Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Mauro Carvalho Chehab | 1388 | 35.19% | 48 | 47.52% |
Frank Schäfer | 896 | 22.72% | 11 | 10.89% |
Devin Heitmueller | 407 | 10.32% | 2 | 1.98% |
Ezequiel García | 396 | 10.04% | 5 | 4.95% |
David Härdeman | 269 | 6.82% | 6 | 5.94% |
Sean Young | 103 | 2.61% | 6 | 5.94% |
Andrew Morton | 100 | 2.54% | 4 | 3.96% |
Shuah Khan | 97 | 2.46% | 1 | 0.99% |
Markus Rechberger | 86 | 2.18% | 2 | 1.98% |
Magnus Alm | 68 | 1.72% | 1 | 0.99% |
Oldřich Jedlička | 55 | 1.39% | 1 | 0.99% |
Jean Delvare | 29 | 0.74% | 2 | 1.98% |
Igor Matheus Andrade Torrente | 16 | 0.41% | 1 | 0.99% |
Antti Palosaari | 12 | 0.30% | 2 | 1.98% |
Russell King | 7 | 0.18% | 3 | 2.97% |
Dan Carpenter | 5 | 0.13% | 1 | 0.99% |
Andi Shyti | 3 | 0.08% | 1 | 0.99% |
Martin Blumenstingl | 3 | 0.08% | 1 | 0.99% |
Linus Torvalds (pre-git) | 2 | 0.05% | 1 | 0.99% |
Linus Torvalds | 1 | 0.03% | 1 | 0.99% |
Colin Ian King | 1 | 0.03% | 1 | 0.99% |
Total | 3944 | 101 |
// SPDX-License-Identifier: GPL-2.0+ // // handle em28xx IR remotes via linux kernel input layer. // // Copyright (C) 2005 Ludovico Cavedon <cavedon@sssup.it> // Markus Rechberger <mrechberger@gmail.com> // Mauro Carvalho Chehab <mchehab@kernel.org> // Sascha Sommer <saschasommer@freenet.de> #include "em28xx.h" #include <linux/module.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/usb.h> #include <linux/usb/input.h> #include <linux/slab.h> #include <linux/bitrev.h> #define EM28XX_SNAPSHOT_KEY KEY_CAMERA #define EM28XX_BUTTONS_DEBOUNCED_QUERY_INTERVAL 500 /* [ms] */ #define EM28XX_BUTTONS_VOLATILE_QUERY_INTERVAL 100 /* [ms] */ static unsigned int ir_debug; module_param(ir_debug, int, 0644); MODULE_PARM_DESC(ir_debug, "enable debug messages [IR]"); #define MODULE_NAME "em28xx" #define dprintk(fmt, arg...) do { \ if (ir_debug) \ dev_printk(KERN_DEBUG, &ir->dev->intf->dev, \ "input: %s: " fmt, __func__, ## arg); \ } while (0) /* * Polling structure used by em28xx IR's */ struct em28xx_ir_poll_result { unsigned int toggle_bit:1; unsigned int read_count:7; enum rc_proto protocol; u32 scancode; }; struct em28xx_IR { struct em28xx *dev; struct rc_dev *rc; char phys[32]; /* poll decoder */ int polling; struct delayed_work work; unsigned int full_code:1; unsigned int last_readcount; u64 rc_proto; struct i2c_client *i2c_client; int (*get_key_i2c)(struct i2c_client *ir, enum rc_proto *protocol, u32 *scancode); int (*get_key)(struct em28xx_IR *ir, struct em28xx_ir_poll_result *r); }; /* * I2C IR based get keycodes - should be used with ir-kbd-i2c */ static int em28xx_get_key_terratec(struct i2c_client *i2c_dev, enum rc_proto *protocol, u32 *scancode) { int rc; unsigned char b; /* poll IR chip */ rc = i2c_master_recv(i2c_dev, &b, 1); if (rc != 1) { if (rc < 0) return rc; return -EIO; } /* * it seems that 0xFE indicates that a button is still hold * down, while 0xff indicates that no button is hold down. */ if (b == 0xff) return 0; if (b == 0xfe) /* keep old data */ return 1; *protocol = RC_PROTO_UNKNOWN; *scancode = b; return 1; } static int em28xx_get_key_em_haup(struct i2c_client *i2c_dev, enum rc_proto *protocol, u32 *scancode) { unsigned char buf[2]; int size; /* poll IR chip */ size = i2c_master_recv(i2c_dev, buf, sizeof(buf)); if (size != 