Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dongchun Zhu | 4425 | 98.79% | 1 | 9.09% |
Laurent Pinchart | 19 | 0.42% | 1 | 9.09% |
Tomi Valkeinen | 13 | 0.29% | 1 | 9.09% |
Arnd Bergmann | 6 | 0.13% | 1 | 9.09% |
Steve Longerbeam | 4 | 0.09% | 1 | 9.09% |
Hans Verkuil | 4 | 0.09% | 1 | 9.09% |
Daniel Lezcano | 3 | 0.07% | 1 | 9.09% |
Sakari Ailus | 2 | 0.04% | 1 | 9.09% |
Uwe Kleine-König | 2 | 0.04% | 2 | 18.18% |
Mauro Carvalho Chehab | 1 | 0.02% | 1 | 9.09% |
Total | 4479 | 11 |
// SPDX-License-Identifier: GPL-2.0 // Copyright (c) 2020 MediaTek Inc. #include <linux/clk.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/gpio/consumer.h> #include <linux/i2c.h> #include <linux/module.h> #include <linux/pm_runtime.h> #include <linux/regulator/consumer.h> #include <linux/units.h> #include <media/media-entity.h> #include <media/v4l2-async.h> #include <media/v4l2-ctrls.h> #include <media/v4l2-fwnode.h> #include <media/v4l2-subdev.h> #define OV02A10_ID 0x2509 #define OV02A10_ID_MASK GENMASK(15, 0) #define OV02A10_REG_CHIP_ID 0x02 /* Bit[1] vertical upside down */ /* Bit[0] horizontal mirror */ #define REG_MIRROR_FLIP_CONTROL 0x3f /* Orientation */ #define REG_MIRROR_FLIP_ENABLE 0x03 /* Bit[2:0] MIPI transmission speed select */ #define TX_SPEED_AREA_SEL 0xa1 #define OV02A10_MIPI_TX_SPEED_DEFAULT 0x04 #define REG_PAGE_SWITCH 0xfd #define REG_GLOBAL_EFFECTIVE 0x01 #define REG_ENABLE BIT(0) #define REG_SC_CTRL_MODE 0xac #define SC_CTRL_MODE_STANDBY 0x00 #define SC_CTRL_MODE_STREAMING 0x01 /* Exposure control */ #define OV02A10_EXP_SHIFT 8 #define OV02A10_REG_EXPOSURE_H 0x03 #define OV02A10_REG_EXPOSURE_L 0x04 #define OV02A10_EXPOSURE_MIN 4 #define OV02A10_EXPOSURE_MAX_MARGIN 4 #define OV02A10_EXPOSURE_STEP 1 /* Vblanking control */ #define OV02A10_VTS_SHIFT 8 #define OV02A10_REG_VTS_H 0x05 #define OV02A10_REG_VTS_L 0x06 #define OV02A10_VTS_MAX 0x209f #define OV02A10_BASE_LINES 1224 /* Analog gain control */ #define OV02A10_REG_GAIN 0x24 #define OV02A10_GAIN_MIN 0x10 #define OV02A10_GAIN_MAX 0xf8 #define OV02A10_GAIN_STEP 0x01 #define OV02A10_GAIN_DEFAULT 0x40 /* Test pattern control */ #define OV02A10_REG_TEST_PATTERN 0xb6 #define OV02A10_LINK_FREQ_390MHZ (390 * HZ_PER_MHZ) #define OV02A10_ECLK_FREQ (24 * HZ_PER_MHZ) /* Number of lanes supported by this driver */ #define OV02A10_DATA_LANES 1 /* Bits per sample of sensor output */ #define OV02A10_BITS_PER_SAMPLE 10 static const char * const ov02a10_supply_names[] = { "dovdd", /* Digital I/O power */ "avdd", /* Analog power */ "dvdd", /* Digital core power */ }; struct ov02a10_reg { u8 addr; u8 val; }; struct ov02a10_reg_list { u32 num_of_regs; const struct ov02a10_reg *regs; }; struct ov02a10_mode { u32 width; u32 height; u32 exp_def; u32 hts_def; u32 vts_def; const struct ov02a10_reg_list reg_list; }; struct ov02a10 { u32 eclk_freq; /* Indication of MIPI transmission speed select */ u32 