Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Hans Verkuil | 2302 | 83.38% | 9 | 42.86% |
Antti Palosaari | 302 | 10.94% | 3 | 14.29% |
Prashant Laddha | 64 | 2.32% | 1 | 4.76% |
Deborah Brouwer | 45 | 1.63% | 1 | 4.76% |
Junghak Sung | 28 | 1.01% | 2 | 9.52% |
Alexander Popov | 8 | 0.29% | 1 | 4.76% |
Wang Qing | 7 | 0.25% | 1 | 4.76% |
Lad Prabhakar | 2 | 0.07% | 1 | 4.76% |
Mauro Carvalho Chehab | 2 | 0.07% | 1 | 4.76% |
Jason A. Donenfeld | 1 | 0.04% | 1 | 4.76% |
Total | 2761 | 21 |
// SPDX-License-Identifier: GPL-2.0-only /* * vivid-sdr-cap.c - software defined radio support functions. * * Copyright 2014 Cisco Systems, Inc. and/or its affiliates. All rights reserved. */ #include <linux/errno.h> #include <linux/kernel.h> #include <linux/delay.h> #include <linux/kthread.h> #include <linux/freezer.h> #include <linux/math64.h> #include <linux/videodev2.h> #include <linux/v4l2-dv-timings.h> #include <media/v4l2-common.h> #include <media/v4l2-event.h> #include <media/v4l2-dv-timings.h> #include <linux/fixp-arith.h> #include <linux/jiffies.h> #include "vivid-core.h" #include "vivid-ctrls.h" #include "vivid-sdr-cap.h" /* stream formats */ struct vivid_format { u32 pixelformat; u32 buffersize; }; /* format descriptions for capture and preview */ static const struct vivid_format formats[] = { { .pixelformat = V4L2_SDR_FMT_CU8, .buffersize = SDR_CAP_SAMPLES_PER_BUF * 2, }, { .pixelformat = V4L2_SDR_FMT_CS8, .buffersize = SDR_CAP_SAMPLES_PER_BUF * 2, }, }; static const struct v4l2_frequency_band bands_adc[] = { { .tuner = 0, .type = V4L2_TUNER_ADC, .index = 0, .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS, .rangelow = 300000, .rangehigh = 300000, }, { .tuner = 0, .type = V4L2_TUNER_ADC, .index = 1, .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS, .rangelow = 900001, .rangehigh = 2800000, }, { .tuner = 0, .type = V4L2_TUNER_ADC, .index = 2, .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS, .rangelow = 3200000, .rangehigh = 3200000, }, }; /* ADC band midpoints */ #define BAND_ADC_0 ((bands_adc[0].rangehigh + bands_adc[1].rangelow) / 2) #define BAND_ADC_1 ((bands_adc[1].rangehigh + bands_adc[2].rangelow) / 2) static const struct v4l2_frequency_band bands_fm[] = { { .tuner = 1, .type = V4L2_TUNER_RF, .index = 0, .capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS, .rangelow = 50000000, .rangehigh = 2000000000, }, }; static void vivid_thread_sdr_cap_tick(struct vivid_dev *dev) { struct vivid_buffer *sdr_cap_buf = NULL; dprintk(dev, 1, "SDR Capture Thread Tick\n"); /* Drop a certain percentage of buffers. */ if (dev->perc_dropped_buffers && get_random_u32_below(100) < dev->perc_dropped_buffers) return; spin_lock(&dev->slock); if (!list_empty(&dev->sdr_cap_active)) { sdr_cap_buf = list_entry(dev->sdr_cap_active.next, struct vivid_buffer, list); list_del(&sdr_cap_buf->list); } spin_unlock(&dev->slock); if (sdr_cap_buf) { sdr_cap_buf->vb.sequence = dev->sdr_cap_with_seq_wrap_count; v4l2_ctrl_request_setup(sdr_cap_buf->vb.vb2_buf.req_obj.req, &dev->ctrl_hdl_sdr_cap); v4l2_ctrl_request_complete(sdr_cap_buf->vb.vb2_buf.req_obj.req, &dev->ctrl_hdl_sdr_cap); vivid_sdr_cap_process(dev, sdr_cap_buf); sdr_cap_buf->vb.vb2_buf.timestamp = ktime_get_ns() + dev->time_wrap_offset; vb2_buffer_done(&sdr_cap_buf->vb.vb2_buf, dev->dqbuf_error ? VB2_BUF_STATE_ERROR : VB2_BUF_STATE_DONE); dev->dqbuf_error = false; } } static int vivid_thread_sdr_cap(void *data) { struct vivid_dev *dev = data; u64 samples_since_start; u64 buffers_since_start; u64 next_jiffies_since_start; unsigned long jiffies_since_start; unsigned long cur_jiffies; unsigned wait_jiffies; dprintk(dev, 1, "SDR Capture Thread Start\n"); set_freezable(); /* Resets frame counters */ dev->sdr_cap_seq_offset = 0; dev->sdr_cap_seq_count = 0; dev->jiffies_sdr_cap = jiffies; dev->sdr_cap_seq_resync = false; if (dev->time_wrap) dev->time_wrap_offset = dev->time_wrap - ktime_get_ns(); else dev->time_wrap_offset = 0; for (;;) { try_to_freeze(); if (kthread_should_stop()) break; if (!mutex_trylock(&dev->mutex)) { schedule(); continue; } cur_jiffies = jiffies; if (dev->sdr_cap_seq_resync) { dev->jiffies_sdr_cap = cur_jiffies; dev->sdr_cap_seq_offset = dev->sdr_cap_seq_count + 1; dev->sdr_cap_seq_count = 0; dev->sdr_cap_seq_resync = false; } /* Calculate the number of jiffies since we started streaming */ jiffies_since_start = cur_jiffies - dev->jiffies_sdr_cap; /* Get the number of buffers streamed since the start */ buffers_since_start = (u64)jiffies_since_start * dev->sdr_adc_freq + (HZ * SDR_CAP_SAMPLES_PER_BUF) / 2; do_div(buffers_since_start, HZ * SDR_CAP_SAMPLES_PER_BUF); /* * After more than 0xf0000000 (rounded down to a multiple of * 'jiffies-per-day' to ease jiffies_to_msecs calculation) * jiffies have passed since we started streaming reset the * counters and keep track of the sequence offset. */ if (jiffies_since_start > JIFFIES_RESYNC) { dev->jiffies_sdr_cap = cur_jiffies; dev->sdr_cap_seq_offset = buffers_since_start; buffers_since_start = 0; } dev->sdr_cap_seq_count = buffers_since_start + dev->sdr_cap_seq_offset; dev->sdr_cap_with_seq_wrap_count = dev->sdr_cap_seq_count - dev->sdr_cap_seq_start; vivid_thread_sdr_cap_tick(dev); mutex_unlock(&dev->mutex); /* * Calculate the number of samples streamed since we started, * not including the current buffer. */ samples_since_start = buffers_since_start * SDR_CAP_SAMPLES_PER_BUF; /* And the number of jiffies since we started */ jiffies_since_start = jiffies - dev->jiffies_sdr_cap; /* Increase by the number of samples in one buffer */ samples_since_start += SDR_CAP_SAMPLES_PER_BUF; /* * Calculate when that next buffer is supposed to start * in jiffies since we started streaming. */ next_jiffies_since_start = samples_since_start * HZ + dev->sdr_adc_freq / 2; do_div(next_jiffies_since_start, dev->sdr_adc_freq); /* If it is in the past, then just schedule asap */ if (next_jiffies_since_start < jiffies_since_start) next_jiffies_since_start = jiffies_since_start; wait_jiffies = next_jiffies_since_start - jiffies_since_start; while (time_is_after_jiffies(cur_jiffies + wait_jiffies) && !kthread_should_stop()) schedule(); } dprintk(dev, 1, "SDR Capture Thread End\n"); return 0; } static int sdr_cap_queue_setup(struct vb2_queue *vq, unsigned *nbuffers, unsigned *nplanes, unsigned sizes[], struct device *alloc_devs[]) { /* 2 = max 16-bit sample returned */ u32 size = SDR_CAP_SAMPLES_PER_BUF * 2; if (*nplanes) return sizes[0] < size ? -EINVAL : 0; *nplanes = 1; sizes[0] = size; return 0; } static int sdr_cap_buf_prepare(struct vb2_buffer *vb) { struct vivid_dev *dev = vb2_get_drv_priv(vb->vb2_queue); unsigned size = SDR_CAP_SAMPLES_PER_BUF * 2; dprintk(dev, 1, "%s\n", __func__); if (dev->buf_prepare_error) { /* * Error injection: test what happens if buf_prepare() returns * an error. */ dev->buf_prepare_error = false; return -EINVAL; } if (vb2_plane_size(vb, 0) < size) { dprintk(dev, 1, "%s data will not fit into plane (%lu < %u)\n", __func__, vb2_plane_size(vb, 0), size); return -EINVAL; } vb2_set_plane_payload(vb, 0, size); return 0; } static void sdr_cap_buf_queue(struct vb2_buffer *vb) { struct vb2_v4l2_buffer *vbuf = to_vb2_v4l2_buffer(vb); struct vivid_dev *dev = vb2_get_drv_priv(vb->vb2_queue); struct vivid_buffer *buf = container_of(vbuf, struct vivid_buffer, vb); dprintk(dev, 1, "%s\n", __func__); spin_lock(&dev->slock); list_add_tail(&buf->list, &dev->sdr_cap_active); spin_unlock(&dev->slock); } static int sdr_cap_start_streaming(struct vb2_queue *vq, unsigned count) { struct vivid_dev *dev = vb2_get_drv_priv(vq); int err = 0; dprintk(dev, 1, "%s\n", __func__); dev->sdr_cap_seq_start = dev->seq_wrap * 128; if (dev->start_streaming_error) { dev->start_streaming_error = false; err = -EINVAL; } else if (dev->kthread_sdr_cap == NULL) { dev->kthread_sdr_cap = kthread_run(vivid_thread_sdr_cap, dev, "%s-sdr-cap", dev->v4l2_dev.name); if (IS_ERR(dev->kthread_sdr_cap)) { v4l2_err(&dev->v4l2_dev, "kernel_thread() failed\n"); err = PTR_ERR(dev->kthread_sdr_cap); dev->kthread_sdr_cap = NULL; } } if (err) { struct vivid_buffer *buf, *tmp; list_for_each_entry_safe(buf, tmp, &dev->sdr_cap_active, list) { list_del(&buf->list); vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_QUEUED); } } return err; } /* abort streaming and wait for last buffer */ static void sdr_cap_stop_streaming(struct vb2_queue *vq) { struct vivid_dev *dev = vb2_get_drv_priv(vq); if (dev->kthread_sdr_cap == NULL) return; while (!list_empty(&dev->sdr_cap_active)) { struct vivid_buffer *buf; buf = list_entry(dev->sdr_cap_active.next, struct vivid_buffer, list); list_del(&buf->list); v4l2_ctrl_request_complete(buf->vb.vb2_buf.req_obj.req, &dev->ctrl_hdl_sdr_cap); vb2_buffer_done(&buf->vb.vb2_buf, VB2_BUF_STATE_ERROR); } /* shutdown control thread */ kthread_stop(dev->kthread_sdr_cap); dev->kthread_sdr_cap = NULL; } static void sdr_cap_buf_request_complete(struct vb2_buffer *vb) { struct vivid_dev *dev = vb2_get_drv_priv(vb->vb2_queue); v4l2_ctrl_request_complete(vb->req_obj.req, &dev->ctrl_hdl_sdr_cap); } const struct vb2_ops vivid_sdr_cap_qops = { .queue_setup = sdr_cap_queue_setup, .buf_prepare = sdr_cap_buf_prepare, .buf_queue = sdr_cap_buf_queue, .start_streaming = sdr_cap_start_streaming, .stop_streaming = sdr_cap_stop_streaming, .buf_request_complete = sdr_cap_buf_request_complete, .wait_prepare = vb2_ops_wait_prepare, .wait_finish = vb2_ops_wait_finish, }; int vivid_sdr_enum_freq_bands(struct file *file, void *fh, struct v4l2_frequency_band *band) { switch (band->tuner) { case 0: if (band->index >= ARRAY_SIZE(bands_adc)) return -EINVAL; *band = bands_adc[band->index]; return 0; case 1: if (band->index >= ARRAY_SIZE(bands_fm)) return -EINVAL; *band = bands_fm[band->index]; return 0; default: return -EINVAL; } } int vivid_sdr_g_frequency(struct file *file, void *fh, struct v4l2_frequency *vf) { struct vivid_dev *dev = video_drvdata(file); switch (vf->tuner) { case 0: vf->frequency = dev->sdr_adc_freq; vf->type = V4L2_TUNER_ADC; return 0; case 1: vf->frequency = dev->sdr_fm_freq; vf->type = V4L2_TUNER_RF; return 0; default: return -EINVAL; } } int vivid_sdr_s_frequency(struct file *file, void *fh, const struct v4l2_frequency *vf) { struct vivid_dev *dev = video_drvdata(file); unsigned freq = vf->frequency; unsigned band; switch (vf->tuner) { case 0: if (vf->type != V4L2_TUNER_ADC) return -EINVAL; if (freq < BAND_ADC_0) band = 0; else if (freq < BAND_ADC_1) band = 1; else band = 2; freq = clamp_t(unsigned, freq, bands_adc[band].rangelow, bands_adc[band].rangehigh); if (vb2_is_streaming(&dev->vb_sdr_cap_q) && freq != dev->sdr_adc_freq) { /* resync the thread's timings */ dev->sdr_cap_seq_resync = true; } dev->sdr_adc_freq = freq; return 0; case 1: if (vf->type != V4L2_TUNER_RF) return -EINVAL; dev->sdr_fm_freq = clamp_t(unsigned, freq, bands_fm[0].rangelow, bands_fm[0].rangehigh); return 0; default: return -EINVAL; } } int vivid_sdr_g_tuner(struct file *file, void *fh, struct v4l2_tuner *vt) { switch (vt->index) { case 0: strscpy(vt->name, "ADC", sizeof(vt->name)); vt->type = V4L2_TUNER_ADC; vt->capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS; vt->rangelow = bands_adc[0].rangelow; vt->rangehigh = bands_adc[2].rangehigh; return 0; case 1: strscpy(vt->name, "RF", sizeof(vt->name)); vt->type = V4L2_TUNER_RF; vt->capability = V4L2_TUNER_CAP_1HZ | V4L2_TUNER_CAP_FREQ_BANDS; vt->rangelow = bands_fm[0].rangelow; vt->rangehigh = bands_fm[0].rangehigh; return 0; default: return -EINVAL; } } int vivid_sdr_s_tuner(struct file *file, void *fh, const struct v4l2_tuner *vt) { if (vt->index > 1) return -EINVAL; return 0; } int vidioc_enum_fmt_sdr_cap(struct file *file, void *fh, struct v4l2_fmtdesc *f) { if (f->index >= ARRAY_SIZE(formats)) return -EINVAL; f->pixelformat = formats[f->index].pixelformat; return 0; } int vidioc_g_fmt_sdr_cap(struct file *file, void *fh, struct v4l2_format *f) { struct vivid_dev *dev = video_drvdata(file); f->fmt.sdr.pixelformat = dev->sdr_pixelformat; f->fmt.sdr.buffersize = dev->sdr_buffersize; return 0; } int vidioc_s_fmt_sdr_cap(struct file *file, void *fh, struct v4l2_format *f) { struct vivid_dev *dev = video_drvdata(file); struct vb2_queue *q = &dev->vb_sdr_cap_q; int