Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mats Randgaard | 8700 | 78.31% | 6 | 9.68% |
Hans Verkuil | 1016 | 9.14% | 9 | 14.52% |
Philipp Zabel | 838 | 7.54% | 10 | 16.13% |
Dave Stevenson | 209 | 1.88% | 2 | 3.23% |
Arnd Bergmann | 94 | 0.85% | 1 | 1.61% |
Sakari Ailus | 38 | 0.34% | 3 | 4.84% |
Javier Martinez Canillas | 38 | 0.34% | 1 | 1.61% |
Mauro Carvalho Chehab | 23 | 0.21% | 3 | 4.84% |
Kees Cook | 20 | 0.18% | 2 | 3.23% |
Paweł Anikiel | 19 | 0.17% | 1 | 1.61% |
Arvind Yadav | 19 | 0.17% | 2 | 3.23% |
Laurent Pinchart | 16 | 0.14% | 4 | 6.45% |
Tom Rix | 12 | 0.11% | 2 | 3.23% |
Uwe Kleine-König | 11 | 0.10% | 4 | 6.45% |
Alexey Khoroshilov | 10 | 0.09% | 1 | 1.61% |
Jacopo Mondi | 10 | 0.09% | 1 | 1.61% |
Alexander Stein | 8 | 0.07% | 2 | 3.23% |
Tomi Valkeinen | 7 | 0.06% | 1 | 1.61% |
Ville Syrjälä | 5 | 0.05% | 1 | 1.61% |
Kuninori Morimoto | 5 | 0.05% | 1 | 1.61% |
Yang Yingliang | 5 | 0.05% | 2 | 3.23% |
Zhen Lei | 5 | 0.05% | 1 | 1.61% |
Bhaktipriya Shridhar | 1 | 0.01% | 1 | 1.61% |
Jacob Chen | 1 | 0.01% | 1 | 1.61% |
Total | 11110 | 62 |
// SPDX-License-Identifier: GPL-2.0-only /* * tc358743 - Toshiba HDMI to CSI-2 bridge * * Copyright 2015 Cisco Systems, Inc. and/or its affiliates. All rights * reserved. */ /* * References (c = chapter, p = page): * REF_01 - Toshiba, TC358743XBG (H2C), Functional Specification, Rev 0.60 * REF_02 - Toshiba, TC358743XBG_HDMI-CSI_Tv11p_nm.xls */ #include <linux/kernel.h> #include <linux/module.h> #include <linux/slab.h> #include <linux/i2c.h> #include <linux/clk.h> #include <linux/delay.h> #include <linux/gpio/consumer.h> #include <linux/interrupt.h> #include <linux/timer.h> #include <linux/of_graph.h> #include <linux/videodev2.h> #include <linux/workqueue.h> #include <linux/v4l2-dv-timings.h> #include <linux/hdmi.h> #include <media/cec.h> #include <media/v4l2-dv-timings.h> #include <media/v4l2-device.h> #include <media/v4l2-ctrls.h> #include <media/v4l2-event.h> #include <media/v4l2-fwnode.h> #include <media/i2c/tc358743.h> #include "tc358743_regs.h" static int debug; module_param(debug, int, 0644); MODULE_PARM_DESC(debug, "debug level (0-3)"); MODULE_DESCRIPTION("Toshiba TC358743 HDMI to CSI-2 bridge driver"); MODULE_AUTHOR("Ramakrishnan Muthukrishnan <ram@rkrishnan.org>"); MODULE_AUTHOR("Mikhail Khelik <mkhelik@cisco.com>"); MODULE_AUTHOR("Mats Randgaard <matrandg@cisco.com>"); MODULE_LICENSE("GPL"); #define EDID_NUM_BLOCKS_MAX 8 #define EDID_BLOCK_SIZE 128 #define I2C_MAX_XFER_SIZE (EDID_BLOCK_SIZE + 2) #define POLL_INTERVAL_CEC_MS 10 #define POLL_INTERVAL_MS 1000 static const struct v4l2_dv_timings_cap tc358743_timings_cap = { .type = V4L2_DV_BT_656_1120, /* keep this initialization for compatibility with GCC < 4.4.6 */ .reserved = { 0 }, /* Pixel clock from REF_01 p. 20. Min/max height/width are unknown */ V4L2_INIT_BT_TIMINGS(640, 1920, 350, 1200, 13000000, 165000000, V4L2_DV_BT_STD_CEA861 | V4L2_DV_BT_STD_DMT | V4L2_DV_BT_STD_GTF | V4L2_DV_BT_STD_CVT, V4L2_DV_BT_CAP_PROGRESSIVE | V4L2_DV_BT_CAP_REDUCED_BLANKING | V4L2_DV_BT_CAP_CUSTOM) }; struct tc358743_state { struct tc358743_platform_data pdata; struct v4l2_mbus_config_mipi_csi2 bus; struct v4l2_subdev sd; struct media_pad pad; struct v4l2_ctrl_handler hdl; struct i2c_client *i2c_client; /* CONFCTL is modified in ops and tc358743_hdmi_sys_int_handler */ struct mutex confctl_mutex; /* controls */ struct v4l2_ctrl *detect_tx_5v_ctrl; struct v4l2_ctrl *audio_sampling_rate_ctrl; struct v4l2_ctrl *audio_present_ctrl; struct delayed_work delayed_work_enable_hotplug; struct timer_list timer; struct work_struct work_i2c_poll; /* edid */ u8 edid_blocks_written; struct v4l2_dv_timings timings; u32 mbus_fmt_code; u8 csi_lanes_in_use; struct gpio_desc *reset_gpio; struct cec_adapter *cec_adap; }; static void tc358743_enable_interrupts(struct v4l2_subdev *sd, bool cable_connected); static int tc358743_s_ctrl_detect_tx_5v(struct v4l2_subdev *sd); static inline struct tc358743_state *to_state(struct v4l2_subdev *sd) { return container_of(sd, struct tc358743_state, sd); } /* --------------- I2C --------------- */ static void i2c_rd(struct v4l2_subdev *sd, u16 reg, u8 *values, u32 n) { struct tc358743_state *state = to_state(sd); struct i2c_client *client = state->i2c_client; int err; u8 buf[2] = { reg >> 8, reg & 0xff }; struct i2c_msg msgs[] = { { .addr = client->addr, .flags = 0, .len = 2, .buf = buf, }, { .addr = client->addr, .flags = I2C_M_RD, .len = n, .buf = values, }, }; err = i2c_transfer(client->adapter, msgs, ARRAY_SIZE(msgs)); if (err != ARRAY_SIZE(msgs)) { v4l2_err(sd, "%s: reading register 0x%x from 0x%x failed: %d\n", __func__, reg, client->addr, err); } } static void i2c_wr(struct v4l2_subdev *sd, u16 reg, u8 *values, u32 n) { struct tc358743_state *state = to_state(sd); struct i2c_client *client = state->i2c_client; int err, i; struct i2c_msg msg; u8 data[I2C_MAX_XFER_SIZE]; if ((2 + n) > I2C_MAX_XFER_SIZE) { n = I2C_MAX_XFER_SIZE - 2; v4l2_warn(sd, "i2c wr reg=%04x: len=%d is too big!\n", reg, 2 + n); } msg.addr = client->addr; msg.buf = data; msg.len = 2 + n; msg.flags = 0; data[0] = reg >> 8; data[1] = reg & 0xff; for (i = 0; i < n; i++) data[2 + i] = values[i]; err = i2c_transfer(client->adapter, &msg, 1); if (err != 1) { v4l2_err(sd, "%s: writing register 0x%x from 0x%x failed: %d\n", __func__, reg, client->addr, err); return; } if (debug < 3) return; switch (n) { case 1: v4l2_info(sd, "I2C write 0x%04x = 0x%02x", reg, data[2]); break; case 2: v4l2_info(sd, "I2C write 0x%04x = 0x%02x%02x", reg, data[3], data[2]); break; case 4: v4l2_info(sd, "I2C write 0x%04x = 0x%02x%02x%02x%02x", reg, data[5], data[4], data[3], data[2]); break; default: v4l2_info(sd, "I2C write %d bytes from address 0x%04x\n", n, reg); } } static noinline u32 i2c_rdreg(struct v4l2_subdev *sd, u16 reg, u32 n) { __le32 val = 0; i2c_rd(sd, reg, (u8 __force *)&val, n); return le32_to_cpu(val); } static noinline void i2c_wrreg(struct v4l2_subdev *sd, u16 reg, u32 val, u32 n) { __le32 raw = cpu_to_le32(val); i2c_wr(sd, reg, (u8 __force *)&raw, n); } static u8 i2c_rd8(struct v4l2_subdev *sd, u16 reg) { return i2c_rdreg(sd, reg, 1); } static void i2c_wr8(struct v4l2_subdev *sd, u16 reg, u8 val) { i2c_wrreg(sd, reg, val, 1); } static void i2c_wr8_and_or(struct v4l2_subdev *sd, u16 reg, u8 mask, u8 val) { i2c_wrreg(sd, reg, (i2c_rdreg(sd, reg, 1) & mask) | val, 1); } static u16 i2c_rd16(struct v4l2_subdev *sd, u16 reg) { return i2c_rdreg(sd, reg, 2); } static void i2c_wr16(struct v4l2_subdev *sd, u16 reg, u16 val) { i2c_wrreg(sd, reg, val, 2); } static void i2c_wr16_and_or(struct v4l2_subdev *sd, u16 reg, u16 mask, u16 val) { i2c_wrreg(sd, reg, (i2c_rdreg(sd, reg, 2) & mask) | val, 2); } static u32 i2c_rd32(struct v4l2_subdev *sd, u16 reg) { return i2c_rdreg(sd, reg, 4); } static void i2c_wr32(struct v4l2_subdev *sd, u16 reg, u32 val) { i2c_wrreg(sd, reg, val, 4); } /* --------------- STATUS --------------- */ static inline bool is_hdmi(struct v4l2_subdev *sd) { return i2c_rd8(sd, SYS_STATUS) & MASK_S_HDMI; } static inline bool tx_5v_power_present(struct v4l2_subdev *sd) { return i2c_rd8(sd, SYS_STATUS) & MASK_S_DDC5V; } static inline bool no_signal(struct v4l2_subdev *sd) { return !(i2c_rd8(sd, SYS_STATUS) & MASK_S_TMDS); } static inline bool no_sync(struct v4l2_subdev *sd) { return !