Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Bingbu Cao | 3930 | 99.92% | 1 | 50.00% |
Stephen Rothwell | 3 | 0.08% | 1 | 50.00% |
Total | 3933 | 2 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2013--2024 Intel Corporation */ #include <asm/barrier.h> #include <linux/align.h> #include <linux/atomic.h> #include <linux/bitops.h> #include <linux/bits.h> #include <linux/bug.h> #include <linux/cacheflush.h> #include <linux/dma-mapping.h> #include <linux/err.h> #include <linux/gfp.h> #include <linux/io.h> #include <linux/iova.h> #include <linux/math.h> #include <linux/minmax.h> #include <linux/mm.h> #include <linux/pfn.h> #include <linux/slab.h> #include <linux/spinlock.h> #include <linux/types.h> #include <linux/vmalloc.h> #include "ipu6.h" #include "ipu6-dma.h" #include "ipu6-mmu.h" #include "ipu6-platform-regs.h" #define ISP_PAGE_SHIFT 12 #define ISP_PAGE_SIZE BIT(ISP_PAGE_SHIFT) #define ISP_PAGE_MASK (~(ISP_PAGE_SIZE - 1)) #define ISP_L1PT_SHIFT 22 #define ISP_L1PT_MASK (~((1U << ISP_L1PT_SHIFT) - 1)) #define ISP_L2PT_SHIFT 12 #define ISP_L2PT_MASK (~(ISP_L1PT_MASK | (~(ISP_PAGE_MASK)))) #define ISP_L1PT_PTES 1024 #define ISP_L2PT_PTES 1024 #define ISP_PADDR_SHIFT 12 #define REG_TLB_INVALIDATE 0x0000 #define REG_L1_PHYS 0x0004 /* 27-bit pfn */ #define REG_INFO 0x0008 #define TBL_PHYS_ADDR(a) ((phys_addr_t)(a) << ISP_PADDR_SHIFT) static void tlb_invalidate(struct ipu6_mmu *mmu) { unsigned long flags; unsigned int i; spin_lock_irqsave(&mmu->ready_lock, flags); if (!mmu->ready) { spin_unlock_irqrestore(&mmu->ready_lock, flags); return; } for (i = 0; i < mmu->nr_mmus; i++) { /* * To avoid the HW bug induced dead lock in some of the IPU6 * MMUs on successive invalidate calls, we need to first do a * read to the page table base before writing the invalidate * register. MMUs which need to implement this WA, will have * the insert_read_before_invalidate flags set as true. * Disregard the return value of the read. */ if (mmu->mmu_hw[i].insert_read_before_invalidate) readl(mmu->mmu_hw[i].base + REG_L1_PHYS); writel(0xffffffff, mmu->mmu_hw[i].base + REG_TLB_INVALIDATE); /* * The TLB invalidation is a "single cycle" (IOMMU clock cycles) * When the actual MMIO write reaches the IPU6 TLB Invalidate * register, wmb() will force the TLB invalidate out if the CPU * attempts to update the IOMMU page table (or sooner). */ wmb(); } spin_unlock_irqrestore(&mmu->ready_lock, flags); } #ifdef DEBUG static void page_table_dump(struct ipu6_mmu_info *mmu_info) { u32 l1_idx; dev_dbg(mmu_info->dev, "begin IOMMU page table dump\n"); for (l1_idx = 0; l1_idx < ISP_L1PT_PTES; l1_idx++) { u32 l2_idx; u32 iova = (phys_addr_t)l1_idx << ISP_L1PT_SHIFT; if (mmu_info->l1_pt[l1_idx] == mmu_info->dummy_l2_pteval) continue; dev_dbg(mmu_info->dev, "l1 entry %u; iovas 0x%8.8x-0x%8.8x, at %pa\n", l1_idx, iova, iova + ISP_PAGE_SIZE, TBL_PHYS_ADDR(mmu_info->l1_pt[l1_idx])); for (l2_idx = 0; l2_idx < ISP_L2PT_PTES; l2_idx++) { u32 *l2_pt = mmu_info->l2_pts[l1_idx]; u32 iova2 = iova + (l2_idx << ISP_L2PT_SHIFT); if (l2_pt[l2_idx] == mmu_info->dummy_page_pteval) continue; dev_dbg(mmu_info->dev, "\tl2 entry %u; iova 0x%8.8x, phys %pa\n", l2_idx, iova2, TBL_PHYS_ADDR(l2_pt[l2_idx])); } } dev_dbg(mmu_info->dev, "end IOMMU page table dump\n"); } #endif /* DEBUG */ static dma_addr_t map_single(struct ipu6_mmu_info *mmu_info, void *ptr) { dma_addr_t dma; dma = dma_map_single(mmu_info->dev, ptr, PAGE_SIZE, DMA_BIDIRECTIONAL); if (dma_mapping_error(mmu_info->dev, dma)) return 0; return dma; } static int get_dummy_page(struct ipu6_mmu_info *mmu_info) { void *pt = (void *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32); dma_addr_t dma; if (!pt) return -ENOMEM; dev_dbg(mmu_info->dev, "dummy_page: get_zeroed_page() == %p\n", pt); dma = map_single(mmu_info, pt); if (!dma) { dev_err(mmu_info->dev, "Failed to map dummy page\n"); goto err_free_page; } mmu_info->dummy_page = pt; mmu_info->dummy_page_pteval = dma >> ISP_PAGE_SHIFT; return 0; err_free_page: free_page((unsigned long)pt); return -ENOMEM; } static void free_dummy_page(struct ipu6_mmu_info *mmu_info) { dma_unmap_single(mmu_info->dev, TBL_PHYS_ADDR(mmu_info->dummy_page_pteval), PAGE_SIZE, DMA_BIDIRECTIONAL); free_page((unsigned long)mmu_info->dummy_page); } static int alloc_dummy_l2_pt(struct ipu6_mmu_info *mmu_info) { u32 *pt = (u32 *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32); dma_addr_t dma; unsigned int i; if (!pt) return -ENOMEM; dev_dbg(mmu_info->dev, "dummy_l2: get_zeroed_page() = %p\n", pt); dma = map_single(mmu_info, pt); if (!dma) { dev_err(mmu_info->dev, "Failed to map l2pt page\n"); goto err_free_page; } for (i = 0; i < ISP_L2PT_PTES; i++) pt[i] = mmu_info->dummy_page_pteval; mmu_info->dummy_l2_pt = pt; mmu_info->dummy_l2_pteval = dma >> ISP_PAGE_SHIFT; return 0; err_free_page: free_page((unsigned long)pt); return -ENOMEM; } static void free_dummy_l2_pt(struct ipu6_mmu_info *mmu_info) { dma_unmap_single(mmu_info->dev, TBL_PHYS_ADDR(mmu_info->dummy_l2_pteval), PAGE_SIZE, DMA_BIDIRECTIONAL); free_page((unsigned long)mmu_info->dummy_l2_pt); } static u32 *alloc_l1_pt(struct ipu6_mmu_info *mmu_info) { u32 *pt = (u32 *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32); dma_addr_t dma; unsigned int i; if (!pt) return NULL; dev_dbg(mmu_info->dev, "alloc_l1: get_zeroed_page() = %p\n", pt); for (i = 0; i < ISP_L1PT_PTES; i++) pt[i] = mmu_info->dummy_l2_pteval; dma = map_single(mmu_info, pt); if (!dma) { dev_err(mmu_info->dev, "Failed to map l1pt page\n"); goto err_free_page; } mmu_info->l1_pt_dma = dma >> ISP_PADDR_SHIFT; dev_dbg(mmu_info->dev, "l1 pt %p mapped at %llx\n", pt, dma); return pt; err_free_page: free_page((unsigned long)pt); return NULL; } static u32 *alloc_l2_pt(struct ipu6_mmu_info *mmu_info) { u32 *pt = (u32 *)get_zeroed_page(GFP_ATOMIC | GFP_DMA32); unsigned int i; if (!pt) return NULL; dev_dbg(mmu_info->dev, "alloc_l2: get_zeroed_page() = %p\n", pt); for (i = 0; i < ISP_L1PT_PTES; i++) pt[i] = mmu_info->dummy_page_pteval; return pt; } static int l2_map(struct ipu6_mmu_info *mmu_info, unsigned long iova, phys_addr_t paddr, size_t size) { u32 l1_idx = iova >> ISP_L1PT_SHIFT; u32 iova_start = iova; u32 *l2_pt, *l2_virt; unsigned int l2_idx; unsigned long flags; dma_addr_t dma; u32 l1_entry; dev_dbg(mmu_info->dev, "mapping l2 page table for l1 index %u (iova %8.8x)\n", l1_idx, (u32)iova); spin_lock_irqsave(&mmu_info->lock, flags); l1_entry = mmu_info->l1_pt[l1_idx]; if (l1_entry == mmu_info->dummy_l2_pteval) { l2_virt = mmu_info->l2_pts[l1_idx]; if (likely(!l2_virt)) { l2_virt = alloc_l2_pt(mmu_info); if (!l2_virt) { spin_unlock_irqrestore(&mmu_info->lock, flags); return -ENOMEM; } } dma = map_single(mmu_info, l2_virt); if (!dma) { dev_err(mmu_info->dev, "Failed to map l2pt page\n"); free_page((unsigned long)l2_virt); spin_unlock_irqrestore(&mmu_info->lock, flags); return -EINVAL; } l1_entry = dma >> ISP_PADDR_SHIFT; dev_dbg(mmu_info->dev, "page for l1_idx %u %p allocated\n", l1_idx, l2_virt); mmu_info->l1_pt[l1_idx] = l1_entry; mmu_info->l2_pts[l1_idx] = l2_virt; clflush_cache_range((void *)&mmu_info->l1_pt[l1_idx], sizeof(mmu_info->l1_pt[l1_idx])); } l2_pt = mmu_info->l2_pts[l1_idx]; dev_dbg(mmu_info->dev, "l2_pt at %p with dma 0x%x\n", l2_pt, l1_entry); paddr = ALIGN(paddr, ISP_PAGE_SIZE); l2_idx = (iova_start & ISP_L2PT_MASK) >> ISP_L2PT_SHIFT; dev_dbg(mmu_info->dev, "l2_idx %u, phys 0x%8.8x\n", l2_idx, l2_pt[l2_idx]); if (l2_pt[l2_idx] != mmu_info->dummy_page_pteval) { spin_unlock_irqrestore(&mmu_info->lock, flags); return -EINVAL; } l2_pt[l2_idx] = paddr >> ISP_PADDR_SHIFT; clflush_cache_range((void *)&l2_pt[l2_idx], sizeof(l2_pt[l2_idx])); spin_unlock_irqrestore(&mmu_info->lock, flags); dev_dbg(mmu_info->dev, "l2 index %u mapped as 0x%8.8x\n", l2_idx, l2_pt[l2_idx]); return 0; } static int __ipu6_mmu_map(struct ipu6_mmu_info *mmu_info, unsigned long iova, phys_addr_t paddr, size_t size) { u32 iova_start = round_down(iova, ISP_PAGE_SIZE); u32 iova_end = ALIGN(iova + size, ISP_PAGE_SIZE); dev_dbg(mmu_info->dev, "mapping iova 0x%8.8x--0x%8.8x, size %zu at paddr 0x%10.10llx\n", iova_start, iova_end, size, paddr); return l2_map(mmu_info, iova_start, paddr, size); } static size_t l2_unmap(struct ipu6_mmu_info *mmu_info, unsigned long iova, phys_addr_t dummy, size_t size) { u32 l1_idx = iova >> ISP_L1PT_SHIFT; u32 iova_start = iova; unsigned int l2_idx; size_t unmapped = 0; unsigned long flags; u32 *l2_pt; dev_dbg(mmu_info->dev, "unmapping l2 page table for l1 index %u (iova 0x%8.8lx)\n", l1_idx, iova); spin_lock_irqsave(&mmu_info->lock, flags); if (mmu_info->l1_pt[l1_idx] == mmu_info->dummy_l2_pteval) { spin_unlock_irqrestore(&mmu_info->lock, flags); dev_err(mmu_info->dev, "unmap iova 