Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dongchun Zhu | 1959 | 95.84% | 1 | 16.67% |
Sakari Ailus | 77 | 3.77% | 1 | 16.67% |
Krzysztof Kozlowski | 4 | 0.20% | 1 | 16.67% |
Mauro Carvalho Chehab | 2 | 0.10% | 1 | 16.67% |
Uwe Kleine-König | 2 | 0.10% | 2 | 33.33% |
Total | 2044 | 6 |
// SPDX-License-Identifier: GPL-2.0 // Copyright (c) 2020 MediaTek Inc. #include <linux/delay.h> #include <linux/i2c.h> #include <linux/module.h> #include <linux/pm_runtime.h> #include <linux/regulator/consumer.h> #include <media/v4l2-async.h> #include <media/v4l2-ctrls.h> #include <media/v4l2-device.h> #include <media/v4l2-fwnode.h> #include <media/v4l2-subdev.h> #define DW9768_NAME "dw9768" #define DW9768_MAX_FOCUS_POS (1024 - 1) /* * This sets the minimum granularity for the focus positions. * A value of 1 gives maximum accuracy for a desired focus position */ #define DW9768_FOCUS_STEPS 1 /* * Ring control and Power control register * Bit[1] RING_EN * 0: Direct mode * 1: AAC mode (ringing control mode) * Bit[0] PD * 0: Normal operation mode * 1: Power down mode * DW9768 requires waiting time of Topr after PD reset takes place. */ #define DW9768_RING_PD_CONTROL_REG 0x02 #define DW9768_PD_MODE_OFF 0x00 #define DW9768_PD_MODE_EN BIT(0) #define DW9768_AAC_MODE_EN BIT(1) /* * DW9768 separates two registers to control the VCM position. * One for MSB value, another is LSB value. * DAC_MSB: D[9:8] (ADD: 0x03) * DAC_LSB: D[7:0] (ADD: 0x04) * D[9:0] DAC data input: positive output current = D[9:0] / 1023 * 100[mA] */ #define DW9768_MSB_ADDR 0x03 #define DW9768_LSB_ADDR 0x04 #define DW9768_STATUS_ADDR 0x05 /* * AAC mode control & prescale register * Bit[7:5] Namely AC[2:0], decide the VCM mode and operation time. * 001 AAC2 0.48 x Tvib * 010 AAC3 0.70 x Tvib * 011 AAC4 0.75 x Tvib * 101 AAC8 1.13 x Tvib * Bit[2:0] Namely PRESC[2:0], set the internal clock dividing rate as follow. * 000 2 * 001 1 * 010 1/2 * 011 1/4 * 100 8 * 101 4 */ #define DW9768_AAC_PRESC_REG 0x06 #define DW9768_AAC_MODE_SEL_MASK GENMASK(7, 5) #define DW9768_CLOCK_PRE_SCALE_SEL_MASK GENMASK(2, 0) /* * VCM period of vibration register * Bit[5:0] Defined as VCM rising periodic time (Tvib) together with PRESC[2:0] * Tvib = (6.3ms + AACT[5:0] * 0.1ms) * Dividing Rate * Dividing Rate is the internal clock dividing rate that is defined at * PRESCALE register (ADD: 0x06) */ #define DW9768_AAC_TIME_REG 0x07 /* * DW9768 requires waiting time (delay time) of t_OPR after power-up, * or in the case of PD reset taking place. */ #define DW9768_T_OPR_US 1000 #define DW9768_TVIB_MS_BASE10 (64 - 1) #define DW9768_AAC_MODE_DEFAULT 2 #define DW9768_AAC_TIME_DEFAULT 0x20 #define DW9768_CLOCK_PRE_SCALE_DEFAULT 1 /* * This acts as the minimum granularity of lens movement. * Keep this value power of 2, so the control steps can be * uniformly adjusted for gradual lens movement, with desired * number of control steps. */ #define DW9768_MOVE_STEPS 16 static const char * const dw9768_supply_names[] = { "vin", /* Digital I/O power */ "vdd", /* Digital core power */ }; /* dw9768 device structure */ struct dw9768 { struct regulator_bulk_data supplies[ARRAY_SIZE(dw9768_supply_names)]; struct v4l2_ctrl_handler ctrls; struct v4l2_ctrl *focus; struct v4l2_subdev sd; u32 aac_mode; u32 aac_timing; u32 clock_presc; u32 move_delay_us; }; static inline struct dw9768 *sd_to_dw9768(struct v4l2_subdev *subdev) { return container_of(subdev, struct