, 0xfea6fdbb, 0xfd03fcca, 0xfd51feb9, 0x00eb0392, 0x06270802, 0x08880750, 0x044dffdb, 0xfabdf5f8, 0xf2a0f193, 0xf342f78f, 0xfdc404b9, 0x0b0e0f78, 0x110d0000, }, { // 3.5 MHz 0xfffffffd, 0xfffafff9, 0x0002001b, 0x0046007d, 0x00ad00ba, 0x00870000, 0xff26fe1a, 0xfd1bfc7e, 0xfc99fda4, 0xffa5025c, 0x054507ad, 0x08dd0847, 0x05b80172, 0xfc2ef6ff, 0xf313f170, 0xf2abf6bd, 0xfcf6041f, 0x0abc0f61, 0x110d0000, }, { // 3.6 MHz 0xfffffffd, 0xfff8fff3, 0xfff50006, 0x002f006c, 0x00b200e3, 0x00dc007e, 0xffb9fea0, 0xfd6bfc71, 0xfc17fcb1, 0xfe65010b, 0x042d0713, 0x08ec0906, 0x07020302, 0xfdaff823, 0xf3a7f16a, 0xf228f5f5, 0xfc2a0384, 0x0a670f4a, 0x110d0000, }, { // 3.7 MHz 0x0000fffd, 0xfff7ffef, 0xffe9fff1, 0x0010004d, 0x00a100f2, 0x011a00f0, 0x0053ff44, 0xfdedfca2, 0xfbd3fbef, 0xfd39ffae, 0x02ea0638, 0x08b50987, 0x08230483, 0xff39f960, 0xf45bf180, 0xf1b8f537, 0xfb6102e7, 0x0a110f32, 0x110d0000, }, { // 3.8 MHz 0x0000fffe, 0xfff9ffee, 0xffe1ffdd, 0xfff00024, 0x007c00e5, 0x013a014a, 0x00e6fff8, 0xfe98fd0f, 0xfbd3fb67, 0xfc32fe54, 0x01880525, 0x083909c7, 0x091505ee, 0x00c7fab3, 0xf52df1b4, 0xf15df484, 0xfa9b0249, 0x09ba0f19, 0x110d0000, }, { // 3.9 MHz 0x00000000, 0xfffbfff0, 0xffdeffcf, 0xffd1fff6, 0x004800be, 0x01390184, 0x016300ac, 0xff5efdb1, 0xfc17fb23, 0xfb5cfd0d, 0x001703e4, 0x077b09c4, 0x09d2073c, 0x0251fc18, 0xf61cf203, 0xf118f3dc, 0xf9d801aa, 0x09600eff, 0x110d0000, }, { // 4.0 MHz 0x00000001, 0xfffefff4, 0xffe1ffc8, 0xffbaffca, 0x000b0082, 0x01170198, 0x01c10152, 0x0030fe7b, 0xfc99fb24, 0xfac3fbe9, 0xfea5027f, 0x0683097f, 0x0a560867, 0x03d2fd89, 0xf723f26f, 0xf0e8f341, 0xf919010a, 0x09060ee5, 0x110d0000, }, { // 4.1 MHz 0x00010002, 0x0002fffb, 0xffe8ffca, 0xffacffa4, 0xffcd0036, 0x00d70184, 0x01f601dc, 0x00ffff60, 0xfd51fb6d, 0xfa6efaf5, 0xfd410103, 0x055708f9, 0x0a9e0969, 0x0543ff02, 0xf842f2f5, 0xf0cef2b2, 0xf85e006b, 0x08aa0ecb, 0x110d0000, }, { // 4.2 MHz 0x00010003, 0x00050003, 0xfff3ffd3, 0xffaaff8b, 0xff95ffe5, 0x0080014a, 0x01fe023f, 0x01ba0050, 0xfe35fbf8, 0xfa62fa3b, 0xfbf9ff7e, 0x04010836, 0x0aa90a3d, 0x069f007f, 0xf975f395, 0xf0cbf231, 0xf7a9ffcb, 0x084c0eaf, 0x110d0000, }, { // 4.3 MHz 0x00010003, 0x0008000a, 0x0000ffe4, 0xffb4ff81, 0xff6aff96, 0x001c00f0, 0x01d70271, 0x0254013b, 0xff36fcbd, 0xfa9ff9c5, 0xfadbfdfe, 0x028c073b, 0x0a750adf, 0x07e101fa, 0xfab8f44e, 0xf0ddf1be, 0xf6f9ff2b, 0x07ed0e94, 0x110d0000, }, { // 4.4 MHz 0x00000003, 0x0009000f, 0x000efff8, 0xffc9ff87, 0xff52ff54, 0xffb5007e, 0x01860270, 0x02c00210, 0x0044fdb2, 0xfb22f997, 0xf9f2fc90, 0x0102060f, 0x0a050b4c, 0x0902036e, 0xfc0af51e, 0xf106f15a, 0xf64efe8b, 0x078d0e77, 0x110d0000, }, { // 4.5 MHz 0x00000002, 0x00080012, 0x0019000e, 0xffe5ff9e, 0xff4fff25, 0xff560000, 0x0112023b, 0x02f702c0, 0x014dfec8, 0xfbe5f9b3, 0xf947fb41, 0xff7004b9, 0x095a0b81, 0x0a0004d8, 0xfd65f603, 0xf144f104, 0xf5aafdec, 0x072b0e5a, 0x110d0000, }, { // 4.6 MHz 0x00000001, 0x00060012, 0x00200022, 0x0005ffc1, 0xff61ff10, 0xff09ff82, 0x008601d7, 0x02f50340, 0x0241fff0, 0xfcddfa19, 0xf8e2fa1e, 0xfde30343, 0x08790b7f, 0x0ad50631, 0xfec7f6fc, 0xf198f0bd, 0xf50dfd4e, 0x06c90e3d, 0x110d0000, }, { // 4.7 MHz 0x0000ffff, 0x0003000f, 0x00220030, 0x0025ffed, 0xff87ff15, 0xfed6ff10, 0xffed014c, 0x02b90386, 0x03110119, 0xfdfefac4, 0xf8c6f92f, 0xfc6701b7, 0x07670b44, 0x0b7e0776, 0x002df807, 0xf200f086, 0xf477fcb1, 0x06650e1e, 0x110d0000, }, { // 4.8 MHz 0xfffffffe, 0xffff0009, 0x001e0038, 0x003f001b, 0xffbcff36, 0xfec2feb6, 0xff5600a5, 0x0248038d, 0x03b00232, 0xff39fbab, 0xf8f4f87f, 0xfb060020, 0x062a0ad2, 0x0bf908a3, 0x0192f922, 0xf27df05e, 0xf3e8fc14, 0x06000e00, 0x110d0000, }, { // 4.9 MHz 0xfffffffd, 0xfffc0002, 0x00160037, 0x00510046, 0xfff9ff6d, 0xfed0fe7c, 0xfecefff0, 0x01aa0356, 0x0413032b, 0x007ffcc5, 0xf96cf812, 0xf9cefe87, 0x04c90a2c, 0x0c4309b4, 0x02f3fa4a, 0xf30ef046, 0xf361fb7a, 0x059b0de0, 0x110d0000, }, { // 5.0 MHz 0xfffffffd, 0xfff9fffa, 0x000a002d, 0x00570067, 0x0037ffb5, 0xfefffe68, 0xfe62ff3d, 0x00ec02e3, 0x043503f6, 0x01befe05, 0xfa27f7ee, 0xf8c6fcf8, 0x034c0954, 0x0c5c0aa4, 0x044cfb7e, 0xf3b1f03f, 0xf2e2fae1, 0x05340dc0, 0x110d0000, }, { // 5.1 MHz 0x0000fffd, 0xfff8fff4, 0xfffd001e, 0x0051007b, 0x006e0006, 0xff48fe7c, 0xfe1bfe9a, 0x001d023e, 0x04130488, 0x02e6ff5b, 0xfb1ef812, 0xf7f7fb7f, 0x01bc084e, 0x0c430b72, 0x059afcba, 0xf467f046, 0xf26cfa4a, 0x04cd0da0, 0x110d0000, }, { // 5.2 MHz 0x0000fffe, 0xfff8ffef, 0xfff00009, 0x003f007f, 0x00980056, 0xffa5feb6, 0xfe00fe15, 0xff4b0170, 0x03b004d7, 0x03e800b9, 0xfc48f87f, 0xf768fa23, 0x0022071f, 0x0bf90c1b, 0x06dafdfd, 0xf52df05e, 0xf1fef9b5, 0x04640d7f, 0x110d0000, }, { // 5.3 MHz 0x0000ffff, 0xfff9ffee, 0xffe6fff3, 0x00250072, 0x00af009c, 0x000cff10, 0xfe13fdb8, 0xfe870089, 0x031104e1, 0x04b8020f, 0xfd98f92f, 0xf71df8f0, 0xfe8805ce, 0x0b7e0c9c, 0x0808ff44, 0xf603f086, 0xf19af922, 0x03fb0d5e, 0x110d0000, }, { // 5.4 MHz 0x00000001, 0xfffcffef, 0xffe0ffe0, 0x00050056, 0x00b000d1, 0x0071ff82, 0xfe53fd8c, 0xfddfff99, 0x024104a3, 0x054a034d, 0xff01fa1e, 0xf717f7ed, 0xfcf50461, 0x0ad50cf4, 0x0921008d, 0xf6e7f0bd, 0xf13ff891, 0x03920d3b, 0x110d0000, }, { // 5.5 MHz 0x00010002, 0xfffffff3, 0xffdeffd1, 0xffe5002f, 0x009c00ed, 0x00cb0000, 0xfebafd94, 0xfd61feb0, 0x014d0422, 0x05970464, 0x0074fb41, 0xf759f721, 0xfb7502de, 0x0a000d21, 0x0a2201d4, 0xf7d9f104, 0xf0edf804, 0x03280d19, 0x110d0000, }, { // 5.6 MHz 0x00010003, 0x0003fffa, 0xffe3ffc9, 0xffc90002, 0x007500ef, 0x010e007e, 0xff3dfdcf, 0xfd16fddd, 0x00440365, 0x059b0548, 0x01e3fc90, 0xf7dff691, 0xfa0f014d, 0x09020d23, 0x0b0a0318, 0xf8d7f15a, 0xf0a5f779, 