Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Matthias Benesch | 3636 | 40.44% | 4 | 6.35% |
Oliver Endriss | 3572 | 39.72% | 20 | 31.75% |
Ralph Metzler | 653 | 7.26% | 4 | 6.35% |
Devin Heitmueller | 511 | 5.68% | 5 | 7.94% |
Daniel Scheller | 413 | 4.59% | 5 | 7.94% |
Christophe Jaillet | 60 | 0.67% | 1 | 1.59% |
Allen Pais | 44 | 0.49% | 2 | 3.17% |
Binoy Jayan | 20 | 0.22% | 3 | 4.76% |
Patrice Chotard | 16 | 0.18% | 1 | 1.59% |
Aleksandr Burakov | 11 | 0.12% | 1 | 1.59% |
Mauro Carvalho Chehab | 11 | 0.12% | 3 | 4.76% |
Hans Verkuil | 10 | 0.11% | 2 | 3.17% |
Andy Shevchenko | 8 | 0.09% | 1 | 1.59% |
Peter Senna Tschudin | 8 | 0.09% | 2 | 3.17% |
Márton Németh | 4 | 0.04% | 1 | 1.59% |
Stephen Rothwell | 3 | 0.03% | 1 | 1.59% |
Roland Praml | 3 | 0.03% | 1 | 1.59% |
Lucas De Marchi | 2 | 0.02% | 1 | 1.59% |
Thomas Gleixner | 2 | 0.02% | 1 | 1.59% |
Jiri Slaby | 2 | 0.02% | 1 | 1.59% |
Joe Perches | 1 | 0.01% | 1 | 1.59% |
Dan Carpenter | 1 | 0.01% | 1 | 1.59% |
Gustavo A. R. Silva | 1 | 0.01% | 1 | 1.59% |
Total | 8992 | 63 |
// SPDX-License-Identifier: GPL-2.0-only /* * ngene.c: nGene PCIe bridge driver * * Copyright (C) 2005-2007 Micronas * * Copyright (C) 2008-2009 Ralph Metzler <rjkm@metzlerbros.de> * Modifications for new nGene firmware, * support for EEPROM-copying, * support for new dual DVB-S2 card prototype */ #include <linux/module.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/poll.h> #include <linux/io.h> #include <asm/div64.h> #include <linux/pci.h> #include <linux/timer.h> #include <linux/byteorder/generic.h> #include <linux/firmware.h> #include <linux/vmalloc.h> #include "ngene.h" static int one_adapter; module_param(one_adapter, int, 0444); MODULE_PARM_DESC(one_adapter, "Use only one adapter."); static int shutdown_workaround; module_param(shutdown_workaround, int, 0644); MODULE_PARM_DESC(shutdown_workaround, "Activate workaround for shutdown problem with some chipsets."); static int debug; module_param(debug, int, 0444); MODULE_PARM_DESC(debug, "Print debugging information."); DVB_DEFINE_MOD_OPT_ADAPTER_NR(adapter_nr); #define ngwriteb(dat, adr) writeb((dat), dev->iomem + (adr)) #define ngwritel(dat, adr) writel((dat), dev->iomem + (adr)) #define ngwriteb(dat, adr) writeb((dat), dev->iomem + (adr)) #define ngreadl(adr) readl(dev->iomem + (adr)) #define ngreadb(adr) readb(dev->iomem + (adr)) #define ngcpyto(adr, src, count) memcpy_toio(dev->iomem + (adr), (src), (count)) #define ngcpyfrom(dst, adr, count) memcpy_fromio((dst), dev->iomem + (adr), (count)) /****************************************************************************/ /* nGene interrupt handler **************************************************/ /****************************************************************************/ static void event_bh_work(struct work_struct *t) { struct ngene *dev = from_work(dev, t, event_bh_work); while (dev->EventQueueReadIndex != dev->EventQueueWriteIndex) { struct EVENT_BUFFER Event = dev->EventQueue[dev->EventQueueReadIndex]; dev->EventQueueReadIndex = (dev->EventQueueReadIndex + 1) & (EVENT_QUEUE_SIZE - 1); if ((Event.UARTStatus & 0x01) && (dev->TxEventNotify)) dev->TxEventNotify(dev, Event.TimeStamp); if ((Event.UARTStatus & 0x02) && (dev->RxEventNotify)) dev->RxEventNotify(dev, Event.TimeStamp, Event.RXCharacter); } } static void demux_bh_work(struct work_struct *t) { struct ngene_channel *chan = from_work(chan, t, demux_bh_work); struct device *pdev = &chan->dev->pci_dev->dev; struct SBufferHeader *Cur = chan->nextBuffer; spin_lock_irq(&chan->state_lock); while (Cur->ngeneBuffer.SR.Flags & 0x80) { if (chan->mode & NGENE_IO_TSOUT) { u32 Flags = chan->DataFormatFlags; if (Cur->ngeneBuffer.SR.Flags & 0x20) Flags |= BEF_OVERFLOW; if (chan->pBufferExchange) { if (!chan->pBufferExchange(chan, Cur->Buffer1, chan->Capture1Length, Cur->ngeneBuffer.SR. Clock, Flags)) { /* We didn't get data Clear in service flag to make sure we get called on next interrupt again. leave fill/empty (0x80) flag alone to avoid hardware running out of buffers during startup, we hold only in run state ( the source may be late delivering data ) */ if (chan->HWState == HWSTATE_RUN) { Cur->ngeneBuffer.SR.Flags &= ~0x40; break; /* Stop processing stream */ } } else { /* We got a valid buffer, so switch to run state */ chan->HWState = HWSTATE_RUN; } } else { dev_err(pdev, "OOPS\n"); if (chan->HWState == HWSTATE_RUN) { Cur->ngeneBuffer.SR.Flags &= ~0x40; break; /* Stop processing stream */ } } if (chan->AudioDTOUpdated) { dev_info(pdev, "Update AudioDTO = %d\n", chan->AudioDTOValue); Cur->ngeneBuffer.SR.DTOUpdate = chan->AudioDTOValue; chan->AudioDTOUpdated = 0; } } else { if (chan->HWState == HWSTATE_RUN) { u32 Flags = chan->DataFormatFlags; IBufferExchange *exch1 = chan->pBufferExchange; IBufferExchange *exch2 = chan->pBufferExchange2; if (Cur->ngeneBuffer.SR.Flags & 0x01) Flags |= BEF_EVEN_FIELD; if (Cur->ngeneBuffer.SR.Flags & 0x20) Flags |= BEF_OVERFLOW; spin_unlock_irq(&chan->state_lock); if (exch1) exch1(chan, Cur->Buffer1, chan->Capture1Length, Cur->ngeneBuffer.SR.Clock, Flags); if (exch2) exch2(chan, Cur->Buffer2, chan->Capture2Length, Cur->ngeneBuffer.SR.Clock, Flags); spin_lock_irq(&chan->state_lock); } else if (chan->HWState != HWSTATE_STOP) chan->HWState = HWSTATE_RUN; } Cur->ngeneBuffer.SR.Flags = 0x00; Cur = Cur->Next; } chan->nextBuffer = Cur; spin_unlock_irq(&chan->state_lock); } static irqreturn_t irq_handler(int irq, void *dev_id) { struct ngene *dev = (struct ngene *)dev_id; struct device *pdev = &dev->pci_dev->dev; u32 icounts = 0; irqreturn_t rc = IRQ_NONE; u32 i = MAX_STREAM; u8 *tmpCmdDoneByte; if (dev->BootFirmware) { icounts = ngreadl(NGENE_INT_COUNTS); if (icounts != dev->icounts) { ngwritel(0, FORCE_NMI); dev->cmd_done = 1; wake_up(&dev->cmd_wq); dev->icounts = icounts; rc = IRQ_HANDLED; } return rc; } ngwritel(0, FORCE_NMI); spin_lock(&dev->cmd_lock); tmpCmdDoneByte = dev->CmdDoneByte; if (tmpCmdDoneByte && (*tmpCmdDoneByte || (dev->ngenetohost[0] == 1 && dev->ngenetohost[1] != 0))) { dev->CmdDoneByte = NULL; dev->cmd_done = 1; wake_up(&dev->cmd_wq); rc = IRQ_HANDLED; } spin_unlock(&dev->cmd_lock); if (dev->EventBuffer->EventStatus & 0x80) { u8 nextWriteIndex = (dev->EventQueueWriteIndex + 1) & (EVENT_QUEUE_SIZE - 1); if (nextWriteIndex != dev->EventQueueReadIndex) { dev->EventQueue[dev->EventQueueWriteIndex] = *(dev->EventBuffer); dev->EventQueueWriteIndex = nextWriteIndex; } else { dev_err(pdev, "event overflow\n"); dev->EventQueueOverflowCount += 1; dev->EventQueueOverflowFlag = 1; } dev->EventBuffer->EventStatus &= ~0x80; queue_work(system_bh_wq, &dev->event_bh_work); rc = IRQ_HANDLED; } while (i > 0) { i--; spin_lock(&dev->channel[i].state_lock); /* if (dev->channel[i].State>=KSSTATE_RUN) { */ if (dev->channel[i].nextBuffer) { if ((dev->channel[i].nextBuffer-> ngeneBuffer.SR.Flags & 0xC0) == 0x80) { dev->channel[i].nextBuffer-> ngeneBuffer.SR.Flags |= 0x40; queue_work(system_bh_wq, &dev->channel[i].demux_bh_work); rc = IRQ_HANDLED; } } spin_unlock(&dev->channel[i].state_lock); } /* Request might have been processed by a previous call. */ return IRQ_HANDLED; } /****************************************************************************/ /* nGene command interface **************************************************/ /****************************************************************************/ static void dump_command_io(struct ngene *dev) { struct device *pdev = &dev->pci_dev->dev; u8 buf[8], *b; ngcpyfrom(buf, HOST_TO_NGENE, 8); dev_err(pdev, "host_to_ngene (%04x): %*ph\n", HOST_TO_NGENE, 8, buf); ngcpyfrom(buf, NGENE_TO_HOST, 8); dev_err(pdev, "ngene_to_host (%04x): %*ph\n", NGENE_TO_HOST, 8, buf); b = dev->hosttongene; dev_err(pdev, "dev->hosttongene (%p): %*ph\n", b, 8, b); b = dev->ngenetohost; dev_err(pdev, "dev->ngenetohost (%p): %*ph\n", b, 8, b); } static int ngene_command_mutex(struct ngene *dev, struct ngene_command *com) { struct device *pdev = &dev->pci_dev->dev; int ret; u8 *tmpCmdDoneByte; dev->cmd_done = 0; if (com->cmd.hdr.Opcode == CMD_FWLOAD_PREPARE) { dev->BootFirmware = 1; dev->icounts = ngreadl(NGENE_INT_COUNTS); ngwritel(0, NGENE_COMMAND); ngwritel(0, NGENE_COMMAND_HI); ngwritel(0, NGENE_STATUS); ngwritel(0, NGENE_STATUS_HI); ngwritel(0, NGENE_EVENT); ngwritel(0, NGENE_EVENT_HI); } else if (com->cmd.hdr.Opcode == CMD_FWLOAD_FINISH) { u64 fwio = dev->PAFWInterfaceBuffer; ngwritel(fwio & 0xffffffff, NGENE_COMMAND); ngwritel(fwio >> 32, NGENE_COMMAND_HI); ngwritel((fwio + 256) & 0xffffffff, NGENE_STATUS); ngwritel((fwio + 256) >> 32, NGENE_STATUS_HI); ngwritel((fwio + 512) & 0xffffffff, NGENE_EVENT); ngwritel((fwio + 512) >> 32, NGENE_EVENT_HI); } memcpy(dev->FWInterfaceBuffer, com->cmd.raw8, com->in_len + 2); if (dev->BootFirmware) ngcpyto(HOST_TO_NGENE, com->cmd.raw8, com->in_len + 2); spin_lock_irq(&dev->cmd_lock); tmpCmdDoneByte = dev->ngenetohost + com->out_len; if (!com->out_len) tmpCmdDoneByte++; *tmpCmdDoneByte = 0; dev->ngenetohost[0] = 0; dev->ngenetohost[1] = 0; dev->CmdDoneByte = tmpCmdDoneByte; spin_unlock_irq(&dev->cmd_lock); /* Notify 8051. */ ngwritel(1, FORCE_INT); ret = wait_event_timeout(dev->cmd_wq, dev->cmd_done == 1, 2 * HZ); if (!ret) { /*ngwritel(0, FORCE_NMI);*/ dev_err(pdev, "Command timeout cmd=%02x prev=%02x\n", com->cmd.hdr.Opcode, dev->prev_cmd); dump_command_io(dev); return -1; } if (com->cmd.hdr.Opcode == CMD_FWLOAD_FINISH) dev->BootFirmware = 0; dev->prev_cmd = com->cmd.hdr.Opcode; if (!com->out_len) return 0; memcpy(com->cmd.raw8, dev->ngenetohost, com->out_len); return 0; } int ngene_command(struct ngene *dev, struct ngene_command *com) { int result; mutex_lock(&dev->cmd_mutex); result = ngene_command_mutex(dev, com); mutex_unlock(&dev->cmd_mutex); return result; } static int ngene_command_load_firmware(struct ngene *dev, u8 *ngene_fw, u32 size) { #define FIRSTCHUNK (1024) u32 cleft; struct ngene_command com; com.cmd.hdr.Opcode = CMD_FWLOAD_PREPARE; com.cmd.hdr.Length = 0; com.in_len = 0; com.out_len = 0; ngene_command(dev, &com); cleft = (size + 3) & ~3; if (cleft > FIRSTCHUNK) { ngcpyto(PROGRAM_SRAM + FIRSTCHUNK, ngene_fw + FIRSTCHUNK, cleft - FIRSTCHUNK); cleft = FIRSTCHUNK; } ngcpyto(DATA_FIFO_AREA, ngene_fw, cleft); memset(&com, 0, sizeof(struct ngene_command)); com.cmd.hdr.Opcode = CMD_FWLOAD_FINISH; com.cmd.hdr.Length = 4; com.cmd.FWLoadFinish.Address = DATA_FIFO_AREA; com.cmd.FWLoadFinish.Length = (unsigned short)cleft; com.in_len = 4; com.out_len = 0; return ngene_command(dev, &com); } static