Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Viktor Prutyanov | 1712 | 98.73% | 1 | 20.00% |
Uwe Kleine-König | 21 | 1.21% | 3 | 60.00% |
Sean Young | 1 | 0.06% | 1 | 20.00% |
Total | 1734 | 5 |
// SPDX-License-Identifier: GPL-2.0-only /* * meson-ir-tx.c - Amlogic Meson IR TX driver * * Copyright (c) 2021, SberDevices. All Rights Reserved. * * Author: Viktor Prutyanov <viktor.prutyanov@phystech.edu> */ #include <linux/device.h> #include <linux/module.h> #include <linux/sched.h> #include <linux/platform_device.h> #include <linux/of.h> #include <linux/interrupt.h> #include <linux/spinlock.h> #include <linux/of_irq.h> #include <linux/clk.h> #include <linux/slab.h> #include <media/rc-core.h> #define DEVICE_NAME "Meson IR TX" #define DRIVER_NAME "meson-ir-tx" #define MIRTX_DEFAULT_CARRIER 38000 #define MIRTX_DEFAULT_DUTY_CYCLE 50 #define MIRTX_FIFO_THD 32 #define IRB_MOD_1US_CLK_RATE 1000000 #define IRB_FIFO_LEN 128 #define IRB_ADDR0 0x0 #define IRB_ADDR1 0x4 #define IRB_ADDR2 0x8 #define IRB_ADDR3 0xc #define IRB_MAX_DELAY (1 << 10) #define IRB_DELAY_MASK (IRB_MAX_DELAY - 1) /* IRCTRL_IR_BLASTER_ADDR0 */ #define IRB_MOD_CLK(x) ((x) << 12) #define IRB_MOD_SYS_CLK 0 #define IRB_MOD_XTAL3_CLK 1 #define IRB_MOD_1US_CLK 2 #define IRB_MOD_10US_CLK 3 #define IRB_INIT_HIGH BIT(2) #define IRB_ENABLE BIT(0) /* IRCTRL_IR_BLASTER_ADDR2 */ #define IRB_MOD_COUNT(lo, hi) ((((lo) - 1) << 16) | ((hi) - 1)) /* IRCTRL_IR_BLASTER_ADDR2 */ #define IRB_WRITE_FIFO BIT(16) #define IRB_MOD_ENABLE BIT(12) #define IRB_TB_1US (0x0 << 10) #define IRB_TB_10US (0x1 << 10) #define IRB_TB_100US (0x2 << 10) #define IRB_TB_MOD_CLK (0x3 << 10) /* IRCTRL_IR_BLASTER_ADDR3 */ #define IRB_FIFO_THD_PENDING BIT(16) #define IRB_FIFO_IRQ_ENABLE BIT(8) struct meson_irtx { struct device *dev; void __iomem *reg_base; u32 *buf; unsigned int buf_len; unsigned int buf_head; unsigned int carrier; unsigned int duty_cycle; /* Locks buf */ spinlock_t lock; struct completion completion; unsigned long clk_rate; }; static void meson_irtx_set_mod(struct meson_irtx *ir) { unsigned int cnt = DIV_ROUND_CLOSEST(ir->clk_rate, ir->carrier); unsigned int pulse_cnt = DIV_ROUND_CLOSEST(cnt * ir->duty_cycle, 100); unsigned int space_cnt = cnt - pulse_cnt; dev_dbg(ir->dev, "F_mod = %uHz, T_mod = %luns, duty_cycle = %u%%\n", ir->carrier, NSEC_PER_SEC / ir->clk_rate * cnt, 100 * pulse_cnt / cnt); writel(IRB_MOD_COUNT(pulse_cnt, space_cnt), ir->reg_base + IRB_ADDR1); } static void meson_irtx_setup(struct meson_irtx *ir, unsigned int clk_nr) { /* * Disable the TX, set modulator clock tick and set initialize * output to be high. Set up carrier frequency and duty cycle. Then * unset initialize output. Enable FIFO interrupt, set FIFO interrupt * threshold. Finally, enable the transmitter back. */ writel(~IRB_ENABLE & (IRB_MOD_CLK(clk_nr) | IRB_INIT_HIGH), ir->reg_base + IRB_ADDR0); meson_irtx_set_mod(ir); writel(readl(ir->reg_base + IRB_ADDR0) & ~IRB_INIT_HIGH, ir->reg_base + IRB_ADDR0); writel(IRB_FIFO_IRQ_ENABLE | MIRTX_FIFO_THD, ir->reg_base + IRB_ADDR3); writel(readl(ir->reg_base + IRB_ADDR0) | IRB_ENABLE, ir->reg_base + IRB_ADDR0); } static u32 meson_irtx_prepare_pulse(struct meson_irtx *ir, unsigned int time) { unsigned int delay; unsigned int tb = IRB_TB_MOD_CLK; unsigned int tb_us = DIV_ROUND_CLOSEST(USEC_PER_SEC, ir->carrier); delay = (DIV_ROUND_CLOSEST(time, tb_us) - 1) & IRB_DELAY_MASK; return ((IRB_WRITE_FIFO | IRB_MOD_ENABLE) | tb | delay); } static u32 meson_irtx_prepare_space(struct meson_irtx *ir, unsigned int time) { unsigned int delay; unsigned int tb = IRB_TB_100US; unsigned int tb_us = 100; if (time <= IRB_MAX_DELAY) { tb = IRB_TB_1US; tb_us = 1; } else if (time <= 10 * IRB_MAX_DELAY) { tb = IRB_TB_10US; tb_us = 10; } else if (time <= 100 * IRB_MAX_DELAY) { tb = IRB_TB_100US; tb_us = 100; } delay = (DIV_ROUND_CLOSEST(time, tb_us) - 1) & IRB_DELAY_MASK; return ((IRB_WRITE_FIFO & ~IRB_MOD_ENABLE) | tb | delay); } static void meson_irtx_send_buffer(struct meson_irtx *ir) { unsigned int nr = 0; unsigned int max_fifo_level = IRB_FIFO_LEN - MIRTX_FIFO_THD; while (ir->buf_head < ir->buf_len && nr < max_fifo_level) { writel(ir->buf[ir->buf_head], ir->reg_base + IRB_ADDR2); ir->buf_head++; nr++; } } static bool meson_irtx_check_buf(struct meson_irtx *ir, unsigned int *buf, unsigned int len) { unsigned int i; for (i = 0; i < len; i++) { unsigned int max_tb_us; /* * Max space timebase is 100 us. * Pulse timebase equals to carrier period. */ if (i % 2 == 0) max_tb_us = USEC_PER_SEC / ir->carrier; else max_tb_us = 100; if (buf[i] >= max_tb_us * IRB_MAX_DELAY) return false; } return true; } static void meson_irtx_fill_buf(struct meson_irtx *ir, u32 *dst_buf, unsigned int *src_buf, unsigned int len) { unsigned int i; for (i = 0; i < len; i++) { if (i % 2 == 0) dst_buf[i] = meson_irtx_prepare_pulse(ir, src_buf[i]); else dst_buf[i] = meson_irtx_prepare_space(ir, src_buf[i]); } } static irqreturn_t meson_irtx_irqhandler(int irq, void *data) { unsigned long flags; struct meson_irtx *ir = data; writel(readl(ir->reg_base + IRB_ADDR3) & ~IRB_FIFO_THD_PENDING, ir->reg_base + IRB_ADDR3); if (completion_done(&ir->completion)) return IRQ_HANDLED; spin_lock_irqsave(&ir->lock, flags); if (ir->buf_head < ir->buf_len) meson_irtx_send_buffer(ir); else complete(&ir->completion); spin_unlock_irqrestore(&ir->lock, flags); return IRQ_HANDLED; } static int meson_irtx_set_carrier(struct rc_dev *rc, u32 carrier) { struct meson_irtx *ir = rc->priv; if (carrier == 0) return -EINVAL; ir->carrier = carrier; meson_irtx_set_mod(ir); return 0; } static int meson_irtx_set_duty_cycle(struct rc_dev *rc, u32 duty_cycle) { struct meson_irtx *ir = rc->priv; ir->duty_cycle = duty_cycle; meson_irtx_set_mod(ir); return 0; } static void meson_irtx_update_buf(struct meson_irtx *ir, u32 *buf, unsigned int len, unsigned int head) { ir->buf = buf; ir->buf_len = len; ir->buf_head = head; } static int meson_irtx_transmit(struct rc_dev *rc, unsigned int *buf, unsigned int len) { unsigned long flags; struct meson_irtx *ir = rc->priv; u32 *tx_buf; int