0x02bd0cf6, 0x110d0000, }, { // 5.7 MHz 0x00010003, 0x00060001, 0xffecffc9, 0xffb4ffd4, 0x004000d5, 0x013600f0, 0xffd3fe39, 0xfd04fd31, 0xff360277, 0x055605ef, 0x033efdfe, 0xf8a5f642, 0xf8cbffb6, 0x07e10cfb, 0x0bd50456, 0xf9dff1be, 0xf067f6f2, 0x02520cd2, 0x110d0000, }, { // 5.8 MHz 0x00000003, 0x00080009, 0xfff8ffd2, 0xffaaffac, 0x000200a3, 0x013c014a, 0x006dfec9, 0xfd2bfcb7, 0xfe350165, 0x04cb0651, 0x0477ff7e, 0xf9a5f635, 0xf7b1fe20, 0x069f0ca8, 0x0c81058b, 0xfaf0f231, 0xf033f66d, 0x01e60cae, 0x110d0000, }, { // 5.9 MHz 0x00000002, 0x0009000e, 0x0005ffe1, 0xffacff90, 0xffc5005f, 0x01210184, 0x00fcff72, 0xfd8afc77, 0xfd51003f, 0x04020669, 0x05830103, 0xfad7f66b, 0xf6c8fc93, 0x05430c2b, 0x0d0d06b5, 0xfc08f2b2, 0xf00af5ec, 0x017b0c89, 0x110d0000, }, { // 6.0 MHz 0x00000001, 0x00070012, 0x0012fff5, 0xffbaff82, 0xff8e000f, 0x00e80198, 0x01750028, 0xfe18fc75, 0xfc99ff15, 0x03050636, 0x0656027f, 0xfc32f6e2, 0xf614fb17, 0x03d20b87, 0x0d7707d2, 0xfd26f341, 0xefeaf56f, 0x010f0c64, 0x110d0000, }, { // 6.1 MHz 0xffff0000, 0x00050012, 0x001c000b, 0xffd1ff84, 0xff66ffbe, 0x00960184, 0x01cd00da, 0xfeccfcb2, 0xfc17fdf9, 0x01e005bc, 0x06e703e4, 0xfdabf798, 0xf599f9b3, 0x02510abd, 0x0dbf08df, 0xfe48f3dc, 0xefd5f4f6, 0x00a20c3e, 0x110d0000, }, { // 6.2 MHz 0xfffffffe, 0x0002000f, 0x0021001f, 0xfff0ff97, 0xff50ff74, 0x0034014a, 0x01fa0179, 0xff97fd2a, 0xfbd3fcfa, 0x00a304fe, 0x07310525, 0xff37f886, 0xf55cf86e, 0x00c709d0, 0x0de209db, 0xff6df484, 0xefcbf481, 0x00360c18, 0x110d0000, }, { // 6.3 MHz 0xfffffffd, 0xfffe000a, 0x0021002f, 0x0010ffb8, 0xff50ff3b, 0xffcc00f0, 0x01fa01fa, 0x0069fdd4, 0xfbd3fc26, 0xff5d0407, 0x07310638, 0x00c9f9a8, 0xf55cf74e, 0xff3908c3, 0x0de20ac3, 0x0093f537, 0xefcbf410, 0xffca0bf2, 0x110d0000, }, { // 6.4 MHz 0xfffffffd, 0xfffb0003, 0x001c0037, 0x002fffe2, 0xff66ff17, 0xff6a007e, 0x01cd0251, 0x0134fea5, 0xfc17fb8b, 0xfe2002e0, 0x06e70713, 0x0255faf5, 0xf599f658, 0xfdaf0799, 0x0dbf0b96, 0x01b8f5f5, 0xefd5f3a3, 0xff5e0bca, 0x110d0000, }, { // 6.5 MHz 0x0000fffd, 0xfff9fffb, 0x00120037, 0x00460010, 0xff8eff0f, 0xff180000, 0x01750276, 0x01e8ff8d, 0xfc99fb31, 0xfcfb0198, 0x065607ad, 0x03cefc64, 0xf614f592, 0xfc2e0656, 0x0d770c52, 0x02daf6bd, 0xefeaf33b, 0xfef10ba3, 0x110d0000, }, { // 6.6 MHz 0x0000fffe, 0xfff7fff5, 0x0005002f, 0x0054003c, 0xffc5ff22, 0xfedfff82, 0x00fc0267, 0x0276007e, 0xfd51fb1c, 0xfbfe003e, 0x05830802, 0x0529fdec, 0xf6c8f4fe, 0xfabd04ff, 0x0d0d0cf6, 0x03f8f78f, 0xf00af2d7, 0xfe850b7b, 0x110d0000, }, { // 6.7 MHz 0x0000ffff, 0xfff8fff0, 0xfff80020, 0x00560060, 0x0002ff4e, 0xfec4ff10, 0x006d0225, 0x02d50166, 0xfe35fb4e, 0xfb35fee1, 0x0477080e, 0x065bff82, 0xf7b1f4a0, 0xf9610397, 0x0c810d80, 0x0510f869, 0xf033f278, 0xfe1a0b52, 0x110d0000, }, { // 6.8 MHz 0x00010000, 0xfffaffee, 0xffec000c, 0x004c0078, 0x0040ff8e, 0xfecafeb6, 0xffd301b6, 0x02fc0235, 0xff36fbc5, 0xfaaafd90, 0x033e07d2, 0x075b011b, 0xf8cbf47a, 0xf81f0224, 0x0bd50def, 0x0621f94b, 0xf067f21e, 0xfdae0b29, 0x110d0000, }, { // 6.9 MHz 0x00010001, 0xfffdffef, 0xffe3fff6, 0x0037007f, 0x0075ffdc, 0xfef2fe7c, 0xff3d0122, 0x02ea02dd, 0x0044fc79, 0xfa65fc5d, 0x01e3074e, 0x082102ad, 0xfa0ff48c, 0xf6fe00a9, 0x0b0a0e43, 0x0729fa33, 0xf0a5f1c9, 0xfd430b00, 0x110d0000, }, { // 7.0 MHz 0x00010002, 0x0001fff3, 0xffdeffe2, 0x001b0076, 0x009c002d, 0xff35fe68, 0xfeba0076, 0x029f0352, 0x014dfd60, 0xfa69fb53, 0x00740688, 0x08a7042d, 0xfb75f4d6, 0xf600ff2d, 0x0a220e7a, 0x0827fb22, 0xf0edf17a, 0xfcd80ad6, 0x110d0000, }, { // 7.1 MHz 0x00000003, 0x0004fff9, 0xffe0ffd2, 0xfffb005e, 0x00b0007a, 0xff8ffe7c, 0xfe53ffc1, 0x0221038c, 0x0241fe6e, 0xfab6fa80, 0xff010587, 0x08e90590, 0xfcf5f556, 0xf52bfdb3, 0x09210e95, 0x0919fc15, 0xf13ff12f, 0xfc6e0aab, 0x110d0000, }, { // 7.2 MHz 0x00000003, 0x00070000, 0xffe6ffc9, 0xffdb0039, 0x00af00b8, 0xfff4feb6, 0xfe13ff10, 0x01790388, 0x0311ff92, 0xfb48f9ed, 0xfd980453, 0x08e306cd, 0xfe88f60a, 0xf482fc40, 0x08080e93, 0x09fdfd0c, 0xf19af0ea, 0xfc050a81, 0x110d0000, }, { // 7.3 MHz 0x00000002, 0x00080008, 0xfff0ffc9, 0xffc1000d, 0x009800e2, 0x005bff10, 0xfe00fe74, 0x00b50345, 0x03b000bc, 0xfc18f9a1, 0xfc4802f9, 0x089807dc, 0x0022f6f0, 0xf407fada, 0x06da0e74, 0x0ad3fe06, 0xf1fef0ab, 0xfb9c0a55, 0x110d0000, }, { // 7.4 MHz 0x00000001, 0x0008000e, 0xfffdffd0, 0xffafffdf, 0x006e00f2, 0x00b8ff82, 0xfe1bfdf8, 0xffe302c8, 0x041301dc, 0xfd1af99e, 0xfb1e0183, 0x080908b5, 0x01bcf801, 0xf3bdf985, 0x059a0e38, 0x0b99ff03, 0xf26cf071, 0xfb330a2a, 0x110d0000, }, { // 7.5 MHz 0xffff0000, 0x00070011, 0x000affdf, 0xffa9ffb5, 0x003700e6, 0x01010000, 0xfe62fda8, 0xff140219, 0x043502e1, 0xfe42f9e6, 0xfa270000, 0x073a0953, 0x034cf939, 0xf3a4f845, 0x044c0de1, 0x0c4f0000, 0xf2e2f03c, 0xfacc09fe, 0x110d0000, }, { // 7.6 MHz 0xffffffff, 0x00040012, 0x0016fff3, 0xffafff95, 0xfff900c0, 0x0130007e, 0xfecefd89, 0xfe560146, 0x041303bc, 0xff81fa76, 0xf96cfe7d, 0x063209b1, 0x04c9fa93, 0xf3bdf71e, 0x02f30d6e, 0x0cf200fd, 0xf361f00e, 0xfa6509d1, 0x110d0000, }, { // 7.7 MHz 0xfffffffe, 0x00010010, 0x001e0008, 0xffc1ff84, 0xffbc0084, 0x013e00f0, 0xff56fd9f, 0xfdb8005c, 0x03b00460, 0x00c7fb45, 0xf8f4fd07, 0x04fa09ce, 0x062afc07, 0xf407f614, 0x01920ce0, 0x0d8301fa, 0xf3e8efe5, 0xfa0009a4, 0x110d0000, }, { // 7.8 MHz 0x0000fffd, 0xfffd000b, 0x0022001d, 0xffdbff82, 0xff870039, 0x012a014a, 0xffedfde7, 0xfd47ff6b, 0x031104c6, 0x0202fc4c, 0xf8c6fbad, 0x039909a7, 0x0767fd8e, 0xf482f52b, 0x002d0c39, 0x0e0002f4, 0xf477efc2, 0xf99b0977, 0x110d0000, }, { // 7.9 MHz 0x0000fffd, 0xfffa0004, 0x0020002d, 0xfffbff91, 0xff61ffe8, 0x00f70184, 0x0086fe5c, 0xfd0bfe85, 