Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dean Nelson | 1721 | 93.63% | 22 | 62.86% |
Robin Holt | 39 | 2.12% | 2 | 5.71% |
Thomas Gleixner | 30 | 1.63% | 1 | 2.86% |
Jes Sorensen | 20 | 1.09% | 1 | 2.86% |
Robin@sgi.com | 14 | 0.76% | 1 | 2.86% |
Gustavo A. R. Silva | 4 | 0.22% | 1 | 2.86% |
Kees Cook | 3 | 0.16% | 1 | 2.86% |
Mike Travis | 2 | 0.11% | 2 | 5.71% |
Linus Torvalds (pre-git) | 2 | 0.11% | 1 | 2.86% |
Linus Torvalds | 1 | 0.05% | 1 | 2.86% |
Al Viro | 1 | 0.05% | 1 | 2.86% |
Nathan Chancellor | 1 | 0.05% | 1 | 2.86% |
Total | 1838 | 35 |
/* * This file is subject to the terms and conditions of the GNU General Public * License. See the file "COPYING" in the main directory of this archive * for more details. * * (C) Copyright 2020 Hewlett Packard Enterprise Development LP * Copyright (c) 2004-2008 Silicon Graphics, Inc. All Rights Reserved. */ /* * Cross Partition Communication (XPC) partition support. * * This is the part of XPC that detects the presence/absence of * other partitions. It provides a heartbeat and monitors the * heartbeats of other partitions. * */ #include <linux/device.h> #include <linux/hardirq.h> #include <linux/slab.h> #include "xpc.h" #include <asm/uv/uv_hub.h> /* XPC is exiting flag */ int xpc_exiting; /* this partition's reserved page pointers */ struct xpc_rsvd_page *xpc_rsvd_page; static unsigned long *xpc_part_nasids; unsigned long *xpc_mach_nasids; static int xpc_nasid_mask_nbytes; /* #of bytes in nasid mask */ int xpc_nasid_mask_nlongs; /* #of longs in nasid mask */ struct xpc_partition *xpc_partitions; /* * Guarantee that the kmalloc'd memory is cacheline aligned. */ void * xpc_kmalloc_cacheline_aligned(size_t size, gfp_t flags, void **base) { /* see if kmalloc will give us cachline aligned memory by default */ *base = kmalloc(size, flags); if (*base == NULL) return NULL; if ((u64)*base == L1_CACHE_ALIGN((u64)*base)) return *base; kfree(*base); /* nope, we'll have to do it ourselves */ *base = kmalloc(size + L1_CACHE_BYTES, flags); if (*base == NULL) return NULL; return (void *)L1_CACHE_ALIGN((u64)*base); } /* * Given a nasid, get the physical address of the partition's reserved page * for that nasid. This function returns 0 on any error. */ static unsigned long xpc_get_rsvd_page_pa(int nasid) { enum xp_retval ret; u64 cookie = 0; unsigned long rp_pa = nasid; /* seed with nasid */ size_t len = 0; size_t buf_len = 0; void *buf = NULL; void *buf_base = NULL; enum xp_retval (*get_partition_rsvd_page_pa) (void *, u64 *, unsigned long *, size_t *) = xpc_arch_ops.get_partition_rsvd_page_pa; while (1) { /* !!! rp_pa will need to be _gpa on UV. * ??? So do we save it into the architecture specific parts * ??? of the xpc_partition structure? Do we rename this * ??? function or have two versions? Rename rp_pa for UV to * ??? rp_gpa? */ ret = get_partition_rsvd_page_pa(buf, &cookie, &rp_pa, &len); dev_dbg(xpc_part, "SAL returned with ret=%d, cookie=0x%016lx, " "address=0x%016lx, len=0x%016lx\n", ret, (unsigned long)cookie, rp_pa, len); if (ret != xpNeedMoreInfo) break; if (len > buf_len) { kfree(buf_base); buf_len = L1_CACHE_ALIGN(len); buf = xpc_kmalloc_cacheline_aligned(buf_len, GFP_KERNEL, &buf_base); if (buf_base == NULL) { dev_err(xpc_part, "unable to kmalloc " "len=0x%016lx\n", buf_len); ret = xpNoMemory; break; } } ret = xp_remote_memcpy(xp_pa(buf), rp_pa, len); if (ret != xpSuccess) { dev_dbg(xpc_part, "xp_remote_memcpy failed %d\n", ret); break; } } kfree(buf_base); if (ret != xpSuccess) rp_pa = 0; dev_dbg(xpc_part, "reserved page at phys address 0x%016lx\n", rp_pa); return rp_pa; } /* * Fill the partition reserved page with the information needed by * other partitions to discover we are alive and establish initial * communications. */ int xpc_setup_rsvd_page(void) { int ret; struct xpc_rsvd_page *rp; unsigned long rp_pa; unsigned long new_ts_jiffies; /* get the local reserved page's address */ preempt_disable(); rp_pa = xpc_get_rsvd_page_pa(xp_cpu_to_nasid(smp_processor_id())); preempt_enable(); if (rp_pa == 0) { dev_err(xpc_part, "SAL failed to locate the reserved page\n"); return -ESRCH; } rp = (struct xpc_rsvd_page *)__va(xp_socket_pa(rp_pa)); if (rp->SAL_version < 3) { /* SAL_versions < 3 had a SAL_partid defined as a u8 */ rp->SAL_partid &= 0xff; } BUG_ON(rp->SAL_partid != xp_partition_id); if (rp->SAL_partid < 0 || rp->SAL_partid >= xp_max_npartitions) { dev_err(xpc_part, "the reserved page's partid of %d is outside " "supported range (< 0 || >= %d)\n", rp->SAL_partid, xp_max_npartitions); return -EINVAL; } rp->version = XPC_RP_VERSION; rp->max_npartitions = xp_max_npartitions; /* establish the actual sizes of the nasid masks */ if (rp->SAL_version == 1) { /* SAL_version 1 didn't set the nasids_size field */ rp->SAL_nasids_size = 128; } xpc_nasid_mask_nbytes = rp->SAL_nasids_size; xpc_nasid_mask_nlongs = BITS_TO_LONGS(rp->SAL_nasids_size * BITS_PER_BYTE); /* setup the pointers to the various items in the reserved page */ xpc_part_nasids = XPC_RP_PART_NASIDS(rp); xpc_mach_nasids = XPC_RP_MACH_NASIDS(rp); ret = xpc_arch_ops.setup_rsvd_page(rp); if (ret != 0) return ret; /* * Set timestamp of when reserved page was setup by XPC. * This signifies to the remote partition that our reserved * page is initialized. */ new_ts_jiffies = jiffies; if (new_ts_jiffies == 0 || new_ts_jiffies == rp->ts_jiffies) new_ts_jiffies++; rp->ts_jiffies = new_ts_jiffies; xpc_rsvd_page = rp; return 0; } void xpc_teardown_rsvd_page(void) { /* a zero timestamp indicates our rsvd page is not initialized */ xpc_rsvd_page->ts_jiffies = 0; } /* * Get a copy of a portion of the remote partition's rsvd page. * * remote_rp points to a buffer that is cacheline aligned for BTE copies and * is large enough to contain a copy of their reserved page header and * part_nasids mask. */ enum xp_retval xpc_get_remote_rp(int nasid, unsigned long *discovered_nasids, struct xpc_rsvd_page *remote_rp, unsigned long *remote_rp_pa) { int l; enum xp_retval ret; /* get the reserved page's physical address */ *remote_rp_pa = xpc_get_rsvd_page_pa(nasid); if (*remote_rp_pa == 0) return xpNoRsvdPageAddr; /* pull over the reserved page header and part_nasids mask */ ret = xp_remote_memcpy(xp_pa(remote_rp), *remote_rp_pa, XPC_RP_HEADER_SIZE + xpc_nasid_mask_nbytes); if (ret != xpSuccess) return ret; if (discovered_nasids != NULL) { unsigned long *remote_part_nasids = XPC_RP_PART_NASIDS(remote_rp); for (l = 0; l < xpc_nasid_mask_nlongs; l++) discovered_nasids[l] |= remote_part_nasids[l]; } /* zero timestamp indicates the reserved page has not been setup */ if (remote_rp->ts_jiffies == 0) return xpRsvdPageNotSet; if (XPC_VERSION_MAJOR(remote_rp->version) != XPC_VERSION_MAJOR(XPC_RP_VERSION)) { return xpBadVersion; } /* check that both remote and local partids are valid for each side */ if (remote_rp->SAL_partid < 0 || remote_rp->SAL_partid >= xp_max_npartitions || remote_rp->max_npartitions <= xp_partition_id) { return