int ngene_command_config_buf(struct ngene *dev, u8 config) { struct ngene_command com; com.cmd.hdr.Opcode = CMD_CONFIGURE_BUFFER; com.cmd.hdr.Length = 1; com.cmd.ConfigureBuffers.config = config; com.in_len = 1; com.out_len = 0; if (ngene_command(dev, &com) < 0) return -EIO; return 0; } static int ngene_command_config_free_buf(struct ngene *dev, u8 *config) { struct ngene_command com; com.cmd.hdr.Opcode = CMD_CONFIGURE_FREE_BUFFER; com.cmd.hdr.Length = 6; memcpy(&com.cmd.ConfigureFreeBuffers.config, config, 6); com.in_len = 6; com.out_len = 0; if (ngene_command(dev, &com) < 0) return -EIO; return 0; } int ngene_command_gpio_set(struct ngene *dev, u8 select, u8 level) { struct ngene_command com; com.cmd.hdr.Opcode = CMD_SET_GPIO_PIN; com.cmd.hdr.Length = 1; com.cmd.SetGpioPin.select = select | (level << 7); com.in_len = 1; com.out_len = 0; return ngene_command(dev, &com); } /* 02000640 is sample on rising edge. 02000740 is sample on falling edge. 02000040 is ignore "valid" signal 0: FD_CTL1 Bit 7,6 must be 0,1 7 disable(fw controlled) 6 0-AUX,1-TS 5 0-par,1-ser 4 0-lsb/1-msb 3,2 reserved 1,0 0-no sync, 1-use ext. start, 2-use 0x47, 3-both 1: FD_CTL2 has 3-valid must be hi, 2-use valid, 1-edge 2: FD_STA is read-only. 0-sync 3: FD_INSYNC is number of 47s to trigger "in sync". 4: FD_OUTSYNC is number of 47s to trigger "out of sync". 5: FD_MAXBYTE1 is low-order of bytes per packet. 6: FD_MAXBYTE2 is high-order of bytes per packet. 7: Top byte is unused. */ /****************************************************************************/ static u8 TSFeatureDecoderSetup[8 * 5] = { 0x42, 0x00, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, 0x40, 0x06, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* DRXH */ 0x71, 0x07, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* DRXHser */ 0x72, 0x00, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* S2ser */ 0x40, 0x07, 0x00, 0x02, 0x02, 0xbc, 0x00, 0x00, /* LGDT3303 */ }; /* Set NGENE I2S Config to 16 bit packed */ static u8 I2SConfiguration[] = { 0x00, 0x10, 0x00, 0x00, 0x80, 0x10, 0x00, 0x00, }; static u8 SPDIFConfiguration[10] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }; /* Set NGENE I2S Config to transport stream compatible mode */ static u8 TS_I2SConfiguration[4] = { 0x3E, 0x18, 0x00, 0x00 }; static u8 TS_I2SOutConfiguration[4] = { 0x80, 0x04, 0x00, 0x00 }; static u8 ITUDecoderSetup[4][16] = { {0x1c, 0x13, 0x01, 0x68, 0x3d, 0x90, 0x14, 0x20, /* SDTV */ 0x00, 0x00, 0x01, 0xb0, 0x9c, 0x00, 0x00, 0x00}, {0x9c, 0x03, 0x23, 0xC0, 0x60, 0x0E, 0x13, 0x00, 0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00}, {0x9f, 0x00, 0x23, 0xC0, 0x60, 0x0F, 0x13, 0x00, /* HDTV 1080i50 */ 0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00}, {0x9c, 0x01, 0x23, 0xC0, 0x60, 0x0E, 0x13, 0x00, /* HDTV 1080i60 */ 0x00, 0x00, 0x00, 0x01, 0xB0, 0x00, 0x00, 0x00}, }; /* * 50 48 60 gleich * 27p50 9f 00 22 80 42 69 18 ... * 27p60 93 00 22 80 82 69 1c ... */ /* Maxbyte to 1144 (for raw data) */ static u8 ITUFeatureDecoderSetup[8] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x78, 0x04, 0x00 }; void FillTSBuffer(void *Buffer, int Length, u32 Flags) { u32 *ptr = Buffer; memset(Buffer, TS_FILLER, Length); while (Length > 0) { if (Flags & DF_SWAP32) *ptr = 0x471FFF10; else *ptr = 0x10FF1F47; ptr += (188 / 4); Length -= 188; } } static void flush_buffers(struct ngene_channel *chan) { u8 val; do { msleep(1); spin_lock_irq(&chan->state_lock); val = chan->nextBuffer->ngeneBuffer.SR.Flags & 0x80; spin_unlock_irq(&chan->state_lock); } while (val); } static void clear_buffers(struct ngene_channel *chan) { struct SBufferHeader *Cur = chan->nextBuffer; do { memset(&Cur->ngeneBuffer.SR, 0, sizeof(Cur->ngeneBuffer.SR)); if (chan->mode & NGENE_IO_TSOUT) FillTSBuffer(Cur->Buffer1, chan->Capture1Length, chan->DataFormatFlags); Cur = Cur->Next; } while (Cur != chan->nextBuffer); if (chan->mode & NGENE_IO_TSOUT) { chan->nextBuffer->ngeneBuffer.SR.DTOUpdate = chan->AudioDTOValue; chan->AudioDTOUpdated = 0; Cur = chan->TSIdleBuffer.Head; do { memset(&Cur->ngeneBuffer.SR, 0, sizeof(Cur->ngeneBuffer.SR)); FillTSBuffer(Cur->Buffer1, chan->Capture1Length, chan->DataFormatFlags); Cur = Cur->Next; } while (Cur != chan->TSIdleBuffer.Head); } } static int ngene_command_stream_control(struct ngene *dev, u8 stream, u8 control, u8 mode, u8 flags) { struct device *pdev = &dev->pci_dev->dev; struct ngene_channel *chan = &dev->channel[stream]; struct ngene_command com; u16 BsUVI = ((stream & 1) ? 0x9400 : 0x9300); u16 BsSDI = ((stream & 1) ? 0x9600 : 0x9500); u16 BsSPI = ((stream & 1) ? 0x9800 : 0x9700); u16 BsSDO = 0x9B00; memset(&com, 0, sizeof(com)); com.cmd.hdr.Opcode = CMD_CONTROL; com.cmd.hdr.Length = sizeof(struct FW_STREAM_CONTROL) - 2; com.cmd.StreamControl.Stream = stream | (control ? 8 : 0); if (chan->mode & NGENE_IO_TSOUT) com.cmd.StreamControl.Stream |= 0x07; com.cmd.StreamControl.Control = control | (flags & SFLAG_ORDER_LUMA_CHROMA); com.cmd.StreamControl.Mode = mode; com.in_len = sizeof(struct FW_STREAM_CONTROL); com.out_len = 0; dev_dbg(pdev, "Stream=%02x, Control=%02x, Mode=%02x\n", com.cmd.StreamControl.Stream, com.cmd.StreamControl.Control, com.cmd.StreamControl.Mode); chan->Mode = mode; if (!