Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Hans de Goede | 3232 | 53.78% | 33 | 62.26% |
Rui Miguel Silva | 2647 | 44.04% | 1 | 1.89% |
Laurent Pinchart | 41 | 0.68% | 4 | 7.55% |
Fabio Estevam | 25 | 0.42% | 2 | 3.77% |
Tomi Valkeinen | 19 | 0.32% | 1 | 1.89% |
Dave Stevenson | 14 | 0.23% | 1 | 1.89% |
Michael Grzeschik | 7 | 0.12% | 1 | 1.89% |
Sakari Ailus | 5 | 0.08% | 1 | 1.89% |
Krzysztof Kozlowski | 4 | 0.07% | 1 | 1.89% |
Javier Martinez Canillas | 4 | 0.07% | 2 | 3.77% |
Steve Longerbeam | 4 | 0.07% | 1 | 1.89% |
Christophe Jaillet | 2 | 0.03% | 1 | 1.89% |
Uwe Kleine-König | 2 | 0.03% | 2 | 3.77% |
Rob Herring | 2 | 0.03% | 1 | 1.89% |
Hans Verkuil | 2 | 0.03% | 1 | 1.89% |
Total | 6010 | 53 |
// SPDX-License-Identifier: GPL-2.0 /* * Omnivision OV2680 CMOS Image Sensor driver * * Copyright (C) 2018 Linaro Ltd * * Based on OV5640 Sensor Driver * Copyright (C) 2011-2013 Freescale Semiconductor, Inc. All Rights Reserved. * Copyright (C) 2014-2017 Mentor Graphics Inc. * */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/gpio/consumer.h> #include <linux/i2c.h> #include <linux/init.h> #include <linux/mod_devicetable.h> #include <linux/module.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include <media/v4l2-cci.h> #include <media/v4l2-common.h> #include <media/v4l2-ctrls.h> #include <media/v4l2-fwnode.h> #include <media/v4l2-subdev.h> #define OV2680_CHIP_ID 0x2680 #define OV2680_REG_STREAM_CTRL CCI_REG8(0x0100) #define OV2680_REG_SOFT_RESET CCI_REG8(0x0103) #define OV2680_REG_CHIP_ID CCI_REG16(0x300a) #define OV2680_REG_SC_CMMN_SUB_ID CCI_REG8(0x302a) #define OV2680_REG_PLL_MULTIPLIER CCI_REG16(0x3081) #define OV2680_REG_EXPOSURE_PK CCI_REG24(0x3500) #define OV2680_REG_R_MANUAL CCI_REG8(0x3503) #define OV2680_REG_GAIN_PK CCI_REG16(0x350a) #define OV2680_REG_SENSOR_CTRL_0A CCI_REG8(0x370a) #define OV2680_REG_HORIZONTAL_START CCI_REG16(0x3800) #define OV2680_REG_VERTICAL_START CCI_REG16(0x3802) #define OV2680_REG_HORIZONTAL_END CCI_REG16(0x3804) #define OV2680_REG_VERTICAL_END CCI_REG16(0x3806) #define OV2680_REG_HORIZONTAL_OUTPUT_SIZE CCI_REG16(0x3808) #define OV2680_REG_VERTICAL_OUTPUT_SIZE CCI_REG16(0x380a) #define OV2680_REG_TIMING_HTS CCI_REG16(0x380c) #define OV2680_REG_TIMING_VTS CCI_REG16(0x380e) #define OV2680_REG_ISP_X_WIN CCI_REG16(0x3810) #define OV2680_REG_ISP_Y_WIN CCI_REG16(0x3812) #define OV2680_REG_X_INC CCI_REG8(0x3814) #define OV2680_REG_Y_INC CCI_REG8(0x3815) #define OV2680_REG_FORMAT1 CCI_REG8(0x3820) #define OV2680_REG_FORMAT2 CCI_REG8(0x3821) #define OV2680_REG_ISP_CTRL00 CCI_REG8(0x5080) #define OV2680_REG_X_WIN CCI_REG16(0x5704) #define OV2680_REG_Y_WIN CCI_REG16(0x5706) #define OV2680_FRAME_RATE 30 #define OV2680_NATIVE_WIDTH 1616 #define OV2680_NATIVE_HEIGHT 1216 #define OV2680_NATIVE_START_LEFT 0 #define OV2680_NATIVE_START_TOP 0 #define OV2680_ACTIVE_WIDTH 1600 #define OV2680_ACTIVE_HEIGHT 1200 #define OV2680_ACTIVE_START_LEFT 8 #define OV2680_ACTIVE_START_TOP 8 #define OV2680_MIN_CROP_WIDTH 2 #define OV2680_MIN_CROP_HEIGHT 2 #define OV2680_MIN_VBLANK 4 #define OV2680_MAX_VBLANK 0xffff /* Fixed pre-div of 1/2 */ #define OV2680_PLL_PREDIV0 2 /* Pre-div configurable through reg 0x3080, left at its default of 0x02 : 1/2 */ #define OV2680_PLL_PREDIV 2 /* 66MHz pixel clock: 66MHz / 1704 * 1294 = 30fps */ #define OV2680_PIXELS_PER_LINE 1704 #define OV2680_LINES_PER_FRAME_30FPS 1294 /* Max exposure time is VTS - 8 */ #define OV2680_INTEGRATION_TIME_MARGIN 8 #define OV2680_DEFAULT_WIDTH 800 #define OV2680_DEFAULT_HEIGHT 600 /* For enum_frame_size() full-size + binned-/quarter-size */ #define OV2680_FRAME_SIZES 2 static const char * const ov2680_supply_name[] = { "DOVDD", "DVDD", "AVDD", }; #define OV2680_NUM_SUPPLIES ARRAY_SIZE(ov2680_supply_name) enum { OV2680_19_2_MHZ, OV2680_24_MHZ, }; static const unsigned long ov2680_xvclk_freqs[] = { [OV2680_19_2_MHZ] = 19200000, [OV2680_24_MHZ] = 24000000, }; static const u8 ov2680_pll_multipliers[] = { [OV2680_19_2_MHZ] = 69, [OV2680_24_MHZ] = 55, }; struct ov2680_ctrls { struct v4l2_ctrl_handler handler; struct v4l2_ctrl *exposure; struct v4l2_ctrl *gain; struct v4l2_ctrl *hflip; struct v4l2_ctrl *vflip; struct v4l2_ctrl *test_pattern; struct v4l2_ctrl *link_freq; struct v4l2_ctrl *pixel_rate; struct v4l2_ctrl *vblank; struct v4l2_ctrl *hblank; }; struct ov2680_mode { struct v4l2_rect crop; struct v4l2_mbus_framefmt fmt; struct v4l2_fract frame_interval; bool binning; u16 h_start; u16 v_start; u16 h_end; u16 v_end; u16 h_output_size; u16 v_output_size; }; struct ov2680_dev { struct device *dev; struct regmap *regmap; struct v4l2_subdev sd; struct media_pad pad; struct clk *xvclk; u32 xvclk_freq; u8 pll_mult; s64 link_freq[1]; u64 pixel_rate; struct regulator_bulk_data supplies[OV2680_NUM_SUPPLIES]; struct gpio_desc *pwdn_gpio; struct mutex lock; /* protect members */ bool is_streaming; struct ov2680_ctrls ctrls; struct ov2680_mode mode; }; static const struct v4l2_rect ov2680_default_crop = { .left = OV2680_ACTIVE_START_LEFT, .top = OV2680_ACTIVE_START_TOP, .width = OV2680_ACTIVE_WIDTH, .height = OV2680_ACTIVE_HEIGHT, }; static const char * const test_pattern_menu[] = { "Disabled", "Color Bars", "Random Data", "Square", "Black Image", }; static const int ov2680_hv_flip_bayer_order[] = { MEDIA_BUS_FMT_SBGGR10_1X10, MEDIA_BUS_FMT_SGRBG10_1X10, MEDIA_BUS_FMT_SGBRG10_1X10, MEDIA_BUS_FMT_SRGGB10_1X10, }; static const struct reg_sequence ov2680_global_setting[] = { /* MIPI PHY, 0x10 -> 0x1c enable bp_c_hs_en_lat and bp_d_hs_en_lat */ {0x3016, 0x1c}, /* R MANUAL set exposure and gain to manual (hw does not do auto) */ {0x3503, 0x03}, /* Analog control register tweaks */ {0x3603, 0x39}, /* Reset value 0x99 */ {0x3604, 0x24}, /* Reset value 0x74 */ {0x3621, 0x37}, /* Reset value 0x44 */ /* Sensor control register tweaks */ {0x3701, 0x64}, /* Reset value 0x61 */ {0x3705, 0x3c}, /* Reset value 0x21 */ {0x370c, 0x50}, /* Reset value 0x10 */ {0x370d, 0xc0}, /* Reset value 0x00 */ {0x3718, 0x88}, /* Reset value 0x80 */ /* PSRAM tweaks */ {0x3781, 0x80}, /* Reset value 0x00 */ {0x3784, 0x0c}, /* Reset value 0x00, based on OV2680_R1A_AM10.ovt */ {0x3789, 0x60}, /* Reset value 0x50 */ /* BLC CTRL00 0x01 -> 0x81 set avg_weight to 8 */ {0x4000, 0x81}, /* Set black level compensation range to 0 - 3 (default 0 - 11) */ {0x4008, 0x00}, {0x4009, 0x03}, /* VFIFO R2 0x00 -> 0x02 set Frame reset enable */ {0x4602, 0x02}, /* MIPI ctrl CLK PREPARE MIN change from 0x26 (38) -> 0x36 (54) */ {0x481f, 0x36}, /* MIPI ctrl CLK LPX P MIN change from 0x32 (50) -> 0x36 (54) */ {0x4825, 0x36}, /* R ISP CTRL2 0x20 -> 0x30, set sof_sel bit */ {0x5002, 0x30}, /* * Window CONTROL 0x00 -> 0x01, enable manual window control, * this is necessary for full size flip and mirror support. */ {0x5708, 0x01}, /* * DPC CTRL0 0x14 -> 0x3e, set enable_tail, enable_3x3_cluster * and enable_general_tail bits based OV2680_R1A_AM10.ovt. */ {0x5780, 0x3e}, /* DPC MORE CONNECTION CASE THRE 0x0c (12) -> 0x02 (2) */ {0x5788, 0x02}, /* DPC GAIN LIST1 0x0f (15) -> 0x08 (8) */ {0x578e, 0x08}, /* DPC GAIN LIST2 0x3f (63) -> 0x0c (12) */ {0x578f, 0x0c}, /* DPC THRE RATIO 0x04 (4) -> 0x00 (0) */ {0x5792, 0x00}, }; static struct ov2680_dev *to_ov2680_dev(struct v4l2_subdev *sd) { return container_of(sd, struct ov2680_dev, sd); } static inline struct v4l2_subdev *ctrl_to_sd(struct v4l2_ctrl *ctrl) { return &container_of(ctrl->handler, struct ov2680_dev, ctrls.handler)->sd; } static void ov2680_power_up(struct ov2680_dev *sensor) { if (!sensor->pwdn_gpio) return; gpiod_set_value(sensor->pwdn_gpio, 0); usleep_range(5000, 10000); } static void ov2680_power_down(struct ov2680_dev *sensor) { if (!sensor->pwdn_gpio) return; gpiod_set_value(sensor->pwdn_gpio, 1); usleep_range(5000, 10000); } static void ov2680_set_bayer_order(struct ov2680_dev *sensor, struct v4l2_mbus_framefmt *fmt) { int hv_flip = 0; if (sensor->ctrls.vflip && sensor->ctrls.vflip->val) hv_flip += 1; if (sensor->ctrls.hflip && sensor->ctrls.hflip->val) hv_flip += 2; fmt->code = ov2680_hv_flip_bayer_order[hv_flip]; } static struct v4l2_mbus_framefmt * __ov2680_get_pad_format(struct ov2680_dev *sensor, struct v4l2_subdev_state *state, unsigned int pad, enum v4l2_subdev_format_whence which) { if (which == V4L2_SUBDEV_FORMAT_TRY) return v4l2_subdev_state_get_format(state, pad); return &sensor->mode.fmt; } static struct v4l2_rect * __ov2680_get_pad_crop(struct ov2680_dev *sensor, struct v4l2_subdev_state *state, unsigned int pad, enum v4l2_subdev_format_whence which) { if (which == V4L2_SUBDEV_FORMAT_TRY) return v4l2_subdev_state_get_crop(state, pad); return &sensor->mode.crop; } static void ov2680_fill_format(struct ov2680_dev *sensor, struct v4l2_mbus_framefmt *fmt, unsigned int width, unsigned int height) { memset(fmt, 0, sizeof(*fmt)); fmt->width = width; fmt->height = height; fmt->field = V4L2_FIELD_NONE; fmt->colorspace = V4L2_COLORSPACE_SRGB; ov2680_set_bayer_order(sensor, fmt); } static void ov2680_calc_mode(struct ov2680_dev *sensor) { int width = sensor->mode.fmt.width; int height = sensor->mode.fmt.height; int orig_width = width; int orig_height = height; if (width <= (sensor->mode.crop.width / 2) && height <= (sensor->mode.crop.height / 2)) { sensor->mode.binning = true; width *= 2; height *= 2; } else { sensor->mode.binning = false; } sensor->mode.h_start = (sensor->mode.crop.left + (sensor->mode.crop.width - width) / 2) & ~1; sensor->mode.v_start = (sensor->mode.crop.top + (sensor->mode.crop.height - height) / 2) & ~1; sensor->mode.h_end = min(sensor->mode.h_start + width - 1, OV2680_NATIVE_WIDTH - 1); sensor->mode.v_end = min(sensor->mode.v_start + height - 1, OV2680_NATIVE_HEIGHT - 1); sensor->mode.h_output_size = orig_width; sensor->mode.v_output_size = orig_height; } static int ov2680_set_mode(struct ov2680_dev *sensor) { u8 sensor_ctrl_0a, inc, fmt1, fmt2; int ret = 0; if (sensor->mode.binning) { sensor_ctrl_0a = 0x23; inc = 0x31; fmt1 = 0xc2; fmt2 = 0x01; } else { sensor_ctrl_0a = 0x21; inc = 0x11; fmt1 = 0xc0; fmt2 = 0x00; } cci_write(sensor->regmap, OV2680_REG_SENSOR_CTRL_0A, sensor_ctrl_0a, &ret); cci_write(sensor->regmap, OV2680_REG_HORIZONTAL_START, sensor->mode.h_start, &ret); cci_write(sensor->regmap, OV2680_REG_VERTICAL_START, sensor->mode.v_start, &ret); cci_write(sensor->regmap, OV2680_REG_HORIZONTAL_END, sensor->mode.h_end, &ret); cci_write(sensor->regmap, OV2680_REG_VERTICAL_END, sensor->mode.v_end, &ret); cci_write(sensor->regmap, OV2680_REG_HORIZONTAL_OUTPUT_SIZE, sensor->mode.h_output_size, &ret); cci_write(sensor->regmap, OV2680_REG_VERTICAL_OUTPUT_SIZE, sensor->mode.v_output_size, &ret); cci_write(sensor->regmap, OV2680_REG_TIMING_HTS, OV2680_PIXELS_PER_LINE, &ret); /* VTS gets set by the vblank ctrl */ cci_write(sensor->regmap, OV2680_REG_ISP_X_WIN, 0, &ret); cci_write(sensor->regmap, OV2680_REG_ISP_Y_WIN, 0, &ret); cci_write(sensor->regmap, OV2680_REG_X_INC, inc, &ret); cci_write(sensor->regmap, OV2680_REG_Y_INC, inc, &ret); cci_write(sensor->regmap, OV2680_REG_X_WIN, sensor->mode.h_output_size, &ret); cci_write(sensor->regmap, OV2680_REG_Y_WIN, sensor->mode.v_output_size, &ret); cci_write(sensor->regmap, OV2680_REG_FORMAT1, fmt1, &ret); cci_write(sensor->regmap, OV2680_REG_FORMAT2, fmt2, &ret); return ret; } static int ov2680_set_vflip(struct ov2680_dev *sensor, s32 val) { int ret; if (sensor->is_streaming) return -EBUSY; ret = cci_update_bits(sensor->regmap, OV2680_REG_FORMAT1, BIT(2), val ? BIT(2) : 0, NULL); if (ret < 0) return ret; ov2680_set_bayer_order(sensor, &sensor->mode.fmt); return 0; } static int ov2680_set_hflip(struct ov2680_dev *sensor, s32 val) { int ret; if (sensor->is_streaming) return -EBUSY; ret = cci_update_bits(sensor->regmap, OV2680_REG_FORMAT2, BIT(2), val ? BIT(2) : 0, NULL); if (ret < 0) return ret; ov2680_set_bayer_order(sensor, &sensor->mode.fmt); return 0; } static int ov2680_test_pattern_set(struct ov2680_dev *sensor, int value) { int ret = 0; if (!value) return cci_update_bits(sensor->regmap, OV2680_REG_ISP_CTRL00, BIT(7), 0, NULL); cci_update_bits(sensor->regmap, OV2680_REG_ISP_CTRL00, 0x03, value - 1, &ret); cci_update_bits(sensor->regmap, OV2680_REG_ISP_CTRL00, BIT(7), BIT(7), &ret); return ret; } static int ov2680_gain_set(struct ov2680_dev *sensor, u32 gain) { return cci_write(sensor->regmap, OV2680_REG_GAIN_PK, gain, NULL); } static int ov2680_exposure_set(struct ov2680_dev *sensor, u32 exp) { return cci_write(sensor->regmap, OV2680_REG_EXPOSURE_PK, exp << 4, NULL); } static int ov2680_exposure_update_range(struct ov2680_dev *sensor) { int exp_max = sensor->mode.fmt.height + sensor->ctrls.vblank->val - OV2680_INTEGRATION_TIME_MARGIN; return __v4l2_ctrl_modify_range(sensor->ctrls.exposure, 0, exp_max, 1, exp_max); } static int ov2680_stream_enable(struct ov2680_dev *sensor) { int ret; ret = cci_write(sensor->regmap, OV2680_REG_PLL_MULTIPLIER, sensor->pll_mult, NULL); if (ret < 0) return ret; ret = regmap_multi_reg_write(sensor->regmap, ov2680_global_setting, ARRAY_SIZE(ov2680_global_setting)); if (ret < 0) return ret; ret = ov2680_set_mode(sensor); if (ret < 0) return ret; /* Restore value of all ctrls */ ret = __v4l2_ctrl_handler_setup(&sensor->ctrls.handler); if (ret < 0) return ret; return cci_write(sensor->regmap, OV2680_REG_STREAM_CTRL, 1, NULL); } static int ov2680_stream_disable(struct ov2680_dev *sensor) { return cci_write(sensor->regmap, OV2680_REG_STREAM_CTRL, 0, NULL); } static int ov2680_power_off(struct ov2680_dev *sensor) { clk_disable_unprepare(sensor->xvclk); ov2680_power_down(sensor); regulator_bulk_disable(OV2680_NUM_SUPPLIES, sensor->supplies); return 0; } static int ov2680_power_on(struct ov2680_dev *sensor) { int ret; ret = regulator_bulk_enable(OV2680_NUM_SUPPLIES, sensor->supplies); if (ret < 0) { dev_err(sensor->dev, "failed to enable regulators: %d\n", ret); return ret; } if (!sensor->pwdn_gpio) { ret = cci_write(sensor->regmap, OV2680_REG_SOFT_RESET, 0x01, NULL); if (ret != 0) { dev_err(sensor->dev, "sensor soft reset failed\n"); goto err_disable_regulators; } usleep_range(1000, 2000); } else { ov2680_power_down(sensor); ov2680_power_up(sensor); } ret = clk_prepare_enable(sensor->xvclk); if (ret < 0) goto err_disable_regulators; return 0; err_disable_regulators: regulator_bulk_disable(OV2680_NUM_SUPPLIES, sensor->supplies); return ret; } static int ov2680_get_frame_interval(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_interval *fi) { struct ov2680_dev *sensor = to_ov2680_dev(sd); /* * FIXME: Implement support for V4L2_SUBDEV_FORMAT_TRY, using the V4L2 * subdev active state API. */ if (fi->which != V4L2_SUBDEV_FORMAT_ACTIVE) return -EINVAL; mutex_lock(&sensor->lock); fi->interval = sensor->mode.frame_interval; mutex_unlock(&sensor->lock); return 0; } static int ov2680_s_stream(struct v4l2_subdev *sd, int enable) { struct ov2680_dev *sensor = to_ov2680_dev(sd); int ret = 0; mutex_lock(&sensor->lock); if (sensor->is_streaming == !!enable) goto unlock; if (enable) { ret = pm_runtime_resume_and_get(sensor->sd.dev); if (ret < 0) goto unlock; ret = ov2680_stream_enable(sensor); if (ret < 0) { pm_runtime_put(sensor->sd.dev); goto unlock; } } else { ret = ov2680_stream_disable(sensor); pm_runtime_put(sensor->sd.dev); } sensor->is_streaming = !!enable; unlock: mutex_unlock(&sensor->lock); return ret; } static int ov2680_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) { struct ov2680_dev *sensor = to_ov2680_dev(sd); if (code->index != 0) return -EINVAL; code->code = sensor->mode.fmt.code; return 0; } static int ov2680_get_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *format) { struct ov2680_dev *sensor = to_ov2680_dev(sd); struct v4l2_mbus_framefmt *fmt; fmt = __ov2680_get_pad_format(sensor, sd_state, format->pad, format->which); mutex_lock(&sensor->lock); format->format = *fmt; mutex_unlock(&sensor->lock); return 0; } static int ov2680_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *format) { struct ov2680_dev *sensor = to_ov2680_dev(sd); struct v4l2_mbus_framefmt *try_fmt; const struct v4l2_rect *crop; unsigned int width, height; int def, max, ret = 0; crop = __ov2680_get_pad_crop(sensor, sd_state, format->pad, format->which); /* Limit set_fmt max size to crop width / height */ width = clamp_val(ALIGN(format->format.width, 2), OV2680_MIN_CROP_WIDTH, crop->width); height = clamp_val(ALIGN(format->format.height, 2), OV2680_MIN_CROP_HEIGHT, crop->height); ov2680_fill_format(sensor, &format->format, width, height); if (format->which == V4L2_SUBDEV_FORMAT_TRY) { try_fmt = v4l2_subdev_state_get_format(sd_state, 0); *try_fmt = format->format; return 0; } mutex_lock(&sensor->lock); if (sensor->is_streaming) { ret = -EBUSY; goto unlock; } sensor->mode.fmt = format->format; ov2680_calc_mode(sensor); /* vblank range is height