Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Thierry Reding | 1641 | 35.50% | 25 | 34.72% |
Dmitry Osipenko | 1536 | 33.23% | 26 | 36.11% |
Mikko Perttunen | 558 | 12.07% | 3 | 4.17% |
Ashish Mhetre | 407 | 8.80% | 1 | 1.39% |
Hiroshi Doyu | 261 | 5.65% | 5 | 6.94% |
sumitg | 175 | 3.79% | 2 | 2.78% |
Paul Walmsley | 14 | 0.30% | 1 | 1.39% |
Johan Hovold | 11 | 0.24% | 1 | 1.39% |
Amitoj Kaur Chawla | 10 | 0.22% | 1 | 1.39% |
Krzysztof Kozlowski | 3 | 0.06% | 2 | 2.78% |
Rob Herring | 3 | 0.06% | 2 | 2.78% |
Thomas Gleixner | 2 | 0.04% | 1 | 1.39% |
caihuoqing | 1 | 0.02% | 1 | 1.39% |
Kiran Padwal | 1 | 0.02% | 1 | 1.39% |
Total | 4623 | 72 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (C) 2014 NVIDIA CORPORATION. All rights reserved. */ #include <linux/clk.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/export.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/sort.h> #include <linux/tegra-icc.h> #include <soc/tegra/fuse.h> #include "mc.h" static const struct of_device_id tegra_mc_of_match[] = { #ifdef CONFIG_ARCH_TEGRA_2x_SOC { .compatible = "nvidia,tegra20-mc-gart", .data = &tegra20_mc_soc }, #endif #ifdef CONFIG_ARCH_TEGRA_3x_SOC { .compatible = "nvidia,tegra30-mc", .data = &tegra30_mc_soc }, #endif #ifdef CONFIG_ARCH_TEGRA_114_SOC { .compatible = "nvidia,tegra114-mc", .data = &tegra114_mc_soc }, #endif #ifdef CONFIG_ARCH_TEGRA_124_SOC { .compatible = "nvidia,tegra124-mc", .data = &tegra124_mc_soc }, #endif #ifdef CONFIG_ARCH_TEGRA_132_SOC { .compatible = "nvidia,tegra132-mc", .data = &tegra132_mc_soc }, #endif #ifdef CONFIG_ARCH_TEGRA_210_SOC { .compatible = "nvidia,tegra210-mc", .data = &tegra210_mc_soc }, #endif #ifdef CONFIG_ARCH_TEGRA_186_SOC { .compatible = "nvidia,tegra186-mc", .data = &tegra186_mc_soc }, #endif #ifdef CONFIG_ARCH_TEGRA_194_SOC { .compatible = "nvidia,tegra194-mc", .data = &tegra194_mc_soc }, #endif #ifdef CONFIG_ARCH_TEGRA_234_SOC { .compatible = "nvidia,tegra234-mc", .data = &tegra234_mc_soc }, #endif { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, tegra_mc_of_match); static void tegra_mc_devm_action_put_device(void *data) { struct tegra_mc *mc = data; put_device(mc->dev); } /** * devm_tegra_memory_controller_get() - get Tegra Memory Controller handle * @dev: device pointer for the consumer device * * This function will search for the Memory Controller node in a device-tree * and retrieve the Memory Controller handle. * * Return: ERR_PTR() on error or a valid pointer to a struct tegra_mc. */ struct tegra_mc *devm_tegra_memory_controller_get(struct device *dev) { struct platform_device *pdev; struct device_node *np; struct tegra_mc *mc; int err; np = of_parse_phandle(dev->of_node, "nvidia,memory-controller", 0); if (!np) return ERR_PTR(-ENOENT); pdev = of_find_device_by_node(np); of_node_put(np); if (!pdev) return ERR_PTR(-ENODEV); mc = platform_get_drvdata(pdev); if (!mc) { put_device(&pdev->dev); return ERR_PTR(-EPROBE_DEFER); } err = devm_add_action_or_reset(dev, tegra_mc_devm_action_put_device, mc); if (err) return ERR_PTR(err); return mc; } EXPORT_SYMBOL_GPL(devm_tegra_memory_controller_get); int tegra_mc_probe_device(struct tegra_mc *mc, struct device *dev) { if (mc->soc->ops && mc->soc->ops->probe_device) return mc->soc->ops->probe_device(mc, dev); return 