ret = len; if (!meson_irtx_check_buf(ir, buf, len)) return -EINVAL; tx_buf = kmalloc_array(len, sizeof(u32), GFP_KERNEL); if (!tx_buf) return -ENOMEM; meson_irtx_fill_buf(ir, tx_buf, buf, len); dev_dbg(ir->dev, "TX buffer filled, length = %u\n", len); spin_lock_irqsave(&ir->lock, flags); meson_irtx_update_buf(ir, tx_buf, len, 0); reinit_completion(&ir->completion); meson_irtx_send_buffer(ir); spin_unlock_irqrestore(&ir->lock, flags); if (!wait_for_completion_timeout(&ir->completion, usecs_to_jiffies(IR_MAX_DURATION))) ret = -ETIMEDOUT; spin_lock_irqsave(&ir->lock, flags); kfree(ir->buf); meson_irtx_update_buf(ir, NULL, 0, 0); spin_unlock_irqrestore(&ir->lock, flags); return ret; } static int meson_irtx_mod_clock_probe(struct meson_irtx *ir, unsigned int *clk_nr) { struct device_node *np = ir->dev->of_node; struct clk *clock; if (!np) return -ENODEV; clock = devm_clk_get(ir->dev, "xtal"); if (IS_ERR(clock) || clk_prepare_enable(clock)) return -ENODEV; *clk_nr = IRB_MOD_XTAL3_CLK; ir->clk_rate = clk_get_rate(clock) / 3; if (ir->clk_rate < IRB_MOD_1US_CLK_RATE) { *clk_nr = IRB_MOD_1US_CLK; ir->clk_rate = IRB_MOD_1US_CLK_RATE; } dev_info(ir->dev, "F_clk = %luHz\n", ir->clk_rate); return 0; } static int meson_irtx_probe(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct meson_irtx *ir; struct rc_dev *rc; int irq; unsigned int clk_nr; int ret; ir = devm_kzalloc(dev, sizeof(*ir), GFP_KERNEL); if (!ir) return -ENOMEM; ir->reg_base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(ir->reg_base)) return PTR_ERR(ir->reg_base); irq = platform_get_irq(pdev, 0); if (irq < 0) return -ENODEV; ir->dev = dev; ir->carrier = MIRTX_DEFAULT_CARRIER; ir->duty_cycle = MIRTX_DEFAULT_DUTY_CYCLE; init_completion(&ir->completion); spin_lock_init(&ir->lock); ret = meson_irtx_mod_clock_probe(ir, &clk_nr); if (ret) return dev_err_probe(dev, ret, "modulator clock setup failed\n"); meson_irtx_setup(ir, clk_nr); ret = devm_request_irq(dev, irq, meson_irtx_irqhandler, IRQF_TRIGGER_RISING, DRIVER_NAME, ir); if (ret) return dev_err_probe(dev, ret, "irq request failed\n"); rc = rc_allocate_device(RC_DRIVER_IR_RAW_TX); if (!rc) return -ENOMEM; rc->driver_name = DRIVER_NAME; rc->device_name = DEVICE_NAME; rc->priv = ir; rc->tx_ir = meson_irtx_transmit; rc->s_tx_carrier = meson_irtx_set_carrier; rc->s_tx_duty_cycle = meson_irtx_set_duty_cycle; ret = devm_rc_register_device(dev, rc); if (ret < 0) { rc_free_device(rc); return dev_err_probe(dev, ret, "rc_dev registration failed\n"); } return 0; } static const struct of_device_id meson_irtx_dt_match[] = { { .compatible = "amlogic,meson-g12a-ir-tx", }, {}, }; MODULE_DEVICE_TABLE(of, meson_irtx_dt_match); static struct platform_driver meson_irtx_pd = { .probe = meson_irtx_probe, .driver = { .name = DRIVER_NAME, .of_match_table = meson_irtx_dt_match, }, }; module_platform_driver(meson_irtx_pd); MODULE_DESCRIPTION("Meson IR TX driver"); MODULE_AUTHOR("Viktor Prutyanov <viktor.prutyanov@phystech.edu>"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1