(i2c_rd8(sd, SYS_STATUS) & MASK_S_SYNC); } static inline bool audio_present(struct v4l2_subdev *sd) { return i2c_rd8(sd, AU_STATUS0) & MASK_S_A_SAMPLE; } static int get_audio_sampling_rate(struct v4l2_subdev *sd) { static const int code_to_rate[] = { 44100, 0, 48000, 32000, 22050, 384000, 24000, 352800, 88200, 768000, 96000, 705600, 176400, 0, 192000, 0 }; /* Register FS_SET is not cleared when the cable is disconnected */ if (no_signal(sd)) return 0; return code_to_rate[i2c_rd8(sd, FS_SET) & MASK_FS]; } /* --------------- TIMINGS --------------- */ static inline unsigned fps(const struct v4l2_bt_timings *t) { if (!V4L2_DV_BT_FRAME_HEIGHT(t) || !V4L2_DV_BT_FRAME_WIDTH(t)) return 0; return DIV_ROUND_CLOSEST((unsigned)t->pixelclock, V4L2_DV_BT_FRAME_HEIGHT(t) * V4L2_DV_BT_FRAME_WIDTH(t)); } static int tc358743_get_detected_timings(struct v4l2_subdev *sd, struct v4l2_dv_timings *timings) { struct v4l2_bt_timings *bt = &timings->bt; unsigned width, height, frame_width, frame_height, frame_interval, fps; memset(timings, 0, sizeof(struct v4l2_dv_timings)); if (no_signal(sd)) { v4l2_dbg(1, debug, sd, "%s: no valid signal\n", __func__); return -ENOLINK; } if (no_sync(sd)) { v4l2_dbg(1, debug, sd, "%s: no sync on signal\n", __func__); return -ENOLCK; } timings->type = V4L2_DV_BT_656_1120; bt->interlaced = i2c_rd8(sd, VI_STATUS1) & MASK_S_V_INTERLACE ? V4L2_DV_INTERLACED : V4L2_DV_PROGRESSIVE; width = ((i2c_rd8(sd, DE_WIDTH_H_HI) & 0x1f) << 8) + i2c_rd8(sd, DE_WIDTH_H_LO); height = ((i2c_rd8(sd, DE_WIDTH_V_HI) & 0x1f) << 8) + i2c_rd8(sd, DE_WIDTH_V_LO); frame_width = ((i2c_rd8(sd, H_SIZE_HI) & 0x1f) << 8) + i2c_rd8(sd, H_SIZE_LO); frame_height = (((i2c_rd8(sd, V_SIZE_HI) & 0x3f) << 8) + i2c_rd8(sd, V_SIZE_LO)) / 2; /* frame interval in milliseconds * 10 * Require SYS_FREQ0 and SYS_FREQ1 are precisely set */ frame_interval = ((i2c_rd8(sd, FV_CNT_HI) & 0x3) << 8) + i2c_rd8(sd, FV_CNT_LO); fps = (frame_interval > 0) ? DIV_ROUND_CLOSEST(10000, frame_interval) : 0; bt->width = width; bt->height = height; bt->vsync = frame_height - height; bt->hsync = frame_width - width; bt->pixelclock = frame_width * frame_height * fps; if (bt->interlaced == V4L2_DV_INTERLACED) { bt->height *= 2; bt->il_vsync = bt->vsync + 1; bt->pixelclock /= 2; } return 0; } /* --------------- HOTPLUG / HDCP / EDID --------------- */ static void tc358743_delayed_work_enable_hotplug(struct work_struct *work) { struct delayed_work *dwork = to_delayed_work(work); struct tc358743_state *state = container_of(dwork, struct tc358743_state, delayed_work_enable_hotplug); struct v4l2_subdev *sd = &state->sd; v4l2_dbg(2, debug, sd, "%s:\n", __func__); i2c_wr8_and_or(sd, HPD_CTL, ~MASK_HPD_OUT0, MASK_HPD_OUT0); } static void tc358743_set_hdmi_hdcp(struct v4l2_subdev *sd, bool enable) { v4l2_dbg(2, debug, sd, "%s: %s\n", __func__, enable ? "enable" : "disable"); if (enable) { i2c_wr8_and_or(sd, HDCP_REG3, ~KEY_RD_CMD, KEY_RD_CMD); i2c_wr8_and_or(sd, HDCP_MODE, ~MASK_MANUAL_AUTHENTICATION, 0); i2c_wr8_and_or(sd, HDCP_REG1, 0xff, MASK_AUTH_UNAUTH_SEL_16_FRAMES | MASK_AUTH_UNAUTH_AUTO); i2c_wr8_and_or(sd, HDCP_REG2, ~MASK_AUTO_P3_RESET, SET_AUTO_P3_RESET_FRAMES(0x0f)); } else { i2c_wr8_and_or(sd, HDCP_MODE, ~MASK_MANUAL_AUTHENTICATION, MASK_MANUAL_AUTHENTICATION); } } static void tc358743_disable_edid(struct v4l2_subdev *sd) { struct tc358743_state *state = to_state(sd); v4l2_dbg(2, debug, sd, "%s:\n", __func__); cancel_delayed_work_sync(&state->delayed_work_enable_hotplug); /* DDC access to EDID is also disabled when hotplug is disabled. See * register DDC_CTL */ i2c_wr8_and_or(sd, HPD_CTL, ~MASK_HPD_OUT0, 0x0); } static void tc358743_enable_edid(struct v4l2_subdev *sd) { struct tc358743_state *state = to_state(sd); if (state->edid_blocks_written == 0) { v4l2_dbg(2, debug, sd, "%s: no EDID -> no hotplug\n", __func__); tc358743_s_ctrl_detect_tx_5v(sd); return; } v4l2_dbg(2, debug, sd, "%s:\n", __func__); /* Enable hotplug after 100 ms. DDC access to EDID is also enabled when * hotplug is enabled. See register DDC_CTL */ schedule_delayed_work(&state->delayed_work_enable_hotplug, HZ / 10); tc358743_enable_interrupts(sd, true); tc358743_s_ctrl_detect_tx_5v(sd); } static void tc358743_erase_bksv(struct v4l2_subdev *sd) { int i; for (i = 0; i < 5; i++) i2c_wr8(sd, BKSV + i, 0); } /* --------------- AVI infoframe --------------- */ static void print_avi_infoframe(struct v4l2_subdev *sd) { struct i2c_client *client = v4l2_get_subdevdata(sd); struct device *dev = &client->dev; union hdmi_infoframe frame; u8 buffer[HDMI_INFOFRAME_SIZE(AVI)]; if (!is_hdmi(sd)) { v4l2_info(sd, "DVI-D signal - AVI infoframe not supported\n"); return; } i2c_rd(sd, PK_AVI_0HEAD, buffer, HDMI_INFOFRAME_SIZE(AVI)); if (hdmi_infoframe_unpack(&frame, buffer, sizeof(buffer)) < 0) { v4l2_err(sd, "%s: unpack of AVI infoframe failed\n", __func__); return; } hdmi_infoframe_log(KERN_INFO, dev, &frame); } /* --------------- CTRLS --------------- */ static int tc358743_s_ctrl_detect_tx_5v(struct v4l2_subdev *sd) { struct tc358743_state *state = to_state(sd); return v4l2_ctrl_s_ctrl(state->detect_tx_5v_ctrl, tx_5v_power_present(sd)); } static int tc358743_s_ctrl_audio_sampling_rate(struct v4l2_subdev *sd) { struct tc358743_state *state = to_state(sd); return v4l2_ctrl_s_ctrl(state->audio_sampling_rate_ctrl, get_audio_sampling_rate(sd)); } static int tc358743_s_ctrl_audio_present(struct v4l2_subdev *sd) { struct tc358743_state *state = to_state(sd); return v4l2_ctrl_s_ctrl(state->audio_present_ctrl, audio_present(sd)); } static int tc358743_update_controls(struct v4l2_subdev *sd) { int ret = 0; ret |= tc358743_s_ctrl_detect_tx_5v(sd); ret |= tc358743_s_ctrl_audio_sampling_rate(sd); ret |= tc358743_s_ctrl_audio_present(sd); return ret; } /* --------------- INIT --------------- */ static void tc358743_reset_phy(struct v4l2_subdev *sd) { v4l2_dbg(1, debug, sd, "%s:\n", __func__); i2c_wr8_and_or(sd, PHY_RST, ~MASK_RESET_CTRL, 0); i2c_wr8_and_or(sd, PHY_RST, ~MASK_RESET_CTRL, MASK_RESET_CTRL); } static void tc358743_reset(struct v4l2_subdev *sd, uint16_t mask) { u16 sysctl = i2c_rd16(sd, SYSCTL); i2c_wr16(sd, SYSCTL, sysctl | mask); i2c_wr16(sd, SYSCTL, sysctl & ~mask); } static inline void tc358743_sleep_mode(struct v4l2_subdev *sd, bool enable) { i2c_wr16_and_or(sd, SYSCTL, ~MASK_SLEEP, enable ? MASK_SLEEP : 0); } static inline void enable_stream(struct v4l2_subdev *sd, bool enable) { struct tc358743_state *state = to_state(sd); v4l2_dbg(3, debug, sd, "%s: %sable\n", __func__, enable ? "en" : "dis"); if (enable) { /* It is critical for CSI receiver to see lane transition * LP11->HS. Set to non-continuous mode to enable clock lane * LP11 state. */ i2c_wr32(sd, TXOPTIONCNTRL, 0); /* Set to continuous mode to trigger LP11->HS transition */ i2c_wr32(sd, TXOPTIONCNTRL, MASK_CONTCLKMODE); /* Unmute video */ i2c_wr8(sd, VI_MUTE, MASK_AUTO_MUTE); } else { /* Mute video so that all data lanes go to LSP11 state. * No data is output to CSI Tx block. */ i2c_wr8(sd, VI_MUTE, MASK_AUTO_MUTE | MASK_VI_MUTE); } mutex_lock(&state->confctl_mutex); i2c_wr16_and_or(sd, CONFCTL, ~(MASK_VBUFEN | MASK_ABUFEN), enable ? (MASK_VBUFEN | MASK_ABUFEN) : 0x0); mutex_unlock(&state->confctl_mutex); } static void tc358743_set_pll(struct v4l2_subdev *sd) { struct tc358743_state *state = to_state(sd); struct tc358743_platform_data *pdata = &state->pdata; u16 pllctl0 = i2c_rd16(sd, PLLCTL0); u16 pllctl1 = i2c_rd16(sd, PLLCTL1); u16 pllctl0_new = SET_PLL_PRD(pdata->pll_prd) | SET_PLL_FBD(pdata->pll_fbd); u32 hsck = (pdata->refclk_hz / pdata->pll_prd) * pdata->pll_fbd; v4l2_dbg(2, debug, sd, "%s:\n", __func__); /* Only rewrite when needed (new value or disabled), since rewriting * triggers another format change event. */ if ((pllctl0 != pllctl0_new) || ((pllctl1 & MASK_PLL_EN) == 0)) { u16 pll_frs; if (hsck > 500000000) pll_frs = 0x0; else if (hsck > 250000000) pll_frs = 0x1; else if (hsck > 125000000) pll_frs = 0x2; else pll_frs = 0x3; v4l2_dbg(1, debug, sd, "%s: updating PLL clock\n", __func__); tc358743_sleep_mode(sd, true); i2c_wr16(sd, PLLCTL0, pllctl0_new); i2c_wr16_and_or(sd, PLLCTL1, ~(MASK_PLL_FRS | MASK_RESETB | MASK_PLL_EN), (SET_PLL_FRS(pll_frs) | MASK_RESETB | MASK_PLL_EN)); udelay(10); /* REF_02, Sheet "Source HDMI" */ i2c_wr16_and_or(sd, PLLCTL1, ~MASK_CKEN, MASK_CKEN); tc358743_sleep_mode(sd, false); } } static void tc358743_set_ref_clk(struct v4l2_subdev *sd) { struct tc358743_state *state = to_state(sd); struct tc358743_platform_data *pdata = &state->pdata; u32 sys_freq; u32 lockdet_ref; u32 cec_freq; u16 fh_min; u16 fh_max; BUG_ON(!(pdata->refclk_hz == 26000000 || pdata->refclk_hz == 27000000 || pdata->refclk_hz == 42000000)); sys_freq = pdata->refclk_hz / 10000; i2c_wr8(sd, SYS_FREQ0, sys_freq & 0x00ff); i2c_wr8(sd, SYS_FREQ1, (sys_freq & 0xff00) >> 8); i2c_wr8_and_or(sd, PHY_CTL0, ~MASK_PHY_SYSCLK_IND, (pdata->refclk_hz == 42000000) ? MASK_PHY_SYSCLK_IND : 0x0); fh_min = pdata->refclk_hz / 100000; i2c_wr8(sd, FH_MIN0, fh_min & 0x00ff); i2c_wr8(sd, FH_MIN1, (fh_min & 0xff00) >> 8); fh_max = (fh_min * 66) / 10; i2c_wr8(sd, FH_MAX0, fh_max & 0x00ff); i2c_wr8(sd, FH_MAX1, (fh_max & 0xff00) >> 8); lockdet_ref = pdata->refclk_hz / 100; i2c_wr8(sd, LOCKDET_REF0, lockdet_ref & 0x0000ff); i2c_wr8(sd, LOCKDET_REF1, (lockdet_ref & 0x00ff00) >> 8); i2c_wr8(sd, LOCKDET_REF2, (lockdet_ref & 0x0f0000) >> 16); i2c_wr8_and_or(sd, NCO_F0_MOD, ~MASK_NCO_F0_MOD, (pdata->refclk_hz == 27000000) ? MASK_NCO_F0_MOD_27MHZ : 0x0); /* * Trial and error suggests that the default register value * of 656 is for a 42 MHz reference clock. Use that to derive * a new value based on the actual reference clock. */ cec_freq = (656 * sys_freq) / 4200; i2c_wr16(sd, CECHCLK, cec_freq); i2c_wr16(sd, CECLCLK, cec_freq); } static void tc358743_set_csi_color_space(struct v4l2_subdev *sd) { struct tc358743_state *state = to_state(sd); switch (state->mbus_fmt_code) { case MEDIA_BUS_FMT_UYVY8_1X16: v4l2_dbg(2, debug, sd, "%s: YCbCr 422 16-bit\n", __func__); i2c_wr8_and_or(sd, VOUT_SET2, ~(MASK_SEL422 | MASK_VOUT_422FIL_100) & 0xff, MASK_SEL422 | MASK_VOUT_422FIL_100); i2c_wr8_and_or(sd, VI_REP, ~MASK_VOUT_COLOR_SEL & 0xff, MASK_VOUT_COLOR_601_YCBCR_LIMITED); mutex_lock(&state->confctl_mutex); i2c_wr16_and_or(sd, CONFCTL, ~MASK_YCBCRFMT, MASK_YCBCRFMT_422_8_BIT); mutex_unlock(&state->confctl_mutex); break; case MEDIA_BUS_FMT_RGB888_1X24: v4l2_dbg(2, debug, sd, "%s: RGB 888 24-bit\n", __func__); i2c_wr8_and_or(sd, VOUT_SET2, ~(MASK_SEL422 | MASK_VOUT_422FIL_100) & 0xff, 0x00); i2c_wr8_and_or(sd, VI_REP, ~MASK_VOUT_COLOR_SEL & 0xff, MASK_VOUT_COLOR_RGB_FULL); mutex_lock(&state->confctl_mutex); i2c_wr16_and_or(sd, CONFCTL, ~MASK_YCBCRFMT, 0); mutex_unlock(&state->confctl_mutex); break; default: v4l2_dbg(2, debug, sd, "%s: Unsupported format code 0x%x\n", __func__, state->mbus_fmt_code); } } static unsigned tc358743_num_csi_lanes_needed(struct v4l2_subdev *sd) { struct tc358743_state *state = to_state(sd); struct v4l2_bt_timings *bt = &state->timings.bt; struct tc358743_platform_data *pdata = &state->pdata; u32 bits_pr_pixel = (state->mbus_fmt_code == MEDIA_BUS_FMT_UYVY8_1X16) ? 16 : 24; u32 bps = bt->width * bt->height * fps(bt) * bits_pr_pixel; u32 bps_pr_lane = (pdata->refclk_hz / pdata->pll_prd) * pdata->pll_fbd; return DIV_ROUND_UP(bps, bps_pr_lane); } static void tc358743_set_csi(struct v4l2_subdev *sd) { struct tc358743_state *state = to_state(sd); struct tc358743_platform_data *pdata = &state->pdata; unsigned lanes = tc358743_num_csi_lanes_needed(sd); v4l2_dbg(3, debug, sd, "%s:\n", __func__); state->csi_lanes_in_use = lanes; tc358743_reset(sd, MASK_CTXRST); if (lanes < 1) i2c_wr32(sd, CLW_CNTRL, MASK_CLW_LANEDISABLE); if (lanes < 1) i2c_wr32(sd, D0W_CNTRL, MASK_D0W_LANEDISABLE); if (lanes < 2) i2c_wr32(sd, D1W_CNTRL, MASK_D1W_LANEDISABLE); if (lanes < 3) i2c_wr32(sd, D2W_CNTRL, MASK_D2W_LANEDISABLE); if (lanes < 4) i2c_wr32(sd, D3W_CNTRL, MASK_D3W_LANEDISABLE); i2c_wr32(sd, LINEINITCNT, pdata->lineinitcnt); i2c_wr32(sd, LPTXTIMECNT, pdata->lptxtimecnt); i2c_wr32(sd, TCLK_HEADERCNT, pdata->tclk_headercnt); i2c_wr32(sd, TCLK_TRAILCNT, pdata->tclk_trailcnt); i2c_wr32(sd, THS_HEADERCNT, pdata->ths_headercnt); i2c_wr32(sd, TWAKEUP, pdata->twakeup); i2c_wr32(sd, TCLK_POSTCNT, pdata->tclk_postcnt); i2c_wr32(sd, THS_TRAILCNT, pdata->ths_trailcnt); i2c_wr32(sd, HSTXVREGCNT, pdata->hstxvregcnt); i2c_wr32(sd, HSTXVREGEN, ((lanes > 0) ? MASK_CLM_HSTXVREGEN : 0x0) | ((lanes > 0) ? MASK_D0M_HSTXVREGEN : 0x0) | ((lanes > 1) ? MASK_D1M_HSTXVREGEN : 0x0) | ((lanes > 2) ? MASK_D2M_HSTXVREGEN : 0x0) | ((lanes > 3) ? MASK_D3M_HSTXVREGEN : 0x0)); i2c_wr32(sd, TXOPTIONCNTRL, (state->bus.flags & V4L2_MBUS_CSI2_NONCONTINUOUS_CLOCK) ? 0 : MASK_CONTCLKMODE); i2c_wr32(sd, STARTCNTRL, MASK_START); i2c_wr32(sd, CSI_START, MASK_STRT); i2c_wr32(sd, CSI_CONFW, MASK_MODE_SET | MASK_ADDRESS_CSI_CONTROL | MASK_CSI_MODE | MASK_TXHSMD | ((lanes == 4) ? MASK_NOL_4 : (lanes == 3) ? MASK_NOL_3 : (lanes == 2) ? MASK_NOL_2 : MASK_NOL_1)); i2c_wr32(sd, CSI_CONFW, MASK_MODE_SET | MASK_ADDRESS_CSI_ERR_INTENA | MASK_TXBRK | MASK_QUNK | MASK_WCER | MASK_INER); i2c_wr32(sd, CSI_CONFW, MASK_MODE_CLEAR | MASK_ADDRESS_CSI_ERR_HALT | MASK_TXBRK | MASK_QUNK); i2c_wr32(sd, CSI_CONFW, MASK_MODE_SET | MASK_ADDRESS_CSI_INT_ENA | MASK_INTER); } static void tc358743_set_hdmi_phy(struct v4l2_subdev *sd) { struct tc358743_state *state = to_state(sd); struct tc358743_platform_data *pdata = &state->pdata; /* Default settings from REF_02, sheet "Source HDMI" * and custom settings as platform data */ i2c_wr8_and_or(sd, PHY_EN, ~MASK_ENABLE_PHY, 0x0); i2c_wr8(sd, PHY_CTL1, SET_PHY_AUTO_RST1_US(1600) | SET_FREQ_RANGE_MODE_CYCLES(1)); i2c_wr8_and_or(sd, PHY_CTL2, ~MASK_PHY_AUTO_RSTn, (pdata->hdmi_phy_auto_reset_tmds_detected ? MASK_PHY_AUTO_RST2 : 0) | (pdata->hdmi_phy_auto_reset_tmds_in_range ? MASK_PHY_AUTO_RST3 : 0) | (pdata->hdmi_phy_auto_reset_tmds_valid ? MASK_PHY_AUTO_RST4 : 0)); i2c_wr8(sd, PHY_BIAS, 0x40); i2c_wr8(sd, PHY_CSQ, SET_CSQ_CNT_LEVEL(0x0a)); i2c_wr8(sd, AVM_CTL, 45); i2c_wr8_and_or(sd, HDMI_DET, ~MASK_HDMI_DET_V, pdata->hdmi_detection_delay << 4); i2c_wr8_and_or(sd, HV_RST, ~(MASK_H_PI_RST | MASK_V_PI_RST), (pdata->hdmi_phy_auto_reset_hsync_out_of_range ? MASK_H_PI_RST : 0) | (pdata->hdmi_phy_auto_reset_vsync_out_of_range ? MASK_V_PI_RST : 0)); i2c_wr8_and_or(sd, PHY_EN, ~MASK_ENABLE_PHY, MASK_ENABLE_PHY); } static void tc358743_set_hdmi_audio(struct v4l2_subdev *sd) { struct tc358743_state *state = to_state(sd); /* Default settings from REF_02, sheet "Source HDMI" */ i2c_wr8(sd, FORCE_MUTE, 0x00); i2c_wr8(sd, AUTO_CMD0, MASK_AUTO_MUTE7 | MASK_AUTO_MUTE6 | MASK_AUTO_MUTE5 | MASK_AUTO_MUTE4 | MASK_AUTO_MUTE1 | MASK_AUTO_MUTE0); i2c_wr8(sd, AUTO_CMD1, MASK_AUTO_MUTE9); i2c_wr8(sd, AUTO_CMD2, MASK_AUTO_PLAY3 | MASK_AUTO_PLAY2); i2c_wr8(sd, BUFINIT_START, SET_BUFINIT_START_MS(500)); i2c_wr8(sd, FS_MUTE, 0x00); i2c_wr8(sd, FS_IMODE, MASK_NLPCM_SMODE | MASK_FS_SMODE); i2c_wr8(sd, ACR_MODE, MASK_CTS_MODE); i2c_wr8(sd, ACR_MDF0, MASK_ACR_L2MDF_1976_PPM | MASK_ACR_L1MDF_976_PPM); i2c_wr8(sd, ACR_MDF1, MASK_ACR_L3MDF_3906_PPM); i2c_wr8(sd, SDO_MODE1, MASK_SDO_FMT_I2S); i2c_wr8(sd, DIV_MODE, SET_DIV_DLY_MS(100)); mutex_lock(&state->confctl_mutex); i2c_wr16_and_or(sd, CONFCTL, 0xffff, MASK_AUDCHNUM_2 | MASK_AUDOUTSEL_I2S | MASK_AUTOINDEX); mutex_unlock(&state->confctl_mutex); } static void tc358743_set_hdmi_info_frame_mode(struct v4l2_subdev *sd) { /* Default settings from REF_02, sheet "Source HDMI" */ i2c_wr8(sd, PK_INT_MODE, MASK_ISRC2_INT_MODE | MASK_ISRC_INT_MODE | MASK_ACP_INT_MODE | MASK_VS_INT_MODE | MASK_SPD_INT_MODE | MASK_MS_INT_MODE | MASK_AUD_INT_MODE | MASK_AVI_INT_MODE); i2c_wr8(sd, NO_PKT_LIMIT, 0x2c); i2c_wr8(sd, NO_PKT_CLR, 0x53); i2c_wr8(sd, ERR_PK_LIMIT, 0x01); i2c_wr8(sd, NO_PKT_LIMIT2, 0x30); i2c_wr8(sd, NO_GDB_LIMIT, 0x10); } static void tc358743_initial_setup(struct v4l2_subdev *sd) { struct tc358743_state *state = to_state(sd); struct tc358743_platform_data *pdata = &state->pdata; /* * IR is not supported by this driver. * CEC is only enabled if needed. */ i2c_wr16_and_or(sd, SYSCTL, ~(MASK_IRRST | MASK_CECRST), (MASK_IRRST | MASK_CECRST)); tc358743_reset(sd, MASK_CTXRST | MASK_HDMIRST); #ifdef CONFIG_VIDEO_TC358743_CEC tc358743_reset(sd, MASK_CECRST); #endif tc358743_sleep_mode(sd, false); i2c_wr16(sd, FIFOCTL, pdata->fifo_level); tc358743_set_ref_clk(sd); i2c_wr8_and_or(sd, DDC_CTL, ~MASK_DDC5V_MODE, pdata->ddc5v_delay & MASK_DDC5V_MODE); i2c_wr8_and_or(sd, EDID_MODE, ~MASK_EDID_MODE, MASK_EDID_MODE_E_DDC); tc358743_set_hdmi_phy(sd); tc358743_set_hdmi_hdcp(sd, pdata->enable_hdcp); tc358743_set_hdmi_audio(sd); tc358743_set_hdmi_info_frame_mode(sd); /* All CE and IT formats are detected as RGB full range in DVI mode */ i2c_wr8_and_or(sd, VI_MODE, ~MASK_RGB_DVI, 0); i2c_wr8_and_or(sd, VOUT_SET2, ~MASK_VOUTCOLORMODE, MASK_VOUTCOLORMODE_AUTO); i2c_wr8(sd, VOUT_SET3, MASK_VOUT_EXTCNT); } /* --------------- CEC --------------- */ #ifdef CONFIG_VIDEO_TC358743_CEC static int tc358743_cec_adap_enable(struct cec_adapter *adap, bool enable) { struct tc358743_state *state = adap->priv; struct v4l2_subdev *sd = &state->sd; i2c_wr32(sd, CECIMSK, enable ? MASK_CECTIM | MASK_CECRIM : 0); i2c_wr32(sd, CECICLR, MASK_CECTICLR | MASK_CECRICLR); i2c_wr32(sd, CECEN, enable); if (enable) i2c_wr32(sd, CECREN, MASK_CECREN); return 0; } static int tc358743_cec_adap_monitor_all_enable(struct cec_adapter *adap, bool enable) { struct tc358743_state *state = adap->priv; struct v4l2_subdev *sd = &state->sd; u32 reg; reg = i2c_rd32(sd, CECRCTL1); if (enable) reg |= MASK_CECOTH; else reg &= ~MASK_CECOTH; i2c_wr32(sd, CECRCTL1, reg); return 0; } static int tc358743_cec_adap_log_addr(struct cec_adapter *adap, u8 log_addr) { struct tc358743_state *state = adap->priv; struct v4l2_subdev *sd = &state->sd; unsigned int la = 0; if (log_addr != CEC_LOG_ADDR_INVALID) { la = i2c_rd32(sd, CECADD); la |= 1 << log_addr; } i2c_wr32(sd, CECADD, la); return 0; } static int tc358743_cec_adap_transmit(struct cec_adapter *adap, u8 attempts, u32 signal_free_time, struct cec_msg *msg) { struct tc358743_state *state = adap->priv; struct v4l2_subdev *sd = &state->sd; unsigned int i; i2c_wr32(sd, CECTCTL, (cec_msg_is_broadcast(msg) ? MASK_CECBRD : 0) | (signal_free_time - 1)); for (i = 0; i < msg->len; i++) i2c_wr32(sd, CECTBUF1 + i * 4, msg->msg[i] | ((i == msg->len - 1) ? MASK_CECTEOM : 0)); i2c_wr32(sd, CECTEN, MASK_CECTEN); return 0; } static const struct cec_adap_ops tc358743_cec_adap_ops = { .adap_enable = tc358743_cec_adap_enable, .adap_log_addr = tc358743_cec_adap_log_addr, .adap_transmit = tc358743_cec_adap_transmit, .adap_monitor_all_enable = tc358743_cec_adap_monitor_all_enable, }; static void tc358743_cec_handler(struct v4l2_subdev *sd, u16 intstatus, bool *handled) { struct tc358743_state *state = to_state(sd); unsigned int cec_rxint, cec_txint; unsigned int clr = 0; cec_rxint = i2c_rd32(sd, CECRSTAT); cec_txint = i2c_rd32(sd, CECTSTAT); if (intstatus & MASK_CEC_RINT) clr |= MASK_CECRICLR; if (intstatus & MASK_CEC_TINT) clr |= MASK_CECTICLR; i2c_wr32(sd, CECICLR, clr); if ((intstatus & MASK_CEC_TINT) && cec_txint) { if (cec_txint & MASK_CECTIEND) cec_transmit_attempt_done(state->cec_adap, CEC_TX_STATUS_OK); else if (cec_txint & MASK_CECTIAL) cec_transmit_attempt_done(state->cec_adap, CEC_TX_STATUS_ARB_LOST); else if (cec_txint & MASK_CECTIACK) cec_transmit_attempt_done(state->cec_adap, CEC_TX_STATUS_NACK); else if (cec_txint & MASK_CECTIUR) { /* * Not sure when this bit is set. Treat * it as an error for now. */ cec_transmit_attempt_done(state->cec_adap, CEC_TX_STATUS_ERROR); } if (handled) *handled = true; } if ((intstatus & MASK_CEC_RINT) && (cec_rxint & MASK_CECRIEND)) { struct cec_msg msg = {}; unsigned int i; unsigned int v; v = i2c_rd32(sd, CECRCTR); msg.len = v & 0x1f; if (msg.len > CEC_MAX_MSG_SIZE) msg.len = CEC_MAX_MSG_SIZE; for (i = 0; i < msg.len; i++) { v = i2c_rd32(sd, CECRBUF1 + i * 4); msg.msg[i] = v & 0xff; } cec_received_msg(state->cec_adap, &msg); if (handled) *handled = true; } i2c_wr16(sd, INTSTATUS, intstatus & (MASK_CEC_RINT | MASK_CEC_TINT)); } #endif /* --------------- IRQ --------------- */ static void tc358743_format_change(struct v4l2_subdev *sd) { struct tc358743_state *state = to_state(sd); struct v4l2_dv_timings timings; const struct v4l2_event tc358743_ev_fmt = { .type = V4L2_EVENT_SOURCE_CHANGE, .u.src_change.changes = V4L2_EVENT_SRC_CH_RESOLUTION, }; if (tc358743_get_detected_timings(sd, &timings)) { enable_stream(sd, false); v4l2_dbg(1, debug, sd, "%s: No signal\n", __func__); } else { if (!v4l2_match_dv_timings(&state->timings, &timings, 0, false)) enable_stream(sd, false); if (debug) v4l2_print_dv_timings(sd->name, "tc358743_format_change: New format: ", &timings, false); } if (sd->devnode) v4l2_subdev_notify_event(sd, &tc358743_ev_fmt); } static void tc358743_init_interrupts(struct v4l2_subdev *sd) { u16 i; /* clear interrupt status registers */ for (i = SYS_INT; i <= KEY_INT; i++) i2c_wr8(sd, i, 0xff); i2c_wr16(sd, INTSTATUS, 0xffff); } static void tc358743_enable_interrupts(struct v4l2_subdev *sd, bool cable_connected) { v4l2_dbg(2, debug, sd, "%s: cable connected = %d\n", __func__, cable_connected); if (cable_connected) { i2c_wr8(sd, SYS_INTM, ~(MASK_M_DDC | MASK_M_DVI_DET | MASK_M_HDMI_DET) & 0xff); i2c_wr8(sd, CLK_INTM, ~MASK_M_IN_DE_CHG); i2c_wr8(sd, CBIT_INTM, ~(MASK_M_CBIT_FS | MASK_M_AF_LOCK | MASK_M_AF_UNLOCK) & 0xff); i2c_wr8(sd, AUDIO_INTM, ~MASK_M_BUFINIT_END); i2c_wr8(sd, MISC_INTM, ~MASK_M_SYNC_CHG); } else { i2c_wr8(sd, SYS_INTM, ~MASK_M_DDC & 0xff); i2c_wr8(sd, CLK_INTM, 0xff); i2c_wr8(sd, CBIT_INTM, 0xff); i2c_wr8(sd, AUDIO_INTM, 0xff); i2c_wr8(sd, MISC_INTM, 0xff); } } static void tc358743_hdmi_audio_int_handler(struct v4l2_subdev *sd, bool *handled) { u8 audio_int_mask = i2c_rd8(sd, AUDIO_INTM); u8 audio_int = i2c_rd8(sd, AUDIO_INT) & ~audio_int_mask; i2c_wr8(sd, AUDIO_INT, audio_int); v4l2_dbg(3, debug, sd, "%s: AUDIO_INT = 0x%02x\n", __func__, audio_int); tc358743_s_ctrl_audio_sampling_rate(sd); tc358743_s_ctrl_audio_present(sd); } static void tc358743_csi_err_int_handler(struct v4l2_subdev *sd, bool *handled) { v4l2_err(sd, "%s: CSI_ERR = 0x%x\n", __func__, i2c_rd32(sd, CSI_ERR)); i2c_wr32(sd, CSI_INT_CLR, MASK_ICRER); } static void tc358743_hdmi_misc_int_handler(struct v4l2_subdev *sd, bool *handled) { u8 misc_int_mask = i2c_rd8(sd, MISC_INTM); u8 misc_int = i2c_rd8(sd, MISC_INT) & ~misc_int_mask; i2c_wr8(sd, MISC_INT, misc_int); v4l2_dbg(3, debug, sd, "%s: MISC_INT = 0x%02x\n", __func__, misc_int); if (misc_int & MASK_I_SYNC_CHG) { /* Reset the HDMI PHY to try to trigger proper lock on the * incoming video format. Erase BKSV to prevent that old keys * are used when a new source is connected. */ if (no_sync(sd) || no_signal(sd)) { tc358743_reset_phy(sd); tc358743_erase_bksv(sd); } tc358743_format_change(sd); misc_int &= ~MASK_I_SYNC_CHG; if (handled) *handled = true; } if (misc_int) { v4l2_err(sd, "%s: Unhandled MISC_INT interrupts: 0x%02x\n", __func__, misc_int); } } static void tc358743_hdmi_cbit_int_handler(struct v4l2_subdev *sd, bool *handled) { u8 cbit_int_mask = i2c_rd8(sd, CBIT_INTM); u8 cbit_int = i2c_rd8(sd, CBIT_INT) & ~cbit_int_mask; i2c_wr8(sd, CBIT_INT, cbit_int); v4l2_dbg(3, debug, sd, "%s: CBIT_INT = 0x%02x\n", __func__, cbit_int); if (cbit_int & MASK_I_CBIT_FS) { v4l2_dbg(1, debug, sd, "%s: Audio sample rate changed\n", __func__); tc358743_s_ctrl_audio_sampling_rate(sd); cbit_int &= ~MASK_I_CBIT_FS; if (handled) *handled = true; } if (cbit_int & (MASK_I_AF_LOCK | MASK_I_AF_UNLOCK)) { v4l2_dbg(1, debug, sd, "%s: Audio present changed\n", __func__); tc358743_s_ctrl_audio_present(sd); cbit_int &= ~(MASK_I_AF_LOCK | MASK_I_AF_UNLOCK); if (handled) *handled = true; } if (cbit_int) { v4l2_err(sd, "%s: Unhandled CBIT_INT interrupts: 0x%02x\n", __func__, cbit_int); } } static void tc358743_hdmi_clk_int_handler(struct v4l2_subdev *sd, bool *handled) { u8 clk_int_mask = i2c_rd8(sd, CLK_INTM); u8 clk_int = i2c_rd8(sd, CLK_INT) & ~clk_int_mask; /* Bit 7 and bit 6 are set even when they are masked */ i2c_wr8(sd, CLK_INT, clk_int | 0x80 | MASK_I_OUT_H_CHG); v4l2_dbg(3, debug, sd, "%s: CLK_INT = 0x%02x\n", __func__, clk_int); if (clk_int & (MASK_I_IN_DE_CHG)) { v4l2_dbg(1, debug, sd, "%s: DE size or position has changed\n", __func__); /* If the source switch to a new resolution with the same pixel * frequency as the existing (e.g. 1080p25 -> 720p50), the * I_SYNC_CHG interrupt is not always triggered, while the * I_IN_DE_CHG interrupt seems to work fine. Format change * notifications are only sent when the signal is stable to * reduce the number of notifications. */ if (!no_signal(sd) && !no_sync(sd)) tc358743_format_change(sd); clk_int &= ~(MASK_I_IN_DE_CHG); if (handled) *handled = true; } if (clk_int) { v4l2_err(sd, "%s: Unhandled CLK_INT interrupts: 0x%02x\n", __func__, clk_int); } } static void tc358743_hdmi_sys_int_handler(struct v4l2_subdev *sd, bool *handled) { struct tc358743_state *state = to_state(sd); u8 sys_int_mask = i2c_rd8(sd, SYS_INTM); u8 sys_int = i2c_rd8(sd, SYS_INT) & ~sys_int_mask; i2c_wr8(sd, SYS_INT, sys_int); v4l2_dbg(3, debug, sd, "%s: SYS_INT = 0x%02x\n", __func__, sys_int); if (sys_int & MASK_I_DDC) { bool tx_5v = tx_5v_power_present(sd); v4l2_dbg(1, debug, sd, "%s: Tx 5V power present: %s\n", __func__, tx_5v ? "yes" : "no"); if (tx_5v) { tc358743_enable_edid(sd); } else { tc358743_enable_interrupts(sd, false); tc358743_disable_edid(sd); memset(&state->timings, 0, sizeof(state->timings)); tc358743_erase_bksv(sd); tc358743_update_controls(sd); } sys_int &= ~MASK_I_DDC; if (handled) *handled = true; } if (sys_int & MASK_I_DVI) { v4l2_dbg(1, debug, sd, "%s: HDMI->DVI change detected\n", __func__); /* Reset the HDMI PHY to try to trigger proper lock on the * incoming video format. Erase BKSV to prevent that old keys * are used when a new source is connected. */ if (no_sync(sd) || no_signal(sd)) { tc358743_reset_phy(sd); tc358743_erase_bksv(sd); } sys_int &= ~MASK_I_DVI; if (handled) *handled = true; } if (sys_int & MASK_I_HDMI) { v4l2_dbg(1, debug, sd, "%s: DVI->HDMI change detected\n", __func__); /* Register is reset in DVI mode (REF_01, c. 6.6.41) */ i2c_wr8(sd, ANA_CTL, MASK_APPL_PCSX_NORMAL | MASK_ANALOG_ON); sys_int &= ~MASK_I_HDMI; if (handled) *handled = true; } if (sys_int) { v4l2_err(sd, "%s: Unhandled SYS_INT interrupts: 0x%02x\n", __func__, sys_int); } } /* --------------- CORE OPS --------------- */ static int tc358743_log_status(struct v4l2_subdev *sd) { struct tc358743_state *state = to_state(sd); struct v4l2_dv_timings timings; uint8_t hdmi_sys_status = i2c_rd8(sd, SYS_STATUS); uint16_t sysctl = i2c_rd16(sd, SYSCTL); u8 vi_status3 = i2c_rd8(sd, VI_STATUS3); const int deep_color_mode[4] = { 8, 10, 12, 16 }; static const char * const input_color_space[] = { "RGB", "YCbCr 601", "opRGB", "YCbCr 709", "NA (4)", "xvYCC 601", "NA(6)", "xvYCC 709", "NA(8)", "sYCC601", "NA(10)", "NA(11)", "NA(12)", "opYCC 601"}; v4l2_info(sd, "-----Chip status-----\n"); v4l2_info(sd, "Chip ID: 0x%02x\n", (i2c_rd16(sd, CHIPID) & MASK_CHIPID) >> 8); v4l2_info(sd, "Chip revision: 0x%02x\n", i2c_rd16(sd, CHIPID) & MASK_REVID); v4l2_info(sd, "Reset: IR: %d, CEC: %d, CSI TX: %d, HDMI: %d\n", !!(sysctl & MASK_IRRST), !!(sysctl & MASK_CECRST), !!(sysctl & MASK_CTXRST), !!(sysctl & MASK_HDMIRST)); v4l2_info(sd, "Sleep mode: %s\n", sysctl & MASK_SLEEP ? "on" : "off"); v4l2_info(sd, "Cable detected (+5V power): %s\n", hdmi_sys_status & MASK_S_DDC5V ? "yes" : "no"); v4l2_info(sd, "DDC lines enabled: %s\n", (i2c_rd8(sd, EDID_MODE) & MASK_EDID_MODE_E_DDC) ? "yes" : "no"); v4l2_info(sd, "Hotplug enabled: %s\n", (i2c_rd8(sd, HPD_CTL) & MASK_HPD_OUT0) ? "yes" : "no"); v4l2_info(sd, "CEC enabled: %s\n", (i2c_rd16(sd, CECEN) & MASK_CECEN) ? "yes" : "no"); v4l2_info(sd, "-----Signal status-----\n"); v4l2_info(sd, "TMDS signal detected: %s\n", hdmi_sys_status & MASK_S_TMDS ? "yes" : "no"); v4l2_info(sd, "Stable sync signal: %s\n", hdmi_sys_status & MASK_S_SYNC ? "yes" : "no"); v4l2_info(sd, "PHY PLL locked: %s\n", hdmi_sys_status & MASK_S_PHY_PLL ? "yes" : "no"); v4l2_info(sd, "PHY DE detected: %s\n", hdmi_sys_status & MASK_S_PHY_SCDT ? "yes" : "no"); if (tc358743_get_detected_timings(sd, &timings)) { v4l2_info(sd, "No video detected\n"); } else { v4l2_print_dv_timings(sd->name, "Detected format: ", &timings, true); } v4l2_print_dv_timings(sd->name, "Configured format: ", &state->timings, true); v4l2_info(sd, "-----CSI-TX status-----\n"); v4l2_info(sd, "Lanes needed: %d\n", tc358743_num_csi_lanes_needed(sd)); v4l2_info(sd, "Lanes in use: %d\n", state->csi_lanes_in_use); v4l2_info(sd, "Waiting for particular sync signal: %s\n", (i2c_rd16(sd, CSI_STATUS) & MASK_S_WSYNC) ? "yes" : "no"); v4l2_info(sd, "Transmit mode: %s\n", (i2c_rd16(sd, CSI_STATUS) & MASK_S_TXACT) ? "yes" : "no"); v4l2_info(sd, "Receive mode: %s\n", (i2c_rd16(sd, CSI_STATUS) & MASK_S_RXACT) ? "yes" : "no"); v4l2_info(sd, "Stopped: %s\n", (i2c_rd16(sd, CSI_STATUS) & MASK_S_HLT) ? "yes" : "no"); v4l2_info(sd, "Color space: %s\n", state->mbus_fmt_code == MEDIA_BUS_FMT_UYVY8_1X16 ? "YCbCr 422 16-bit" : state->mbus_fmt_code == MEDIA_BUS_FMT_RGB888_1X24 ? "RGB 888 24-bit" : "Unsupported"); v4l2_info(sd, "-----%s