0; } EXPORT_SYMBOL_GPL(tegra_mc_probe_device); int tegra_mc_get_carveout_info(struct tegra_mc *mc, unsigned int id, phys_addr_t *base, u64 *size) { u32 offset; if (id < 1 || id >= mc->soc->num_carveouts) return -EINVAL; if (id < 6) offset = 0xc0c + 0x50 * (id - 1); else offset = 0x2004 + 0x50 * (id - 6); *base = mc_ch_readl(mc, MC_BROADCAST_CHANNEL, offset + 0x0); #ifdef CONFIG_PHYS_ADDR_T_64BIT *base |= (phys_addr_t)mc_ch_readl(mc, MC_BROADCAST_CHANNEL, offset + 0x4) << 32; #endif if (size) *size = mc_ch_readl(mc, MC_BROADCAST_CHANNEL, offset + 0x8) << 17; return 0; } EXPORT_SYMBOL_GPL(tegra_mc_get_carveout_info); static int tegra_mc_block_dma_common(struct tegra_mc *mc, const struct tegra_mc_reset *rst) { unsigned long flags; u32 value; spin_lock_irqsave(&mc->lock, flags); value = mc_readl(mc, rst->control) | BIT(rst->bit); mc_writel(mc, value, rst->control); spin_unlock_irqrestore(&mc->lock, flags); return 0; } static bool tegra_mc_dma_idling_common(struct tegra_mc *mc, const struct tegra_mc_reset *rst) { return (mc_readl(mc, rst->status) & BIT(rst->bit)) != 0; } static int tegra_mc_unblock_dma_common(struct tegra_mc *mc, const struct tegra_mc_reset *rst) { unsigned long flags; u32 value; spin_lock_irqsave(&mc->lock, flags); value = mc_readl(mc, rst->control) & ~BIT(rst->bit); mc_writel(mc, value, rst->control); spin_unlock_irqrestore(&mc->lock, flags); return 0; } static int tegra_mc_reset_status_common(struct tegra_mc *mc, const struct tegra_mc_reset *rst) { return (mc_readl(mc, rst->control) & BIT(rst->bit)) != 0; } const struct tegra_mc_reset_ops tegra_mc_reset_ops_common = { .block_dma = tegra_mc_block_dma_common, .dma_idling = tegra_mc_dma_idling_common, .unblock_dma = tegra_mc_unblock_dma_common, .reset_status = tegra_mc_reset_status_common, }; static inline struct tegra_mc *reset_to_mc(struct reset_controller_dev *rcdev) { return container_of(rcdev, struct tegra_mc, reset); } static const struct tegra_mc_reset *tegra_mc_reset_find(struct tegra_mc *mc, unsigned long id) { unsigned int i; for (i = 0; i < mc->soc->num_resets; i++) if (mc->soc->resets[i].id == id) return &mc->soc->resets[i]; return NULL; } static int tegra_mc_hotreset_assert(struct reset_controller_dev *rcdev, unsigned long id) { struct tegra_mc *mc = reset_to_mc(rcdev); const struct tegra_mc_reset_ops *rst_ops; const struct tegra_mc_reset *rst; int retries = 500; int err; rst = tegra_mc_reset_find(mc, id); if (!rst) return -ENODEV; rst_ops = mc->soc->reset_ops; if (!rst_ops) return -ENODEV; /* DMA flushing will fail if reset is already asserted */ if (rst_ops->reset_status) { /* check whether reset is asserted */ if (rst_ops->reset_status(mc, rst)) return 0; } if (rst_ops->block_dma) { /* block clients DMA requests */ err = rst_ops->block_dma(mc, rst); if (err) { dev_err(mc->dev, "failed to block %s DMA: %d\n", rst->name, err); return err; } } if (rst_ops->dma_idling) { /* wait for completion of the outstanding DMA requests */ while (!rst_ops->dma_idling(mc, rst)) { if (!retries--) { dev_err(mc->dev, "failed to flush %s DMA\n", rst->name); return -EBUSY; } usleep_range(10, 100); } } if (rst_ops->hotreset_assert) { /* clear clients DMA requests sitting before arbitration */ err = rst_ops->hotreset_assert(mc, rst); if (err) { dev_err(mc->dev, "failed to hot reset %s: %d\n", rst->name, err); return err; } } return 0; } static int tegra_mc_hotreset_deassert(struct reset_controller_dev *rcdev, unsigned long id) { struct tegra_mc *mc = reset_to_mc(rcdev); const struct tegra_mc_reset_ops *rst_ops; const struct tegra_mc_reset *rst; int err; rst = tegra_mc_reset_find(mc, id); if (!rst) return -ENODEV; rst_ops = mc->soc->reset_ops; if (!rst_ops) return -ENODEV; if (rst_ops->hotreset_deassert) { /* take out client from hot reset */ err = rst_ops->hotreset_deassert(mc, rst); if (err) { dev_err(mc->dev, "failed to deassert hot reset %s: %d\n", rst->name, err); return err; } } if (rst_ops->unblock_dma) { /* allow new DMA requests to proceed to arbitration */ err = rst_ops->unblock_dma(mc, rst); if (err) { dev_err(mc->dev, "failed to unblock %s DMA : %d\n", rst->name, err); return err; } } return 0; } static int tegra_mc_hotreset_status(struct reset_controller_dev *rcdev, unsigned long id) { struct tegra_mc *mc = reset_to_mc(rcdev); const struct tegra_mc_reset_ops *rst_ops; const struct tegra_mc_reset *rst; rst = tegra_mc_reset_find(mc, id); if (!rst) return -ENODEV; rst_ops = mc->soc->reset_ops; if (!rst_ops) return -ENODEV; return rst_ops->reset_status(mc, rst); } static const struct reset_control_ops tegra_mc_reset_ops = { .assert = tegra_mc_hotreset_assert, .deassert = tegra_mc_hotreset_deassert, .status = tegra_mc_hotreset_status, }; static int tegra_mc_reset_setup(struct tegra_mc *mc) { int err; mc->reset.ops = &tegra_mc_reset_ops; mc->reset.owner = THIS_MODULE; mc->reset.of_node = mc->dev->of_node; mc->reset.of_reset_n_cells = 1; mc->reset.nr_resets = mc->soc->num_resets; err = reset_controller_register(&mc->reset); if (err < 0) return err; return 0; } int tegra_mc_write_emem_configuration(struct tegra_mc *mc, unsigned long rate) { unsigned int i; struct tegra_mc_timing *timing = NULL; for (i = 0; i < mc->num_timings; i++) { if (mc->timings[i].rate == rate) { timing = &mc->timings[i]; break; } } if (!timing) { dev_err(mc->dev, "no memory timing registered for rate %lu\n", rate); return -EINVAL; } for (i = 0; i < mc->soc->num_emem_regs; ++i) mc_writel(mc, timing->emem_data[i], mc->soc->emem_regs[i]); return 0; } EXPORT_SYMBOL_GPL(tegra_mc_write_emem_configuration); unsigned int tegra_mc_get_emem_device_count(struct tegra_mc *mc) { u8 dram_count; dram_count = mc_readl(mc, MC_EMEM_ADR_CFG); dram_count &= MC_EMEM_ADR_CFG_EMEM_NUMDEV; dram_count++; return dram_count; } EXPORT_SYMBOL_GPL(tegra_mc_get_emem_device_count); #if defined(CONFIG_ARCH_TEGRA_3x_SOC) || \ defined(CONFIG_ARCH_TEGRA_114_SOC) || \ defined(CONFIG_ARCH_TEGRA_124_SOC) || \ defined(CONFIG_ARCH_TEGRA_132_SOC) || \ defined(CONFIG_ARCH_TEGRA_210_SOC) static int tegra_mc_setup_latency_allowance(struct tegra_mc *mc) { unsigned long long tick; unsigned int i; u32 value; /* compute the number of MC clock cycles per tick */ tick = (unsigned long long)mc->tick * clk_get_rate(mc->clk); do_div(tick, NSEC_PER_SEC); value = mc_readl(mc, MC_EMEM_ARB_CFG); value &= ~MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE_MASK; value |= MC_EMEM_ARB_CFG_CYCLES_PER_UPDATE(tick); mc_writel(mc, value, MC_EMEM_ARB_CFG); /* write latency allowance defaults */ for (i = 0; i < mc->soc->num_clients; i++) { const struct tegra_mc_client *client = &mc->soc->clients[i]; u32 