xpInvalidPartid; } if (remote_rp->SAL_partid == xp_partition_id) return xpLocalPartid; return xpSuccess; } /* * See if the other side has responded to a partition deactivate request * from us. Though we requested the remote partition to deactivate with regard * to us, we really only need to wait for the other side to disengage from us. */ static int __xpc_partition_disengaged(struct xpc_partition *part, bool from_timer) { short partid = XPC_PARTID(part); int disengaged; disengaged = !xpc_arch_ops.partition_engaged(partid); if (part->disengage_timeout) { if (!disengaged) { if (time_is_after_jiffies(part->disengage_timeout)) { /* timelimit hasn't been reached yet */ return 0; } /* * Other side hasn't responded to our deactivate * request in a timely fashion, so assume it's dead. */ dev_info(xpc_part, "deactivate request to remote " "partition %d timed out\n", partid); xpc_disengage_timedout = 1; xpc_arch_ops.assume_partition_disengaged(partid); disengaged = 1; } part->disengage_timeout = 0; /* Cancel the timer function if not called from it */ if (!from_timer) del_timer_sync(&part->disengage_timer); DBUG_ON(part->act_state != XPC_P_AS_DEACTIVATING && part->act_state != XPC_P_AS_INACTIVE); if (part->act_state != XPC_P_AS_INACTIVE) xpc_wakeup_channel_mgr(part); xpc_arch_ops.cancel_partition_deactivation_request(part); } return disengaged; } int xpc_partition_disengaged(struct xpc_partition *part) { return __xpc_partition_disengaged(part, false); } int xpc_partition_disengaged_from_timer(struct xpc_partition *part) { return __xpc_partition_disengaged(part, true); } /* * Mark specified partition as active. */ enum xp_retval xpc_mark_partition_active(struct xpc_partition *part) { unsigned long irq_flags; enum xp_retval ret; dev_dbg(xpc_part, "setting partition %d to ACTIVE\n", XPC_PARTID(part)); spin_lock_irqsave(&part->act_lock, irq_flags); if (part->act_state == XPC_P_AS_ACTIVATING) { part->act_state = XPC_P_AS_ACTIVE; ret = xpSuccess; } else { DBUG_ON(part->reason == xpSuccess); ret = part->reason; } spin_unlock_irqrestore(&part->act_lock, irq_flags); return ret; } /* * Start the process of deactivating the specified partition. */ void xpc_deactivate_partition(const int line, struct xpc_partition *part, enum xp_retval reason) { unsigned long irq_flags; spin_lock_irqsave(&part->act_lock, irq_flags); if (part->act_state == XPC_P_AS_INACTIVE) { XPC_SET_REASON(part, reason, line); spin_unlock_irqrestore(&part->act_lock, irq_flags); if (reason == xpReactivating) { /* we interrupt ourselves to reactivate partition */ xpc_arch_ops.request_partition_reactivation(part); } return; } if (part->act_state == XPC_P_AS_DEACTIVATING) { if ((part->reason == xpUnloading && reason != xpUnloading) || reason == xpReactivating) { XPC_SET_REASON(part, reason, line); } spin_unlock_irqrestore(&part->act_lock, irq_flags); return; } part->act_state = XPC_P_AS_DEACTIVATING; XPC_SET_REASON(part, reason, line); spin_unlock_irqrestore(&part->act_lock, irq_flags); /* ask remote partition to deactivate with regard to us */ xpc_arch_ops.request_partition_deactivation(part); /* set a timelimit on the disengage phase of the deactivation request */ part->disengage_timeout = jiffies + (xpc_disengage_timelimit * HZ); part->disengage_timer.expires = part->disengage_timeout; add_timer(&part->disengage_timer); dev_dbg(xpc_part, "bringing partition %d down, reason = %d\n", XPC_PARTID(part), reason); xpc_partition_going_down(part, reason); } /* * Mark specified