2) return -EIO; /* Does eliminate repeated parity code */ if (buf[1] == 0xff) return 0; /* * Rearranges bits to the right order. * The bit order were determined experimentally by using * The original Hauppauge Grey IR and another RC5 that uses addr=0x08 * The RC5 code has 14 bits, but we've experimentally determined * the meaning for only 11 bits. * So, the code translation is not complete. Yet, it is enough to * work with the provided RC5 IR. */ *protocol = RC_PROTO_RC5; *scancode = (bitrev8(buf[1]) & 0x1f) << 8 | bitrev8(buf[0]) >> 2; return 1; } static int em28xx_get_key_pinnacle_usb_grey(struct i2c_client *i2c_dev, enum rc_proto *protocol, u32 *scancode) { unsigned char buf[3]; /* poll IR chip */ if (i2c_master_recv(i2c_dev, buf, 3) != 3) return -EIO; if (buf[0] != 0x00) return 0; *protocol = RC_PROTO_UNKNOWN; *scancode = buf[2] & 0x3f; return 1; } static int em28xx_get_key_winfast_usbii_deluxe(struct i2c_client *i2c_dev, enum rc_proto *protocol, u32 *scancode) { unsigned char subaddr, keydetect, key; struct i2c_msg msg[] = { { .addr = i2c_dev->addr, .flags = 0, .buf = &subaddr, .len = 1 }, { .addr = i2c_dev->addr, .flags = I2C_M_RD, .buf = &keydetect, .len = 1 } }; subaddr = 0x10; if (i2c_transfer(i2c_dev->adapter, msg, 2) != 2) return -EIO; if (keydetect == 0x00) return 0; subaddr = 0x00; msg[1].buf = &key; if (i2c_transfer(i2c_dev->adapter, msg, 2) != 2) return -EIO; if (key == 0x00) return 0; *protocol = RC_PROTO_UNKNOWN; *scancode = key; return 1; } /* * Poll based get keycode functions */ /* This is for the em2860/em2880 */ static int default_polling_getkey(struct em28xx_IR *ir, struct em28xx_ir_poll_result *poll_result) { struct em28xx *dev = ir->dev; int rc; u8 msg[3] = { 0, 0, 0 }; /* * Read key toggle, brand, and key code * on registers 0x45, 0x46 and 0x47 */ rc = dev->em28xx_read_reg_req_len(dev, 0, EM28XX_R45_IR, msg, sizeof(msg)); if (rc < 0) return rc; /* Infrared toggle (Reg 0x45[7]) */ poll_result->toggle_bit = (msg[0] >> 7); /* Infrared read count (Reg 0x45[6:0] */ poll_result->read_count = (msg[0] & 0x7f); /* Remote Control Address/Data (Regs 0x46/0x47) */ switch (ir->rc_proto) { case RC_PROTO_BIT_RC5: poll_result->protocol = RC_PROTO_RC5; poll_result->scancode = RC_SCANCODE_RC5(msg[1], msg[2]); break; case RC_PROTO_BIT_NEC: poll_result->protocol = RC_PROTO_NEC; poll_result->scancode = RC_SCANCODE_NEC(msg[1], msg[2]); break; default: poll_result->protocol = RC_PROTO_UNKNOWN; poll_result->scancode = msg[1] << 8 | msg[2]; break; } return 0; } static int em2874_polling_getkey(struct em28xx_IR *ir, struct em28xx_ir_poll_result *poll_result) { struct em28xx *dev = ir->dev; int rc; u8 msg[5] = { 0, 0, 0, 0, 0 }; /* * Read key toggle, brand, and key code * on registers 0x51-55 */ rc = dev->em28xx_read_reg_req_len(dev, 0, EM2874_R51_IR, msg, sizeof(msg)); if (rc < 0) return rc; /* Infrared toggle (Reg 0x51[7]) */ poll_result->toggle_bit = (msg[0] >> 7); /* Infrared read count (Reg 0x51[6:0] */ poll_result->read_count = (msg[0] & 0x7f); /* * Remote Control Address (Reg 0x52) * Remote Control Data (Reg 0x53-0x55) */ switch (ir->rc_proto) { case RC_PROTO_BIT_RC5: poll_result->protocol = RC_PROTO_RC5; poll_result->scancode = RC_SCANCODE_RC5(msg[1], msg[2]); break; case RC_PROTO_BIT_NEC: poll_result->scancode = ir_nec_bytes_to_scancode(msg[1], msg[2], msg[3], msg[4], &poll_result->protocol); break; case RC_PROTO_BIT_RC6_0: poll_result->protocol = RC_PROTO_RC6_0; poll_result->scancode = RC_SCANCODE_RC6_0(msg[1], msg[2]); break; default: poll_result->protocol = RC_PROTO_UNKNOWN; poll_result->scancode = (msg[1] << 24) | (msg[2] << 16) | (msg[3] << 8) | msg[4]; break; } return 0; } /* * Polling code for em28xx */ static int em28xx_i2c_ir_handle_key(struct em28xx_IR *ir) { static u32 scancode; enum rc_proto protocol; int rc; rc = ir->get_key_i2c(ir->i2c_client, &protocol, &scancode); if (rc < 0) { dprintk("ir->get_key_i2c() failed: %d\n", rc); return rc; } if (rc) { dprintk("%s: proto = 0x%04x, scancode = 0x%04x\n", __func__, protocol, scancode); rc_keydown(ir->rc, protocol, scancode, 0); } return 0; } static void em28xx_ir_handle_key(struct em28xx_IR *ir) { int result; struct em28xx_ir_poll_result poll_result; /* read the registers containing the IR status */ result = ir->get_key(ir, &poll_result); if (unlikely(result < 0)) { dprintk("ir->get_key() failed: %d\n", result); return; } if (unlikely(poll_result.read_count != ir->last_readcount)) { dprintk("%s: toggle: %d, count: %d, key 0x%04x\n", __func__, poll_result.toggle_bit, poll_result.read_count, poll_result.scancode); if (ir->full_code) rc_keydown(ir->rc, poll_result.protocol, poll_result.scancode, poll_result.toggle_bit); else rc_keydown(ir->rc, RC_PROTO_UNKNOWN, poll_result.scancode & 0xff, poll_result.toggle_bit); if (ir->dev->chip_id == CHIP_ID_EM2874 || ir->dev->chip_id == CHIP_ID_EM2884) /* * The em2874 clears the readcount field every time the * register is read. The em2860/2880 datasheet says * that it is supposed to clear the readcount, but it * doesn't. So with the em2874, we are looking for a * non-zero read count as opposed to a readcount * that is incrementing */ ir->last_readcount = 0; else ir->last_readcount = poll_result.read_count; } } static void em28xx_ir_work(struct work_struct *work) { struct em28xx_IR *ir = container_of(work, struct em28xx_IR, work.work); if (ir->i2c_client) /* external i2c device */ em28xx_i2c_ir_handle_key(ir); else /* internal device */ em28xx_ir_handle_key(ir); schedule_delayed_work(&ir->work, msecs_to_jiffies(ir->polling)); } static int em28xx_ir_start(struct rc_dev *rc) { struct em28xx_IR *ir = rc->priv; INIT_DELAYED_WORK(&ir->work, em28xx_ir_work); schedule_delayed_work(&ir->work, 0); return 0; } static void em28xx_ir_stop(struct rc_dev *rc) { struct em28xx_IR *ir = rc->priv; cancel_delayed_work_sync(&ir->work); } static int em2860_ir_change_protocol(struct rc_dev *rc_dev, u64 *rc_proto) { struct em28xx_IR *ir = rc_dev->priv; struct em28xx *dev = ir->dev; /* Adjust xclk based on IR table for RC5/NEC tables */ if (*rc_proto & RC_PROTO_BIT_RC5) { dev->board.xclk |= EM28XX_XCLK_IR_RC5_MODE; ir->full_code = 1; *rc_proto = RC_PROTO_BIT_RC5; } else if (*rc_proto & RC_PROTO_BIT_NEC) { dev->board.xclk &= ~EM28XX_XCLK_IR_RC5_MODE; ir->full_code = 1; *rc_proto = RC_PROTO_BIT_NEC; } else if (*rc_proto & RC_PROTO_BIT_UNKNOWN) { *rc_proto = RC_PROTO_BIT_UNKNOWN; } else { *rc_proto = ir->rc_proto; return -EINVAL; } em28xx_write_reg_bits(dev, EM28XX_R0F_XCLK, dev->board.xclk, EM28XX_XCLK_IR_RC5_MODE); ir->rc_proto = *rc_proto; return 0; } static int em2874_ir_change_protocol(struct rc_dev *rc_dev, u64 *rc_proto) { struct em28xx_IR *ir = rc_dev->priv; struct em28xx *dev = ir->dev; u8 ir_config = EM2874_IR_RC5; /* Adjust xclk and set type based on IR table for RC5/NEC/RC6 tables */ if (*rc_proto & RC_PROTO_BIT_RC5) { dev->board.xclk |= EM28XX_XCLK_IR_RC5_MODE; ir->full_code = 1; *rc_proto = RC_PROTO_BIT_RC5; } else if (*rc_proto & RC_PROTO_BIT_NEC) { dev->board.xclk &= ~EM28XX_XCLK_IR_RC5_MODE; ir_config = EM2874_IR_NEC | EM2874_IR_NEC_NO_PARITY; ir->full_code = 1; *rc_proto = RC_PROTO_BIT_NEC; } else if (*rc_proto & RC_PROTO_BIT_RC6_0) { dev->board.xclk |= EM28XX_XCLK_IR_RC5_MODE; ir_config = EM2874_IR_RC6_MODE_0; ir->full_code = 1; *rc_proto = RC_PROTO_BIT_RC6_0; } else if (*rc_proto & RC_PROTO_BIT_UNKNOWN) { *rc_proto = RC_PROTO_BIT_UNKNOWN; } else { *rc_proto = ir->rc_proto; return -EINVAL; } em28xx_write_regs(dev, EM2874_R50_IR_CONFIG, &ir_config, 1); em28xx_write_reg_bits(dev, EM28XX_R0F_XCLK, dev->board.xclk, EM28XX_XCLK_IR_RC5_MODE); ir->rc_proto = *rc_proto; return 0; } static int em28xx_ir_change_protocol(struct rc_dev *rc_dev, u64 *rc_proto) { struct em28xx_IR *ir = rc_dev->priv; struct em28xx *dev = ir->dev; /* Setup the proper handler based on the chip */ switch (dev->chip_id) { case CHIP_ID_EM2860: case CHIP_ID_EM2883: return em2860_ir_change_protocol(rc_dev, rc_proto); case CHIP_ID_EM2884: case CHIP_ID_EM2874: case CHIP_ID_EM28174: case CHIP_ID_EM28178: return em2874_ir_change_protocol(rc_dev, rc_proto); default: dev_err(&ir->dev->intf->dev, "Unrecognized em28xx chip id 0x%02x: IR not supported\n", dev->chip_id); return -EINVAL; } } static int em28xx_probe_i2c_ir(struct em28xx *dev) { int i = 0; /* * Leadtek winfast tv USBII deluxe can find a non working IR-device * at address 0x18, so if that address is needed for another board in * the future, please put it after 0x1f. */ static const unsigned short addr_list[] = { 0x1f, 0x30, 0x47, I2C_CLIENT_END }; while (addr_list[i] != I2C_CLIENT_END) { if (i2c_probe_func_quick_read(&dev->i2c_adap[dev->def_i2c_bus], addr_list[i]) == 1) return addr_list[i]; i++; } return -ENODEV; } /* * Handle buttons */ static void em28xx_query_buttons(struct work_struct *work) { struct em28xx *dev = container_of(work, struct em28xx, buttons_query_work.work); u8 i, j; int regval; bool is_pressed, was_pressed; const struct em28xx_led *led; /* Poll and evaluate all addresses */ for (i = 0; i < dev->num_button_polling_addresses; i++) { /* Read value from register */ regval = em28xx_read_reg(dev, dev->button_polling_addresses[i]); if (regval < 0) continue; /* Check states of the buttons and act */ j = 0; while (dev->board.buttons[j].role >= 0 && dev->board.buttons[j].role < EM28XX_NUM_BUTTON_ROLES) { const struct em28xx_button *button; button = &dev->board.buttons[j]; /* Check if button uses the current address */ if (button->reg_r != dev->button_polling_addresses[i]) { j++; continue; } /* Determine if button is and was pressed last time */ is_pressed = regval & button->mask; was_pressed = dev->button_polling_last_values[i] & button->mask; if (button->inverted) { is_pressed = !is_pressed; was_pressed = !was_pressed; } /* Clear button state (if needed) */ if (is_pressed && button->reg_clearing) em28xx_write_reg(dev, button->reg_clearing, (~regval & button->mask) | (regval & ~button->mask)); /* Handle button state */ if (!is_pressed || was_pressed) { j++; continue; } switch (button->role) { case EM28XX_BUTTON_SNAPSHOT: /* Emulate the keypress */ input_report_key(dev->sbutton_input_dev, EM28XX_SNAPSHOT_KEY, 1); /* Unpress the key */ input_report_key(dev->sbutton_input_dev, EM28XX_SNAPSHOT_KEY, 0); break; case EM28XX_BUTTON_ILLUMINATION: led = em28xx_find_led(dev, EM28XX_LED_ILLUMINATION); /* Switch illumination LED on/off */ if (led) em28xx_toggle_reg_bits(dev, led->gpio_reg, led->gpio_mask); break; default: WARN_ONCE(1, "BUG: unhandled button role."); } /* Next button */ j++; } /* Save current value for comparison during the next polling */ dev->button_polling_last_values[i] = regval; } /* Schedule next poll */ schedule_delayed_work(&dev->buttons_query_work, msecs_to_jiffies(dev->button_polling_interval)); } static int em28xx_register_snapshot_button(struct em28xx *dev) { struct usb_device *udev = interface_to_usbdev(dev->intf); struct input_dev *input_dev; int err; dev_info(&dev->intf->dev, "Registering snapshot button...\n"); input_dev = input_allocate_device(); if (!input_dev) return -ENOMEM; usb_make_path(udev, dev->snapshot_button_path, sizeof(dev->snapshot_button_path)); strlcat(dev->snapshot_button_path, "/sbutton", sizeof(dev->snapshot_button_path)); input_dev->name = "em28xx snapshot button"; input_dev->phys = dev->snapshot_button_path; input_dev->evbit[0] = BIT_MASK(EV_KEY) | BIT_MASK(EV_REP); set_bit(EM28XX_SNAPSHOT_KEY, input_dev->keybit); input_dev->keycodesize = 0; input_dev->keycodemax = 0; usb_to_input_id(udev, &input_dev->id); input_dev->dev.parent = &dev->intf->dev; err = input_register_device(input_dev); if (err) { dev_err(&dev->intf->dev, "input_register_device failed\n"); input_free_device(input_dev); return err; } dev->sbutton_input_dev = input_dev; return 0; } static void em28xx_init_buttons(struct em28xx *dev) { u8 i = 0, j = 0; bool addr_new = false; dev->button_polling_interval = EM28XX_BUTTONS_DEBOUNCED_QUERY_INTERVAL; while (dev->board.buttons[i].role >= 0 && dev->board.buttons[i].role < EM28XX_NUM_BUTTON_ROLES) { const struct em28xx_button *button = &dev->board.buttons[i]; /* Check if polling address is already on the list */ addr_new = true; for (j = 0; j < dev->num_button_polling_addresses; j++) { if (button->reg_r == dev->button_polling_addresses[j]) { addr_new = false; break; } } /* Check if max. number of polling addresses is exceeded */ if (addr_new && dev->num_button_polling_addresses >= EM28XX_NUM_BUTTON_ADDRESSES_MAX) { WARN_ONCE(1, "BUG: maximum number of button polling addresses exceeded."); goto next_button; } /* Button role specific checks and actions */ if (button->role == EM28XX_BUTTON_SNAPSHOT) { /* Register input device */ if (em28xx_register_snapshot_button(dev) < 0) goto next_button; } else if (button->role == EM28XX_BUTTON_ILLUMINATION) { /* Check sanity */ if (!em28xx_find_led(dev, EM28XX_LED_ILLUMINATION)) { dev_err(&dev->intf->dev, "BUG: illumination button defined, but no illumination LED.