mipi_clock_voltage; struct clk *eclk; struct gpio_desc *pd_gpio; struct gpio_desc *rst_gpio; struct regulator_bulk_data supplies[ARRAY_SIZE(ov02a10_supply_names)]; bool streaming; bool upside_down; /* * Serialize control access, get/set format, get selection * and start streaming. */ struct mutex mutex; struct v4l2_subdev subdev; struct media_pad pad; struct v4l2_mbus_framefmt fmt; struct v4l2_ctrl_handler ctrl_handler; struct v4l2_ctrl *exposure; const struct ov02a10_mode *cur_mode; }; static inline struct ov02a10 *to_ov02a10(struct v4l2_subdev *sd) { return container_of(sd, struct ov02a10, subdev); } /* * eclk 24Mhz * pclk 39Mhz * linelength 934(0x3a6) * framelength 1390(0x56E) * grabwindow_width 1600 * grabwindow_height 1200 * max_framerate 30fps * mipi_datarate per lane 780Mbps */ static const struct ov02a10_reg ov02a10_1600x1200_regs[] = { {0xfd, 0x01}, {0xac, 0x00}, {0xfd, 0x00}, {0x2f, 0x29}, {0x34, 0x00}, {0x35, 0x21}, {0x30, 0x15}, {0x33, 0x01}, {0xfd, 0x01}, {0x44, 0x00}, {0x2a, 0x4c}, {0x2b, 0x1e}, {0x2c, 0x60}, {0x25, 0x11}, {0x03, 0x01}, {0x04, 0xae}, {0x09, 0x00}, {0x0a, 0x02}, {0x06, 0xa6}, {0x31, 0x00}, {0x24, 0x40}, {0x01, 0x01}, {0xfb, 0x73}, {0xfd, 0x01}, {0x16, 0x04}, {0x1c, 0x09}, {0x21, 0x42}, {0x12, 0x04}, {0x13, 0x10}, {0x11, 0x40}, {0x33, 0x81}, {0xd0, 0x00}, {0xd1, 0x01}, {0xd2, 0x00}, {0x50, 0x10}, {0x51, 0x23}, {0x52, 0x20}, {0x53, 0x10}, {0x54, 0x02}, {0x55, 0x20}, {0x56, 0x02}, {0x58, 0x48}, {0x5d, 0x15}, {0x5e, 0x05}, {0x66, 0x66}, {0x68, 0x68}, {0x6b, 0x00}, {0x6c, 0x00}, {0x6f, 0x40}, {0x70, 0x40}, {0x71, 0x0a}, {0x72, 0xf0}, {0x73, 0x10}, {0x75, 0x80}, {0x76, 0x10}, {0x84, 0x00}, {0x85, 0x10}, {0x86, 0x10}, {0x87, 0x00}, {0x8a, 0x22}, {0x8b, 0x22}, {0x19, 0xf1}, {0x29, 0x01}, {0xfd, 0x01}, {0x9d, 0x16}, {0xa0, 0x29}, {0xa1, 0x04}, {0xad, 0x62}, {0xae, 0x00}, {0xaf, 0x85}, {0xb1, 0x01}, {0x8e, 0x06}, {0x8f, 0x40}, {0x90, 0x04}, {0x91, 0xb0}, {0x45, 0x01}, {0x46, 0x00}, {0x47, 0x6c}, {0x48, 0x03}, {0x49, 0x8b}, {0x4a, 0x00}, {0x4b, 0x07}, {0x4c, 0x04}, {0x4d, 0xb7}, {0xf0, 0x40}, {0xf1, 0x40}, {0xf2, 0x40}, {0xf3, 0x40}, {0x3f, 0x00}, {0xfd, 0x01}, {0x05, 0x00}, {0x06, 0xa6}, {0xfd, 0x01}, }; static const char * const ov02a10_test_pattern_menu[] = { "Disabled", "Eight Vertical Colour Bars", }; static const s64 link_freq_menu_items[] = { OV02A10_LINK_FREQ_390MHZ, }; static u64 to_pixel_rate(u32 f_index) { u64 pixel_rate = link_freq_menu_items[f_index] * 2 * OV02A10_DATA_LANES; do_div(pixel_rate, OV02A10_BITS_PER_SAMPLE); return pixel_rate; } static const struct ov02a10_mode supported_modes[] = { { .width = 1600, .height = 1200, .exp_def = 0x01ae, .hts_def = 0x03a6, .vts_def = 0x056e, .reg_list = { .num_of_regs = ARRAY_SIZE(ov02a10_1600x1200_regs), .regs = ov02a10_1600x1200_regs, }, }, }; static int ov02a10_write_array(struct ov02a10 *ov02a10, const struct ov02a10_reg_list *r_list) { struct i2c_client *client = v4l2_get_subdevdata(&ov02a10->subdev); unsigned int i; int ret; for (i = 0; i < r_list->num_of_regs; i++) { ret = i2c_smbus_write_byte_data(client, r_list->regs[i].addr, r_list->regs[i].val); if (ret < 0) return ret; } return 0; } static void ov02a10_fill_fmt(const struct ov02a10_mode *mode, struct v4l2_mbus_framefmt *fmt) { fmt->width = mode->width; fmt->height = mode->height; fmt->field = V4L2_FIELD_NONE; } static int ov02a10_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *fmt) { struct ov02a10 *ov02a10 = to_ov02a10(sd); struct v4l2_mbus_framefmt *mbus_fmt = &fmt->format; struct v4l2_mbus_framefmt *frame_fmt; int ret = 0; mutex_lock(&ov02a10->mutex); if (ov02a10->streaming && fmt->which == V4L2_SUBDEV_FORMAT_ACTIVE) { ret = -EBUSY; goto out_unlock; } /* Only one sensor mode supported */ mbus_fmt->code = ov02a10->fmt.code; ov02a10_fill_fmt(ov02a10->cur_mode, mbus_fmt); if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) frame_fmt = v4l2_subdev_state_get_format(sd_state, 0); else frame_fmt = &ov02a10->fmt; *frame_fmt = *mbus_fmt; out_unlock: mutex_unlock(&ov02a10->mutex); return ret; } static int ov02a10_get_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *fmt) { struct ov02a10 *ov02a10 = to_ov02a10(sd); struct v4l2_mbus_framefmt *mbus_fmt = &fmt->format; mutex_lock(&ov02a10->mutex); if (fmt->which == V4L2_SUBDEV_FORMAT_TRY) { fmt->format = *v4l2_subdev_state_get_format(sd_state, fmt->pad); } else { fmt->format = ov02a10->fmt; mbus_fmt->code = ov02a10->fmt.code; ov02a10_fill_fmt(ov02a10->cur_mode, mbus_fmt); } mutex_unlock(&ov02a10->mutex); return 0; } static int ov02a10_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) { struct ov02a10 *ov02a10 = to_ov02a10(sd); if (code->index != 0) return -EINVAL; code->code = ov02a10->fmt.code; return 0; } static int ov02a10_enum_frame_sizes(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_size_enum *fse) { if (fse->index >= ARRAY_SIZE(supported_modes)) return -EINVAL; fse->min_width = supported_modes[fse->index].width; fse->max_width = supported_modes[fse->index].width; fse->max_height = supported_modes[fse->index].height; fse->min_height = supported_modes[fse->index].height; return 0; } static int ov02a10_check_sensor_id(struct ov02a10 *ov02a10) { struct i2c_client *client = v4l2_get_subdevdata(&ov02a10->subdev); u16 chip_id; int ret; /* Validate the chip ID */ ret = i2c_smbus_read_word_swapped(client, OV02A10_REG_CHIP_ID); if (ret < 0) return ret; chip_id = le16_to_cpu((__force __le16)ret); if ((chip_id & OV02A10_ID_MASK) != OV02A10_ID) { dev_err(&client->dev, "unexpected sensor id(0x%04x)\n", chip_id); return -EINVAL; } return 0; } static int ov02a10_power_on(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct v4l2_subdev *sd = i2c_get_clientdata(client); struct ov02a10 *ov02a10 = to_ov02a10(sd); int ret; gpiod_set_value_cansleep(ov02a10->rst_gpio, 1); gpiod_set_value_cansleep(ov02a10->pd_gpio, 1); ret = clk_prepare_enable(ov02a10->eclk); if (ret < 0) { dev_err(dev, "failed to enable eclk\n"); return ret; } ret = regulator_bulk_enable(ARRAY_SIZE(ov02a10_supply_names), ov02a10->supplies); if (ret < 0) { dev_err(dev, "failed to enable regulators\n"); goto disable_clk; } usleep_range(5000, 6000); gpiod_set_value_cansleep(ov02a10->pd_gpio, 0); usleep_range(5000, 6000); gpiod_set_value_cansleep(ov02a10->rst_gpio, 0); usleep_range(5000, 6000); ret = ov02a10_check_sensor_id(ov02a10); if (ret) goto disable_regulator; return 0; disable_regulator: regulator_bulk_disable(ARRAY_SIZE(ov02a10_supply_names), ov02a10->supplies); disable_clk: clk_disable_unprepare(ov02a10->eclk); return ret; } static int ov02a10_power_off(struct device *dev) { struct i2c_client *client = to_i2c_client(dev); struct v4l2_subdev *sd = i2c_get_clientdata(client); struct ov02a10 *ov02a10 = to_ov02a10(sd); gpiod_set_value_cansleep(ov02a10->rst_gpio, 1); clk_disable_unprepare(ov02a10->eclk); gpiod_set_value_cansleep(ov02a10->pd_gpio, 1); regulator_bulk_disable(ARRAY_SIZE(ov02a10_supply_names), ov02a10->supplies); return 0; } static int __ov02a10_start_stream(struct ov02a10 *ov02a10) { struct i2c_client *client = v4l2_get_subdevdata(&ov02a10->subdev); const struct ov02a10_reg_list *reg_list; int ret; /* Apply default values of current mode */ reg_list = &ov02a10->cur_mode->reg_list; ret = ov02a10_write_array(ov02a10, reg_list); if (ret) return ret; /* Apply customized values from user */ ret = __v4l2_ctrl_handler_setup(ov02a10->subdev.ctrl_handler); if (ret) return ret; /* Set orientation to 180 degree */ if (ov02a10->upside_down) { ret = i2c_smbus_write_byte_data(client, REG_MIRROR_FLIP_CONTROL, REG_MIRROR_FLIP_ENABLE); if (ret < 0) { dev_err(&client->dev, "failed to set orientation\n"); return ret; } ret = i2c_smbus_write_byte_data(client, REG_GLOBAL_EFFECTIVE, REG_ENABLE); if (ret < 0) return ret; } /* Set MIPI TX speed according to DT property */ if (ov02a10->mipi_clock_voltage != OV02A10_MIPI_TX_SPEED_DEFAULT) { ret = i2c_smbus_write_byte_data(client, TX_SPEED_AREA_SEL, ov02a10->mipi_clock_voltage); if (ret < 0) return ret; } /* Set stream on register */ return i2c_smbus_write_byte_data(client, REG_SC_CTRL_MODE, SC_CTRL_MODE_STREAMING); } static int __ov02a10_stop_stream(struct ov02a10 *ov02a10) { struct i2c_client *client = v4l2_get_subdevdata(&ov02a10->subdev); return i2c_smbus_write_byte_data(client, REG_SC_CTRL_MODE, SC_CTRL_MODE_STANDBY); } static int ov02a10_init_state(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state) { struct v4l2_subdev_format fmt = { .which = V4L2_SUBDEV_FORMAT_TRY, .format = { .width = 1600, .height = 1200, } }; ov02a10_set_fmt(sd, sd_state, &fmt); return 0; } static int ov02a10_s_stream(struct v4l2_subdev *sd, int on) { struct ov02a10 *ov02a10 = to_ov02a10(sd); struct i2c_client *client = v4l2_get_subdevdata(&ov02a10->subdev); int ret; mutex_lock(&ov02a10->mutex); if (ov02a10->streaming == on) { ret = 0; goto unlock_and_return; } if (on) { ret = pm_runtime_resume_and_get(&client->dev); if (ret < 0) goto unlock_and_return; ret = __ov02a10_start_stream(ov02a10); if (ret) { __ov02a10_stop_stream(ov02a10); ov02a10->streaming = !on; goto err_rpm_put; } } else { __ov02a10_stop_stream(ov02a10); pm_runtime_put(&client->dev); } ov02a10->streaming = on; mutex_unlock(&ov02a10->mutex); return 0; err_rpm_put: pm_runtime_put(&client->dev); unlock_and_return: mutex_unlock(&ov02a10->mutex); return ret; } static const struct dev_pm_ops ov02a10_pm_ops = { SET_RUNTIME_PM_OPS(ov02a10_power_off, ov02a10_power_on, NULL) }; static int ov02a10_set_exposure(struct ov02a10 *ov02a10, int val) { struct i2c_client *client = v4l2_get_subdevdata(&ov02a10->subdev); int ret; ret = i2c_smbus_write_byte_data(client, REG_PAGE_SWITCH, REG_ENABLE); if (ret < 0) return ret; ret = i2c_smbus_write_byte_data(client, OV02A10_REG_EXPOSURE_H, val >> OV02A10_EXP_SHIFT); if (ret < 0) return ret; ret = i2c_smbus_write_byte_data(client, OV02A10_REG_EXPOSURE_L, val); if (ret < 0) return ret; return i2c_smbus_write_byte_data(client, REG_GLOBAL_EFFECTIVE, REG_ENABLE); } static int ov02a10_set_gain(struct ov02a10 *ov02a10, int val) { struct i2c_client *client = v4l2_get_subdevdata(&ov02a10->subdev); int ret; ret = i2c_smbus_write_byte_data(client, REG_PAGE_SWITCH, REG_ENABLE); if (ret < 0) return ret; ret = i2c_smbus_write_byte_data(client, OV02A10_REG_GAIN, val); if (ret < 0) return ret; return i2c_smbus_write_byte_data(client, REG_GLOBAL_EFFECTIVE, REG_ENABLE); } static int ov02a10_set_vblank(struct ov02a10 *ov02a10, int val) { struct i2c_client *client = v4l2_get_subdevdata(&ov02a10->subdev); u32 vts = val + ov02a10->cur_mode->height - OV02A10_BASE_LINES; int ret; ret = i2c_smbus_write_byte_data(client, REG_PAGE_SWITCH, REG_ENABLE); if (ret < 0) return ret; ret = i2c_smbus_write_byte_data(client, OV02A10_REG_VTS_H, vts >> OV02A10_VTS_SHIFT); if (ret < 0) return ret; ret = i2c_smbus_write_byte_data(client, OV02A10_REG_VTS_L, vts); if (ret < 0) return ret; return i2c_smbus_write_byte_data(client, REG_GLOBAL_EFFECTIVE, REG_ENABLE); } static int ov02a10_set_test_pattern(struct ov02a10 *ov02a10, int pattern) { struct i2c_client *client = v4l2_get_subdevdata(&ov02a10->subdev); int ret; ret = i2c_smbus_write_byte_data(client, REG_PAGE_SWITCH, REG_ENABLE); if (ret < 0) return ret; ret = i2c_smbus_write_byte_data(client, OV02A10_REG_TEST_PATTERN, pattern); if (ret < 0) return ret; ret = i2c_smbus_write_byte_data(client, REG_GLOBAL_EFFECTIVE, REG_ENABLE); if (ret < 0) return ret; return i2c_smbus_write_byte_data(client, REG_SC_CTRL_MODE, SC_CTRL_MODE_STREAMING); } static int ov02a10_set_ctrl(struct v4l2_ctrl *ctrl) { struct ov02a10 *ov02a10 = container_of(ctrl->handler, struct ov02a10, ctrl_handler); struct i2c_client *client = v4l2_get_subdevdata(&ov02a10->subdev); s64 