partition as inactive. */ void xpc_mark_partition_inactive(struct xpc_partition *part) { unsigned long irq_flags; dev_dbg(xpc_part, "setting partition %d to INACTIVE\n", XPC_PARTID(part)); spin_lock_irqsave(&part->act_lock, irq_flags); part->act_state = XPC_P_AS_INACTIVE; spin_unlock_irqrestore(&part->act_lock, irq_flags); part->remote_rp_pa = 0; } /* * SAL has provided a partition and machine mask. The partition mask * contains a bit for each even nasid in our partition. The machine * mask contains a bit for each even nasid in the entire machine. * * Using those two bit arrays, we can determine which nasids are * known in the machine. Each should also have a reserved page * initialized if they are available for partitioning. */ void xpc_discovery(void) { void *remote_rp_base; struct xpc_rsvd_page *remote_rp; unsigned long remote_rp_pa; int region; int region_size; int max_regions; int nasid; unsigned long *discovered_nasids; enum xp_retval ret; remote_rp = xpc_kmalloc_cacheline_aligned(XPC_RP_HEADER_SIZE + xpc_nasid_mask_nbytes, GFP_KERNEL, &remote_rp_base); if (remote_rp == NULL) return; discovered_nasids = kcalloc(xpc_nasid_mask_nlongs, sizeof(long), GFP_KERNEL); if (discovered_nasids == NULL) { kfree(remote_rp_base); return; } /* * The term 'region' in this context refers to the minimum number of * nodes that can comprise an access protection grouping. The access * protection is in regards to memory, IOI and IPI. */ region_size = xp_region_size; if (is_uv_system()) max_regions = 256; else { max_regions = 64; switch (region_size) { case 128: max_regions *= 2; fallthrough; case 64: max_regions *= 2; fallthrough; case 32: max_regions *= 2; region_size = 16; } } for (region = 0; region < max_regions; region++) { if (xpc_exiting) break; dev_dbg(xpc_part, "searching region %d\n", region); for (nasid = (region * region_size * 2); nasid < ((region + 1) * region_size * 2); nasid += 2) { if (xpc_exiting) break; dev_dbg(xpc_part, "checking nasid %d\n", nasid); if (test_bit(nasid / 2, xpc_part_nasids)) { dev_dbg(xpc_part, "PROM indicates Nasid %d is " "part of the local partition; skipping " "region\n", nasid); break; } if (!(test_bit(nasid / 2, xpc_mach_nasids))) { dev_dbg(xpc_part, "PROM indicates Nasid %d was " "not on Numa-Link network at reset\n", nasid); continue; } if (test_bit(nasid / 2, discovered_nasids)) { dev_dbg(xpc_part, "Nasid %d is part of a " "partition which was previously " "discovered\n", nasid); continue; } /* pull over the rsvd page header & part_nasids mask */ ret = xpc_get_remote_rp(nasid, discovered_nasids, remote_rp, &remote_rp_pa); if (ret != xpSuccess) { dev_dbg(xpc_part, "unable to get reserved page " "from nasid %d, reason=%d\n", nasid, ret); if (ret == xpLocalPartid) break; continue; } xpc_arch_ops.request_partition_activation(remote_rp, remote_rp_pa, nasid); } } kfree(discovered_nasids); kfree(remote_rp_base); } /* * Given a partid, get the nasids owned by that partition from the * remote partition's reserved page. */ enum xp_retval xpc_initiate_partid_to_nasids(short partid, void *nasid_mask) { struct xpc_partition *part; unsigned long part_nasid_pa; part = &xpc_partitions[partid]; if (part->remote_rp_pa == 0) return xpPartitionDown; memset(nasid_mask, 0, xpc_nasid_mask_nbytes); part_nasid_pa = (unsigned long)XPC_RP_PART_NASIDS(part->remote_rp_pa); return xp_remote_memcpy(xp_pa(nasid_mask), part_nasid_pa, xpc_nasid_mask_nbytes); }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1