status-----\n", is_hdmi(sd) ? "HDMI" : "DVI-D"); v4l2_info(sd, "HDCP encrypted content: %s\n", hdmi_sys_status & MASK_S_HDCP ? "yes" : "no"); v4l2_info(sd, "Input color space: %s %s range\n", input_color_space[(vi_status3 & MASK_S_V_COLOR) >> 1], (vi_status3 & MASK_LIMITED) ? "limited" : "full"); if (!is_hdmi(sd)) return 0; v4l2_info(sd, "AV Mute: %s\n", hdmi_sys_status & MASK_S_AVMUTE ? "on" : "off"); v4l2_info(sd, "Deep color mode: %d-bits per channel\n", deep_color_mode[(i2c_rd8(sd, VI_STATUS1) & MASK_S_DEEPCOLOR) >> 2]); print_avi_infoframe(sd); return 0; } #ifdef CONFIG_VIDEO_ADV_DEBUG static void tc358743_print_register_map(struct v4l2_subdev *sd) { v4l2_info(sd, "0x0000-0x00FF: Global Control Register\n"); v4l2_info(sd, "0x0100-0x01FF: CSI2-TX PHY Register\n"); v4l2_info(sd, "0x0200-0x03FF: CSI2-TX PPI Register\n"); v4l2_info(sd, "0x0400-0x05FF: Reserved\n"); v4l2_info(sd, "0x0600-0x06FF: CEC Register\n"); v4l2_info(sd, "0x0700-0x84FF: Reserved\n"); v4l2_info(sd, "0x8500-0x85FF: HDMIRX System Control Register\n"); v4l2_info(sd, "0x8600-0x86FF: HDMIRX Audio Control Register\n"); v4l2_info(sd, "0x8700-0x87FF: HDMIRX InfoFrame packet data Register\n"); v4l2_info(sd, "0x8800-0x88FF: HDMIRX HDCP Port Register\n"); v4l2_info(sd, "0x8900-0x89FF: HDMIRX Video Output Port & 3D Register\n"); v4l2_info(sd, "0x8A00-0x8BFF: Reserved\n"); v4l2_info(sd, "0x8C00-0x8FFF: HDMIRX EDID-RAM (1024bytes)\n"); v4l2_info(sd, "0x9000-0x90FF: HDMIRX GBD Extraction Control\n"); v4l2_info(sd, "0x9100-0x92FF: HDMIRX GBD RAM read\n"); v4l2_info(sd, "0x9300- : Reserved\n"); } static int tc358743_get_reg_size(u16 address) { /* REF_01 p. 66-72 */ if (address <= 0x00ff) return 2; else if ((address >= 0x0100) && (address <= 0x06FF)) return 4; else if ((address >= 0x0700) && (address <= 0x84ff)) return 2; else return 1; } static int tc358743_g_register(struct v4l2_subdev *sd, struct v4l2_dbg_register *reg) { if (reg->reg > 0xffff) { tc358743_print_register_map(sd); return -EINVAL; } reg->size = tc358743_get_reg_size(reg->reg); reg->val = i2c_rdreg(sd, reg->reg, reg->size); return 0; } static int tc358743_s_register(struct v4l2_subdev *sd, const struct v4l2_dbg_register *reg) { if (reg->reg > 0xffff) { tc358743_print_register_map(sd); return -EINVAL; } /* It should not be possible for the user to enable HDCP with a simple * v4l2-dbg command. * * DO NOT REMOVE THIS unless all other issues with HDCP have been * resolved. */ if (reg->reg == HDCP_MODE || reg->reg == HDCP_REG1 || reg->reg == HDCP_REG2 || reg->reg == HDCP_REG3 || reg->reg == BCAPS) return 0; i2c_wrreg(sd, (u16)reg->reg, reg->val, tc358743_get_reg_size(reg->reg)); return 0; } #endif static int tc358743_isr(struct v4l2_subdev *sd, u32 status, bool *handled) { u16 intstatus = i2c_rd16(sd, INTSTATUS); v4l2_dbg(1, debug, sd, "%s: IntStatus = 0x%04x\n", __func__, intstatus); if (intstatus & MASK_HDMI_INT) { u8 hdmi_int0 = i2c_rd8(sd, HDMI_INT0); u8 hdmi_int1 = i2c_rd8(sd, HDMI_INT1); if (hdmi_int0 & MASK_I_MISC) tc358743_hdmi_misc_int_handler(sd, handled); if (hdmi_int1 & MASK_I_CBIT) tc358743_hdmi_cbit_int_handler(sd, handled); if (hdmi_int1 & MASK_I_CLK) tc358743_hdmi_clk_int_handler(sd, handled); if (hdmi_int1 & MASK_I_SYS) tc358743_hdmi_sys_int_handler(sd, handled); if (hdmi_int1 & MASK_I_AUD) tc358743_hdmi_audio_int_handler(sd, handled); i2c_wr16(sd, INTSTATUS, MASK_HDMI_INT); intstatus &= ~MASK_HDMI_INT; } #ifdef CONFIG_VIDEO_TC358743_CEC if (intstatus & (MASK_CEC_RINT | MASK_CEC_TINT)) { tc358743_cec_handler(sd, intstatus, handled); i2c_wr16(sd, INTSTATUS, intstatus & (MASK_CEC_RINT | MASK_CEC_TINT)); intstatus &= ~(MASK_CEC_RINT | MASK_CEC_TINT); } #endif if (intstatus & MASK_CSI_INT) { u32 csi_int = i2c_rd32(sd, CSI_INT); if (csi_int & MASK_INTER) tc358743_csi_err_int_handler(sd, handled); i2c_wr16(sd, INTSTATUS, MASK_CSI_INT); } intstatus = i2c_rd16(sd, INTSTATUS); if (intstatus) { v4l2_dbg(1, debug, sd, "%s: Unhandled IntStatus interrupts: 0x%02x\n", __func__, intstatus); } return 0; } static irqreturn_t tc358743_irq_handler(int irq, void *dev_id) { struct tc358743_state *state = dev_id; bool handled = false; tc358743_isr(&state->sd, 0, &handled); return handled ? IRQ_HANDLED : IRQ_NONE; } static void tc358743_irq_poll_timer(struct timer_list *t) { struct tc358743_state *state = from_timer(state, t, timer); unsigned int msecs; schedule_work(&state->work_i2c_poll); /* * If CEC is present, then we need to poll more frequently, * otherwise we will miss CEC messages. */ msecs = state->cec_adap ? POLL_INTERVAL_CEC_MS : POLL_INTERVAL_MS; mod_timer(&state->timer, jiffies + msecs_to_jiffies(msecs)); } static void tc358743_work_i2c_poll(struct work_struct *work) { struct tc358743_state *state = container_of(work, struct tc358743_state, work_i2c_poll); bool handled; tc358743_isr(&state->sd, 0, &handled); } static int tc358743_subscribe_event(struct v4l2_subdev *sd, struct v4l2_fh *fh, struct v4l2_event_subscription *sub) { switch (sub->type) { case V4L2_EVENT_SOURCE_CHANGE: return v4l2_src_change_event_subdev_subscribe(sd, fh, sub); case V4L2_EVENT_CTRL: return v4l2_ctrl_subdev_subscribe_event(sd, fh, sub); default: return -EINVAL; } } /* --------------- VIDEO OPS --------------- */ static int tc358743_g_input_status(struct v4l2_subdev *sd, u32 *status) { *status = 0; *status |= no_signal(sd) ? V4L2_IN_ST_NO_SIGNAL : 0; *status |= no_sync(sd) ? V4L2_IN_ST_NO_SYNC : 0; v4l2_dbg(1, debug, sd, "%s: status = 0x%x\n", __func__, *status); return 0; } static int tc358743_s_dv_timings(struct v4l2_subdev *sd, unsigned int pad, struct v4l2_dv_timings *timings) { struct tc358743_state *state = to_state(sd); if (pad != 0) return -EINVAL; if (!timings) return -EINVAL; if (debug) v4l2_print_dv_timings(sd->name, "tc358743_s_dv_timings: ", timings, false); if (v4l2_match_dv_timings(&state->timings, timings, 0, false)) { v4l2_dbg(1, debug, sd, "%s: no change\n", __func__); return 0; } if (!v4l2_valid_dv_timings(timings, &tc358743_timings_cap, NULL, NULL)) { v4l2_dbg(1, debug, sd, "%s: timings out of range\n", __func__); return -ERANGE; } state->timings = *timings; enable_stream(sd, false); tc358743_set_pll(sd); tc358743_set_csi(sd); return 0; } static int tc358743_g_dv_timings(struct v4l2_subdev *sd, unsigned int pad, struct v4l2_dv_timings *timings) { struct tc358743_state *state = to_state(sd); if (pad != 0) return -EINVAL; *timings = state->timings; return 0; } static int tc358743_enum_dv_timings(struct v4l2_subdev *sd, struct v4l2_enum_dv_timings *timings) { if (timings->pad != 0) return -EINVAL; return v4l2_enum_dv_timings_cap(timings, &tc358743_timings_cap, NULL, NULL); } static int tc358743_query_dv_timings(struct v4l2_subdev *sd, unsigned int pad, struct v4l2_dv_timings *timings) { int ret; if (pad != 0) return -EINVAL; ret = tc358743_get_detected_timings(sd, timings); if (ret) return ret; if (debug) v4l2_print_dv_timings(sd->name, "tc358743_query_dv_timings: ", timings, false); if (!v4l2_valid_dv_timings(timings, &tc358743_timings_cap, NULL, NULL)) { v4l2_dbg(1, debug, sd, "%s: timings out of range\n", __func__); return -ERANGE; } return 0; } static int tc358743_dv_timings_cap(struct v4l2_subdev *sd, struct v4l2_dv_timings_cap *cap) { if (cap->pad != 0) return -EINVAL; *cap = tc358743_timings_cap; return 0; } static int tc358743_get_mbus_config(struct v4l2_subdev *sd, unsigned int