dependent adjust and reset to default */ max = OV2680_MAX_VBLANK - height; def = OV2680_LINES_PER_FRAME_30FPS - height; ret = __v4l2_ctrl_modify_range(sensor->ctrls.vblank, OV2680_MIN_VBLANK, max, 1, def); if (ret) goto unlock; ret = __v4l2_ctrl_s_ctrl(sensor->ctrls.vblank, def); if (ret) goto unlock; /* exposure range depends on vts which may have changed */ ret = ov2680_exposure_update_range(sensor); if (ret) goto unlock; /* adjust hblank value for new width */ def = OV2680_PIXELS_PER_LINE - width; ret = __v4l2_ctrl_modify_range(sensor->ctrls.hblank, def, def, 1, def); unlock: mutex_unlock(&sensor->lock); return ret; } static int ov2680_get_selection(struct v4l2_subdev *sd, struct v4l2_subdev_state *state, struct v4l2_subdev_selection *sel) { struct ov2680_dev *sensor = to_ov2680_dev(sd); switch (sel->target) { case V4L2_SEL_TGT_CROP: mutex_lock(&sensor->lock); sel->r = *__ov2680_get_pad_crop(sensor, state, sel->pad, sel->which); mutex_unlock(&sensor->lock); break; case V4L2_SEL_TGT_NATIVE_SIZE: case V4L2_SEL_TGT_CROP_BOUNDS: sel->r.top = 0; sel->r.left = 0; sel->r.width = OV2680_NATIVE_WIDTH; sel->r.height = OV2680_NATIVE_HEIGHT; break; case V4L2_SEL_TGT_CROP_DEFAULT: sel->r = ov2680_default_crop; break; default: return -EINVAL; } return 0; } static int ov2680_set_selection(struct v4l2_subdev *sd, struct v4l2_subdev_state *state, struct v4l2_subdev_selection *sel) { struct ov2680_dev *sensor = to_ov2680_dev(sd); struct v4l2_mbus_framefmt *format; struct v4l2_rect *crop; struct v4l2_rect rect; if (sel->target != V4L2_SEL_TGT_CROP) return -EINVAL; /* * Clamp the boundaries of the crop rectangle to the size of the sensor * pixel array. Align to multiples of 2 to ensure Bayer pattern isn't * disrupted. */ rect.left = clamp_val(ALIGN(sel->r.left, 2), OV2680_NATIVE_START_LEFT, OV2680_NATIVE_WIDTH); rect.top = clamp_val(ALIGN(sel->r.top, 2), OV2680_NATIVE_START_TOP, OV2680_NATIVE_HEIGHT); rect.width = clamp_val(ALIGN(sel->r.width, 2), OV2680_MIN_CROP_WIDTH, OV2680_NATIVE_WIDTH); rect.height = clamp_val(ALIGN(sel->r.height, 2), OV2680_MIN_CROP_HEIGHT, OV2680_NATIVE_HEIGHT); /* Make sure the crop rectangle isn't outside the bounds of the array */ rect.width = min_t(unsigned int, rect.width, OV2680_NATIVE_WIDTH - rect.left); rect.height = min_t(unsigned int, rect.height, OV2680_NATIVE_HEIGHT - rect.top); crop = __ov2680_get_pad_crop(sensor, state, sel->pad, sel->which); mutex_lock(&sensor->lock); if (rect.width != crop->width || rect.height != crop->height) { /* * Reset the output image size if the crop rectangle size has * been modified. */ format = __ov2680_get_pad_format(sensor, state, sel->pad, sel->which); format->width = rect.width; format->height = rect.height; } *crop = rect; mutex_unlock(&sensor->lock); sel->r = rect; return 0; } static int ov2680_init_state(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state) { struct ov2680_dev *sensor = to_ov2680_dev(sd); *v4l2_subdev_state_get_crop(sd_state, 0) = ov2680_default_crop; ov2680_fill_format(sensor, v4l2_subdev_state_get_format(sd_state, 0), OV2680_DEFAULT_WIDTH, OV2680_DEFAULT_HEIGHT); return 0; } static int ov2680_enum_frame_size(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_size_enum *fse) { struct ov2680_dev *sensor = to_ov2680_dev(sd); struct v4l2_rect *crop; if (fse->index >= OV2680_FRAME_SIZES) return -EINVAL; crop = __ov2680_get_pad_crop(sensor, sd_state, fse->pad, fse->which); if (!crop) return -EINVAL; fse->min_width = crop->width / (fse->index + 1); fse->min_height = crop->height / (fse->index + 1); fse->max_width = fse->min_width; fse->max_height = fse->min_height; return 0; } static bool ov2680_valid_frame_size(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_interval_enum *fie) { struct v4l2_subdev_frame_size_enum fse = { .pad = fie->pad, .which = fie->which, }; int i; for (i = 0; i < OV2680_FRAME_SIZES; i++) { fse.index = i; if (ov2680_enum_frame_size(sd, sd_state, &fse)) return false; if (fie->width == fse.min_width && fie->height == fse.min_height) return true; } return false; } static int ov2680_enum_frame_interval(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_frame_interval_enum *fie) { struct ov2680_dev *sensor = to_ov2680_dev(sd); /* Only 1 framerate */ if (fie->index || !ov2680_valid_frame_size(sd, sd_state, fie)) return -EINVAL; fie->interval = sensor->mode.frame_interval; return 0; } static int ov2680_s_ctrl(struct v4l2_ctrl *ctrl) { struct v4l2_subdev *sd = ctrl_to_sd(ctrl); struct ov2680_dev *sensor = to_ov2680_dev(sd); int ret; /* Update exposure range on vblank changes */ if (ctrl->id == V4L2_CID_VBLANK) { ret = ov2680_exposure_update_range(sensor); if (ret) return ret; } /* Only apply changes to the controls if the device is powered up */ if (!pm_runtime_get_if_in_use(sensor->sd.dev)) { ov2680_set_bayer_order(sensor, &sensor->mode.fmt); return 0; } switch (ctrl->id) { case V4L2_CID_ANALOGUE_GAIN: ret = ov2680_gain_set(sensor, ctrl->val); break; case V4L2_CID_EXPOSURE: ret = ov2680_exposure_set(sensor, ctrl->val); break; case V4L2_CID_VFLIP: ret = ov2680_set_vflip(sensor, ctrl->val); break; case V4L2_CID_HFLIP: ret = ov2680_set_hflip(sensor, ctrl->val); break; case V4L2_CID_TEST_PATTERN: ret = ov2680_test_pattern_set(sensor, ctrl->val); break; case V4L2_CID_VBLANK: ret = cci_write(sensor->regmap, OV2680_REG_TIMING_VTS, sensor->mode.fmt.height + ctrl->val, NULL); break; default: ret = -EINVAL; break; } pm_runtime_put(sensor->sd.dev); return ret; } static const struct v4l2_ctrl_ops ov2680_ctrl_ops = { .s_ctrl = ov2680_s_ctrl, }; static const struct v4l2_subdev_video_ops ov2680_video_ops = { .s_stream = ov2680_s_stream, }; static const struct v4l2_subdev_pad_ops ov2680_pad_ops = { .enum_mbus_code = ov2680_enum_mbus_code, .enum_frame_size = ov2680_enum_frame_size, .enum_frame_interval = ov2680_enum_frame_interval, .get_fmt = ov2680_get_fmt, .set_fmt = ov2680_set_fmt, .get_selection = ov2680_get_selection, .set_selection = ov2680_set_selection, .get_frame_interval = ov2680_get_frame_interval, .set_frame_interval = ov2680_get_frame_interval, }; static const struct v4l2_subdev_ops ov2680_subdev_ops = { .video = &ov2680_video_ops, .pad = &ov2680_pad_ops, }; static const struct v4l2_subdev_internal_ops ov2680_internal_ops = { .init_state = ov2680_init_state, }; static int ov2680_mode_init(struct ov2680_dev *sensor) { /* set initial mode */ sensor->mode.crop = ov2680_default_crop; ov2680_fill_format(sensor, &sensor->mode.fmt, OV2680_DEFAULT_WIDTH, OV2680_DEFAULT_HEIGHT); ov2680_calc_mode(sensor); sensor->mode.frame_interval.denominator = OV2680_FRAME_RATE; sensor->mode.frame_interval.numerator = 1; return 0; } static int ov2680_v4l2_register(struct ov2680_dev *sensor) { struct i2c_client *client = to_i2c_client(sensor->dev); const struct v4l2_ctrl_ops *ops = &ov2680_ctrl_ops; struct ov2680_ctrls *ctrls = &sensor->ctrls; struct v4l2_ctrl_handler *hdl = &ctrls->handler; struct v4l2_fwnode_device_properties props; int def, max, ret = 0; v4l2_i2c_subdev_init(&sensor->sd, client, &ov2680_subdev_ops); sensor->sd.internal_ops = &ov2680_internal_ops; sensor->sd.flags = V4L2_SUBDEV_FL_HAS_DEVNODE; sensor->pad.flags = MEDIA_PAD_FL_SOURCE; sensor->sd.entity.function = MEDIA_ENT_F_CAM_SENSOR; ret = media_entity_pads_init(&sensor->sd.entity, 1, &sensor->pad); if (ret < 0) return ret; v4l2_ctrl_handler_init(hdl, 11); hdl->lock = &sensor->lock; ctrls->vflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VFLIP, 0, 1, 1, 0); ctrls->hflip = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HFLIP, 0, 1, 1, 0); ctrls->test_pattern = v4l2_ctrl_new_std_menu_items(hdl, &ov2680_ctrl_ops, V4L2_CID_TEST_PATTERN, ARRAY_SIZE(test_pattern_menu) - 1, 0, 0, test_pattern_menu); max = OV2680_LINES_PER_FRAME_30FPS - OV2680_INTEGRATION_TIME_MARGIN; ctrls->exposure = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_EXPOSURE, 0, max, 1, max); ctrls->gain = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_ANALOGUE_GAIN, 0, 1023, 1, 250); ctrls->link_freq = v4l2_ctrl_new_int_menu(hdl, NULL, V4L2_CID_LINK_FREQ, 0, 0, sensor->link_freq); ctrls->pixel_rate = v4l2_ctrl_new_std(hdl, NULL, V4L2_CID_PIXEL_RATE, 0, sensor->pixel_rate, 1, sensor->pixel_rate); max = OV2680_MAX_VBLANK - OV2680_DEFAULT_HEIGHT; def = OV2680_LINES_PER_FRAME_30FPS - OV2680_DEFAULT_HEIGHT; ctrls->vblank = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_VBLANK, OV2680_MIN_VBLANK, max, 