0x%8.8lx l1 idx %u which was not mapped\n", iova, l1_idx); return 0; } for (l2_idx = (iova_start & ISP_L2PT_MASK) >> ISP_L2PT_SHIFT; (iova_start & ISP_L1PT_MASK) + (l2_idx << ISP_PAGE_SHIFT) < iova_start + size && l2_idx < ISP_L2PT_PTES; l2_idx++) { l2_pt = mmu_info->l2_pts[l1_idx]; dev_dbg(mmu_info->dev, "unmap l2 index %u with pteval 0x%10.10llx\n", l2_idx, TBL_PHYS_ADDR(l2_pt[l2_idx])); l2_pt[l2_idx] = mmu_info->dummy_page_pteval; clflush_cache_range((void *)&l2_pt[l2_idx], sizeof(l2_pt[l2_idx])); unmapped++; } spin_unlock_irqrestore(&mmu_info->lock, flags); return unmapped << ISP_PAGE_SHIFT; } static size_t __ipu6_mmu_unmap(struct ipu6_mmu_info *mmu_info, unsigned long iova, size_t size) { return l2_unmap(mmu_info, iova, 0, size); } static int allocate_trash_buffer(struct ipu6_mmu *mmu) { unsigned int n_pages = PHYS_PFN(PAGE_ALIGN(IPU6_MMUV2_TRASH_RANGE)); struct iova *iova; unsigned int i; dma_addr_t dma; unsigned long iova_addr; int ret; /* Allocate 8MB in iova range */ iova = alloc_iova(&mmu->dmap->iovad, n_pages, PHYS_PFN(mmu->dmap->mmu_info->aperture_end), 0); if (!iova) { dev_err(mmu->dev, "cannot allocate iova range for trash\n"); return -ENOMEM; } dma = dma_map_page(mmu->dmap->mmu_info->dev, mmu->trash_page, 0, PAGE_SIZE, DMA_BIDIRECTIONAL); if (dma_mapping_error(mmu->dmap->mmu_info->dev, dma)) { dev_err(mmu->dmap->mmu_info->dev, "Failed to map trash page\n"); ret = -ENOMEM; goto out_free_iova; } mmu->pci_trash_page = dma; /* * Map the 8MB iova address range to the same physical trash page * mmu->trash_page which is already reserved at the probe */ iova_addr = iova->pfn_lo; for (i = 0; i < n_pages; i++) { ret = ipu6_mmu_map(mmu->dmap->mmu_info, PFN_PHYS(iova_addr), mmu->pci_trash_page, PAGE_SIZE); if (ret) { dev_err(mmu->dev, "mapping trash buffer range failed\n"); goto out_unmap; } iova_addr++; } mmu->iova_trash_page = PFN_PHYS(iova->pfn_lo); dev_dbg(mmu->dev, "iova trash buffer for MMUID: %d is %u\n", mmu->mmid, (unsigned int)mmu->iova_trash_page); return 0; out_unmap: ipu6_mmu_unmap(mmu->dmap->mmu_info, PFN_PHYS(iova->pfn_lo), PFN_PHYS(iova_size(iova))); dma_unmap_page(mmu->dmap->mmu_info->dev, mmu->pci_trash_page, PAGE_SIZE, DMA_BIDIRECTIONAL); out_free_iova: __free_iova(&mmu->dmap->iovad, iova); return ret; } int ipu6_mmu_hw_init(struct ipu6_mmu *mmu) { struct ipu6_mmu_info *mmu_info; unsigned long flags; unsigned int i; mmu_info = mmu->dmap->mmu_info; /* Initialise the each MMU HW block */ for (i = 0; i < mmu->nr_mmus; i++) { struct ipu6_mmu_hw *mmu_hw = &mmu->mmu_hw[i]; unsigned int j; u16 block_addr; /* Write page table address per MMU */ writel((phys_addr_t)mmu_info->l1_pt_dma, mmu->mmu_hw[i].base + REG_L1_PHYS); /* Set info bits per MMU */ writel(mmu->mmu_hw[i].info_bits, mmu->mmu_hw[i].base + REG_INFO); /* Configure MMU TLB stream configuration for L1 */ for (j = 0, block_addr = 0; j < mmu_hw->nr_l1streams; block_addr += mmu->mmu_hw[i].l1_block_sz[j], j++) { if (block_addr > IPU6_MAX_LI_BLOCK_ADDR) { dev_err(mmu->dev, "invalid L1 configuration\n"); return -EINVAL; } /* Write block start address for each streams */ writel(block_addr, mmu_hw->base + mmu_hw->l1_stream_id_reg_offset + 4 * j); } /* Configure MMU TLB stream configuration for L2 */ for (j = 0, block_addr = 0; j < mmu_hw->nr_l2streams; block_addr += mmu->mmu_hw[i].l2_block_sz[j], j++) { if (block_addr > IPU6_MAX_L2_BLOCK_ADDR) { dev_err(mmu->dev, "invalid L2 configuration\n"); return -EINVAL; } writel(block_addr, mmu_hw->base + mmu_hw->l2_stream_id_reg_offset + 4 * j); } } if (!mmu->trash_page) { int ret; mmu->trash_page = alloc_page(GFP_KERNEL); if (!mmu->trash_page) { dev_err(mmu->dev, "insufficient memory for trash buffer\n"); return -ENOMEM; } ret = allocate_trash_buffer(mmu); if (ret) { __free_page(mmu->trash_page); mmu->trash_page = NULL; dev_err(mmu->dev, "trash buffer allocation failed\n"); return ret; } } spin_lock_irqsave(&mmu->ready_lock, flags); mmu->ready = true; spin_unlock_irqrestore(&mmu->ready_lock, flags); return 0; } EXPORT_SYMBOL_NS_GPL(ipu6_mmu_hw_init, INTEL_IPU6); static struct ipu6_mmu_info *ipu6_mmu_alloc(struct ipu6_device *isp) { struct ipu6_mmu_info *mmu_info; int ret; mmu_info = kzalloc(sizeof(*mmu_info), GFP_KERNEL); if (!mmu_info) return NULL; mmu_info->aperture_start = 0; mmu_info->aperture_end = DMA_BIT_MASK(isp->secure_mode ? IPU6_MMU_ADDR_BITS : IPU6_MMU_ADDR_BITS_NON_SECURE); mmu_info->pgsize_bitmap = SZ_4K; mmu_info->dev = &isp->pdev->dev; ret = get_dummy_page(mmu_info); if (ret) goto err_free_info; ret = alloc_dummy_l2_pt(mmu_info); if (ret) goto err_free_dummy_page; mmu_info->l2_pts = vzalloc(ISP_L2PT_PTES * sizeof(*mmu_info->l2_pts)); if (!mmu_info->l2_pts) goto err_free_dummy_l2_pt; /* * We always map the L1 page table (a single page as well as * the L2 page tables). */ mmu_info->l1_pt = alloc_l1_pt(mmu_info); if (!mmu_info->l1_pt) goto err_free_l2_pts; spin_lock_init(&mmu_info->lock); dev_dbg(mmu_info->dev, "domain initialised\n"); return mmu_info; err_free_l2_pts: vfree(mmu_info->l2_pts); err_free_dummy_l2_pt: free_dummy_l2_pt(mmu_info); err_free_dummy_page: free_dummy_page(mmu_info); err_free_info: kfree(mmu_info); return NULL; } void ipu6_mmu_hw_cleanup(struct ipu6_mmu *mmu) { unsigned long flags; spin_lock_irqsave(&mmu->ready_lock, flags); mmu->ready = false; spin_unlock_irqrestore(&mmu->ready_lock, flags); } EXPORT_SYMBOL_NS_GPL(ipu6_mmu_hw_cleanup, INTEL_IPU6); static struct ipu6_dma_mapping *alloc_dma_mapping(struct ipu6_device *isp) { struct ipu6_dma_mapping *dmap; dmap = kzalloc(sizeof(*dmap), GFP_KERNEL); if (!dmap) return NULL; dmap->mmu_info = ipu6_mmu_alloc(isp); if (!dmap->mmu_info) { kfree(dmap); return NULL; } init_iova_domain(&dmap->iovad, SZ_4K, 1); dmap->mmu_info->dmap = dmap; dev_dbg(&isp->pdev->dev, "alloc mapping\n"); iova_cache_get(); return