max_expo; int ret; /* Propagate change of current control to all related controls */ if (ctrl->id == V4L2_CID_VBLANK) { /* Update max exposure while meeting expected vblanking */ max_expo = ov02a10->cur_mode->height + ctrl->val - OV02A10_EXPOSURE_MAX_MARGIN; __v4l2_ctrl_modify_range(ov02a10->exposure, ov02a10->exposure->minimum, max_expo, ov02a10->exposure->step, ov02a10->exposure->default_value); } /* V4L2 controls values will be applied only when power is already up */ if (!pm_runtime_get_if_in_use(&client->dev)) return 0; switch (ctrl->id) { case V4L2_CID_EXPOSURE: ret = ov02a10_set_exposure(ov02a10, ctrl->val); break; case V4L2_CID_ANALOGUE_GAIN: ret = ov02a10_set_gain(ov02a10, ctrl->val); break; case V4L2_CID_VBLANK: ret = ov02a10_set_vblank(ov02a10, ctrl->val); break; case V4L2_CID_TEST_PATTERN: ret = ov02a10_set_test_pattern(ov02a10, ctrl->val); break; default: ret = -EINVAL; break; } pm_runtime_put(&client->dev); return ret; } static const struct v4l2_subdev_video_ops ov02a10_video_ops = { .s_stream = ov02a10_s_stream, }; static const struct v4l2_subdev_pad_ops ov02a10_pad_ops = { .enum_mbus_code = ov02a10_enum_mbus_code, .enum_frame_size = ov02a10_enum_frame_sizes, .get_fmt = ov02a10_get_fmt, .set_fmt = ov02a10_set_fmt, }; static const struct v4l2_subdev_ops ov02a10_subdev_ops = { .video = &ov02a10_video_ops, .pad = &ov02a10_pad_ops, }; static const struct v4l2_subdev_internal_ops ov02a10_internal_ops = { .init_state = ov02a10_init_state, }; static const struct media_entity_operations ov02a10_subdev_entity_ops = { .link_validate = v4l2_subdev_link_validate, }; static const struct v4l2_ctrl_ops ov02a10_ctrl_ops = { .s_ctrl = ov02a10_set_ctrl, }; static int ov02a10_initialize_controls(struct ov02a10 *ov02a10) { struct i2c_client *client = v4l2_get_subdevdata(&ov02a10->subdev); const struct ov02a10_mode *mode; struct v4l2_ctrl_handler *handler; struct v4l2_ctrl *ctrl; s64 exposure_max; s64 vblank_def; s64 pixel_rate; s64 h_blank; int ret; handler = &ov02a10->ctrl_handler; mode = ov02a10->cur_mode; ret = v4l2_ctrl_handler_init(handler, 7); if (ret) return ret; handler->lock = &ov02a10->mutex; ctrl = v4l2_ctrl_new_int_menu(handler, NULL, V4L2_CID_LINK_FREQ, 0, 0, link_freq_menu_items); if (ctrl) ctrl->flags |= V4L2_CTRL_FLAG_READ_ONLY; pixel_rate = to_pixel_rate(0); v4l2_ctrl_new_std(handler, NULL, V4L2_CID_PIXEL_RATE, 0, pixel_rate, 1, pixel_rate); h_blank = mode->hts_def - mode->width; v4l2_ctrl_new_std(handler, NULL, V4L2_CID_HBLANK, h_blank, h_blank, 1, h_blank); vblank_def = mode->vts_def - mode->height; v4l2_ctrl_new_std(handler, &ov02a10_ctrl_ops, V4L2_CID_VBLANK, vblank_def, OV02A10_VTS_MAX - mode->height, 1, vblank_def); exposure_max = mode->vts_def - 4; ov02a10->exposure = v4l2_ctrl_new_std(handler, &ov02a10_ctrl_ops, V4L2_CID_EXPOSURE, OV02A10_EXPOSURE_MIN, exposure_max, OV02A10_EXPOSURE_STEP, mode->exp_def); v4l2_ctrl_new_std(handler, &ov02a10_ctrl_ops, V4L2_CID_ANALOGUE_GAIN, OV02A10_GAIN_MIN, OV02A10_GAIN_MAX, OV02A10_GAIN_STEP, OV02A10_GAIN_DEFAULT); v4l2_ctrl_new_std_menu_items(handler, &ov02a10_ctrl_ops, V4L2_CID_TEST_PATTERN, ARRAY_SIZE(ov02a10_test_pattern_menu) - 1, 0, 0, ov02a10_test_pattern_menu); if (handler->error) { ret = handler->error; dev_err(&client->dev, "failed to init controls(%d)\n", ret); goto err_free_handler; } ov02a10->subdev.ctrl_handler = handler; return 0; err_free_handler: v4l2_ctrl_handler_free(handler); return ret; } static int ov02a10_check_hwcfg(struct device *dev, struct ov02a10 *ov02a10) { struct fwnode_handle *ep; struct fwnode_handle *fwnode = dev_fwnode(dev); struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = V4L2_MBUS_CSI2_DPHY, }; unsigned int i, j; u32 clk_volt; int ret; if (!fwnode) return -EINVAL; ep = fwnode_graph_get_next_endpoint(fwnode, NULL); if (!ep) return -ENXIO; ret = v4l2_fwnode_endpoint_alloc_parse(ep, &bus_cfg); fwnode_handle_put(ep); if (ret) return ret; /* Optional indication of MIPI clock voltage unit */ ret = fwnode_property_read_u32(ep, "ovti,mipi-clock-voltage", &clk_volt); if (!ret) ov02a10->mipi_clock_voltage = clk_volt; for (i = 0; i < ARRAY_SIZE(link_freq_menu_items); i++) { for (j = 0; j < bus_cfg.nr_of_link_frequencies; j++) { if (link_freq_menu_items[i] == bus_cfg.link_frequencies[j]) break; } if (j == bus_cfg.nr_of_link_frequencies) { dev_err(dev, "no link frequency %lld supported\n", link_freq_menu_items[i]); ret = -EINVAL; break; } } v4l2_fwnode_endpoint_free(&bus_cfg); return ret; } static int ov02a10_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct ov02a10 *ov02a10; unsigned int i; unsigned int rotation; int ret; ov02a10 = devm_kzalloc(dev, sizeof(*ov02a10), GFP_KERNEL); if (!ov02a10) return -ENOMEM; ret = ov02a10_check_hwcfg(dev, ov02a10); if (ret) return dev_err_probe(dev, ret, "failed to check HW configuration\n"); v4l2_i2c_subdev_init(&ov02a10->subdev, client, &ov02a10_subdev_ops); ov02a10->subdev.internal_ops = &ov02a10_internal_ops; ov02a10->mipi_clock_voltage = OV02A10_MIPI_TX_SPEED_DEFAULT; ov02a10->fmt.code = MEDIA_BUS_FMT_SBGGR10_1X10; /* Optional indication of physical rotation of sensor */ rotation = 0; device_property_read_u32(dev, "rotation", &rotation); if (rotation == 180) { ov02a10->upside_down = true; ov02a10->fmt.code = MEDIA_BUS_FMT_SRGGB10_1X10; } ov02a10->eclk = devm_clk_get(dev, "eclk"); if (IS_ERR(ov02a10->eclk)) return dev_err_probe(dev, PTR_ERR(ov02a10->eclk), "failed to get eclk\n"); ret = device_property_read_u32(dev, "clock-frequency", &ov02a10->eclk_freq); if (ret < 0) return dev_err_probe(dev, ret, "failed to get eclk frequency\n"); ret = clk_set_rate(ov02a10->eclk, ov02a10->eclk_freq); if (ret < 0) return dev_err_probe(dev, ret, "failed to set eclk frequency (24MHz)\n"); if (clk_get_rate(ov02a10->eclk) != OV02A10_ECLK_FREQ) dev_warn(dev, "eclk