(control & 0x80)) { spin_lock_irq(&chan->state_lock); if (chan->State == KSSTATE_RUN) { chan->State = KSSTATE_ACQUIRE; chan->HWState = HWSTATE_STOP; spin_unlock_irq(&chan->state_lock); if (ngene_command(dev, &com) < 0) return -1; /* clear_buffers(chan); */ flush_buffers(chan); return 0; } spin_unlock_irq(&chan->state_lock); return 0; } if (mode & SMODE_AUDIO_CAPTURE) { com.cmd.StreamControl.CaptureBlockCount = chan->Capture1Length / AUDIO_BLOCK_SIZE; com.cmd.StreamControl.Buffer_Address = chan->RingBuffer.PAHead; } else if (mode & SMODE_TRANSPORT_STREAM) { com.cmd.StreamControl.CaptureBlockCount = chan->Capture1Length / TS_BLOCK_SIZE; com.cmd.StreamControl.MaxLinesPerField = chan->Capture1Length / TS_BLOCK_SIZE; com.cmd.StreamControl.Buffer_Address = chan->TSRingBuffer.PAHead; if (chan->mode & NGENE_IO_TSOUT) { com.cmd.StreamControl.BytesPerVBILine = chan->Capture1Length / TS_BLOCK_SIZE; com.cmd.StreamControl.Stream |= 0x07; } } else { com.cmd.StreamControl.BytesPerVideoLine = chan->nBytesPerLine; com.cmd.StreamControl.MaxLinesPerField = chan->nLines; com.cmd.StreamControl.MinLinesPerField = 100; com.cmd.StreamControl.Buffer_Address = chan->RingBuffer.PAHead; if (mode & SMODE_VBI_CAPTURE) { com.cmd.StreamControl.MaxVBILinesPerField = chan->nVBILines; com.cmd.StreamControl.MinVBILinesPerField = 0; com.cmd.StreamControl.BytesPerVBILine = chan->nBytesPerVBILine; } if (flags & SFLAG_COLORBAR) com.cmd.StreamControl.Stream |= 0x04; } spin_lock_irq(&chan->state_lock); if (mode & SMODE_AUDIO_CAPTURE) { chan->nextBuffer = chan->RingBuffer.Head; if (mode & SMODE_AUDIO_SPDIF) { com.cmd.StreamControl.SetupDataLen = sizeof(SPDIFConfiguration); com.cmd.StreamControl.SetupDataAddr = BsSPI; memcpy(com.cmd.StreamControl.SetupData, SPDIFConfiguration, sizeof(SPDIFConfiguration)); } else { com.cmd.StreamControl.SetupDataLen = 4; com.cmd.StreamControl.SetupDataAddr = BsSDI; memcpy(com.cmd.StreamControl.SetupData, I2SConfiguration + 4 * dev->card_info->i2s[stream], 4); } } else if (mode & SMODE_TRANSPORT_STREAM) { chan->nextBuffer = chan->TSRingBuffer.Head; if (stream >= STREAM_AUDIOIN1) { if (chan->mode & NGENE_IO_TSOUT) { com.cmd.StreamControl.SetupDataLen = sizeof(TS_I2SOutConfiguration); com.cmd.StreamControl.SetupDataAddr = BsSDO; memcpy(com.cmd.StreamControl.SetupData, TS_I2SOutConfiguration, sizeof(TS_I2SOutConfiguration)); } else { com.cmd.StreamControl.SetupDataLen = sizeof(TS_I2SConfiguration); com.cmd.StreamControl.SetupDataAddr = BsSDI; memcpy(com.cmd.StreamControl.SetupData, TS_I2SConfiguration, sizeof(TS_I2SConfiguration)); } } else { com.cmd.StreamControl.SetupDataLen = 8; com.cmd.StreamControl.SetupDataAddr = BsUVI + 0x10; memcpy(com.cmd.StreamControl.SetupData, TSFeatureDecoderSetup + 8 * dev->card_info->tsf[stream], 8); } } else { chan->nextBuffer = chan->RingBuffer.Head; com.cmd.StreamControl.SetupDataLen = 16 + sizeof(ITUFeatureDecoderSetup); com.cmd.StreamControl.SetupDataAddr = BsUVI; memcpy(com.cmd.StreamControl.SetupData, ITUDecoderSetup[chan->itumode], 16); memcpy(com.cmd.StreamControl.SetupData + 16, ITUFeatureDecoderSetup, sizeof(ITUFeatureDecoderSetup)); } clear_buffers(chan); chan->State = KSSTATE_RUN; if (mode & SMODE_TRANSPORT_STREAM) chan->HWState = HWSTATE_RUN; else chan->HWState = HWSTATE_STARTUP; spin_unlock_irq(&chan->state_lock); if (ngene_command(dev, &com) < 0) return -1; return 0; } void set_transfer(struct ngene_channel *chan, int state) { struct device *pdev = &chan->dev->pci_dev->dev; u8 control = 0, mode = 0, flags = 0; struct ngene *dev = chan->dev; int ret; /* dev_info(pdev, "st %d\n", state); msleep(100); */ if (state) { if (chan->running) { dev_info(pdev, "already running\n"); return; } } else { if (!chan->running) { dev_info(pdev, "already stopped\n"); return; } } if (dev->card_info->switch_ctrl) dev->card_info->switch_ctrl(chan, 1, state ^ 1); if (state) { spin_lock_irq(&chan->state_lock); /* dev_info(pdev, "lock=%08x\n", ngreadl(0x9310)); */ dvb_ringbuffer_flush(&dev->tsout_rbuf); control = 0x80; if (chan->mode & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) { chan->Capture1Length = 512 * 188; mode = SMODE_TRANSPORT_STREAM; } if (chan->mode & NGENE_IO_TSOUT) { chan->pBufferExchange = tsout_exchange; /* 0x66666666 = 50MHz *2^33 /250MHz */ chan->AudioDTOValue = 0x80000000; chan->AudioDTOUpdated = 1; } if (chan->mode & NGENE_IO_TSIN) chan->pBufferExchange = tsin_exchange; spin_unlock_irq(&chan->state_lock); } /* else dev_info(pdev, "lock=%08x\n", ngreadl(0x9310)); */ mutex_lock(&dev->stream_mutex); ret = ngene_command_stream_control(dev, chan->number, control, mode, flags); mutex_unlock(&dev->stream_mutex); if (!ret) chan->running = state; else dev_err(pdev, "%s %d failed\n", __func__, state); if (!state) { spin_lock_irq(&chan->state_lock); chan->pBufferExchange = NULL; dvb_ringbuffer_flush(&dev->tsout_rbuf); spin_unlock_irq(&chan->state_lock); } } /****************************************************************************/ /* nGene hardware init and release functions ********************************/ /****************************************************************************/ static void free_ringbuffer(struct ngene *dev, struct SRingBufferDescriptor *rb) { struct SBufferHeader *Cur = rb->Head; u32 j; if (!Cur) return; for (j = 0; j < rb->NumBuffers; j++, Cur = Cur->Next) { if (Cur->Buffer1) dma_free_coherent(&dev->pci_dev->dev, rb->Buffer1Length, Cur->Buffer1, Cur->scList1->Address); if (Cur->Buffer2) dma_free_coherent(&dev->pci_dev->dev, rb->Buffer2Length, Cur->Buffer2, Cur->scList2->Address); } if (rb->SCListMem) dma_free_coherent(&dev->pci_dev->dev, rb->SCListMemSize, rb->SCListMem, rb->PASCListMem); dma_free_coherent(&dev->pci_dev->dev, rb->MemSize, rb->Head, rb->PAHead); } static void free_idlebuffer(struct ngene *dev, struct SRingBufferDescriptor *rb, struct SRingBufferDescriptor *tb) { int j; struct SBufferHeader *Cur = tb->Head; if (!rb->Head) return; free_ringbuffer(dev, rb); for (j = 0; j < tb->NumBuffers; j++, Cur = Cur->Next) { Cur->Buffer2 = NULL; Cur->scList2 = NULL; Cur->ngeneBuffer.Address_of_first_entry_2 = 0; Cur->ngeneBuffer.Number_of_entries_2 = 0; } } static void free_common_buffers(struct ngene *dev) { u32 i; struct ngene_channel *chan; for (i = STREAM_VIDEOIN1; i < MAX_STREAM; i++) { chan = &dev->channel[i]; free_idlebuffer(dev, &chan->TSIdleBuffer, &chan->TSRingBuffer); free_ringbuffer(dev, &chan->RingBuffer); free_ringbuffer(dev, &chan->TSRingBuffer); } if (dev->OverflowBuffer) dma_free_coherent(&dev->pci_dev->dev, OVERFLOW_BUFFER_SIZE, dev->OverflowBuffer, dev->PAOverflowBuffer); if (dev->FWInterfaceBuffer) dma_free_coherent(&dev->pci_dev->dev, 4096, dev->FWInterfaceBuffer, dev->PAFWInterfaceBuffer); } /****************************************************************************/ /* Ring buffer handling *****************************************************/ /****************************************************************************/ static int create_ring_buffer(struct pci_dev *pci_dev, struct SRingBufferDescriptor *descr, u32 NumBuffers) { dma_addr_t tmp; struct SBufferHeader *Head; u32 i; u32 MemSize = SIZEOF_SBufferHeader * NumBuffers; u64 PARingBufferHead; u64 PARingBufferCur; u64 PARingBufferNext; struct SBufferHeader *Cur, *Next; descr->Head = NULL; descr->MemSize = 0; descr->PAHead = 0; descr->NumBuffers = 0; if (MemSize < 4096) MemSize = 4096; Head = dma_alloc_coherent(&pci_dev->dev, MemSize, &tmp, GFP_KERNEL); PARingBufferHead = tmp; if (!Head) return -ENOMEM; PARingBufferCur = PARingBufferHead; Cur = Head; for (i = 0; i < NumBuffers - 1; i++) { Next = (struct SBufferHeader *) (((u8 *) Cur) + SIZEOF_SBufferHeader); PARingBufferNext = PARingBufferCur + SIZEOF_SBufferHeader; Cur->Next = Next; Cur->ngeneBuffer.Next = PARingBufferNext; Cur = Next; PARingBufferCur = PARingBufferNext; } /* Last Buffer points back to first one */ Cur->Next = Head; Cur->ngeneBuffer.Next = PARingBufferHead; descr->Head = Head; descr->MemSize = MemSize; descr->PAHead = PARingBufferHead; descr->NumBuffers = NumBuffers; return 0; } static int AllocateRingBuffers(struct pci_dev *pci_dev, dma_addr_t of, struct SRingBufferDescriptor *pRingBuffer, u32 Buffer1Length, u32 Buffer2Length) { dma_addr_t tmp; u32 i, j; u32 SCListMemSize = pRingBuffer->NumBuffers * ((Buffer2Length != 0) ? (NUM_SCATTER_GATHER_ENTRIES * 2) : NUM_SCATTER_GATHER_ENTRIES) * sizeof(struct HW_SCATTER_GATHER_ELEMENT); u64 PASCListMem; struct HW_SCATTER_GATHER_ELEMENT *SCListEntry; u64 PASCListEntry; struct SBufferHeader *Cur; void *SCListMem; if (SCListMemSize < 4096) SCListMemSize = 4096; SCListMem = dma_alloc_coherent(&pci_dev->dev, SCListMemSize, &tmp, GFP_KERNEL); PASCListMem = tmp; if (SCListMem == NULL) return -ENOMEM; pRingBuffer->SCListMem = SCListMem; pRingBuffer->PASCListMem = PASCListMem; pRingBuffer->SCListMemSize = SCListMemSize; pRingBuffer->Buffer1Length = Buffer1Length; pRingBuffer->Buffer2Length = Buffer2Length; SCListEntry = SCListMem; PASCListEntry = PASCListMem; Cur = pRingBuffer->Head; for (i = 0; i < pRingBuffer->NumBuffers; i += 1, Cur = Cur->Next) { u64 PABuffer; void *Buffer = dma_alloc_coherent(&pci_dev->dev, Buffer1Length, &tmp, GFP_KERNEL); PABuffer = tmp; if (Buffer == NULL) return -ENOMEM; Cur->Buffer1 = Buffer; SCListEntry->Address = PABuffer; SCListEntry->Length = Buffer1Length; Cur->scList1 = SCListEntry; Cur->ngeneBuffer.Address_of_first_entry_1 = PASCListEntry; Cur->ngeneBuffer.Number_of_entries_1 = NUM_SCATTER_GATHER_ENTRIES; SCListEntry += 1; PASCListEntry += sizeof(struct HW_SCATTER_GATHER_ELEMENT); #if NUM_SCATTER_GATHER_ENTRIES > 1 for (j = 0; j < NUM_SCATTER_GATHER_ENTRIES - 1; j += 1) { SCListEntry->Address = of; SCListEntry->Length = OVERFLOW_BUFFER_SIZE; SCListEntry += 1; PASCListEntry += sizeof(struct HW_SCATTER_GATHER_ELEMENT); } #endif if (!Buffer2Length) continue; Buffer = dma_alloc_coherent(&pci_dev->dev, Buffer2Length, &tmp, GFP_KERNEL); PABuffer = tmp; if (Buffer == NULL) return -ENOMEM; Cur->Buffer2 = Buffer; SCListEntry->Address = PABuffer; SCListEntry->Length = Buffer2Length; Cur->scList2 = SCListEntry; Cur->ngeneBuffer.Address_of_first_entry_2 = PASCListEntry; Cur->ngeneBuffer.Number_of_entries_2 = NUM_SCATTER_GATHER_ENTRIES; SCListEntry += 1; PASCListEntry += sizeof(struct HW_SCATTER_GATHER_ELEMENT); #if NUM_SCATTER_GATHER_ENTRIES > 1 for (j = 0; j < NUM_SCATTER_GATHER_ENTRIES - 1; j++) { SCListEntry->Address = of; SCListEntry->Length = OVERFLOW_BUFFER_SIZE; SCListEntry += 1; PASCListEntry += sizeof(struct HW_SCATTER_GATHER_ELEMENT); } #endif } return 0; } static int FillTSIdleBuffer(struct SRingBufferDescriptor *pIdleBuffer, struct SRingBufferDescriptor *pRingBuffer) { /* Copy pointer to scatter gather list in TSRingbuffer structure for buffer 2 Load number of buffer */ u32 n = pRingBuffer->NumBuffers; /* Point to first buffer entry */ struct SBufferHeader *Cur = pRingBuffer->Head; int i; /* Loop through all buffer and set Buffer 2 pointers to TSIdlebuffer */ for (i = 0; i < n; i++) { Cur->Buffer2 = pIdleBuffer->Head->Buffer1; Cur->scList2 = pIdleBuffer->Head->scList1; Cur->ngeneBuffer.Address_of_first_entry_2 = pIdleBuffer->Head->ngeneBuffer. Address_of_first_entry_1; Cur->ngeneBuffer.Number_of_entries_2 = pIdleBuffer->Head->ngeneBuffer.Number_of_entries_1; Cur = Cur->Next; } return 0; } static u32 RingBufferSizes[MAX_STREAM] = { RING_SIZE_VIDEO, RING_SIZE_VIDEO, RING_SIZE_AUDIO, RING_SIZE_AUDIO, RING_SIZE_AUDIO, }; static u32 Buffer1Sizes[MAX_STREAM] = { MAX_VIDEO_BUFFER_SIZE, MAX_VIDEO_BUFFER_SIZE, MAX_AUDIO_BUFFER_SIZE, MAX_AUDIO_BUFFER_SIZE, MAX_AUDIO_BUFFER_SIZE }; static u32 Buffer2Sizes[MAX_STREAM] = { MAX_VBI_BUFFER_SIZE, MAX_VBI_BUFFER_SIZE, 0, 0, 0 }; static int AllocCommonBuffers(struct ngene *dev) { int status = 0, i; dev->FWInterfaceBuffer = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dev->PAFWInterfaceBuffer, GFP_KERNEL); if (!dev->FWInterfaceBuffer) return -ENOMEM; dev->hosttongene = dev->FWInterfaceBuffer; dev->ngenetohost = dev->FWInterfaceBuffer + 256; dev->EventBuffer = dev->FWInterfaceBuffer + 512; dev->OverflowBuffer = dma_alloc_coherent(&dev->pci_dev->dev, OVERFLOW_BUFFER_SIZE, &dev->PAOverflowBuffer, GFP_KERNEL); if (!dev->OverflowBuffer) return -ENOMEM; for (i = STREAM_VIDEOIN1; i < MAX_STREAM; i++) { int type = dev->card_info->io_type[i]; dev->channel[i].State = KSSTATE_STOP; if (type & (NGENE_IO_TV | NGENE_IO_HDTV | NGENE_IO_AIN)) { status = create_ring_buffer(dev->pci_dev, &dev->channel[i].RingBuffer, RingBufferSizes[i]); if (status < 0) break; if (type & (NGENE_IO_TV | NGENE_IO_AIN)) { status = AllocateRingBuffers(dev->pci_dev, dev-> PAOverflowBuffer, &dev->channel[i]. RingBuffer, Buffer1Sizes[i], Buffer2Sizes[i]); if (status < 0) break; } else if (type & NGENE_IO_HDTV) { status = AllocateRingBuffers(dev->pci_dev, dev-> PAOverflowBuffer, &dev->channel[i]. RingBuffer, MAX_HDTV_BUFFER_SIZE, 0); if (status < 0) break; } } if (type & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) { status = create_ring_buffer(dev->pci_dev, &dev->channel[i]. TSRingBuffer, RING_SIZE_TS); if (status < 0) break; status = AllocateRingBuffers(dev->pci_dev, dev->PAOverflowBuffer, &dev->channel[i]. TSRingBuffer, MAX_TS_BUFFER_SIZE, 0); if (status) break; } if (type & NGENE_IO_TSOUT) { status = create_ring_buffer(dev->pci_dev, &dev->channel[i]. TSIdleBuffer, 1); if (status < 0) break; status = AllocateRingBuffers(dev->pci_dev, dev->PAOverflowBuffer, &dev->channel[i]. TSIdleBuffer, MAX_TS_BUFFER_SIZE, 0); if (status) break; FillTSIdleBuffer(&dev->channel[i].TSIdleBuffer, &dev->channel[i].TSRingBuffer); } } return status; } static void ngene_release_buffers(struct ngene *dev) { if (dev->iomem) iounmap(dev->iomem); free_common_buffers(dev); vfree(dev->tsout_buf); vfree(dev->tsin_buf); vfree(dev->ain_buf); vfree(dev->vin_buf); vfree(dev); } static int ngene_get_buffers(struct ngene *dev) { if (AllocCommonBuffers(dev)) return -ENOMEM; if (dev->card_info->io_type[4] & NGENE_IO_TSOUT) { dev->tsout_buf = vmalloc(TSOUT_BUF_SIZE); if (!dev->tsout_buf) return -ENOMEM; dvb_ringbuffer_init(&dev->tsout_rbuf, dev->tsout_buf, TSOUT_BUF_SIZE); } if (dev->card_info->io_type[2]&NGENE_IO_TSIN) { dev->tsin_buf = vmalloc(TSIN_BUF_SIZE); if (!dev->tsin_buf) return -ENOMEM; dvb_ringbuffer_init(&dev->tsin_rbuf, dev->tsin_buf, TSIN_BUF_SIZE); } if (dev->card_info->io_type[2] & NGENE_IO_AIN) { dev->ain_buf = vmalloc(AIN_BUF_SIZE); if (!dev->ain_buf) return -ENOMEM; dvb_ringbuffer_init(&dev->ain_rbuf, dev->ain_buf, AIN_BUF_SIZE); } if (dev->card_info->io_type[0] & NGENE_IO_HDTV) { dev->vin_buf = vmalloc(VIN_BUF_SIZE); if (!dev->vin_buf) return -ENOMEM; dvb_ringbuffer_init(&dev->vin_rbuf, dev->vin_buf, VIN_BUF_SIZE); } dev->iomem = ioremap(pci_resource_start(dev->pci_dev, 0), pci_resource_len(dev->pci_dev, 0)); if (!dev->iomem) return -ENOMEM; return 0; } static void ngene_init(struct ngene *dev) { struct device *pdev = &dev->pci_dev->dev; int i; INIT_WORK(&dev->event_bh_work, event_bh_work); memset_io(dev->iomem + 0xc000, 0x00, 0x220); memset_io(dev->iomem + 0xc400, 0x00, 0x100); for (i = 0; i < MAX_STREAM; i++) { dev->channel[i].dev = dev; dev->channel[i].number = i; } dev->fw_interface_version = 0; ngwritel(0, NGENE_INT_ENABLE); dev->icounts = ngreadl(NGENE_INT_COUNTS); dev->device_version = ngreadl(DEV_VER) & 0x0f; dev_info(pdev, "Device version %d\n", dev->device_version); } static int ngene_load_firm(struct ngene *dev) { struct device *pdev = &dev->pci_dev->dev; u32 size; const struct firmware *fw = NULL; u8 *ngene_fw; char *fw_name; int err, version; version = dev->card_info->fw_version; switch (version) { default: case 15: version = 15; size = 23466; fw_name = "ngene_15.fw"; dev->cmd_timeout_workaround = true; break; case 16: size = 23498; fw_name = "ngene_16.fw"; dev->cmd_timeout_workaround = true; break; case 17: size = 24446; fw_name = "ngene_17.fw"; dev->cmd_timeout_workaround = true; break; case 18: size = 0; fw_name = "ngene_18.fw"; break; } if (request_firmware(&fw, fw_name, &dev->pci_dev->dev) < 0) { dev_err(pdev, "Could not load firmware file %s.