1, def); def = OV2680_PIXELS_PER_LINE - OV2680_DEFAULT_WIDTH; ctrls->hblank = v4l2_ctrl_new_std(hdl, ops, V4L2_CID_HBLANK, def, def, 1, def); ret = v4l2_fwnode_device_parse(sensor->dev, &props); if (ret) goto cleanup_entity; v4l2_ctrl_new_fwnode_properties(hdl, ops, &props); if (hdl->error) { ret = hdl->error; goto cleanup_entity; } ctrls->vflip->flags |= V4L2_CTRL_FLAG_MODIFY_LAYOUT; ctrls->hflip->flags |= V4L2_CTRL_FLAG_MODIFY_LAYOUT; ctrls->link_freq->flags |= V4L2_CTRL_FLAG_READ_ONLY; ctrls->hblank->flags |= V4L2_CTRL_FLAG_READ_ONLY; sensor->sd.ctrl_handler = hdl; ret = v4l2_async_register_subdev(&sensor->sd); if (ret < 0) goto cleanup_entity; return 0; cleanup_entity: media_entity_cleanup(&sensor->sd.entity); v4l2_ctrl_handler_free(hdl); return ret; } static int ov2680_get_regulators(struct ov2680_dev *sensor) { int i; for (i = 0; i < OV2680_NUM_SUPPLIES; i++) sensor->supplies[i].supply = ov2680_supply_name[i]; return devm_regulator_bulk_get(sensor->dev, OV2680_NUM_SUPPLIES, sensor->supplies); } static int ov2680_check_id(struct ov2680_dev *sensor) { u64 chip_id, rev; int ret = 0; cci_read(sensor->regmap, OV2680_REG_CHIP_ID, &chip_id, &ret); cci_read(sensor->regmap, OV2680_REG_SC_CMMN_SUB_ID, &rev, &ret); if (ret < 0) { dev_err(sensor->dev, "failed to read chip id\n"); return ret; } if (chip_id != OV2680_CHIP_ID) { dev_err(sensor->dev, "chip id: 0x%04llx does not match expected 0x%04x\n", chip_id, OV2680_CHIP_ID); return -ENODEV; } dev_info(sensor->dev, "sensor_revision id = 0x%llx, rev= %lld\n", chip_id, rev & 0x0f); return 0; } static int ov2680_parse_dt(struct ov2680_dev *sensor) { struct v4l2_fwnode_endpoint bus_cfg = { .bus_type = V4L2_MBUS_CSI2_DPHY, }; struct device *dev = sensor->dev; struct fwnode_handle *ep_fwnode; struct gpio_desc *gpio; unsigned int rate = 0; int i, ret; /* * Sometimes the fwnode graph is initialized by the bridge driver. * Bridge drivers doing this may also add GPIO mappings, wait for this. */ ep_fwnode = fwnode_graph_get_next_endpoint(dev_fwnode(dev), NULL); if (!ep_fwnode) return dev_err_probe(dev, -EPROBE_DEFER, "waiting for fwnode graph endpoint\n"); ret = v4l2_fwnode_endpoint_alloc_parse(ep_fwnode, &bus_cfg); fwnode_handle_put(ep_fwnode); if (ret) return ret; /* * The pin we want is named XSHUTDN in the datasheet. Linux sensor * drivers have standardized on using "powerdown" as con-id name * for powerdown or shutdown pins. Older DTB files use "reset", * so fallback to that if there is no "powerdown" pin. */ gpio = devm_gpiod_get_optional(dev, "powerdown", GPIOD_OUT_HIGH); if (!gpio) gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); ret = PTR_ERR_OR_ZERO(gpio); if (ret < 0) { dev_dbg(dev, "error while getting reset gpio: %d\n", ret); goto out_free_bus_cfg; } sensor->pwdn_gpio = gpio; sensor->xvclk = devm_clk_get_optional(dev, "xvclk"); if (IS_ERR(sensor->xvclk)) { ret = dev_err_probe(dev, PTR_ERR(sensor->xvclk), "xvclk clock missing or invalid\n"); goto out_free_bus_cfg; } /* * We could have either a 24MHz or 19.2MHz clock rate from either DT or * ACPI... but we also need to support the weird IPU3 case which will * have an external clock AND a clock-frequency property. Check for the * clock-frequency property and if found, set that rate if we managed * to acquire a clock. This should cover the ACPI case. If the system * uses devicetree then the configured rate should already be set, so * we can just read it. */ ret = fwnode_property_read_u32(dev_fwnode(dev), "clock-frequency", &rate); if (ret && !sensor->xvclk) { dev_err_probe(dev, ret, "invalid clock config\n"); goto out_free_bus_cfg; } if (!ret && sensor->xvclk) { ret = clk_set_rate(sensor->xvclk, rate); if (ret) { dev_err_probe(dev, ret, "failed to set clock rate\n"); goto out_free_bus_cfg; } } sensor->xvclk_freq = rate ?: clk_get_rate(sensor->xvclk); for (i = 0; i < ARRAY_SIZE(ov2680_xvclk_freqs); i++) { if (sensor->xvclk_freq == ov2680_xvclk_freqs[i]) break; } if (i == ARRAY_SIZE(ov2680_xvclk_freqs)) { ret = dev_err_probe(dev, -EINVAL, "unsupported xvclk frequency %d Hz\n", sensor->xvclk_freq); goto out_free_bus_cfg; } sensor->pll_mult = ov2680_pll_multipliers[i]; sensor->link_freq[0] = sensor->xvclk_freq / OV2680_PLL_PREDIV0 / OV2680_PLL_PREDIV * sensor->pll_mult; /* CSI-2 is double data rate, bus-format is 10 bpp */ sensor->pixel_rate = sensor->link_freq[0] * 2; do_div(sensor->pixel_rate, 10); if (!bus_cfg.nr_of_link_frequencies) { dev_warn(dev, "Consider passing 'link-frequencies' in DT\n"); goto skip_link_freq_validation; } for (i = 0; i < bus_cfg.nr_of_link_frequencies; i++) if (bus_cfg.link_frequencies[i] == sensor->link_freq[0]) break; if (bus_cfg.nr_of_link_frequencies == i) { ret = dev_err_probe(dev, -EINVAL, "supported link freq %lld not found\n", sensor->link_freq[0]); goto out_free_bus_cfg; } skip_link_freq_validation: ret = 0; out_free_bus_cfg: v4l2_fwnode_endpoint_free(&bus_cfg); return ret; } static int ov2680_probe(struct i2c_client *client) { struct device *dev = &client->dev; struct ov2680_dev *sensor; int ret; sensor = devm_kzalloc(dev, sizeof(*sensor), GFP_KERNEL); if (!sensor) return -ENOMEM; sensor->dev = &client->dev; sensor->regmap = devm_cci_regmap_init_i2c(client, 16); if (IS_ERR(sensor->regmap)) return PTR_ERR(sensor->regmap); ret = ov2680_parse_dt(sensor); if (ret < 0) return ret; ret = ov2680_mode_init(sensor); if (ret < 0) return ret; ret = ov2680_get_regulators(sensor); if (ret < 0) { dev_err(dev, "failed to get regulators\n"); return ret; } mutex_init(&sensor->lock); /* * Power up and verify the chip now, so that if runtime pm is * disabled the chip is left on and streaming will work. */ ret = ov2680_power_on(sensor); if (ret < 0) goto lock_destroy; ret = ov2680_check_id(sensor); if (ret < 0) goto err_powerdown; pm_runtime_set_active(&client->dev); pm_runtime_get_noresume(&client->dev); pm_runtime_enable(&client->dev); ret = ov2680_v4l2_register(sensor); if (ret < 0) goto err_pm_runtime; pm_runtime_set_autosuspend_delay(&client->dev, 1000); pm_runtime_use_autosuspend(&client->dev); pm_runtime_put_autosuspend(&client->dev); return 0; err_pm_runtime: pm_runtime_disable(&client->dev); pm_runtime_put_noidle(&client->dev); err_powerdown: ov2680_power_off(sensor); lock_destroy: dev_err(dev, "ov2680 init fail: %d\n", ret); mutex_destroy(&sensor->lock); return ret; } static void ov2680_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct ov2680_dev *sensor = to_ov2680_dev(sd); v4l2_async_unregister_subdev(&sensor->sd); mutex_destroy(&sensor->lock); media_entity_cleanup(&sensor->sd.entity); v4l2_ctrl_handler_free(&sensor->ctrls.handler); /* * Disable runtime PM. In case runtime PM is disabled in the kernel, * make sure to turn power off manually. */ pm_runtime_disable(&client->dev); if (!pm_runtime_status_suspended(&client->dev)) ov2680_power_off(sensor); pm_runtime_set_suspended(&client->dev); } static int ov2680_suspend(struct device *dev) { struct v4l2_subdev *sd = dev_get_drvdata(dev); struct ov2680_dev *sensor = to_ov2680_dev(sd); if (sensor->is_streaming) ov2680_stream_disable(sensor); return ov2680_power_off(sensor); } static int ov2680_resume(struct device *dev) { struct v4l2_subdev *sd = dev_get_drvdata(dev); struct ov2680_dev *sensor = to_ov2680_dev(sd); int ret; ret = ov2680_power_on(sensor); if (ret < 0) goto stream_disable; if (sensor->is_streaming) { ret = ov2680_stream_enable(sensor); if (ret < 0) goto stream_disable; } return 0; stream_disable: ov2680_stream_disable(sensor); sensor->is_streaming = false; return ret; } static DEFINE_RUNTIME_DEV_PM_OPS(ov2680_pm_ops, ov2680_suspend, ov2680_resume, NULL); static const struct of_device_id ov2680_dt_ids[] = { { .compatible = "ovti,ov2680" }, { /* sentinel */ }, }; MODULE_DEVICE_TABLE(of, ov2680_dt_ids); static const struct acpi_device_id ov2680_acpi_ids[] = { { "OVTI2680" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(acpi, ov2680_acpi_ids); static struct i2c_driver ov2680_i2c_driver = { .driver = { .name = "ov2680", .pm = pm_sleep_ptr(&ov2680_pm_ops), .of_match_table = ov2680_dt_ids, .acpi_match_table = ov2680_acpi_ids, }, .probe = ov2680_probe, .remove = ov2680_remove, }; module_i2c_driver(ov2680_i2c_driver); MODULE_AUTHOR("Rui Miguel Silva <rui.silva@linaro.org>"); MODULE_DESCRIPTION("OV2680 CMOS Image Sensor driver"); MODULE_LICENSE("GPL v2");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1