0x024104e5, 0x0323fd7d, 0xf8e2fa79, 0x021d093f, 0x0879ff22, 0xf52bf465, 0xfec70b79, 0x0e6803eb, 0xf50defa5, 0xf937094a, 0x110d0000, }, { // 8.0 MHz 0x0000fffe, 0xfff8fffd, 0x00190036, 0x001bffaf, 0xff4fff99, 0x00aa0198, 0x0112fef3, 0xfd09fdb9, 0x014d04be, 0x041bfecc, 0xf947f978, 0x00900897, 0x095a00b9, 0xf600f3c5, 0xfd650aa3, 0x0ebc04de, 0xf5aaef8e, 0xf8d5091c, 0x110d0000, }, { // 8.1 MHz 0x0000ffff, 0xfff7fff6, 0x000e0038, 0x0037ffd7, 0xff52ff56, 0x004b0184, 0x0186ffa1, 0xfd40fd16, 0x00440452, 0x04de0029, 0xf9f2f8b2, 0xfefe07b5, 0x0a05024d, 0xf6fef34d, 0xfc0a09b8, 0x0efa05cd, 0xf64eef7d, 0xf87308ed, 0x110d0000, }, { // 8.2 MHz 0x00010000, 0xfff8fff0, 0x00000031, 0x004c0005, 0xff6aff27, 0xffe4014a, 0x01d70057, 0xfdacfca6, 0xff3603a7, 0x05610184, 0xfadbf82e, 0xfd74069f, 0x0a7503d6, 0xf81ff2ff, 0xfab808b9, 0x0f2306b5, 0xf6f9ef72, 0xf81308bf, 0x110d0000, }, { // 8.3 MHz 0x00010001, 0xfffbffee, 0xfff30022, 0x00560032, 0xff95ff10, 0xff8000f0, 0x01fe0106, 0xfe46fc71, 0xfe3502c7, 0x059e02ce, 0xfbf9f7f2, 0xfbff055b, 0x0aa9054c, 0xf961f2db, 0xf97507aa, 0x0f350797, 0xf7a9ef6d, 0xf7b40890, 0x110d0000, }, { // 8.4 MHz 0x00010002, 0xfffeffee, 0xffe8000f, 0x00540058, 0xffcdff14, 0xff29007e, 0x01f6019e, 0xff01fc7c, 0xfd5101bf, 0x059203f6, 0xfd41f7fe, 0xfaa903f3, 0x0a9e06a9, 0xfabdf2e2, 0xf842068b, 0x0f320871, 0xf85eef6e, 0xf7560860, 0x110d0000, }, { // 8.5 MHz 0x00000003, 0x0002fff2, 0xffe1fff9, 0x00460073, 0x000bff34, 0xfee90000, 0x01c10215, 0xffd0fcc5, 0xfc99009d, 0x053d04f1, 0xfea5f853, 0xf97d0270, 0x0a5607e4, 0xfc2ef314, 0xf723055f, 0x0f180943, 0xf919ef75, 0xf6fa0830, 0x110d0000, }, { // 8.6 MHz 0x00000003, 0x0005fff8, 0xffdeffe4, 0x002f007f, 0x0048ff6b, 0xfec7ff82, 0x0163025f, 0x00a2fd47, 0xfc17ff73, 0x04a405b2, 0x0017f8ed, 0xf88500dc, 0x09d208f9, 0xfdaff370, 0xf61c0429, 0x0ee80a0b, 0xf9d8ef82, 0xf6a00800, 0x110d0000, }, { // 8.7 MHz 0x00000003, 0x0007ffff, 0xffe1ffd4, 0x0010007a, 0x007cffb2, 0xfec6ff10, 0x00e60277, 0x0168fdf9, 0xfbd3fe50, 0x03ce0631, 0x0188f9c8, 0xf7c7ff43, 0x091509e3, 0xff39f3f6, 0xf52d02ea, 0x0ea30ac9, 0xfa9bef95, 0xf64607d0, 0x110d0000, }, { // 8.8 MHz 0x00000002, 0x00090007, 0xffe9ffca, 0xfff00065, 0x00a10003, 0xfee6feb6, 0x0053025b, 0x0213fed0, 0xfbd3fd46, 0x02c70668, 0x02eafadb, 0xf74bfdae, 0x08230a9c, 0x00c7f4a3, 0xf45b01a6, 0x0e480b7c, 0xfb61efae, 0xf5ef079f, 0x110d0000, }, { // 8.9 MHz 0xffff0000, 0x0008000d, 0xfff5ffc8, 0xffd10043, 0x00b20053, 0xff24fe7c, 0xffb9020c, 0x0295ffbb, 0xfc17fc64, 0x019b0654, 0x042dfc1c, 0xf714fc2a, 0x07020b21, 0x0251f575, 0xf3a7005e, 0x0dd80c24, 0xfc2aefcd, 0xf599076e, 0x110d0000, }, { // 9.0 MHz 0xffffffff, 0x00060011, 0x0002ffcf, 0xffba0018, 0x00ad009a, 0xff79fe68, 0xff260192, 0x02e500ab, 0xfc99fbb6, 0x005b05f7, 0x0545fd81, 0xf723fabf, 0x05b80b70, 0x03d2f669, 0xf313ff15, 0x0d550cbf, 0xfcf6eff2, 0xf544073d, 0x110d0000, }, { // 9.1 MHz 0xfffffffe, 0x00030012, 0x000fffdd, 0xffacffea, 0x009300cf, 0xffdcfe7c, 0xfea600f7, 0x02fd0190, 0xfd51fb46, 0xff150554, 0x0627fefd, 0xf778f978, 0x044d0b87, 0x0543f77d, 0xf2a0fdcf, 0x0cbe0d4e, 0xfdc4f01d, 0xf4f2070b, 0x110d0000, }, { // 9.2 MHz 0x0000fffd, 0x00000010, 0x001afff0, 0xffaaffbf, 0x006700ed, 0x0043feb6, 0xfe460047, 0x02db0258, 0xfe35fb1b, 0xfddc0473, 0x06c90082, 0xf811f85e, 0x02c90b66, 0x069ff8ad, 0xf250fc8d, 0x0c140dcf, 0xfe93f04d, 0xf4a106d9, 0x110d0000, }, { // 9.3 MHz 0x0000fffd, 0xfffc000c, 0x00200006, 0xffb4ff9c, 0x002f00ef, 0x00a4ff10, 0xfe0dff92, 0x028102f7, 0xff36fb37, 0xfcbf035e, 0x07260202, 0xf8e8f778, 0x01340b0d, 0x07e1f9f4, 0xf223fb51, 0x0b590e42, 0xff64f083, 0xf45206a7, 0x110d0000, }, { // 9.4 MHz 0x0000fffd, 0xfff90005, 0x0022001a, 0xffc9ff86, 0xfff000d7, 0x00f2ff82, 0xfe01fee5, 0x01f60362, 0x0044fb99, 0xfbcc0222, 0x07380370, 0xf9f7f6cc, 0xff990a7e, 0x0902fb50, 0xf21afa1f, 0x0a8d0ea6, 0x0034f0bf, 0xf4050675, 0x110d0000, }, { // 9.5 MHz 0x0000fffe, 0xfff8fffe, 0x001e002b, 0xffe5ff81, 0xffb400a5, 0x01280000, 0xfe24fe50, 0x01460390, 0x014dfc3a, 0xfb1000ce, 0x070104bf, 0xfb37f65f, 0xfe0009bc, 0x0a00fcbb, 0xf235f8f8, 0x09b20efc, 0x0105f101, 0xf3ba0642, 0x110d0000, }, { // 9.6 MHz 0x0001ffff, 0xfff8fff7, 0x00150036, 0x0005ff8c, 0xff810061, 0x013d007e, 0xfe71fddf, 0x007c0380, 0x0241fd13, 0xfa94ff70, 0x068005e2, 0xfc9bf633, 0xfc7308ca, 0x0ad5fe30, 0xf274f7e0, 0x08c90f43, 0x01d4f147, 0xf371060f, 0x110d0000, }, { // 9.7 MHz 0x00010001, 0xfff9fff1, 0x00090038, 0x0025ffa7, 0xff5e0012, 0x013200f0, 0xfee3fd9b, 0xffaa0331, 0x0311fe15, 0xfa60fe18, 0x05bd06d1, 0xfe1bf64a, 0xfafa07ae, 0x0b7effab, 0xf2d5f6d7, 0x07d30f7a, 0x02a3f194, 0xf32905dc, 0x110d0000, }, { // 9.8 MHz 0x00010002, 0xfffcffee, 0xfffb0032, 0x003fffcd, 0xff4effc1, 0x0106014a, 0xff6efd8a, 0xfedd02aa, 0x03b0ff34, 0xfa74fcd7, 0x04bf0781, 0xffaaf6a3, 0xf99e066b, 0x0bf90128, 0xf359f5e1, 0x06d20fa2, 0x0370f1e5, 0xf2e405a8, 0x110d0000, }, { // 9.9 MHz 0x00000003, 0xffffffee, 0xffef0024, 0x0051fffa, 0xff54ff77, 0x00be0184, 0x0006fdad, 0xfe2701f3, 0x0413005e, 0xfad1fbba, 0x039007ee, 0x013bf73d, 0xf868050a, 0x0c4302a1, 0xf3fdf4fe, 0x05c70fba, 0x043bf23c, 0xf2a10575, 0x110d0000, }, { // 10.0 MHz 0x00000003, 0x0003fff1, 0xffe50011, 0x00570027, 0xff70ff3c, 0x00620198, 0x009efe01, 0xfd95011a, 0x04350183, 0xfb71fad0, 0x023c0812, 0x02c3f811, 0xf75e0390, 0x0c5c0411, 0xf4c1f432, 0x04b30fc1, 0x0503f297, 0xf2610541, 0x110d0000, }, { // 10.1 MHz 0x00000003, 0x0006fff7, 0xffdffffc, 0x00510050, 0xff9dff18, 0xfffc0184, 0x0128fe80, 0xfd32002e, 0x04130292, 0xfc4dfa21, 0x00d107ee, 0x0435f91c, 0xf6850205, 0x0c430573, 0xf5a1f37d, 0x03990fba, 0x05c7f2f8, 0xf222050d, 