dw9768, sd); } struct dw9768_aac_mode_ot_multi { u32 aac_mode_enum; u32 ot_multi_base100; }; struct dw9768_clk_presc_dividing_rate { u32 clk_presc_enum; u32 dividing_rate_base100; }; static const struct dw9768_aac_mode_ot_multi aac_mode_ot_multi[] = { {1, 48}, {2, 70}, {3, 75}, {5, 113}, }; static const struct dw9768_clk_presc_dividing_rate presc_dividing_rate[] = { {0, 200}, {1, 100}, {2, 50}, {3, 25}, {4, 800}, {5, 400}, }; static u32 dw9768_find_ot_multi(u32 aac_mode_param) { u32 cur_ot_multi_base100 = 70; unsigned int i; for (i = 0; i < ARRAY_SIZE(aac_mode_ot_multi); i++) { if (aac_mode_ot_multi[i].aac_mode_enum == aac_mode_param) { cur_ot_multi_base100 = aac_mode_ot_multi[i].ot_multi_base100; } } return cur_ot_multi_base100; } static u32 dw9768_find_dividing_rate(u32 presc_param) { u32 cur_clk_dividing_rate_base100 = 100; unsigned int i; for (i = 0; i < ARRAY_SIZE(presc_dividing_rate); i++) { if (presc_dividing_rate[i].clk_presc_enum == presc_param) { cur_clk_dividing_rate_base100 = presc_dividing_rate[i].dividing_rate_base100; } } return cur_clk_dividing_rate_base100; } /* * DW9768_AAC_PRESC_REG & DW9768_AAC_TIME_REG determine VCM operation time. * For current VCM mode: AAC3, Operation Time would be 0.70 x Tvib. * Tvib = (6.3ms + AACT[5:0] * 0.1MS) * Dividing Rate. * Below is calculation of the operation delay for each step. */ static inline u32 dw9768_cal_move_delay(u32 aac_mode_param, u32 presc_param, u32 aac_timing_param) { u32 Tvib_us; u32 ot_multi_base100; u32 clk_dividing_rate_base100; ot_multi_base100 = dw9768_find_ot_multi(aac_mode_param); clk_dividing_rate_base100 = dw9768_find_dividing_rate(presc_param); Tvib_us = (DW9768_TVIB_MS_BASE10 + aac_timing_param) * clk_dividing_rate_base100; return Tvib_us * ot_multi_base100 / 100; } static int dw9768_mod_reg(struct dw9768 *dw9768, u8 reg, u8 mask, u8 val) { struct i2c_client *client = v4l2_get_subdevdata(&dw9768->sd); int ret; ret = i2c_smbus_read_byte_data(client, reg); if (ret < 0) return ret; val = ((unsigned char)ret & ~mask) | (val & mask); return i2c_smbus_write_byte_data(client, reg, val); } static int dw9768_set_dac(struct dw9768 *dw9768, u16 val) { struct i2c_client *client = v4l2_get_subdevdata(&dw9768->sd); /* Write VCM position to registers */ return i2c_smbus_write_word_swapped(client, DW9768_MSB_ADDR, val); } static int dw9768_init(struct dw9768 *dw9768) { struct i2c_client *client = v4l2_get_subdevdata(&dw9768->sd); int ret, val; /* Reset DW9768_RING_PD_CONTROL_REG to default status 0x00 */ ret = i2c_smbus_write_byte_data(client, DW9768_RING_PD_CONTROL_REG, DW9768_PD_MODE_OFF); if (ret < 0) return ret; /* * DW9769 requires waiting delay time of t_OPR * after PD reset takes place. */ usleep_range(DW9768_T_OPR_US, DW9768_T_OPR_US + 100); /* Set DW9768_RING_PD_CONTROL_REG to DW9768_AAC_MODE_EN(0x01) */ ret = i2c_smbus_write_byte_data(client, DW9768_RING_PD_CONTROL_REG, DW9768_AAC_MODE_EN); if (ret < 0) return ret; /* Set AAC mode */ ret = dw9768_mod_reg(dw9768, DW9768_AAC_PRESC_REG, DW9768_AAC_MODE_SEL_MASK, dw9768->aac_mode << 5); if (ret < 0) return ret; /* Set clock presc */ if (dw9768->clock_presc != DW9768_CLOCK_PRE_SCALE_DEFAULT) { ret = dw9768_mod_reg(dw9768, DW9768_AAC_PRESC_REG, DW9768_CLOCK_PRE_SCALE_SEL_MASK, dw9768->clock_presc); if (ret < 0) return ret; } /* Set AAC Timing */ if (dw9768->aac_timing != DW9768_AAC_TIME_DEFAULT) { ret = i2c_smbus_write_byte_data(client, DW9768_AAC_TIME_REG, dw9768->aac_timing); if (ret < 0) return ret; } for (val = dw9768->focus->val % DW9768_MOVE_STEPS; val <= dw9768->focus->val; val += DW9768_MOVE_STEPS) { ret = dw9768_set_dac(dw9768, val); if (ret) { dev_err(&client->dev, "I2C failure: %d", ret); return ret; } usleep_range(dw9768->move_delay_us, dw9768->move_delay_us + 1000); } return 0; } static int dw9768_release(struct dw9768 *dw9768) { struct i2c_client *client = v4l2_get_subdevdata(&dw9768->sd); int ret, val; val = round_down(dw9768->focus->val, DW9768_MOVE_STEPS); for ( ; val >= 0; val -= DW9768_MOVE_STEPS) { ret = dw9768_set_dac(dw9768, val); if (ret) { dev_err(&client->dev, "I2C write fail: %d", ret); return ret; } usleep_range(dw9768->move_delay_us, dw9768->move_delay_us + 1000); } ret = i2c_smbus_write_byte_data(client, DW9768_RING_PD_CONTROL_REG, DW9768_PD_MODE_EN); if (ret < 0) return ret; /* * DW9769 requires waiting delay time of t_OPR * after PD reset takes place. */ usleep_range(DW9768_T_OPR_US, DW9768_T_OPR_US + 100); return 0; } static int dw9768_runtime_suspend(struct device *dev) { struct v4l2_subdev *sd = dev_get_drvdata(dev); struct dw9768 *dw9768 = sd_to_dw9768(sd); dw9768_release(dw9768); regulator_bulk_disable(ARRAY_SIZE(dw9768_supply_names), dw9768->supplies); return 0; } static int dw9768_runtime_resume(struct device *dev) { struct v4l2_subdev *sd = dev_get_drvdata(dev); struct dw9768 *dw9768 = sd_to_dw9768(sd); int ret; ret = regulator_bulk_enable(ARRAY_SIZE(dw9768_supply_names), dw9768->supplies); if (ret < 0) { dev_err(dev, "failed to enable regulators\n"); return ret; } /* * The datasheet refers to t_OPR that needs to be waited before sending * I2C commands after power-up. */ usleep_range(DW9768_T_OPR_US, DW9768_T_OPR_US + 100); ret = dw9768_init(dw9768); if (ret < 0) goto disable_regulator; return 0; disable_regulator: regulator_bulk_disable(ARRAY_SIZE(dw9768_supply_names), dw9768->supplies); return ret; } static int dw9768_set_ctrl(struct v4l2_ctrl *ctrl) { struct dw9768 *dw9768 = container_of(ctrl->handler, struct dw9768, ctrls); if (ctrl->id == V4L2_CID_FOCUS_ABSOLUTE) return dw9768_set_dac(dw9768, ctrl->val); return 0; } static const struct v4l2_ctrl_ops dw9768_ctrl_ops = { .s_ctrl = dw9768_set_ctrl, }; static int dw9768_open(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh) { return pm_runtime_resume_and_get(sd->dev); } static int dw9768_close(struct v4l2_subdev *sd, struct v4l2_subdev_fh *fh) { pm_runtime_put(sd->dev); return 0; } static const struct v4l2_subdev_internal_ops dw9768_int_ops = { .open = dw9768_open, .close = dw9768_close, }; static const struct v4l2_subdev_ops dw9768_ops = { }; static int dw9768_init_controls(struct dw9768 *dw9768) { struct v4l2_ctrl_handler *hdl = &dw9768->ctrls; const struct v4l2_ctrl_ops *ops = &dw9768_ctrl_ops; v4l2_ctrl_handler_init(hdl, 1); dw9768->focus = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_FOCUS_ABSOLUTE, 0, DW9768_MAX_FOCUS_POS, DW9768_FOCUS_STEPS, 0); if (hdl->error) return hdl->error; dw9768->sd.ctrl_handler = hdl; return 0; } static int dw9768_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct dw9768 *dw9768; bool full_power; unsigned int i; int ret; dw9768 = devm_kzalloc(dev, sizeof(*dw9768), GFP_KERNEL); if (!dw9768) return -ENOMEM; /* Initialize subdev */ v4l2_i2c_subdev_init(&dw9768->sd, client, &dw9768_ops); dw9768->aac_mode = DW9768_AAC_MODE_DEFAULT; dw9768->aac_timing = DW9768_AAC_TIME_DEFAULT; dw9768->clock_presc = DW9768_CLOCK_PRE_SCALE_DEFAULT; /* Optional indication of AAC mode select */ fwnode_property_read_u32(dev_fwnode(dev), "dongwoon,aac-mode", &dw9768->aac_mode); /* Optional indication of clock pre-scale select */ fwnode_property_read_u32(dev_fwnode(dev), "dongwoon,clock-presc", &dw9768->clock_presc); /* Optional indication of AAC Timing */ fwnode_property_read_u32(dev_fwnode(dev), "dongwoon,aac-timing", &dw9768->aac_timing); dw9768->move_delay_us = dw9768_cal_move_delay(dw9768->aac_mode, dw9768->clock_presc, dw9768->aac_timing); for (i = 0; i < ARRAY_SIZE(dw9768_supply_names); i++) dw9768->supplies[i].supply = dw9768_supply_names[i]; ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(dw9768_supply_names), dw9768->supplies); if (ret) { dev_err(dev, "failed to get regulators\n"); return ret; } /* Initialize controls */ ret = dw9768_init_controls(dw9768); if (ret) goto err_free_handler; /* Initialize subdev */ dw9768->sd.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; dw9768->sd.internal_ops = &dw9768_int_ops; ret = media_entity_pads_init(&dw9768->sd.entity, 0, NULL); if (ret < 0) goto err_free_handler; dw9768->sd.entity.function = MEDIA_ENT_F_LENS; /* * Figure out whether we're going to power up the device here. Generally * this is done if CONFIG_PM is disabled in a DT system or the device is * to be powered on in an ACPI system. Similarly for power off in * remove. */ pm_runtime_enable(dev); full_power = (is_acpi_node(dev_fwnode(dev)) && acpi_dev_state_d0(dev)) || (is_of_node(dev_fwnode(dev)) && !pm_runtime_enabled(dev)); if (full_power) { ret = dw9768_runtime_resume(dev); if (ret < 0) { dev_err(dev, "failed to power on: %d\n", ret); goto err_clean_entity; } pm_runtime_set_active(dev); } ret = v4l2_async_register_subdev(&dw9768->sd); if (ret < 0) { dev_err(dev, "failed to register V4L2 subdev: %d", ret); goto err_power_off; } pm_runtime_idle(dev); return 0; err_power_off: if (full_power) { dw9768_runtime_suspend(dev); pm_runtime_set_suspended(dev); } err_clean_entity: pm_runtime_disable(dev); media_entity_cleanup(&dw9768->sd.entity); err_free_handler: v4l2_ctrl_handler_free(&dw9768->ctrls); return ret; } static void dw9768_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct dw9768 *dw9768 = sd_to_dw9768(sd); struct device *dev = &client->dev; v4l2_async_unregister_subdev(&dw9768->sd); v4l2_ctrl_handler_free(&dw9768->ctrls); media_entity_cleanup(&dw9768->sd.entity); if ((is_acpi_node(dev_fwnode(dev)) && acpi_dev_state_d0(dev)) || (is_of_node(dev_fwnode(dev)) && !pm_runtime_enabled(dev))) { dw9768_runtime_suspend(dev); pm_runtime_set_suspended(dev); } pm_runtime_disable(dev); } static const struct of_device_id dw9768_of_table[] = { { .compatible = "dongwoon,dw9768" }, { .compatible = "giantec,gt9769" }, {} }; MODULE_DEVICE_TABLE(of, dw9768_of_table); static const struct dev_pm_ops dw9768_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) SET_RUNTIME_PM_OPS(dw9768_runtime_suspend, dw9768_runtime_resume, NULL) }; static struct i2c_driver dw9768_i2c_driver = { .driver = { .name = DW9768_NAME, .pm = &dw9768_pm_ops, .of_match_table = dw9768_of_table, }, .probe = dw9768_probe, .remove = dw9768_remove, }; module_i2c_driver(dw9768_i2c_driver); MODULE_AUTHOR("Dongchun Zhu <dongchun.zhu@mediatek.com>"); MODULE_DESCRIPTION("DW9768 VCM driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1