i; if (vb2_is_busy(q)) return -EBUSY; for (i = 0; i < ARRAY_SIZE(formats); i++) { if (formats[i].pixelformat == f->fmt.sdr.pixelformat) { dev->sdr_pixelformat = formats[i].pixelformat; dev->sdr_buffersize = formats[i].buffersize; f->fmt.sdr.buffersize = formats[i].buffersize; return 0; } } dev->sdr_pixelformat = formats[0].pixelformat; dev->sdr_buffersize = formats[0].buffersize; f->fmt.sdr.pixelformat = formats[0].pixelformat; f->fmt.sdr.buffersize = formats[0].buffersize; return 0; } int vidioc_try_fmt_sdr_cap(struct file *file, void *fh, struct v4l2_format *f) { int i; for (i = 0; i < ARRAY_SIZE(formats); i++) { if (formats[i].pixelformat == f->fmt.sdr.pixelformat) { f->fmt.sdr.buffersize = formats[i].buffersize; return 0; } } f->fmt.sdr.pixelformat = formats[0].pixelformat; f->fmt.sdr.buffersize = formats[0].buffersize; return 0; } #define FIXP_N (15) #define FIXP_FRAC (1 << FIXP_N) #define FIXP_2PI ((int)(2 * 3.141592653589 * FIXP_FRAC)) #define M_100000PI (3.14159 * 100000) void vivid_sdr_cap_process(struct vivid_dev *dev, struct vivid_buffer *buf) { u8 *vbuf = vb2_plane_vaddr(&buf->vb.vb2_buf, 0); unsigned long i; unsigned long plane_size = vb2_plane_size(&buf->vb.vb2_buf, 0); s64 s64tmp; s32 src_phase_step; s32 mod_phase_step; s32 fixp_i; s32 fixp_q; /* calculate phase step */ #define BEEP_FREQ 1000 /* 1kHz beep */ src_phase_step = DIV_ROUND_CLOSEST(FIXP_2PI * BEEP_FREQ, dev->sdr_adc_freq); for (i = 0; i < plane_size; i += 2) { mod_phase_step = fixp_cos32_rad(dev->sdr_fixp_src_phase, FIXP_2PI) >> (31 - FIXP_N); dev->sdr_fixp_src_phase += src_phase_step; s64tmp = (s64) mod_phase_step * dev->sdr_fm_deviation; dev->sdr_fixp_mod_phase += div_s64(s64tmp, M_100000PI); /* * Transfer phase angle to [0, 2xPI] in order to avoid variable * overflow and make it suitable for cosine implementation * used, which does not support negative angles. */ dev->sdr_fixp_src_phase %= FIXP_2PI; dev->sdr_fixp_mod_phase %= FIXP_2PI; if (dev->sdr_fixp_mod_phase < 0) dev->sdr_fixp_mod_phase += FIXP_2PI; fixp_i = fixp_cos32_rad(dev->sdr_fixp_mod_phase, FIXP_2PI); fixp_q = fixp_sin32_rad(dev->sdr_fixp_mod_phase, FIXP_2PI); /* Normalize fraction values represented with 32 bit precision * to fixed point representation with FIXP_N bits */ fixp_i >>= (31 - FIXP_N); fixp_q >>= (31 - FIXP_N); switch (dev->sdr_pixelformat) { case V4L2_SDR_FMT_CU8: /* convert 'fixp float' to u8 [0, +255] */ /* u8 = X * 127.5 + 127.5; X is float [-1.0, +1.0] */ fixp_i = fixp_i * 1275 + FIXP_FRAC * 1275; fixp_q = fixp_q * 1275 + FIXP_FRAC * 1275; *vbuf++ = DIV_ROUND_CLOSEST(fixp_i, FIXP_FRAC * 10); *vbuf++ = DIV_ROUND_CLOSEST(fixp_q, FIXP_FRAC * 10); break; case V4L2_SDR_FMT_CS8: /* convert 'fixp float' to s8 [-128, +127] */ /* s8 = X * 127.5 - 0.5; X is float [-1.0, +1.0] */ fixp_i = fixp_i * 1275 - FIXP_FRAC * 5; fixp_q = fixp_q * 1275 - FIXP_FRAC * 5; *vbuf++ = DIV_ROUND_CLOSEST(fixp_i, FIXP_FRAC * 10); *vbuf++ = DIV_ROUND_CLOSEST(fixp_q, FIXP_FRAC * 10); break; default: break; } } }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1