value; value = mc_readl(mc, client->regs.la.reg); value &= ~(client->regs.la.mask << client->regs.la.shift); value |= (client->regs.la.def & client->regs.la.mask) << client->regs.la.shift; mc_writel(mc, value, client->regs.la.reg); } /* latch new values */ mc_writel(mc, MC_TIMING_UPDATE, MC_TIMING_CONTROL); return 0; } static int load_one_timing(struct tegra_mc *mc, struct tegra_mc_timing *timing, struct device_node *node) { int err; u32 tmp; err = of_property_read_u32(node, "clock-frequency", &tmp); if (err) { dev_err(mc->dev, "timing %pOFn: failed to read rate\n", node); return err; } timing->rate = tmp; timing->emem_data = devm_kcalloc(mc->dev, mc->soc->num_emem_regs, sizeof(u32), GFP_KERNEL); if (!timing->emem_data) return -ENOMEM; err = of_property_read_u32_array(node, "nvidia,emem-configuration", timing->emem_data, mc->soc->num_emem_regs); if (err) { dev_err(mc->dev, "timing %pOFn: failed to read EMEM configuration\n", node); return err; } return 0; } static int load_timings(struct tegra_mc *mc, struct device_node *node) { struct device_node *child; struct tegra_mc_timing *timing; int child_count = of_get_child_count(node); int i = 0, err; mc->timings = devm_kcalloc(mc->dev, child_count, sizeof(*timing), GFP_KERNEL); if (!mc->timings) return -ENOMEM; mc->num_timings = child_count; for_each_child_of_node(node, child) { timing = &mc->timings[i++]; err = load_one_timing(mc, timing, child); if (err) { of_node_put(child); return err; } } return 0; } static int tegra_mc_setup_timings(struct tegra_mc *mc) { struct device_node *node; u32 ram_code, node_ram_code; int err; ram_code = tegra_read_ram_code(); mc->num_timings = 0; for_each_child_of_node(mc->dev->of_node, node) { err = of_property_read_u32(node, "nvidia,ram-code", &node_ram_code); if (err || (node_ram_code != ram_code)) continue; err = load_timings(mc, node); of_node_put(node); if (err) return err; break; } if (mc->num_timings == 0) dev_warn(mc->dev, "no memory timings for RAM code %u registered\n", ram_code); return 0; } int tegra30_mc_probe(struct tegra_mc *mc) { int err; mc->clk = devm_clk_get_optional(mc->dev, "mc"); if (IS_ERR(mc->clk)) { dev_err(mc->dev, "failed to get MC clock: %ld\n", PTR_ERR(mc->clk)); return PTR_ERR(mc->clk); } /* ensure that debug features are disabled */ mc_writel(mc, 0x00000000, MC_TIMING_CONTROL_DBG); err = tegra_mc_setup_latency_allowance(mc); if (err < 0) { dev_err(mc->dev, "failed to setup latency allowance: %d\n", err); return err; } err = tegra_mc_setup_timings(mc); if (err < 0) { dev_err(mc->dev, "failed to setup timings: %d\n", err); return err; } return 0; } const struct tegra_mc_ops tegra30_mc_ops = { .probe = tegra30_mc_probe, .handle_irq = tegra30_mc_handle_irq, }; #endif static int mc_global_intstatus_to_channel(const struct tegra_mc *mc, u32 status, unsigned int *mc_channel) { if ((status & mc->soc->ch_intmask) == 0) return -EINVAL; *mc_channel = __ffs((status & mc->soc->ch_intmask) >> mc->soc->global_intstatus_channel_shift); return 0; } static u32 mc_channel_to_global_intstatus(const struct tegra_mc *mc, unsigned int channel) { return BIT(channel) << mc->soc->global_intstatus_channel_shift; } irqreturn_t tegra30_mc_handle_irq(int irq, void *data) { struct tegra_mc *mc = data; unsigned int bit, channel; unsigned long status; if (mc->soc->num_channels) { u32 global_status; int err; global_status = mc_ch_readl(mc, MC_BROADCAST_CHANNEL, MC_GLOBAL_INTSTATUS); err = mc_global_intstatus_to_channel(mc, global_status, &channel); if (err < 0) { dev_err_ratelimited(mc->dev, "unknown interrupt channel 0x%08x\n", global_status); return IRQ_NONE; } /* mask all interrupts to avoid flooding */ status = mc_ch_readl(mc, channel, MC_INTSTATUS) & mc->soc->intmask; } else { status = mc_readl(mc, MC_INTSTATUS) & mc->soc->intmask; } if (!status) return IRQ_NONE; for_each_set_bit(bit, &status, 32) { const char *error = tegra_mc_status_names[bit] ?: "unknown"; const char *client = "unknown", *desc; const char *direction, *secure; u32 status_reg, addr_reg; u32 intmask = BIT(bit); phys_addr_t addr = 0; #ifdef CONFIG_PHYS_ADDR_T_64BIT u32 addr_hi_reg = 0; #endif unsigned int i; char perm[7]; u8 id, type; u32 value; switch (intmask) { case MC_INT_DECERR_VPR: status_reg = MC_ERR_VPR_STATUS; addr_reg = MC_ERR_VPR_ADR; break; case MC_INT_SECERR_SEC: status_reg = MC_ERR_SEC_STATUS; addr_reg = MC_ERR_SEC_ADR; break; case MC_INT_DECERR_MTS: status_reg = MC_ERR_MTS_STATUS; addr_reg = MC_ERR_MTS_ADR; break; case MC_INT_DECERR_GENERALIZED_CARVEOUT: status_reg = MC_ERR_GENERALIZED_CARVEOUT_STATUS; addr_reg = MC_ERR_GENERALIZED_CARVEOUT_ADR; break; case MC_INT_DECERR_ROUTE_SANITY: status_reg = MC_ERR_ROUTE_SANITY_STATUS; addr_reg = MC_ERR_ROUTE_SANITY_ADR; break; default: status_reg = MC_ERR_STATUS; addr_reg = MC_ERR_ADR; #ifdef CONFIG_PHYS_ADDR_T_64BIT if (mc->soc->has_addr_hi_reg) addr_hi_reg = MC_ERR_ADR_HI; #endif break; } if (mc->soc->num_channels) value = mc_ch_readl(mc, channel, status_reg); else value = mc_readl(mc, status_reg); #ifdef CONFIG_PHYS_ADDR_T_64BIT if (mc->soc->num_address_bits > 32) { if (addr_hi_reg) { if (mc->soc->num_channels) addr = mc_ch_readl(mc, channel, addr_hi_reg); else addr = mc_readl(mc, addr_hi_reg); } else { addr = ((value >> MC_ERR_STATUS_ADR_HI_SHIFT) & MC_ERR_STATUS_ADR_HI_MASK); } addr <<= 32; } #endif if (value & MC_ERR_STATUS_RW) direction = "write"; else direction = "read"; if (value & MC_ERR_STATUS_SECURITY) secure = "secure "; else secure = ""; id = value & mc->soc->client_id_mask; for (i = 0; i < mc->soc->num_clients; i++) { if (mc->soc->clients[i].id == id) { client = mc->soc->clients[i].name; break; } } type = (value & MC_ERR_STATUS_TYPE_MASK) >> MC_ERR_STATUS_TYPE_SHIFT; desc = tegra_mc_error_names[type]; switch (value & MC_ERR_STATUS_TYPE_MASK) { case MC_ERR_STATUS_TYPE_INVALID_SMMU_PAGE: perm[0] = ' '; perm[1] = '['; if (value & MC_ERR_STATUS_READABLE) perm[2] = 'R'; else perm[2] = '-'; if (value & MC_ERR_STATUS_WRITABLE) perm[3] = 'W'; else perm[3] = '-'; if (value & MC_ERR_STATUS_NONSECURE) perm[4] = '-'; else perm[4] = 'S'; perm[5] = ']'; perm[6] = '\0'; break; default: perm[0] = '\0'; break; } if (mc->soc->num_channels) value = mc_ch_readl(mc, channel, addr_reg); else value = mc_readl(mc, addr_reg); addr |= value; dev_err_ratelimited(mc->dev, "%s: %s%s @%pa: %s (%s%s)\n", client, secure, direction, &addr, error, desc, perm); } /* clear interrupts */ if (mc->soc->num_channels) { mc_ch_writel(mc, channel, status, MC_INTSTATUS); mc_ch_writel(mc, MC_BROADCAST_CHANNEL, mc_channel_to_global_intstatus(mc, channel), MC_GLOBAL_INTSTATUS); } else { mc_writel(mc, status, MC_INTSTATUS); } return IRQ_HANDLED; } const char *const tegra_mc_status_names[32] = { [ 1] = "External interrupt", [ 6] = "EMEM address decode error", [ 7] = "GART page fault", [ 8] = "Security violation", [ 9] = "EMEM arbitration error", [10] = "Page fault", [11] = "Invalid APB ASID update", [12] = "VPR violation", [13] = "Secure carveout violation", [16] = "MTS carveout violation", [17] = "Generalized carveout violation", [20] = "Route Sanity error", }; const char *const tegra_mc_error_names[8] = { [2] = "EMEM decode error", [3] = "TrustZone violation", [4] = "Carveout violation", [6] = "SMMU translation error", }; struct icc_node *tegra_mc_icc_xlate(const struct of_phandle_args *spec, void *data) { struct tegra_mc *mc = icc_provider_to_tegra_mc(data); struct icc_node *node; list_for_each_entry(node, &mc->provider.nodes, node_list) { if (node->id == spec->args[0]) return node; } /* * If a client driver calls devm_of_icc_get() before the MC driver * is probed, then return EPROBE_DEFER to the client driver. */ return ERR_PTR(-EPROBE_DEFER); } static int tegra_mc_icc_get(struct icc_node *node, u32 *average, u32 *peak) { *average = 0; *peak = 0; return 0; } static int tegra_mc_icc_set(struct icc_node *src, struct icc_node *dst) { return 0; } const struct tegra_mc_icc_ops tegra_mc_icc_ops = { .xlate = tegra_mc_icc_xlate, .aggregate = icc_std_aggregate, .get_bw = tegra_mc_icc_get, .set = tegra_mc_icc_set, }; /* * Memory Controller (MC) has few Memory Clients that are issuing memory * bandwidth allocation requests to the MC interconnect provider. The MC * provider aggregates the requests and then sends the aggregated request * up to the External Memory Controller (EMC) interconnect provider which * re-configures hardware interface to External Memory (EMEM) in accordance * to the required bandwidth. Each MC interconnect node represents an * individual Memory Client. * * Memory interconnect topology: * * +----+ * +--------+ | | * | TEXSRD +--->+ | * +--------+ | | * | | +-----+ +------+ * ... | MC +--->+ EMC +--->+ EMEM | * | | +-----+ +------+ * +--------+ | | * | DISP.. +--->+ | * +--------+ | | * +----+ */ static int tegra_mc_interconnect_setup(struct tegra_mc *mc) { struct icc_node *node; unsigned int i; int err; /* older device-trees don't have interconnect properties */ if (!device_property_present(mc->dev, "#interconnect-cells") || !mc->soc->icc_ops) return 0; mc->provider.dev = mc->dev; mc->provider.data = &mc->provider; mc->provider.set = mc->soc->icc_ops->set; mc->provider.aggregate = mc->soc->icc_ops->aggregate; mc->provider.get_bw = mc->soc->icc_ops->get_bw; mc->provider.xlate = mc->soc->icc_ops->xlate; mc->provider.xlate_extended = mc->soc->icc_ops->xlate_extended; icc_provider_init(&mc->provider); /* create Memory Controller node */ node = icc_node_create(TEGRA_ICC_MC); if (IS_ERR(node)) return PTR_ERR(node); node->name = "Memory Controller"; icc_node_add(node, &mc->provider); /* link Memory Controller to External Memory Controller */ err = icc_link_create(node, TEGRA_ICC_EMC); if (err) goto remove_nodes; for (i = 0; i < mc->soc->num_clients; i++) { /* create MC client node */ node = icc_node_create(mc->soc->clients[i].id); if (IS_ERR(node)) { err = PTR_ERR(node); goto remove_nodes; } node->name = mc->soc->clients[i].name; icc_node_add(node, &mc->provider); /* link Memory Client to Memory Controller */ err = icc_link_create(node, TEGRA_ICC_MC); if (err) goto remove_nodes; node->data = (struct tegra_mc_client *)&(mc->soc->clients[i]); } err = icc_provider_register(&mc->provider); if (err) goto remove_nodes; return 0; remove_nodes: icc_nodes_remove(&mc->provider); return err; } static void tegra_mc_num_channel_enabled(struct tegra_mc *mc) { unsigned int i; u32 value; value = mc_ch_readl(mc, 0, MC_EMEM_ADR_CFG_CHANNEL_ENABLE); if (value <= 0) { mc->num_channels = mc->soc->num_channels; return; } for (i = 0; i < 32; i++) { if (value & BIT(i)) mc->num_channels++; } } static int tegra_mc_probe(struct platform_device *pdev) { struct tegra_mc *mc; u64 mask; int err; mc = devm_kzalloc(&pdev->dev, sizeof(*mc), GFP_KERNEL); if (!mc) return -ENOMEM; platform_set_drvdata(pdev, mc); spin_lock_init(&mc->lock); mc->soc = of_device_get_match_data(&pdev->dev); mc->dev = &pdev->dev; mask = DMA_BIT_MASK(mc->soc->num_address_bits); err = dma_coerce_mask_and_coherent(&pdev->dev, mask); if (err < 0) { dev_err(&pdev->dev, "failed to set DMA mask: %d\n", err); return err; } /* length of MC tick in nanoseconds */ mc->tick = 30; mc->regs = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(mc->regs)) return PTR_ERR(mc->regs); mc->debugfs.root = debugfs_create_dir("mc", NULL); if (mc->soc->ops && mc->soc->ops->probe) { err = mc->soc->ops->probe(mc); if (err < 0) return err; } tegra_mc_num_channel_enabled(mc); if (mc->soc->ops && mc->soc->ops->handle_irq) { mc->irq = platform_get_irq(pdev, 0); if (mc->irq < 0) return mc->irq; WARN(!mc->soc->client_id_mask, "missing client ID mask for this SoC\n"); if (mc->soc->num_channels) mc_ch_writel(mc, MC_BROADCAST_CHANNEL, mc->soc->intmask, MC_INTMASK); else mc_writel(mc, mc->soc->intmask, MC_INTMASK); err = devm_request_irq(&pdev->dev, mc->irq, mc->soc->ops->handle_irq, 0, dev_name(&pdev->dev), mc); if (err < 0) { dev_err(&pdev->dev, "failed to request IRQ#%u: %d\n", mc->irq, err); return err; } } if (mc->soc->reset_ops) { err = tegra_mc_reset_setup(mc); if (err < 0) dev_err(&pdev->dev, "failed to register reset controller: %d\n", err); } err = tegra_mc_interconnect_setup(mc); if (err < 0) dev_err(&pdev->dev, "failed to initialize interconnect: %d\n", err); if (IS_ENABLED(CONFIG_TEGRA_IOMMU_SMMU) && mc->soc->smmu) { mc->smmu = tegra_smmu_probe(&pdev->dev, mc->soc->smmu, mc); if (IS_ERR(mc->smmu)) { dev_err(&pdev->dev, "failed to probe SMMU: %ld\n", PTR_ERR(mc->smmu)); mc->smmu = NULL; } } return 0; } static void tegra_mc_sync_state(struct device *dev) { struct tegra_mc *mc = dev_get_drvdata(dev); /* check whether ICC provider is registered */ if (mc->provider.dev == dev) icc_sync_state(dev); } static struct platform_driver tegra_mc_driver = { .driver = { .name = "tegra-mc", .of_match_table = tegra_mc_of_match, .suppress_bind_attrs = true, .sync_state = tegra_mc_sync_state, }, .prevent_deferred_probe = true, .probe = tegra_mc_probe, }; static int tegra_mc_init(void) { return platform_driver_register(&tegra_mc_driver); } arch_initcall(tegra_mc_init); MODULE_AUTHOR("Thierry Reding <treding@nvidia.com>"); MODULE_DESCRIPTION("NVIDIA Tegra Memory Controller driver");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1