mismatched, mode is based on 24MHz\n"); ov02a10->pd_gpio = devm_gpiod_get(dev, "powerdown", GPIOD_OUT_HIGH); if (IS_ERR(ov02a10->pd_gpio)) return dev_err_probe(dev, PTR_ERR(ov02a10->pd_gpio), "failed to get powerdown-gpios\n"); ov02a10->rst_gpio = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH); if (IS_ERR(ov02a10->rst_gpio)) return dev_err_probe(dev, PTR_ERR(ov02a10->rst_gpio), "failed to get reset-gpios\n"); for (i = 0; i < ARRAY_SIZE(ov02a10_supply_names); i++) ov02a10->supplies[i].supply = ov02a10_supply_names[i]; ret = devm_regulator_bulk_get(dev, ARRAY_SIZE(ov02a10_supply_names), ov02a10->supplies); if (ret) return dev_err_probe(dev, ret, "failed to get regulators\n"); mutex_init(&ov02a10->mutex); /* Set default mode */ ov02a10->cur_mode = &supported_modes[0]; ret = ov02a10_initialize_controls(ov02a10); if (ret) { dev_err_probe(dev, ret, "failed to initialize controls\n"); goto err_destroy_mutex; } /* Initialize subdev */ ov02a10->subdev.flags |= V4L2_SUBDEV_FL_HAS_DEVNODE; ov02a10->subdev.entity.ops = &ov02a10_subdev_entity_ops; ov02a10->subdev.entity.function = MEDIA_ENT_F_CAM_SENSOR; ov02a10->pad.flags = MEDIA_PAD_FL_SOURCE; ret = media_entity_pads_init(&ov02a10->subdev.entity, 1, &ov02a10->pad); if (ret < 0) { dev_err_probe(dev, ret, "failed to initialize entity pads\n"); goto err_free_handler; } pm_runtime_enable(dev); if (!pm_runtime_enabled(dev)) { ret = ov02a10_power_on(dev); if (ret < 0) { dev_err_probe(dev, ret, "failed to power on\n"); goto err_clean_entity; } } ret = v4l2_async_register_subdev(&ov02a10->subdev); if (ret) { dev_err_probe(dev, ret, "failed to register V4L2 subdev\n"); goto err_power_off; } return 0; err_power_off: if (pm_runtime_enabled(dev)) pm_runtime_disable(dev); else ov02a10_power_off(dev); err_clean_entity: media_entity_cleanup(&ov02a10->subdev.entity); err_free_handler: v4l2_ctrl_handler_free(ov02a10->subdev.ctrl_handler); err_destroy_mutex: mutex_destroy(&ov02a10->mutex); return ret; } static void ov02a10_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct ov02a10 *ov02a10 = to_ov02a10(sd); v4l2_async_unregister_subdev(sd); media_entity_cleanup(&sd->entity); v4l2_ctrl_handler_free(sd->ctrl_handler); pm_runtime_disable(&client->dev); if (!pm_runtime_status_suspended(&client->dev)) ov02a10_power_off(&client->dev); pm_runtime_set_suspended(&client->dev); mutex_destroy(&ov02a10->mutex); } static const struct of_device_id ov02a10_of_match[] = { { .compatible = "ovti,ov02a10" }, {} }; MODULE_DEVICE_TABLE(of, ov02a10_of_match); static struct i2c_driver ov02a10_i2c_driver = { .driver = { .name = "ov02a10", .pm = &ov02a10_pm_ops, .of_match_table = ov02a10_of_match, }, .probe = ov02a10_probe, .remove = ov02a10_remove, }; module_i2c_driver(ov02a10_i2c_driver); MODULE_AUTHOR("Dongchun Zhu <dongchun.zhu@mediatek.com>"); MODULE_DESCRIPTION("OmniVision OV02A10 sensor driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1