dmap; } phys_addr_t ipu6_mmu_iova_to_phys(struct ipu6_mmu_info *mmu_info, dma_addr_t iova) { phys_addr_t phy_addr; unsigned long flags; u32 *l2_pt; spin_lock_irqsave(&mmu_info->lock, flags); l2_pt = mmu_info->l2_pts[iova >> ISP_L1PT_SHIFT]; phy_addr = (phys_addr_t)l2_pt[(iova & ISP_L2PT_MASK) >> ISP_L2PT_SHIFT]; phy_addr <<= ISP_PAGE_SHIFT; spin_unlock_irqrestore(&mmu_info->lock, flags); return phy_addr; } static size_t ipu6_mmu_pgsize(unsigned long pgsize_bitmap, unsigned long addr_merge, size_t size) { unsigned int pgsize_idx; size_t pgsize; /* Max page size that still fits into 'size' */ pgsize_idx = __fls(size); if (likely(addr_merge)) { /* Max page size allowed by address */ unsigned int align_pgsize_idx = __ffs(addr_merge); pgsize_idx = min(pgsize_idx, align_pgsize_idx); } pgsize = (1UL << (pgsize_idx + 1)) - 1; pgsize &= pgsize_bitmap; WARN_ON(!pgsize); /* pick the biggest page */ pgsize_idx = __fls(pgsize); pgsize = 1UL << pgsize_idx; return pgsize; } size_t ipu6_mmu_unmap(struct ipu6_mmu_info *mmu_info, unsigned long iova, size_t size) { size_t unmapped_page, unmapped = 0; unsigned int min_pagesz; /* find out the minimum page size supported */ min_pagesz = 1 << __ffs(mmu_info->pgsize_bitmap); /* * The virtual address and the size of the mapping must be * aligned (at least) to the size of the smallest page supported * by the hardware */ if (!IS_ALIGNED(iova | size, min_pagesz)) { dev_err(NULL, "unaligned: iova 0x%lx size 0x%zx min_pagesz 0x%x\n", iova, size, min_pagesz); return -EINVAL; } /* * Keep iterating until we either unmap 'size' bytes (or more) * or we hit an area that isn't mapped. */ while (unmapped < size) { size_t pgsize = ipu6_mmu_pgsize(mmu_info->pgsize_bitmap, iova, size - unmapped); unmapped_page = __ipu6_mmu_unmap(mmu_info, iova, pgsize); if (!unmapped_page) break; dev_dbg(mmu_info->dev, "unmapped: iova 0x%lx size 0x%zx\n", iova, unmapped_page); iova += unmapped_page; unmapped += unmapped_page; } return unmapped; } int ipu6_mmu_map(struct ipu6_mmu_info *mmu_info, unsigned long iova, phys_addr_t paddr, size_t size) { unsigned long orig_iova = iova; unsigned int min_pagesz; size_t orig_size = size; int ret = 0; if (mmu_info->pgsize_bitmap == 0UL) return -ENODEV; /* find out the minimum page size supported */ min_pagesz = 1 << __ffs(mmu_info->pgsize_bitmap); /* * both the virtual address and the physical one, as well as * the size of the mapping, must be aligned (at least) to the * size of the smallest page supported by the hardware */ if (!IS_ALIGNED(iova | paddr | size, min_pagesz)) { dev_err(mmu_info->dev, "unaligned: iova %lx pa %pa size %zx min_pagesz %x\n", iova, &paddr, size, min_pagesz); return -EINVAL; } dev_dbg(mmu_info->dev, "map: iova 0x%lx pa %pa size 0x%zx\n", iova, &paddr, size); while (size) { size_t pgsize = ipu6_mmu_pgsize(mmu_info->pgsize_bitmap, iova | paddr, size); dev_dbg(mmu_info->dev, "mapping: iova 0x%lx pa %pa