0x110d0000, }, { // 10.2 MHz 0x00000002, 0x0008fffe, 0xffdfffe7, 0x003f006e, 0xffd6ff0f, 0xff96014a, 0x0197ff1f, 0xfd05ff3e, 0x03b0037c, 0xfd59f9b7, 0xff5d0781, 0x0585fa56, 0xf5e4006f, 0x0bf906c4, 0xf69df2e0, 0x02790fa2, 0x0688f35d, 0xf1e604d8, 0x110d0000, }, { // 10.3 MHz 0xffff0001, 0x00090005, 0xffe4ffd6, 0x0025007e, 0x0014ff20, 0xff3c00f0, 0x01e1ffd0, 0xfd12fe5c, 0x03110433, 0xfe88f996, 0xfdf106d1, 0x06aafbb7, 0xf57efed8, 0x0b7e07ff, 0xf7b0f25e, 0x01560f7a, 0x0745f3c7, 0xf1ac04a4, 0x110d0000, }, { // 10.4 MHz 0xffffffff, 0x0008000c, 0xffedffcb, 0x0005007d, 0x0050ff4c, 0xfef6007e, 0x01ff0086, 0xfd58fd97, 0x024104ad, 0xffcaf9c0, 0xfc9905e2, 0x079afd35, 0xf555fd46, 0x0ad50920, 0xf8d9f1f6, 0x00310f43, 0x07fdf435, 0xf174046f, 0x110d0000, }, { // 10.5 MHz 0xfffffffe, 0x00050011, 0xfffaffc8, 0xffe5006b, 0x0082ff8c, 0xfecc0000, 0x01f00130, 0xfdd2fcfc, 0x014d04e3, 0x010efa32, 0xfb6404bf, 0x084efec5, 0xf569fbc2, 0x0a000a23, 0xfa15f1ab, 0xff0b0efc, 0x08b0f4a7, 0xf13f043a, 0x110d0000, }, { // 10.6 MHz 0x0000fffd, 0x00020012, 0x0007ffcd, 0xffc9004c, 0x00a4ffd9, 0xfec3ff82, 0x01b401c1, 0xfe76fc97, 0x004404d2, 0x0245fae8, 0xfa5f0370, 0x08c1005f, 0xf5bcfa52, 0x09020b04, 0xfb60f17b, 0xfde70ea6, 0x095df51e, 0xf10c0405, 0x110d0000, }, { // 10.7 MHz 0x0000fffd, 0xffff0011, 0x0014ffdb, 0xffb40023, 0x00b2002a, 0xfedbff10, 0x0150022d, 0xff38fc6f, 0xff36047b, 0x035efbda, 0xf9940202, 0x08ee01f5, 0xf649f8fe, 0x07e10bc2, 0xfcb6f169, 0xfcc60e42, 0x0a04f599, 0xf0db03d0, 0x110d0000, }, { // 10.8 MHz 0x0000fffd, 0xfffb000d, 0x001dffed, 0xffaafff5, 0x00aa0077, 0xff13feb6, 0x00ce026b, 0x000afc85, 0xfe3503e3, 0x044cfcfb, 0xf90c0082, 0x08d5037f, 0xf710f7cc, 0x069f0c59, 0xfe16f173, 0xfbaa0dcf, 0x0aa5f617, 0xf0ad039b, 0x110d0000, }, { // 10.9 MHz 0x0000fffe, 0xfff90006, 0x00210003, 0xffacffc8, 0x008e00b6, 0xff63fe7c, 0x003a0275, 0x00dafcda, 0xfd510313, 0x0501fe40, 0xf8cbfefd, 0x087604f0, 0xf80af6c2, 0x05430cc8, 0xff7af19a, 0xfa940d4e, 0x0b3ff699, 0xf0810365, 0x110d0000, }, { // 11.0 MHz 0x0001ffff, 0xfff8ffff, 0x00210018, 0xffbaffa3, 0x006000e1, 0xffc4fe68, 0xffa0024b, 0x019afd66, 0xfc990216, 0x0575ff99, 0xf8d4fd81, 0x07d40640, 0xf932f5e6, 0x03d20d0d, 0x00dff1de, 0xf9860cbf, 0x0bd1f71e, 0xf058032f, 0x110d0000, }, { // 11.1 MHz 0x00010000, 0xfff8fff8, 0x001b0029, 0xffd1ff8a, 0x002600f2, 0x002cfe7c, 0xff0f01f0, 0x023bfe20, 0xfc1700fa, 0x05a200f7, 0xf927fc1c, 0x06f40765, 0xfa82f53b, 0x02510d27, 0x0243f23d, 0xf8810c24, 0x0c5cf7a7, 0xf03102fa, 0x110d0000, }, { // 11.2 MHz 0x00010002, 0xfffafff2, 0x00110035, 0xfff0ff81, 0xffe700e7, 0x008ffeb6, 0xfe94016d, 0x02b0fefb, 0xfbd3ffd1, 0x05850249, 0xf9c1fadb, 0x05de0858, 0xfbf2f4c4, 0x00c70d17, 0x03a0f2b8, 0xf7870b7c, 0x0cdff833, 0xf00d02c4, 0x110d0000, }, { // 11.3 MHz 0x00000003, 0xfffdffee, 0x00040038, 0x0010ff88, 0xffac00c2, 0x00e2ff10, 0xfe3900cb, 0x02f1ffe9, 0xfbd3feaa, 0x05210381, 0xfa9cf9c8, 0x04990912, 0xfd7af484, 0xff390cdb, 0x04f4f34d, 0xf69a0ac9, 0x0d5af8c1, 0xefec028e, 0x110d0000, }, { // 11.4 MHz 0x00000003, 0x0000ffee, 0xfff60033, 0x002fff9f, 0xff7b0087, 0x011eff82, 0xfe080018, 0x02f900d8, 0xfc17fd96, 0x04790490, 0xfbadf8ed, 0x032f098e, 0xff10f47d, 0xfdaf0c75, 0x063cf3fc, 0xf5ba0a0b, 0x0dccf952, 0xefcd0258, 0x110d0000, }, { // 11.5 MHz 0x00000003, 0x0004fff1, 0xffea0026, 0x0046ffc3, 0xff5a003c, 0x013b0000, 0xfe04ff63, 0x02c801b8, 0xfc99fca6, 0x0397056a, 0xfcecf853, 0x01ad09c9, 0x00acf4ad, 0xfc2e0be7, 0x0773f4c2, 0xf4e90943, 0x0e35f9e6, 0xefb10221, 0x110d0000, }, { // 11.6 MHz 0x00000002, 0x0007fff6, 0xffe20014, 0x0054ffee, 0xff4effeb, 0x0137007e, 0xfe2efebb, 0x0260027a, 0xfd51fbe6, 0x02870605, 0xfe4af7fe, 0x001d09c1, 0x0243f515, 0xfabd0b32, 0x0897f59e, 0xf4280871, 0x0e95fa7c, 0xef9701eb, 0x110d0000, }, { // 11.7 MHz 0xffff0001, 0x0008fffd, 0xffdeffff, 0x0056001d, 0xff57ff9c, 0x011300f0, 0xfe82fe2e, 0x01ca0310, 0xfe35fb62, 0x0155065a, 0xffbaf7f2, 0xfe8c0977, 0x03cef5b2, 0xf9610a58, 0x09a5f68f, 0xf3790797, 0x0eebfb14, 0xef8001b5, 0x110d0000, }, { // 11.8 MHz 0xffff0000, 0x00080004, 0xffe0ffe9, 0x004c0047, 0xff75ff58, 0x00d1014a, 0xfef9fdc8, 0x0111036f, 0xff36fb21, 0x00120665, 0x012df82e, 0xfd0708ec, 0x0542f682, 0xf81f095c, 0x0a9af792, 0xf2db06b5, 0x0f38fbad, 0xef6c017e, 0x110d0000, }, { // 11.9 MHz 0xffffffff, 0x0007000b, 0xffe7ffd8, 0x00370068, 0xffa4ff28, 0x00790184, 0xff87fd91, 0x00430392, 0x0044fb26, 0xfece0626, 0x0294f8b2, 0xfb990825, 0x0698f77f, 0xf6fe0842, 0x0b73f8a7, 0xf25105cd, 0x0f7bfc48, 0xef5a0148, 0x110d0000, }, { // 12.0 MHz 0x0000fffe, 0x00050010, 0xfff2ffcc, 0x001b007b, 0xffdfff10, 0x00140198, 0x0020fd8e, 0xff710375, 0x014dfb73, 0xfd9a059f, 0x03e0f978, 0xfa4e0726, 0x07c8f8a7, 0xf600070c, 0x0c2ff9c9, 0xf1db04de, 0x0fb4fce5, 0xef4b0111, 0x110d0000, }, { // 12.1 MHz 0x0000fffd, 0x00010012, 0xffffffc8, 0xfffb007e, 0x001dff14, 0xffad0184, 0x00b7fdbe, 0xfea9031b, 0x0241fc01, 0xfc8504d6, 0x0504fa79, 0xf93005f6, 0x08caf9f2, 0xf52b05c0, 0x0ccbfaf9, 0xf17903eb, 0x0fe3fd83, 0xef3f00db, 0x110d0000, }, { // 12.2 MHz 0x0000fffd, 0xfffe0011, 0x000cffcc, 0xffdb0071, 0x0058ff32, 0xff4f014a, 0x013cfe1f, 0xfdfb028a, 0x0311fcc9, 0xfb9d03d6, 0x05f4fbad, 0xf848049d, 0x0999fb5b, 0xf4820461, 0x0d46fc32, 0xf12d02f4, 0x1007fe21, 0xef3600a4, 0x110d0000, }, { // 12.3 MHz 0x0000fffe, 0xfffa000e, 0x0017ffd9, 0xffc10055, 0x0088ff68, 0xff0400f0, 0x01a6fea7, 0xfd7501cc, 0x03b0fdc0, 0xfaef02a8, 0x06a7fd07, 0xf79d0326, 0x0a31fcda, 0xf40702f3, 0x0d9ffd72, 0xf0f601fa, 0x1021fec0, 0xef2f006d, 0x110d0000, }, { // 12.4 MHz 0x0001ffff, 0xfff80007, 0x001fffeb, 0xffaf002d, 0x00a8ffb0, 0xfed3007e, 0x01e9ff4c, 