pad, struct v4l2_mbus_config *cfg) { struct tc358743_state *state = to_state(sd); cfg->type = V4L2_MBUS_CSI2_DPHY; /* Support for non-continuous CSI-2 clock is missing in the driver */ cfg->bus.mipi_csi2.flags = 0; cfg->bus.mipi_csi2.num_data_lanes = state->csi_lanes_in_use; return 0; } static int tc358743_s_stream(struct v4l2_subdev *sd, int enable) { enable_stream(sd, enable); if (!enable) { /* Put all lanes in LP-11 state (STOPSTATE) */ tc358743_set_csi(sd); } return 0; } /* --------------- PAD OPS --------------- */ static int tc358743_enum_mbus_code(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_mbus_code_enum *code) { switch (code->index) { case 0: code->code = MEDIA_BUS_FMT_RGB888_1X24; break; case 1: code->code = MEDIA_BUS_FMT_UYVY8_1X16; break; default: return -EINVAL; } return 0; } static int tc358743_get_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *format) { struct tc358743_state *state = to_state(sd); u8 vi_rep = i2c_rd8(sd, VI_REP); if (format->pad != 0) return -EINVAL; format->format.code = state->mbus_fmt_code; format->format.width = state->timings.bt.width; format->format.height = state->timings.bt.height; format->format.field = V4L2_FIELD_NONE; switch (vi_rep & MASK_VOUT_COLOR_SEL) { case MASK_VOUT_COLOR_RGB_FULL: case MASK_VOUT_COLOR_RGB_LIMITED: format->format.colorspace = V4L2_COLORSPACE_SRGB; break; case MASK_VOUT_COLOR_601_YCBCR_LIMITED: case MASK_VOUT_COLOR_601_YCBCR_FULL: format->format.colorspace = V4L2_COLORSPACE_SMPTE170M; break; case MASK_VOUT_COLOR_709_YCBCR_FULL: case MASK_VOUT_COLOR_709_YCBCR_LIMITED: format->format.colorspace = V4L2_COLORSPACE_REC709; break; default: format->format.colorspace = 0; break; } return 0; } static int tc358743_set_fmt(struct v4l2_subdev *sd, struct v4l2_subdev_state *sd_state, struct v4l2_subdev_format *format) { struct tc358743_state *state = to_state(sd); u32 code = format->format.code; /* is overwritten by get_fmt */ int ret = tc358743_get_fmt(sd, sd_state, format); format->format.code = code; if (ret) return ret; switch (code) { case MEDIA_BUS_FMT_RGB888_1X24: case MEDIA_BUS_FMT_UYVY8_1X16: break; default: return -EINVAL; } if (format->which == V4L2_SUBDEV_FORMAT_TRY) return 0; state->mbus_fmt_code = format->format.code; enable_stream(sd, false); tc358743_set_pll(sd); tc358743_set_csi(sd); tc358743_set_csi_color_space(sd); return 0; } static int tc358743_g_edid(struct v4l2_subdev *sd, struct v4l2_subdev_edid *edid) { struct tc358743_state *state = to_state(sd); memset(edid->reserved, 0, sizeof(edid->reserved)); if (edid->pad != 0) return -EINVAL; if (edid->start_block == 0 && edid->blocks == 0) { edid->blocks = state->edid_blocks_written; return 0; } if (state->edid_blocks_written == 0) return -ENODATA; if (edid->start_block >= state->edid_blocks_written || edid->blocks == 0) return -EINVAL; if (edid->start_block + edid->blocks > state->edid_blocks_written) edid->blocks = state->edid_blocks_written - edid->start_block; i2c_rd(sd, EDID_RAM + (edid->start_block * EDID_BLOCK_SIZE), edid->edid, edid->blocks * EDID_BLOCK_SIZE); return 0; } static int tc358743_s_edid(struct v4l2_subdev *sd, struct v4l2_subdev_edid *edid) { struct tc358743_state *state = to_state(sd); u16 edid_len = edid->blocks * EDID_BLOCK_SIZE; u16 pa; int err; int i; v4l2_dbg(2, debug, sd, "%s, pad %d, start block %d, blocks %d\n", __func__, edid->pad, edid->start_block, edid->blocks); memset(edid->reserved, 0, sizeof(edid->reserved)); if (edid->pad != 0) return -EINVAL; if (edid->start_block != 0) return -EINVAL; if (edid->blocks > EDID_NUM_BLOCKS_MAX) { edid->blocks = EDID_NUM_BLOCKS_MAX; return -E2BIG; } pa = cec_get_edid_phys_addr(edid->edid, edid->blocks * 128, NULL); err = v4l2_phys_addr_validate(pa, &pa, NULL); if (err) return err; cec_phys_addr_invalidate(state->cec_adap); tc358743_disable_edid(sd); i2c_wr8(sd, EDID_LEN1, edid_len & 0xff); i2c_wr8(sd, EDID_LEN2, edid_len >> 8); if (edid->blocks == 0) { state->edid_blocks_written = 0; return 0; } for (i = 0; i < edid_len; i += EDID_BLOCK_SIZE) i2c_wr(sd, EDID_RAM + i, edid->edid + i, EDID_BLOCK_SIZE); state->edid_blocks_written = edid->blocks; cec_s_phys_addr(state->cec_adap, pa, false); if (tx_5v_power_present(sd)) tc358743_enable_edid(sd); return 0; } /* -------------------------------------------------------------------------- */ static const struct v4l2_subdev_core_ops tc358743_core_ops = { .log_status = tc358743_log_status, #ifdef CONFIG_VIDEO_ADV_DEBUG .g_register = tc358743_g_register, .s_register = tc358743_s_register, #endif .interrupt_service_routine = tc358743_isr, .subscribe_event = tc358743_subscribe_event, .unsubscribe_event = v4l2_event_subdev_unsubscribe, }; static const struct v4l2_subdev_video_ops tc358743_video_ops = { .g_input_status = tc358743_g_input_status, .s_stream = tc358743_s_stream, }; static const struct v4l2_subdev_pad_ops tc358743_pad_ops = { .enum_mbus_code = tc358743_enum_mbus_code, .set_fmt = tc358743_set_fmt, .get_fmt = tc358743_get_fmt, .get_edid = tc358743_g_edid, .set_edid = tc358743_s_edid, .s_dv_timings = tc358743_s_dv_timings, .g_dv_timings = tc358743_g_dv_timings, .query_dv_timings = tc358743_query_dv_timings, .enum_dv_timings = tc358743_enum_dv_timings, .dv_timings_cap = tc358743_dv_timings_cap, .get_mbus_config = tc358743_get_mbus_config, }; static const struct v4l2_subdev_ops tc358743_ops = { .core = &tc358743_core_ops, .video = &tc358743_video_ops, .pad = &tc358743_pad_ops, }; /* --------------- CUSTOM CTRLS --------------- */ static const struct v4l2_ctrl_config tc358743_ctrl_audio_sampling_rate = { .id = TC358743_CID_AUDIO_SAMPLING_RATE, .name = "Audio sampling rate", .type = V4L2_CTRL_TYPE_INTEGER, .min = 0, .max = 768000, .step = 1, .def = 0, .flags = V4L2_CTRL_FLAG_READ_ONLY, }; static const struct v4l2_ctrl_config tc358743_ctrl_audio_present = { .id = TC358743_CID_AUDIO_PRESENT, .name = "Audio present", .type = V4L2_CTRL_TYPE_BOOLEAN, .min = 0, .max = 1, .step = 1, .def = 0, .flags = V4L2_CTRL_FLAG_READ_ONLY, }; /* --------------- PROBE / REMOVE --------------- */ #ifdef CONFIG_OF static void tc358743_gpio_reset(struct tc358743_state *state) { usleep_range(5000, 10000); gpiod_set_value(state->reset_gpio, 1); usleep_range(1000, 2000); gpiod_set_value(state->reset_gpio, 0); msleep(20); } static int tc358743_probe_of(struct tc358743_state *state) { struct device *dev = &state->i2c_client->dev; struct v4l2_fwnode_endpoint endpoint = { .bus_type = 0 }; struct device_node *ep; struct clk *refclk; u32 bps_pr_lane; int ret; refclk = devm_clk_get(dev, "refclk"); if (IS_ERR(refclk)) return dev_err_probe(dev, PTR_ERR(refclk), "failed to get refclk\n"); ep = of_graph_get_endpoint_by_regs(dev->of_node, 0, -1); if (!ep) { dev_err(dev, "missing endpoint node\n"); return -EINVAL; } ret = v4l2_fwnode_endpoint_alloc_parse(of_fwnode_handle(ep), &endpoint); if (ret) { dev_err(dev, "failed to parse endpoint\n"); goto put_node; } if (endpoint.bus_type != V4L2_MBUS_CSI2_DPHY || endpoint.bus.mipi_csi2.num_data_lanes == 0 || endpoint.nr_of_link_frequencies == 0) { dev_err(dev, "missing CSI-2 properties in endpoint\n"); ret = -EINVAL; goto free_endpoint; } if (endpoint.bus.mipi_csi2.num_data_lanes > 4) { dev_err(dev, "invalid number of lanes\n"); ret = -EINVAL; goto free_endpoint; } state->bus = endpoint.bus.mipi_csi2; ret = clk_prepare_enable(refclk); if (ret) { dev_err(dev, "Failed! to enable clock\n"); goto free_endpoint; } state->pdata.refclk_hz = clk_get_rate(refclk); state->pdata.ddc5v_delay = DDC5V_DELAY_100_MS; state->pdata.enable_hdcp = false; /* A FIFO level of 16 should be enough for 2-lane 720p60 at 594 MHz. */ state->pdata.fifo_level = 16; /* * The PLL input clock is obtained by dividing refclk by pll_prd. * It must be between 6 MHz and 40 MHz, lower frequency is better. */ switch (state->pdata.refclk_hz) { case 26000000: case 27000000: case 42000000: state->pdata.pll_prd = state->pdata.refclk_hz / 6000000; break; default: dev_err(dev, "unsupported refclk rate: %u Hz\n", state->pdata.refclk_hz); goto disable_clk; } /* * The CSI bps per lane must be between 62.5 Mbps and 1 Gbps. * The default is 594 Mbps for 4-lane 1080p60 or 2-lane 720p60. */ bps_pr_lane = 2 * endpoint.link_frequencies[0]; if (bps_pr_lane < 62500000U || bps_pr_lane > 1000000000U) { dev_err(dev, "unsupported bps per lane: %u bps\n", bps_pr_lane); ret = -EINVAL; goto disable_clk; } /* The CSI speed per lane is refclk / pll_prd * pll_fbd */ state->pdata.pll_fbd = bps_pr_lane / state->pdata.refclk_hz * state->pdata.pll_prd; /* * FIXME: These timings are from REF_02 for 594 Mbps per lane (297 MHz * link frequency). In principle it should be possible to calculate * them based on link frequency and resolution. */ if (bps_pr_lane != 594000000U) dev_warn(dev, "untested bps per lane: %u bps\n", bps_pr_lane); state->pdata.lineinitcnt = 0xe80; state->pdata.lptxtimecnt = 0x003; /* tclk-preparecnt: 3, tclk-zerocnt: 20 */ state->pdata.tclk_headercnt = 0x1403; state->pdata.tclk_trailcnt = 0x00; /* ths-preparecnt: 3, ths-zerocnt: 1 */ state->pdata.ths_headercnt = 0x0103; state->pdata.twakeup = 0x4882; state->pdata.tclk_postcnt = 0x008; state->pdata.ths_trailcnt = 0x2; state->pdata.hstxvregcnt = 0; state->reset_gpio = devm_gpiod_get_optional(dev, "reset", GPIOD_OUT_LOW); if (IS_ERR(state->reset_gpio)) { dev_err(dev, "failed to get reset gpio\n"); ret = PTR_ERR(state->reset_gpio); goto disable_clk; } if (state->reset_gpio) tc358743_gpio_reset(state); ret = 0; goto free_endpoint; disable_clk: clk_disable_unprepare(refclk); free_endpoint: v4l2_fwnode_endpoint_free(&endpoint); put_node: of_node_put(ep); return ret; } #else static inline int tc358743_probe_of(struct tc358743_state *state) { return -ENODEV; } #endif static int tc358743_probe(struct i2c_client *client) { static struct v4l2_dv_timings default_timing = V4L2_DV_BT_CEA_640X480P59_94; struct tc358743_state *state; struct tc358743_platform_data *pdata = client->dev.platform_data; struct v4l2_subdev *sd; u16 irq_mask = MASK_HDMI_MSK | MASK_CSI_MSK; int err; if (!i2c_check_functionality(client->adapter, I2C_FUNC_SMBUS_BYTE_DATA)) return -EIO; v4l_dbg(1, debug, client, "chip found @ 0x%x (%s)\n", client->addr << 1, client->adapter->name); state = devm_kzalloc(&client->dev, sizeof(struct tc358743_state), GFP_KERNEL); if (!state) return -ENOMEM; state->i2c_client = client; /* platform data */ if (pdata) { state->pdata = *pdata; state->bus.flags = 0; } else { err = tc358743_probe_of(state); if (err == -ENODEV) v4l_err(client, "No platform data!\n"); if (err) return err; } sd = &state->sd; v4l2_i2c_subdev_init(sd, client, &tc358743_ops); sd->flags |= V4L2_SUBDEV_FL_HAS_DEVNODE | V4L2_SUBDEV_FL_HAS_EVENTS; /* i2c access */ if ((i2c_rd16(sd, CHIPID) & MASK_CHIPID) != 0) { v4l2_info(sd, "not a TC358743 on address 0x%x\n", client->addr << 1); return -ENODEV; } /* control handlers */ v4l2_ctrl_handler_init(&state->hdl, 3); state->detect_tx_5v_ctrl = v4l2_ctrl_new_std(&state->hdl, NULL, V4L2_CID_DV_RX_POWER_PRESENT, 0, 1, 0, 0); /* custom controls */ state->audio_sampling_rate_ctrl = v4l2_ctrl_new_custom(&state->hdl, &tc358743_ctrl_audio_sampling_rate, NULL); state->audio_present_ctrl = v4l2_ctrl_new_custom(&state->hdl, &tc358743_ctrl_audio_present, NULL); sd->ctrl_handler = &state->hdl; if (state->hdl.error) { err = state->hdl.error; goto err_hdl; } if (tc358743_update_controls(sd)) { err = -ENODEV; goto err_hdl; } state->pad.flags = MEDIA_PAD_FL_SOURCE; sd->entity.function = MEDIA_ENT_F_VID_IF_BRIDGE; err = media_entity_pads_init(&sd->entity, 1, &state->pad); if (err < 0) goto err_hdl; state->mbus_fmt_code = MEDIA_BUS_FMT_RGB888_1X24; sd->dev = &client->dev; mutex_init(&state->confctl_mutex); INIT_DELAYED_WORK(&state->delayed_work_enable_hotplug, tc358743_delayed_work_enable_hotplug); #ifdef CONFIG_VIDEO_TC358743_CEC state->cec_adap = cec_allocate_adapter(&tc358743_cec_adap_ops, state, dev_name(&client->dev), CEC_CAP_DEFAULTS | CEC_CAP_MONITOR_ALL, CEC_MAX_LOG_ADDRS); if (IS_ERR(state->cec_adap)) { err = PTR_ERR(state->cec_adap); goto err_hdl; } irq_mask |= MASK_CEC_RMSK | MASK_CEC_TMSK; #endif tc358743_initial_setup(sd); tc358743_s_dv_timings(sd, 0, &default_timing); tc358743_set_csi_color_space(sd); tc358743_init_interrupts(sd); if (state->i2c_client->irq) { err = devm_request_threaded_irq(&client->dev, state->i2c_client->irq, NULL, tc358743_irq_handler, IRQF_TRIGGER_HIGH | IRQF_ONESHOT, "tc358743", state); if (err) goto err_work_queues; } else { INIT_WORK(&state->work_i2c_poll, tc358743_work_i2c_poll); timer_setup(&state->timer, tc358743_irq_poll_timer, 0); state->timer.expires = jiffies + msecs_to_jiffies(POLL_INTERVAL_MS); add_timer(&state->timer); } err = cec_register_adapter(state->cec_adap, &client->dev); if (err < 0) { pr_err("%s: failed to register the cec device\n", __func__); cec_delete_adapter(state->cec_adap); state->cec_adap = NULL; goto err_work_queues; } tc358743_enable_interrupts(sd, tx_5v_power_present(sd)); i2c_wr16(sd, INTMASK, ~irq_mask); err = v4l2_ctrl_handler_setup(sd->ctrl_handler); if (err) goto err_work_queues; err = v4l2_async_register_subdev(sd); if (err < 0) goto err_work_queues; v4l2_info(sd, "%s found @ 0x%x (%s)\n", client->name, client->addr << 1, client->adapter->name); return 0; err_work_queues: cec_unregister_adapter(state->cec_adap); if (!state->i2c_client->irq) flush_work(&state->work_i2c_poll); cancel_delayed_work(&state->delayed_work_enable_hotplug); mutex_destroy(&state->confctl_mutex); err_hdl: media_entity_cleanup(&sd->entity); v4l2_ctrl_handler_free(&state->hdl); return err; } static void tc358743_remove(struct i2c_client *client) { struct v4l2_subdev *sd = i2c_get_clientdata(client); struct tc358743_state *state = to_state(sd); if (!state->i2c_client->irq) { del_timer_sync(&state->timer); flush_work(&state->work_i2c_poll); } cancel_delayed_work_sync(&state->delayed_work_enable_hotplug); cec_unregister_adapter(state->cec_adap); v4l2_async_unregister_subdev(sd); v4l2_device_unregister_subdev(sd); mutex_destroy(&state->confctl_mutex); media_entity_cleanup(&sd->entity); v4l2_ctrl_handler_free(&state->hdl); } static const struct i2c_device_id tc358743_id[] = { {"tc358743", 0}, {} }; MODULE_DEVICE_TABLE(i2c, tc358743_id); #if IS_ENABLED(CONFIG_OF) static const struct of_device_id tc358743_of_match[] = { { .compatible = "toshiba,tc358743" }, {}, }; MODULE_DEVICE_TABLE(of, tc358743_of_match); #endif static struct i2c_driver tc358743_driver = { .driver = { .name = "tc358743", .of_match_table = of_match_ptr(tc358743_of_match), }, .probe = tc358743_probe, .remove = tc358743_remove, .id_table = tc358743_id, }; module_i2c_driver(tc358743_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1