\n"); goto next_button; } } /* Add read address to list of polling addresses */ if (addr_new) { unsigned int index = dev->num_button_polling_addresses; dev->button_polling_addresses[index] = button->reg_r; dev->num_button_polling_addresses++; } /* Reduce polling interval if necessary */ if (!button->reg_clearing) dev->button_polling_interval = EM28XX_BUTTONS_VOLATILE_QUERY_INTERVAL; next_button: /* Next button */ i++; } /* Start polling */ if (dev->num_button_polling_addresses) { memset(dev->button_polling_last_values, 0, EM28XX_NUM_BUTTON_ADDRESSES_MAX); schedule_delayed_work(&dev->buttons_query_work, msecs_to_jiffies(dev->button_polling_interval)); } } static void em28xx_shutdown_buttons(struct em28xx *dev) { /* Cancel polling */ cancel_delayed_work_sync(&dev->buttons_query_work); /* Clear polling addresses list */ dev->num_button_polling_addresses = 0; /* Deregister input devices */ if (dev->sbutton_input_dev) { dev_info(&dev->intf->dev, "Deregistering snapshot button\n"); input_unregister_device(dev->sbutton_input_dev); dev->sbutton_input_dev = NULL; } } static int em28xx_ir_init(struct em28xx *dev) { struct usb_device *udev = interface_to_usbdev(dev->intf); struct em28xx_IR *ir; struct rc_dev *rc; int err = -ENOMEM; u64 rc_proto; u16 i2c_rc_dev_addr = 0; if (dev->is_audio_only) { /* Shouldn't initialize IR for this interface */ return 0; } kref_get(&dev->ref); INIT_DELAYED_WORK(&dev->buttons_query_work, em28xx_query_buttons); if (dev->board.buttons) em28xx_init_buttons(dev); if (dev->board.has_ir_i2c) { i2c_rc_dev_addr = em28xx_probe_i2c_ir(dev); if (!i2c_rc_dev_addr) { dev->board.has_ir_i2c = 0; dev_warn(&dev->intf->dev, "No i2c IR remote control device found.\n"); err = -ENODEV; goto ref_put; } } if (!dev->board.ir_codes && !dev->board.has_ir_i2c) { /* No remote control support */ dev_warn(&dev->intf->dev, "Remote control support is not available for this card.\n"); return 0; } dev_info(&dev->intf->dev, "Registering input extension\n"); ir = kzalloc(sizeof(*ir), GFP_KERNEL); if (!ir) goto ref_put; rc = rc_allocate_device(RC_DRIVER_SCANCODE); if (!rc) goto error; /* record handles to ourself */ ir->dev = dev; dev->ir = ir; ir->rc = rc; rc->priv = ir; rc->open = em28xx_ir_start; rc->close = em28xx_ir_stop; if (dev->board.has_ir_i2c) { /* external i2c device */ switch (dev->model) { case EM2800_BOARD_TERRATEC_CINERGY_200: case EM2820_BOARD_TERRATEC_CINERGY_250: rc->map_name = RC_MAP_EM_TERRATEC; ir->get_key_i2c = em28xx_get_key_terratec; break; case EM2820_BOARD_PINNACLE_USB_2: rc->map_name = RC_MAP_PINNACLE_GREY; ir->get_key_i2c = em28xx_get_key_pinnacle_usb_grey; break; case EM2820_BOARD_HAUPPAUGE_WINTV_USB_2: rc->map_name = RC_MAP_HAUPPAUGE; ir->get_key_i2c = em28xx_get_key_em_haup; rc->allowed_protocols = RC_PROTO_BIT_RC5; break; case EM2820_BOARD_LEADTEK_WINFAST_USBII_DELUXE: rc->map_name = RC_MAP_WINFAST_USBII_DELUXE; ir->get_key_i2c = em28xx_get_key_winfast_usbii_deluxe; break; default: err = -ENODEV; goto error; } ir->i2c_client = kzalloc(sizeof(*ir->i2c_client), GFP_KERNEL); if (!ir->i2c_client) goto error; ir->i2c_client->adapter = &ir->dev->i2c_adap[dev->def_i2c_bus]; ir->i2c_client->addr = i2c_rc_dev_addr; ir->i2c_client->flags = 0; /* NOTE: all other fields of i2c_client are unused */ } else { /* internal device */ switch (dev->chip_id) { case CHIP_ID_EM2860: case CHIP_ID_EM2883: rc->allowed_protocols = RC_PROTO_BIT_RC5 | RC_PROTO_BIT_NEC; ir->get_key = default_polling_getkey; break; case CHIP_ID_EM2884: case CHIP_ID_EM2874: case CHIP_ID_EM28174: case CHIP_ID_EM28178: ir->get_key = em2874_polling_getkey; rc->allowed_protocols = RC_PROTO_BIT_RC5 | RC_PROTO_BIT_NEC | RC_PROTO_BIT_NECX | RC_PROTO_BIT_NEC32 | RC_PROTO_BIT_RC6_0; break; default: err = -ENODEV; goto error; } rc->change_protocol = em28xx_ir_change_protocol; rc->map_name = dev->board.ir_codes; /* By default, keep protocol field untouched */ rc_proto = RC_PROTO_BIT_UNKNOWN; err = em28xx_ir_change_protocol(rc, &rc_proto); if (err) goto error; } /* This is how often we ask the chip for IR information */ ir->polling = 100; /* ms */ usb_make_path(udev, ir->phys, sizeof(ir->phys)); strlcat(ir->phys, "/input0", sizeof(ir->phys)); rc->device_name = em28xx_boards[dev->model].name; rc->input_phys = ir->phys; usb_to_input_id(udev, &rc->input_id); rc->dev.parent = &dev->intf->dev; rc->driver_name = MODULE_NAME; /* all done */ err = rc_register_device(rc); if (err) goto error; dev_info(&dev->intf->dev, "Input extension successfully initialized\n"); return 0; error: kfree(ir->i2c_client); dev->ir = NULL; rc_free_device(rc); kfree(ir); ref_put: em28xx_shutdown_buttons(dev); return err; } static int em28xx_ir_fini(struct em28xx *dev) { struct em28xx_IR *ir = dev->ir; if (dev->is_audio_only) { /* Shouldn't initialize IR for this interface */ return 0; } dev_info(&dev->intf->dev, "Closing input extension\n"); em28xx_shutdown_buttons(dev); /* skip detach on non attached boards */ if (!ir) goto ref_put; rc_unregister_device(ir->rc); kfree(ir->i2c_client); /* done */ kfree(ir); dev->ir = NULL; ref_put: kref_put(&dev->ref, em28xx_free_device); return 0; } static int em28xx_ir_suspend(struct em28xx *dev) { struct em28xx_IR *ir = dev->ir; if (dev->is_audio_only) return 0; dev_info(&dev->intf->dev, "Suspending input extension\n"); if (ir) cancel_delayed_work_sync(&ir->work); cancel_delayed_work_sync(&dev->buttons_query_work); /* * is canceling delayed work sufficient or does the rc event * kthread needs stopping? kthread is stopped in * ir_raw_event_unregister() */ return 0; } static int em28xx_ir_resume(struct em28xx *dev) { struct em28xx_IR *ir = dev->ir; if (dev->is_audio_only) return 0; dev_info(&dev->intf->dev, "Resuming input extension\n"); /* * if suspend calls ir_raw_event_unregister(), the should call * ir_raw_event_register() */ if (ir) schedule_delayed_work(&ir->work, msecs_to_jiffies(ir->polling)); if (dev->num_button_polling_addresses) schedule_delayed_work(&dev->buttons_query_work, msecs_to_jiffies(dev->button_polling_interval)); return 0; } static struct em28xx_ops rc_ops = { .id = EM28XX_RC, .name = "Em28xx Input Extension", .init = em28xx_ir_init, .fini = em28xx_ir_fini, .suspend = em28xx_ir_suspend, .resume = em28xx_ir_resume, }; static int __init em28xx_rc_register(void) { return em28xx_register_extension(&rc_ops); } static void __exit em28xx_rc_unregister(void) { em28xx_unregister_extension(&rc_ops); } MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Mauro Carvalho Chehab"); MODULE_DESCRIPTION(DRIVER_DESC " - input interface"); MODULE_VERSION(EM28XX_VERSION); module_init(em28xx_rc_register); module_exit(em28xx_rc_unregister);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1