\n", fw_name); dev_info(pdev, "Copy %s to your hotplug directory!\n", fw_name); return -1; } if (size == 0) size = fw->size; if (size != fw->size) { dev_err(pdev, "Firmware %s has invalid size!", fw_name); err = -1; } else { dev_info(pdev, "Loading firmware file %s.\n", fw_name); ngene_fw = (u8 *) fw->data; err = ngene_command_load_firmware(dev, ngene_fw, size); } release_firmware(fw); return err; } static void ngene_stop(struct ngene *dev) { mutex_destroy(&dev->cmd_mutex); i2c_del_adapter(&(dev->channel[0].i2c_adapter)); i2c_del_adapter(&(dev->channel[1].i2c_adapter)); ngwritel(0, NGENE_INT_ENABLE); ngwritel(0, NGENE_COMMAND); ngwritel(0, NGENE_COMMAND_HI); ngwritel(0, NGENE_STATUS); ngwritel(0, NGENE_STATUS_HI); ngwritel(0, NGENE_EVENT); ngwritel(0, NGENE_EVENT_HI); free_irq(dev->pci_dev->irq, dev); #ifdef CONFIG_PCI_MSI if (dev->msi_enabled) pci_disable_msi(dev->pci_dev); #endif } static int ngene_buffer_config(struct ngene *dev) { int stat; if (dev->card_info->fw_version >= 17) { u8 tsin12_config[6] = { 0x60, 0x60, 0x00, 0x00, 0x00, 0x00 }; u8 tsin1234_config[6] = { 0x30, 0x30, 0x00, 0x30, 0x30, 0x00 }; u8 tsio1235_config[6] = { 0x30, 0x30, 0x00, 0x28, 0x00, 0x38 }; u8 *bconf = tsin12_config; if (dev->card_info->io_type[2]&NGENE_IO_TSIN && dev->card_info->io_type[3]&NGENE_IO_TSIN) { bconf = tsin1234_config; if (dev->card_info->io_type[4]&NGENE_IO_TSOUT && dev->ci.en) bconf = tsio1235_config; } stat = ngene_command_config_free_buf(dev, bconf); } else { int bconf = BUFFER_CONFIG_4422; if (dev->card_info->io_type[3] == NGENE_IO_TSIN) bconf = BUFFER_CONFIG_3333; stat = ngene_command_config_buf(dev, bconf); } return stat; } static int ngene_start(struct ngene *dev) { int stat; int i; pci_set_master(dev->pci_dev); ngene_init(dev); stat = request_irq(dev->pci_dev->irq, irq_handler, IRQF_SHARED, "nGene", (void *)dev); if (stat < 0) return stat; init_waitqueue_head(&dev->cmd_wq); init_waitqueue_head(&dev->tx_wq); init_waitqueue_head(&dev->rx_wq); mutex_init(&dev->cmd_mutex); mutex_init(&dev->stream_mutex); sema_init(&dev->pll_mutex, 1); mutex_init(&dev->i2c_switch_mutex); spin_lock_init(&dev->cmd_lock); for (i = 0; i < MAX_STREAM; i++) spin_lock_init(&dev->channel[i].state_lock); ngwritel(1, TIMESTAMPS); ngwritel(1, NGENE_INT_ENABLE); stat = ngene_load_firm(dev); if (stat < 0) goto fail; #ifdef CONFIG_PCI_MSI /* enable MSI if kernel and card support it */ if (pci_msi_enabled() && dev->card_info->msi_supported) { struct device *pdev = &dev->pci_dev->dev; unsigned long flags; ngwritel(0, NGENE_INT_ENABLE); free_irq(dev->pci_dev->irq, dev); stat = pci_enable_msi(dev->pci_dev); if (stat) { dev_info(pdev, "MSI not available\n"); flags = IRQF_SHARED; } else { flags = 0; dev->msi_enabled = true; } stat = request_irq(dev->pci_dev->irq, irq_handler, flags, "nGene", dev); if (stat < 0) goto fail2; ngwritel(1, NGENE_INT_ENABLE); } #endif stat = ngene_i2c_init(dev, 0); if (stat < 0) goto fail; stat = ngene_i2c_init(dev, 1); if (stat < 0) goto fail; return 0; fail: ngwritel(0, NGENE_INT_ENABLE); free_irq(dev->pci_dev->irq, dev); #ifdef CONFIG_PCI_MSI fail2: if (dev->msi_enabled) pci_disable_msi(dev->pci_dev); #endif return stat; } /****************************************************************************/ /****************************************************************************/ /****************************************************************************/ static void release_channel(struct ngene_channel *chan) { struct dvb_demux *dvbdemux = &chan->demux; struct ngene *dev = chan->dev; if (chan->running) set_transfer(chan, 0); cancel_work_sync(&chan->demux_bh_work); if (chan->ci_dev) { dvb_unregister_device(chan->ci_dev); chan->ci_dev = NULL; } if (chan->fe2) dvb_unregister_frontend(chan->fe2); if (chan->fe) { dvb_unregister_frontend(chan->fe); /* release I2C client (tuner) if needed */ if (chan->i2c_client_fe) { dvb_module_release(chan->i2c_client[0]); chan->i2c_client[0] = NULL; } dvb_frontend_detach(chan->fe); chan->fe = NULL; } if (chan->has_demux) { dvb_net_release(&chan->dvbnet); dvbdemux->dmx.close(&dvbdemux->dmx); dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &chan->hw_frontend); dvbdemux->dmx.remove_frontend(&dvbdemux->dmx, &chan->mem_frontend); dvb_dmxdev_release(&chan->dmxdev); dvb_dmx_release(&chan->demux); chan->has_demux = false; } if (chan->has_adapter) { dvb_unregister_adapter(&dev->adapter[chan->number]); chan->has_adapter = false; } } static int init_channel(struct ngene_channel *chan) { int ret = 0, nr = chan->number; struct dvb_adapter *adapter = NULL; struct dvb_demux *dvbdemux = &chan->demux; struct ngene *dev = chan->dev; struct ngene_info *ni = dev->card_info; int io = ni->io_type[nr]; INIT_WORK(&chan->demux_bh_work, demux_bh_work); chan->users = 0; chan->type = io; chan->mode = chan->type; /* for now only one mode */ chan->i2c_client_fe = 0; /* be sure this is set to zero */ if (io & NGENE_IO_TSIN) { chan->fe = NULL; if (ni->demod_attach[nr]) { ret = ni->demod_attach[nr](chan); if (ret < 0) goto err; } if (chan->fe && ni->tuner_attach[nr]) { ret = ni->tuner_attach[nr](chan); if (ret < 0) goto err; } } if (!dev->ci.en && (io & NGENE_IO_TSOUT)) return 0; if (io & (NGENE_IO_TSIN | NGENE_IO_TSOUT)) { if (nr >= STREAM_AUDIOIN1) chan->DataFormatFlags = DF_SWAP32; if (nr == 0 || !one_adapter || dev->first_adapter == NULL) { adapter = &dev->adapter[nr]; ret = dvb_register_adapter(adapter, "nGene", THIS_MODULE, &chan->dev->pci_dev->dev, adapter_nr); if (ret < 0) goto err; if (dev->first_adapter == NULL) dev->first_adapter = adapter; chan->has_adapter = true; } else adapter = dev->first_adapter; } if (dev->ci.en && (io & NGENE_IO_TSOUT)) { ret = dvb_ca_en50221_init(adapter, dev->ci.en, 0, 1); if (ret != 0) goto err; set_transfer(chan, 1); chan->dev->channel[2].DataFormatFlags = DF_SWAP32; set_transfer(&chan->dev->channel[2], 1); dvb_register_device(adapter, &chan->ci_dev, &ngene_dvbdev_ci, (void *) chan, DVB_DEVICE_SEC, 0); if (!chan->ci_dev) goto err; } if (chan->fe) { if (dvb_register_frontend(adapter, chan->fe) < 0) goto err; chan->has_demux = true; } if (chan->fe2) { if (dvb_register_frontend(adapter, chan->fe2) < 0) goto err; if (chan->fe) { chan->fe2->tuner_priv = chan->fe->tuner_priv; memcpy(&chan->fe2->ops.tuner_ops, &chan->fe->ops.tuner_ops, sizeof(struct dvb_tuner_ops)); } } if (chan->has_demux) { ret = my_dvb_dmx_ts_card_init(dvbdemux, "SW demux", ngene_start_feed, ngene_stop_feed, chan); ret = my_dvb_dmxdev_ts_card_init(&chan->dmxdev, &chan->demux, &chan->hw_frontend, &chan->mem_frontend, adapter); ret = dvb_net_init(adapter, &chan->dvbnet, &chan->demux.dmx); } return ret; err: if (chan->fe) { dvb_frontend_detach(chan->fe); chan->fe = NULL; } release_channel(chan); return 0; } static int init_channels(struct ngene *dev) { int i, j; for (i = 0; i < MAX_STREAM; i++) { dev->channel[i].number = i; if (init_channel(&dev->channel[i]) < 0) { for (j = i - 1; j >= 0; j--) release_channel(&dev->channel[j]); return -1; } } return 0; } static const struct cxd2099_cfg cxd_cfgtmpl = { .bitrate = 62000, .polarity = 0, .clock_mode = 0, }; static void cxd_attach(struct ngene *dev) { struct device *pdev = &dev->pci_dev->dev; struct ngene_ci *ci = &dev->ci; struct cxd2099_cfg cxd_cfg = cxd_cfgtmpl; struct i2c_client *client; int ret; u8 type; /* check for CXD2099AR presence before attaching */ ret = ngene_port_has_cxd2099(&dev->channel[0].i2c_adapter, &type); if (!ret) { dev_dbg(pdev, "No CXD2099AR found\n"); return; } if (type != 1) { dev_warn(pdev, "CXD2099AR is uninitialized!\n"); return; } cxd_cfg.en = &ci->en; client = dvb_module_probe("cxd2099", NULL, &dev->channel[0].i2c_adapter, 0x40, &cxd_cfg); if (!client) goto err; ci->dev = dev; dev->channel[0].i2c_client[0] = client; return; err: dev_err(pdev, "CXD2099AR attach failed\n"); return; } static void cxd_detach(struct ngene *dev) { struct ngene_ci *ci = &dev->ci; dvb_ca_en50221_release(ci->en); dvb_module_release(dev->channel[0].i2c_client[0]); dev->channel[0].i2c_client[0] = NULL; ci->en = NULL; } /***********************************/ /* workaround for shutdown failure */ /***********************************/ static void ngene_unlink(struct ngene *dev) { struct ngene_command com; com.cmd.hdr.Opcode = CMD_MEM_WRITE; com.cmd.hdr.Length = 3; com.cmd.MemoryWrite.address = 0x910c; com.cmd.MemoryWrite.data = 0xff; com.in_len = 3; com.out_len = 1; mutex_lock(&dev->cmd_mutex); ngwritel(0, NGENE_INT_ENABLE); ngene_command_mutex(dev, &com); mutex_unlock(&dev->cmd_mutex); } void ngene_shutdown(struct pci_dev *pdev) { struct ngene *dev = pci_get_drvdata(pdev); if (!dev || !shutdown_workaround) return; dev_info(&pdev->dev, "shutdown workaround...\n"); ngene_unlink(dev); pci_disable_device(pdev); } /****************************************************************************/ /* device probe/remove calls ************************************************/ /****************************************************************************/ void ngene_remove(struct pci_dev *pdev) { struct ngene *dev = pci_get_drvdata(pdev); int i; cancel_work_sync(&dev->event_bh_work); for (i = MAX_STREAM - 1; i >= 0; i--) release_channel(&dev->channel[i]); if (dev->ci.en) cxd_detach(dev); ngene_stop(dev); ngene_release_buffers(dev); pci_disable_device(pdev); } int ngene_probe(struct pci_dev *pci_dev, const struct pci_device_id *id) { struct ngene *dev; int stat = 0; if (pci_enable_device(pci_dev) < 0) return -ENODEV; dev = vzalloc(sizeof(struct ngene)); if (dev == NULL) { stat = -ENOMEM; goto fail0; } dev->pci_dev = pci_dev; dev->card_info = (struct ngene_info *)id->driver_data; dev_info(&pci_dev->dev, "Found %s\n", dev->card_info->name); pci_set_drvdata(pci_dev, dev); /* Alloc buffers and start nGene */ stat = ngene_get_buffers(dev); if (stat < 0) goto fail1; stat = ngene_start(dev); if (stat < 0) goto fail1; cxd_attach(dev); stat = ngene_buffer_config(dev); if (stat < 0) goto fail1; dev->i2c_current_bus = -1; /* Register DVB adapters and devices for both channels */ stat = init_channels(dev); if (stat < 0) goto fail2; return 0; fail2: ngene_stop(dev); fail1: ngene_release_buffers(dev); fail0: pci_disable_device(pci_dev); return stat; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1