0xfd2000ee, 0x0413fed8, 0xfa82015c, 0x0715fe7d, 0xf7340198, 0x0a8dfe69, 0xf3bd017c, 0x0dd5feb8, 0xf0d500fd, 0x1031ff60, 0xef2b0037, 0x110d0000, }, { // 12.5 MHz 0x00010000, 0xfff70000, 0x00220000, 0xffa90000, 0x00b30000, 0xfec20000, 0x02000000, 0xfd030000, 0x04350000, 0xfa5e0000, 0x073b0000, 0xf7110000, 0x0aac0000, 0xf3a40000, 0x0de70000, 0xf0c90000, 0x10360000, 0xef290000, 0x110d0000, }, { // 12.6 MHz 0x00010001, 0xfff8fff9, 0x001f0015, 0xffafffd3, 0x00a80050, 0xfed3ff82, 0x01e900b4, 0xfd20ff12, 0x04130128, 0xfa82fea4, 0x07150183, 0xf734fe68, 0x0a8d0197, 0xf3bdfe84, 0x0dd50148, 0xf0d5ff03, 0x103100a0, 0xef2bffc9, 0x110d0000, }, { // 12.7 MHz 0x00000002, 0xfffafff2, 0x00170027, 0xffc1ffab, 0x00880098, 0xff04ff10, 0x01a60159, 0xfd75fe34, 0x03b00240, 0xfaeffd58, 0x06a702f9, 0xf79dfcda, 0x0a310326, 0xf407fd0d, 0x0d9f028e, 0xf0f6fe06, 0x10210140, 0xef2fff93, 0x110d0000, }, { // 12.8 MHz 0x00000003, 0xfffeffef, 0x000c0034, 0xffdbff8f, 0x005800ce, 0xff4ffeb6, 0x013c01e1, 0xfdfbfd76, 0x03110337, 0xfb9dfc2a, 0x05f40453, 0xf848fb63, 0x099904a5, 0xf482fb9f, 0x0d4603ce, 0xf12dfd0c, 0x100701df, 0xef36ff5c, 0x110d0000, }, { // 12.9 MHz 0x00000003, 0x0001ffee, 0xffff0038, 0xfffbff82, 0x001d00ec, 0xffadfe7c, 0x00b70242, 0xfea9fce5, 0x024103ff, 0xfc85fb2a, 0x05040587, 0xf930fa0a, 0x08ca060e, 0xf52bfa40, 0x0ccb0507, 0xf179fc15, 0x0fe3027d, 0xef3fff25, 0x110d0000, }, { // 13.0 MHz 0x00000002, 0x0005fff0, 0xfff20034, 0x001bff85, 0xffdf00f0, 0x0014fe68, 0x00200272, 0xff71fc8b, 0x014d048d, 0xfd9afa61, 0x03e00688, 0xfa4ef8da, 0x07c80759, 0xf600f8f4, 0x0c2f0637, 0xf1dbfb22, 0x0fb4031b, 0xef4bfeef, 0x110d0000, }, { // 13.1 MHz 0xffff0001, 0x0007fff5, 0xffe70028, 0x0037ff98, 0xffa400d8, 0x0079fe7c, 0xff87026f, 0x0043fc6e, 0x004404da, 0xfecef9da, 0x0294074e, 0xfb99f7db, 0x06980881, 0xf6fef7be, 0x0b730759, 0xf251fa33, 0x0f7b03b8, 0xef5afeb8, 0x110d0000, }, { // 13.2 MHz 0xffff0000, 0x0008fffc, 0xffe00017, 0x004cffb9, 0xff7500a8, 0x00d1feb6, 0xfef90238, 0x0111fc91, 0xff3604df, 0x0012f99b, 0x012d07d2, 0xfd07f714, 0x0542097e, 0xf81ff6a4, 0x0a9a086e, 0xf2dbf94b, 0x0f380453, 0xef6cfe82, 0x110d0000, }, { // 13.3 MHz 0xffffffff, 0x00080003, 0xffde0001, 0x0056ffe3, 0xff570064, 0x0113ff10, 0xfe8201d2, 0x01cafcf0, 0xfe35049e, 0x0155f9a6, 0xffba080e, 0xfe8cf689, 0x03ce0a4e, 0xf961f5a8, 0x09a50971, 0xf379f869, 0x0eeb04ec, 0xef80fe4b, 0x110d0000, }, { // 13.4 MHz 0x0000fffe, 0x0007000a, 0xffe2ffec, 0x00540012, 0xff4e0015, 0x0137ff82, 0xfe2e0145, 0x0260fd86, 0xfd51041a, 0x0287f9fb, 0xfe4a0802, 0x001df63f, 0x02430aeb, 0xfabdf4ce, 0x08970a62, 0xf428f78f, 0x0e950584, 0xef97fe15, 0x110d0000, }, { // 13.5 MHz 0x0000fffd, 0x0004000f, 0xffeaffda, 0x0046003d, 0xff5affc4, 0x013b0000, 0xfe04009d, 0x02c8fe48, 0xfc99035a, 0x0397fa96, 0xfcec07ad, 0x01adf637, 0x00ac0b53, 0xfc2ef419, 0x07730b3e, 0xf4e9f6bd, 0x0e35061a, 0xefb1fddf, 0x110d0000, }, { // 13.6 MHz 0x0000fffd, 0x00000012, 0xfff6ffcd, 0x002f0061, 0xff7bff79, 0x011e007e, 0xfe08ffe8, 0x02f9ff28, 0xfc17026a, 0x0479fb70, 0xfbad0713, 0x032ff672, 0xff100b83, 0xfdaff38b, 0x063c0c04, 0xf5baf5f5, 0x0dcc06ae, 0xefcdfda8, 0x110d0000, }, { // 13.7 MHz 0x0000fffd, 0xfffd0012, 0x0004ffc8, 0x00100078, 0xffacff3e, 0x00e200f0, 0xfe39ff35, 0x02f10017, 0xfbd30156, 0x0521fc7f, 0xfa9c0638, 0x0499f6ee, 0xfd7a0b7c, 0xff39f325, 0x04f40cb3, 0xf69af537, 0x0d5a073f, 0xefecfd72, 0x110d0000, }, { // 13.8 MHz 0x0001fffe, 0xfffa000e, 0x0011ffcb, 0xfff0007f, 0xffe7ff19, 0x008f014a, 0xfe94fe93, 0x02b00105, 0xfbd3002f, 0x0585fdb7, 0xf9c10525, 0x05def7a8, 0xfbf20b3c, 0x00c7f2e9, 0x03a00d48, 0xf787f484, 0x0cdf07cd, 0xf00dfd3c, 0x110d0000, }, { // 13.9 MHz 0x00010000, 0xfff80008, 0x001bffd7, 0xffd10076, 0x0026ff0e, 0x002c0184, 0xff0ffe10, 0x023b01e0, 0xfc17ff06, 0x05a2ff09, 0xf92703e4, 0x06f4f89b, 0xfa820ac5, 0x0251f2d9, 0x02430dc3, 0xf881f3dc, 0x0c5c0859, 0xf031fd06, 0x110d0000, }, { // 14.0 MHz 0x00010001, 0xfff80001, 0x0021ffe8, 0xffba005d, 0x0060ff1f, 0xffc40198, 0xffa0fdb5, 0x019a029a, 0xfc99fdea, 0x05750067, 0xf8d4027f, 0x07d4f9c0, 0xf9320a1a, 0x03d2f2f3, 0x00df0e22, 0xf986f341, 0x0bd108e2, 0xf058fcd1, 0x110d0000, }, { // 14.1 MHz 0x00000002, 0xfff9fffa, 0x0021fffd, 0xffac0038, 0x008eff4a, 0xff630184, 0x003afd8b, 0x00da0326, 0xfd51fced, 0x050101c0, 0xf8cb0103, 0x0876fb10, 0xf80a093e, 0x0543f338, 0xff7a0e66, 0xfa94f2b2, 0x0b3f0967, 0xf081fc9b, 0x110d0000, }, { // 14.2 MHz 0x00000003, 0xfffbfff3, 0x001d0013, 0xffaa000b, 0x00aaff89, 0xff13014a, 0x00cefd95, 0x000a037b, 0xfe35fc1d, 0x044c0305, 0xf90cff7e, 0x08d5fc81, 0xf7100834, 0x069ff3a7, 0xfe160e8d, 0xfbaaf231, 0x0aa509e9, 0xf0adfc65, 0x110d0000, }, { // 14.3 MHz 0x00000003, 0xffffffef, 0x00140025, 0xffb4ffdd, 0x00b2ffd6, 0xfedb00f0, 0x0150fdd3, 0xff380391, 0xff36fb85, 0x035e0426, 0xf994fdfe, 0x08eefe0b, 0xf6490702, 0x07e1f43e, 0xfcb60e97, 0xfcc6f1be, 0x0a040a67, 0xf0dbfc30, 0x110d0000, }, { // 14.4 MHz 0x00000003, 0x0002ffee, 0x00070033, 0xffc9ffb4, 0x00a40027, 0xfec3007e, 0x01b4fe3f, 0xfe760369, 0x0044fb2e, 0x02450518, 0xfa5ffc90, 0x08c1ffa1, 0xf5bc05ae, 0x0902f4fc, 0xfb600e85, 0xfde7f15a, 0x095d0ae2, 0xf10cfbfb, 0x110d0000, }, { // 14.5 MHz 0xffff0002, 0x0005ffef, 0xfffa0038, 0xffe5ff95, 0x00820074, 0xfecc0000, 0x01f0fed0, 0xfdd20304, 0x014dfb1d, 0x010e05ce, 0xfb64fb41, 0x084e013b, 0xf569043e, 0x0a00f5dd, 0xfa150e55, 0xff0bf104, 0x08b00b59, 0xf13ffbc6, 0x110d0000, }, { // 14.6 MHz 0xffff0001, 0x0008fff4, 0xffed0035, 0x0005ff83, 0x005000b4, 0xfef6ff82, 0x01ffff7a, 0xfd580269, 0x0241fb53, 0xffca0640, 0xfc99fa1e, 0x079a02cb, 0xf55502ba, 0x0ad5f6e0, 0xf8d90e0a, 0x0031f0bd, 