pgsize 0x%zx\n", iova, &paddr, pgsize); ret = __ipu6_mmu_map(mmu_info, iova, paddr, pgsize); if (ret) break; iova += pgsize; paddr += pgsize; size -= pgsize; } /* unroll mapping in case something went wrong */ if (ret) ipu6_mmu_unmap(mmu_info, orig_iova, orig_size - size); return ret; } static void ipu6_mmu_destroy(struct ipu6_mmu *mmu) { struct ipu6_dma_mapping *dmap = mmu->dmap; struct ipu6_mmu_info *mmu_info = dmap->mmu_info; struct iova *iova; u32 l1_idx; if (mmu->iova_trash_page) { iova = find_iova(&dmap->iovad, PHYS_PFN(mmu->iova_trash_page)); if (iova) { /* unmap and free the trash buffer iova */ ipu6_mmu_unmap(mmu_info, PFN_PHYS(iova->pfn_lo), PFN_PHYS(iova_size(iova))); __free_iova(&dmap->iovad, iova); } else { dev_err(mmu->dev, "trash buffer iova not found.\n"); } mmu->iova_trash_page = 0; dma_unmap_page(mmu_info->dev, mmu->pci_trash_page, PAGE_SIZE, DMA_BIDIRECTIONAL); mmu->pci_trash_page = 0; __free_page(mmu->trash_page); } for (l1_idx = 0; l1_idx < ISP_L1PT_PTES; l1_idx++) { if (mmu_info->l1_pt[l1_idx] != mmu_info->dummy_l2_pteval) { dma_unmap_single(mmu_info->dev, TBL_PHYS_ADDR(mmu_info->l1_pt[l1_idx]), PAGE_SIZE, DMA_BIDIRECTIONAL); free_page((unsigned long)mmu_info->l2_pts[l1_idx]); } } vfree(mmu_info->l2_pts); free_dummy_page(mmu_info); dma_unmap_single(mmu_info->dev, TBL_PHYS_ADDR(mmu_info->l1_pt_dma), PAGE_SIZE, DMA_BIDIRECTIONAL); free_page((unsigned long)mmu_info->dummy_l2_pt); free_page((unsigned long)mmu_info->l1_pt); kfree(mmu_info); } struct ipu6_mmu *ipu6_mmu_init(struct device *dev, void __iomem *base, int mmid, const struct ipu6_hw_variants *hw) { struct ipu6_device *isp = pci_get_drvdata(to_pci_dev(dev)); struct ipu6_mmu_pdata *pdata; struct ipu6_mmu *mmu; unsigned int i; if (hw->nr_mmus > IPU6_MMU_MAX_DEVICES) return ERR_PTR(-EINVAL); pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); if (!pdata) return ERR_PTR(-ENOMEM); for (i = 0; i < hw->nr_mmus; i++) { struct ipu6_mmu_hw *pdata_mmu = &pdata->mmu_hw[i]; const struct ipu6_mmu_hw *src_mmu = &hw->mmu_hw[i]; if (src_mmu->nr_l1streams > IPU6_MMU_MAX_TLB_L1_STREAMS || src_mmu->nr_l2streams > IPU6_MMU_MAX_TLB_L2_STREAMS) return ERR_PTR(-EINVAL); *pdata_mmu = *src_mmu; pdata_mmu->base = base + src_mmu->offset; } mmu = devm_kzalloc(dev, sizeof(*mmu), GFP_KERNEL); if (!mmu) return ERR_PTR(-ENOMEM); mmu->mmid = mmid; mmu->mmu_hw = pdata->mmu_hw; mmu->nr_mmus = hw->nr_mmus; mmu->tlb_invalidate = tlb_invalidate; mmu->ready = false; INIT_LIST_HEAD(&mmu->vma_list); spin_lock_init(&mmu->ready_lock); mmu->dmap = alloc_dma_mapping(isp); if (!mmu->dmap) { dev_err(dev, "can't alloc dma mapping\n"); return ERR_PTR(-ENOMEM); } return mmu; } void ipu6_mmu_cleanup(struct ipu6_mmu *mmu) { struct ipu6_dma_mapping *dmap = mmu->dmap; ipu6_mmu_destroy(mmu); mmu->dmap = NULL; iova_cache_put(); put_iova_domain(&dmap->iovad); kfree(dmap); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1