0x07fd0bcb, 0xf174fb91, 0x110d0000, }, { // 14.7 MHz 0xffffffff, 0x0009fffb, 0xffe4002a, 0x0025ff82, 0x001400e0, 0xff3cff10, 0x01e10030, 0xfd1201a4, 0x0311fbcd, 0xfe88066a, 0xfdf1f92f, 0x06aa0449, 0xf57e0128, 0x0b7ef801, 0xf7b00da2, 0x0156f086, 0x07450c39, 0xf1acfb5c, 0x110d0000, }, { // 14.8 MHz 0x0000fffe, 0x00080002, 0xffdf0019, 0x003fff92, 0xffd600f1, 0xff96feb6, 0x019700e1, 0xfd0500c2, 0x03b0fc84, 0xfd590649, 0xff5df87f, 0x058505aa, 0xf5e4ff91, 0x0bf9f93c, 0xf69d0d20, 0x0279f05e, 0x06880ca3, 0xf1e6fb28, 0x110d0000, }, { // 14.9 MHz 0x0000fffd, 0x00060009, 0xffdf0004, 0x0051ffb0, 0xff9d00e8, 0xfffcfe7c, 0x01280180, 0xfd32ffd2, 0x0413fd6e, 0xfc4d05df, 0x00d1f812, 0x043506e4, 0xf685fdfb, 0x0c43fa8d, 0xf5a10c83, 0x0399f046, 0x05c70d08, 0xf222faf3, 0x110d0000, }, { // 15.0 MHz 0x0000fffd, 0x0003000f, 0xffe5ffef, 0x0057ffd9, 0xff7000c4, 0x0062fe68, 0x009e01ff, 0xfd95fee6, 0x0435fe7d, 0xfb710530, 0x023cf7ee, 0x02c307ef, 0xf75efc70, 0x0c5cfbef, 0xf4c10bce, 0x04b3f03f, 0x05030d69, 0xf261fabf, 0x110d0000, }, { // 15.1 MHz 0x0000fffd, 0xffff0012, 0xffefffdc, 0x00510006, 0xff540089, 0x00befe7c, 0x00060253, 0xfe27fe0d, 0x0413ffa2, 0xfad10446, 0x0390f812, 0x013b08c3, 0xf868faf6, 0x0c43fd5f, 0xf3fd0b02, 0x05c7f046, 0x043b0dc4, 0xf2a1fa8b, 0x110d0000, }, { // 15.2 MHz 0x0001fffe, 0xfffc0012, 0xfffbffce, 0x003f0033, 0xff4e003f, 0x0106feb6, 0xff6e0276, 0xfeddfd56, 0x03b000cc, 0xfa740329, 0x04bff87f, 0xffaa095d, 0xf99ef995, 0x0bf9fed8, 0xf3590a1f, 0x06d2f05e, 0x03700e1b, 0xf2e4fa58, 0x110d0000, }, { // 15.3 MHz 0x0001ffff, 0xfff9000f, 0x0009ffc8, 0x00250059, 0xff5effee, 0x0132ff10, 0xfee30265, 0xffaafccf, 0x031101eb, 0xfa6001e8, 0x05bdf92f, 0xfe1b09b6, 0xfafaf852, 0x0b7e0055, 0xf2d50929, 0x07d3f086, 0x02a30e6c, 0xf329fa24, 0x110d0000, }, { // 15.4 MHz 0x00010001, 0xfff80009, 0x0015ffca, 0x00050074, 0xff81ff9f, 0x013dff82, 0xfe710221, 0x007cfc80, 0x024102ed, 0xfa940090, 0x0680fa1e, 0xfc9b09cd, 0xfc73f736, 0x0ad501d0, 0xf2740820, 0x08c9f0bd, 0x01d40eb9, 0xf371f9f1, 0x110d0000, }, { // 15.5 MHz 0x00000002, 0xfff80002, 0x001effd5, 0xffe5007f, 0xffb4ff5b, 0x01280000, 0xfe2401b0, 0x0146fc70, 0x014d03c6, 0xfb10ff32, 0x0701fb41, 0xfb3709a1, 0xfe00f644, 0x0a000345, 0xf2350708, 0x09b2f104, 0x01050eff, 0xf3baf9be, 0x110d0000, }, { // 15.6 MHz 0x00000003, 0xfff9fffb, 0x0022ffe6, 0xffc9007a, 0xfff0ff29, 0x00f2007e, 0xfe01011b, 0x01f6fc9e, 0x00440467, 0xfbccfdde, 0x0738fc90, 0xf9f70934, 0xff99f582, 0x090204b0, 0xf21a05e1, 0x0a8df15a, 0x00340f41, 0xf405f98b, 0x110d0000, }, { // 15.7 MHz 0x00000003, 0xfffcfff4, 0x0020fffa, 0xffb40064, 0x002fff11, 0x00a400f0, 0xfe0d006e, 0x0281fd09, 0xff3604c9, 0xfcbffca2, 0x0726fdfe, 0xf8e80888, 0x0134f4f3, 0x07e1060c, 0xf22304af, 0x0b59f1be, 0xff640f7d, 0xf452f959, 0x110d0000, }, { // 15.8 MHz 0x00000003, 0x0000fff0, 0x001a0010, 0xffaa0041, 0x0067ff13, 0x0043014a, 0xfe46ffb9, 0x02dbfda8, 0xfe3504e5, 0xfddcfb8d, 0x06c9ff7e, 0xf81107a2, 0x02c9f49a, 0x069f0753, 0xf2500373, 0x0c14f231, 0xfe930fb3, 0xf4a1f927, 0x110d0000, }, { // 15.9 MHz 0xffff0002, 0x0003ffee, 0x000f0023, 0xffac0016, 0x0093ff31, 0xffdc0184, 0xfea6ff09, 0x02fdfe70, 0xfd5104ba, 0xff15faac, 0x06270103, 0xf7780688, 0x044df479, 0x05430883, 0xf2a00231, 0x0cbef2b2, 0xfdc40fe3, 0xf4f2f8f5, 0x110d0000, }, { // 16.0 MHz 0xffff0001, 0x0006ffef, 0x00020031, 0xffbaffe8, 0x00adff66, 0xff790198, 0xff26fe6e, 0x02e5ff55, 0xfc99044a, 0x005bfa09, 0x0545027f, 0xf7230541, 0x05b8f490, 0x03d20997, 0xf31300eb, 0x0d55f341, 0xfcf6100e, 0xf544f8c3, 0x110d0000, } }; static void cx23885_dif_setup(struct i2c_client *client, u32 ifHz) { u64 pll_freq; u32 pll_freq_word; const u32 *coeffs; v4l_dbg(1, cx25840_debug, client, "%s(%d)\n", __func__, ifHz); /* Assuming TV */ /* Calculate the PLL frequency word based on the adjusted ifHz */ pll_freq = div_u64((u64)ifHz * 268435456, 50000000); pll_freq_word = (u32)pll_freq; cx25840_write4(client, DIF_PLL_FREQ_WORD, pll_freq_word); /* Round down to the nearest 100KHz */ ifHz = (ifHz / 100000) * 100000; if (ifHz < 3000000) ifHz = 3000000; if (ifHz > 16000000) ifHz = 16000000; v4l_dbg(1, cx25840_debug, client, "%s(%d) again\n", __func__, ifHz); coeffs = ifhz_coeffs[(ifHz - 3000000) / 100000]; cx25840_write4(client, DIF_BPF_COEFF01, coeffs[0]); cx25840_write4(client, DIF_BPF_COEFF23, coeffs[1]); cx25840_write4(client, DIF_BPF_COEFF45, coeffs[2]); cx25840_write4(client, DIF_BPF_COEFF67, coeffs[3]); cx25840_write4(client, DIF_BPF_COEFF89, coeffs[4]); cx25840_write4(client, DIF_BPF_COEFF1011, coeffs[5]); cx25840_write4(client, DIF_BPF_COEFF1213, coeffs[6]); cx25840_write4(client, DIF_BPF_COEFF1415, coeffs[7]); cx25840_write4(client, DIF_BPF_COEFF1617, coeffs[8]); cx25840_write4(client, DIF_BPF_COEFF1819, coeffs[9]); cx25840_write4(client, DIF_BPF_COEFF2021, coeffs[10]); cx25840_write4(client, DIF_BPF_COEFF2223, coeffs[11]); cx25840_write4(client, DIF_BPF_COEFF2425, coeffs[12]); cx25840_write4(client, DIF_BPF_COEFF2627, coeffs[13]); cx25840_write4(client, DIF_BPF_COEFF2829, coeffs[14]); cx25840_write4(client, DIF_BPF_COEFF3031, coeffs[15]); cx25840_write4(client, DIF_BPF_COEFF3233, coeffs[16]); cx25840_write4(client, DIF_BPF_COEFF3435, coeffs[17]); cx25840_write4(client, DIF_BPF_COEFF36, coeffs[18]); } static void cx23888_std_setup(struct i2c_client *client) { struct cx25840_state *state = to_state(i2c_get_clientdata(client)); v4l2_std_id std = state->std; u32 ifHz; cx25840_write4(client, 0x478, 0x6628021F); cx25840_write4(client, 0x400, 0x0); cx25840_write4(client, 0x4b4, 0x20524030); cx25840_write4(client, 0x47c, 0x010a8263); if (std & V4L2_STD_525_60) { v4l_dbg(1, cx25840_debug, client, "%s() Selecting NTSC", __func__); /* Horiz / vert timing */ cx25840_write4(client, 0x428, 0x1e1e601a); cx25840_write4(client, 0x424, 0x5b2d007a); /* DIF NTSC */ cx25840_write4(client, 0x304, 0x6503bc0c); cx25840_write4(client, 0x308, 0xbd038c85); cx25840_write4(client, 0x30c, 0x1db4640a); cx25840_write4(client, 0x310, 0x00008800); cx25840_write4(client, 0x314, 0x44400400); cx25840_write4(client, 0x32c, 0x0c800800); cx25840_write4(client, 0x330, 0x27000100); cx25840_write4(client, 0x334, 0x1f296e1f); cx25840_write4(client, 0x338, 0x009f50c1); cx25840_write4(client, 0x340, 0x1befbf06); cx25840_write4(client, 0x344, 0x000035e8); /* DIF I/F */ ifHz = 5400000; } else { v4l_dbg(1, cx25840_debug, client, "%s() Selecting PAL-BG", __func__); /* Horiz / vert timing */ cx25840_write4(client, 0x428, 0x28244024); cx25840_write4(client, 0x424, 0x5d2d0084); /* DIF */ cx25840_write4(client, 0x304, 0x6503bc0c); cx25840_write4(client, 0x308, 0xbd038c85); cx25840_write4(client, 0x30c, 0x1db4640a); cx25840_write4(client, 0x310, 0x00008800); cx25840_write4(client, 0x314, 0x44400600); cx25840_write4(client, 0x32c, 0x0c800800); cx25840_write4(client, 0x330, 0x27000100); cx25840_write4(client, 0x334, 0x213530ec); cx25840_write4(client, 0x338, 0x00a65ba8); cx25840_write4(client, 0x340, 0x1befbf06); cx25840_write4(client, 0x344, 0x000035e8); /* DIF I/F */ ifHz = 6000000; } cx23885_dif_setup(client, ifHz); /* Explicitly ensure the inputs are reconfigured after * a standard change. */ set_input(client, state->vid_input, state->aud_input); } /* ----------------------------------------------------------------------- */ static const struct v4l2_ctrl_ops cx25840_ctrl_ops = { .s_ctrl = cx25840_s_ctrl, }; static const struct v4l2_subdev_core_ops cx25840_core_ops = { .log_status = cx25840_log_status, .reset = cx25840_reset, /* calling the (optional) init op will turn on the generic mode */ .init = cx25840_init, .load_fw = cx25840_load_fw, .s_io_pin_config = common_s_io_pin_config, #ifdef CONFIG_VIDEO_ADV_DEBUG .g_register = cx25840_g_register, .s_register = cx25840_s_register, #endif .interrupt_service_routine = cx25840_irq_handler, }; static const struct v4l2_subdev_tuner_ops cx25840_tuner_ops = { .s_frequency = cx25840_s_frequency, .s_radio = cx25840_s_radio, .g_tuner = cx25840_g_tuner, .s_tuner = cx25840_s_tuner, }; static const struct v4l2_subdev_audio_ops cx25840_audio_ops = { .s_clock_freq = cx25840_s_clock_freq, .s_routing = cx25840_s_audio_routing, .s_stream = cx25840_s_audio_stream, }; static const struct v4l2_subdev_video_ops cx25840_video_ops = { .g_std = cx25840_g_std, .s_std = cx25840_s_std, .querystd = cx25840_querystd, .s_routing = cx25840_s_video_routing, .s_stream = cx25840_s_stream, .g_input_status = cx25840_g_input_status, }; static const struct v4l2_subdev_vbi_ops cx25840_vbi_ops = { .decode_vbi_line = cx25840_decode_vbi_line, .s_raw_fmt = cx25840_s_raw_fmt, .s_sliced_fmt = cx25840_s_sliced_fmt, .g_sliced_fmt = cx25840_g_sliced_fmt, }; static const struct v4l2_subdev_pad_ops cx25840_pad_ops = { .set_fmt = cx25840_set_fmt, }; static const struct v4l2_subdev_ops cx25840_ops = { .core = &cx25840_core_ops, .tuner = &cx25840_tuner_ops, .audio = &cx25840_audio_ops, .video = &cx25840_video_ops, .vbi = &cx25840_vbi_ops, .pad = &cx25840_pad_ops, .ir = &cx25840_ir_ops, }; /* ----------------------------------------------------------------------- */ static u32 get_cx2388x_ident(struct i2c_client *client) { u32 ret; /* Come out of digital power down */ cx25840_write(client, 0x000, 0); /* * Detecting whether the part is cx23885/7/8 is more * difficult than it needs to be. No ID register. Instead we * probe certain registers indicated in the datasheets to look * for specific defaults that differ between the silicon designs. */ /* It's either 885/7 if the IR Tx Clk Divider register exists */ if (cx25840_read4(client, 0x204) & 0xffff) { /* * CX23885 returns bogus repetitive byte values for the DIF, * which doesn't exist for it. (Ex. 8a8a8a8a or 31313131) */ ret = cx25840_read4(client, 0x300); if (((ret & 0xffff0000) >> 16) == (ret & 0xffff)) { /* No DIF */ ret = CX23885_AV; } else { /* * CX23887 has a broken DIF, but the registers * appear valid (but unused), good enough to detect. */ ret = CX23887_AV; } } else if (cx25840_read4(client, 0x300) & 0x0fffffff) { /* DIF PLL Freq Word reg exists; chip must be a CX23888 */ ret = CX23888_AV; } else { v4l_err(client, "Unable to detect h/w, assuming cx23887\n"); ret = CX23887_AV; } /* Back into digital power down */ cx25840_write(client, 0x000, 2); return ret; } static int cx25840_probe(struct i2c_client *client) { struct cx25840_state *state; struct v4l2_subdev *sd; int default_volume; u32 id; u16 device_id; #if defined(CONFIG_MEDIA_CONTROLLER) int ret; #endif /* Check if the adapter supports the needed features */ if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -EIO; v4l_dbg(1, cx25840_debug, client, "detecting cx25840 client on address 0x%x\n", client->addr << 1); device_id = cx25840_read(client, 0x101) << 8; device_id |= cx25840_read(client, 0x100); v4l_dbg(1, cx25840_debug, client, "device_id = 0x%04x\n", device_id); /* * The high byte of the device ID should be * 0x83 for the cx2583x and 0x84 for the cx2584x */ if ((device_id & 0xff00) == 0x8300) { id = CX25836 + ((device_id >> 4) & 0xf) - 6; } else if ((device_id & 0xff00) == 0x8400) { id = CX25840 + ((device_id >> 4) & 0xf); } else if (device_id == 0x0000) { id = get_cx2388x_ident(client); } else if ((device_id & 0xfff0) == 0x5A30) { /* The CX23100 (0x5A3C = 23100) doesn't have an A/V decoder */ id = CX2310X_AV; } else if ((device_id & 0xff) == (device_id >> 8)) { v4l_err(client, "likely a confused/unresponsive cx2388[578] A/V decoder found @ 0x%x (%s)\n", client->addr << 1, client->adapter->name); v4l_err(client, "A method to reset it from the cx25840 driver software is not known at this time\n"); return -ENODEV; } else { v4l_dbg(1, cx25840_debug, client, "cx25840 not found\n"); return -ENODEV; } state = devm_kzalloc(&client->dev, sizeof(*state), GFP_KERNEL); if (!state) return -ENOMEM; sd = &state->sd; v4l2_i2c_subdev_init(sd, client, &cx25840_ops); #if defined(CONFIG_MEDIA_CONTROLLER) /* * TODO: add media controller support for analog video inputs like * composite, svideo, etc. * A real input pad for this analog demod would be like: * ___________ * TUNER --------> | | * | | * SVIDEO .......> | cx25840 | * | | * COMPOSITE1 ...> |_________| * * However, at least for now, there's no much gain on modelling * those extra inputs. So, let's add it only when needed. */ state->pads[CX25840_PAD_INPUT].flags = MEDIA_PAD_FL_SINK; state->pads[CX25840_PAD_INPUT].sig_type = PAD_SIGNAL_ANALOG; state->pads[CX25840_PAD_VID_OUT].flags = MEDIA_PAD_FL_SOURCE; state->pads[CX25840_PAD_VID_OUT].sig_type = PAD_SIGNAL_DV; sd->entity.function = MEDIA_ENT_F_ATV_DECODER; ret = media_entity_pads_init(&sd->entity, ARRAY_SIZE(state->pads), state->pads); if (ret < 0) { v4l_info(client, "failed to initialize media entity!\n"); return ret; } #endif switch (id) { case CX23885_AV: v4l_info(client, "cx23885 A/V decoder found @ 0x%x (%s)\n", client->addr << 1, client->adapter->name); break; case CX23887_AV: v4l_info(client, "cx23887 A/V decoder found @ 0x%x (%s)\n", client->addr << 1, client->adapter->name); break; case CX23888_AV: v4l_info(client, "cx23888 A/V decoder found @ 0x%x (%s)\n", client->addr << 1, client->adapter->name); break; case CX2310X_AV: v4l_info(client, "cx%d A/V decoder found @ 0x%x (%s)\n", device_id, client->addr << 1, client->adapter->name); break; case CX25840: case CX25841: case CX25842: case CX25843: /* * Note: revision '(device_id & 0x0f) == 2' was never built. * The marking skips from 0x1 == 22 to 0x3 == 23. */ v4l_info(client, "cx25%3x-2%x found @ 0x%x (%s)\n", (device_id & 0xfff0) >> 4, (device_id & 0x0f) < 3 ? (device_id & 0x0f) + 1 : (device_id & 0x0f), client->addr << 1, client->adapter->name); break; case CX25836: case CX25837: default: v4l_info(client, "cx25%3x-%x found @ 0x%x (%s)\n", (device_id & 0xfff0) >> 4, device_id & 0x0f, client->addr << 1, client->adapter->name); break; } state->c = client; state->vid_input = CX25840_COMPOSITE7; state->aud_input = CX25840_AUDIO8; state->audclk_freq = 48000; state->audmode = V4L2_TUNER_MODE_LANG1; state->vbi_line_offset = 8; state->id = id; state->rev = device_id; state->vbi_regs_offset = id == CX23888_AV ? 0x500 - 0x424 : 0; state->std = V4L2_STD_NTSC_M; v4l2_ctrl_handler_init(&state->hdl, 9); v4l2_ctrl_new_std(&state->hdl, &cx25840_ctrl_ops, V4L2_CID_BRIGHTNESS, 0, 255, 1, 128); v4l2_ctrl_new_std(&state->hdl, &cx25840_ctrl_ops, V4L2_CID_CONTRAST, 0, 127, 1, 64); v4l2_ctrl_new_std(&state->hdl, &cx25840_ctrl_ops, V4L2_CID_SATURATION, 0, 127, 1, 64); v4l2_ctrl_new_std(&state->hdl, &cx25840_ctrl_ops, V4L2_CID_HUE, -128, 127, 1, 0); if (!is_cx2583x(state)) { default_volume = cx25840_read(client, 0x8d4); /* * Enforce the legacy PVR-350/MSP3400 to PVR-150/CX25843 volume * scale mapping limits to avoid -ERANGE errors when * initializing the volume control */ if (default_volume > 228) { /* Bottom out at -96 dB, v4l2 vol range 0x2e00-0x2fff */ default_volume = 228; cx25840_write(client, 0x8d4, 228); } else if (default_volume < 20) { /* Top out at + 8 dB, v4l2 vol range 0xfe00-0xffff */ default_volume = 20; cx25840_write(client, 0x8d4, 20); } default_volume = (((228 - default_volume) >> 1) + 23) << 9; state->volume = v4l2_ctrl_new_std(&state->hdl, &cx25840_audio_ctrl_ops, V4L2_CID_AUDIO_VOLUME, 0, 65535, 65535 / 100, default_volume); state->mute = v4l2_ctrl_new_std(&state->hdl, &cx25840_audio_ctrl_ops, V4L2_CID_AUDIO_MUTE, 0, 1, 1, 0); v4l2_ctrl_new_std(&state->hdl, &cx25840_audio_ctrl_ops, V4L2_CID_AUDIO_BALANCE, 0, 65535, 65535 / 100, 32768); v4l2_ctrl_new_std(&state->hdl, &cx25840_audio_ctrl_ops, V4L2_CID_AUDIO_BASS, 0, 65535, 65535 / 100, 32768); v4l2_ctrl_new_std(&state->hdl, &cx25840_audio_ctrl_ops, V4L2_CID_AUDIO_TREBLE, 0, 65535, 65535 / 100, 32768); } sd->ctrl_handler = &state->hdl; if (state->hdl.error) { int err = state->hdl.error; v4l2_ctrl_handler_free(&state->hdl); return err; } if (!is_cx2583x(state)) v4l2_ctrl_cluster(2, &state->volume); v4l2_ctrl_handler_setup(&state->hdl); if (client->dev.platform_data) { struct cx25840_platform_data *pdata = client->dev.platform_data; state->pvr150_workaround = pdata->pvr150_workaround; } cx25840_ir_probe(sd); return 0; } static void cx25840_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct cx25840_state *state = to_state(sd); cx25840_ir_remove(sd); v4l2_device_unregister_subdev(sd); v4l2_ctrl_handler_free(&state->hdl); } static const struct i2c_device_id cx25840_id[] = { { "cx25840", 0 }, { } }; MODULE_DEVICE_TABLE(i2c, cx25840_id); static struct i2c_driver cx25840_driver = { .driver = { .name = "cx25840", }, .probe = cx25840_probe, .remove = cx25840_remove, .id_table = cx25840_id, }; module_i2c_driver(cx25840_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1