Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Pierre Ossman | 1486 | 64.98% | 6 | 19.35% |
David Vrabel | 387 | 16.92% | 3 | 9.68% |
Shawn Lin | 102 | 4.46% | 1 | 3.23% |
Nico Pitre | 65 | 2.84% | 1 | 3.23% |
Doug Anderson | 52 | 2.27% | 2 | 6.45% |
Ulf Hansson | 36 | 1.57% | 3 | 9.68% |
Tomas Winkler | 34 | 1.49% | 2 | 6.45% |
Tobin C Harding | 34 | 1.49% | 2 | 6.45% |
Grazvydas Ignotas | 23 | 1.01% | 1 | 3.23% |
Bing Zhao | 21 | 0.92% | 1 | 3.23% |
Stefan Nilsson XK | 20 | 0.87% | 1 | 3.23% |
Ohad Ben-Cohen | 12 | 0.52% | 1 | 3.23% |
Benzi Zbit | 6 | 0.26% | 1 | 3.23% |
Paul Gortmaker | 3 | 0.13% | 1 | 3.23% |
Thomas Gleixner | 2 | 0.09% | 1 | 3.23% |
Kyoungil Kim | 1 | 0.04% | 1 | 3.23% |
Yue Hu | 1 | 0.04% | 1 | 3.23% |
Lee Jones | 1 | 0.04% | 1 | 3.23% |
Geert Uytterhoeven | 1 | 0.04% | 1 | 3.23% |
Total | 2287 | 31 |
123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814
// SPDX-License-Identifier: GPL-2.0-or-later /* * linux/drivers/mmc/core/sdio_io.c * * Copyright 2007-2008 Pierre Ossman */ #include <linux/export.h> #include <linux/kernel.h> #include <linux/mmc/host.h> #include <linux/mmc/card.h> #include <linux/mmc/sdio.h> #include <linux/mmc/sdio_func.h> #include "sdio_ops.h" #include "core.h" #include "card.h" #include "host.h" /** * sdio_claim_host - exclusively claim a bus for a certain SDIO function * @func: SDIO function that will be accessed * * Claim a bus for a set of operations. The SDIO function given * is used to figure out which bus is relevant. */ void sdio_claim_host(struct sdio_func *func) { if (WARN_ON(!func)) return; mmc_claim_host(func->card->host); } EXPORT_SYMBOL_GPL(sdio_claim_host); /** * sdio_release_host - release a bus for a certain SDIO function * @func: SDIO function that was accessed * * Release a bus, allowing others to claim the bus for their * operations. */ void sdio_release_host(struct sdio_func *func) { if (WARN_ON(!func)) return; mmc_release_host(func->card->host); } EXPORT_SYMBOL_GPL(sdio_release_host); /** * sdio_enable_func - enables a SDIO function for usage * @func: SDIO function to enable * * Powers up and activates a SDIO function so that register * access is possible. */ int sdio_enable_func(struct sdio_func *func) { int ret; unsigned char reg; unsigned long timeout; if (!func) return -EINVAL; pr_debug("SDIO: Enabling device %s...\n", sdio_func_id(func)); ret = mmc_io_rw_direct(func->card, 0, 0, SDIO_CCCR_IOEx, 0, ®); if (ret) goto err; reg |= 1 << func->num; ret = mmc_io_rw_direct(func->card, 1, 0, SDIO_CCCR_IOEx, reg, NULL); if (ret) goto err; timeout = jiffies + msecs_to_jiffies(func->enable_timeout); while (1) { ret = mmc_io_rw_direct(func->card, 0, 0, SDIO_CCCR_IORx, 0, ®); if (ret) goto err; if (reg & (1 << func->num)) break; ret = -ETIME; if (time_after(jiffies, timeout)) goto err; } pr_debug("SDIO: Enabled device %s\n", sdio_func_id(func)); return 0; err: pr_debug("SDIO: Failed to enable device %s\n", sdio_func_id(func)); return ret; } EXPORT_SYMBOL_GPL(sdio_enable_func); /** * sdio_disable_func - disable a SDIO function * @func: SDIO function to disable * * Powers down and deactivates a SDIO function. Register access * to this function will fail until the function is reenabled. */ int sdio_disable_func(struct sdio_func *func) { int ret; unsigned char reg; if (!func) return -EINVAL; pr_debug("SDIO: Disabling device %s...\n", sdio_func_id(func)); ret = mmc_io_rw_direct(func->card, 0, 0, SDIO_CCCR_IOEx, 0, ®); if (ret) goto err; reg &= ~(1 << func->num); ret = mmc_io_rw_direct(func->card, 1, 0, SDIO_CCCR_IOEx, reg, NULL); if (ret) goto err; pr_debug("SDIO: Disabled device %s\n", sdio_func_id(func)); return 0; err: pr_debug("SDIO: Failed to disable device %s\n", sdio_func_id(func)); return ret; } EXPORT_SYMBOL_GPL(sdio_disable_func); /** * sdio_set_block_size - set the block size of an SDIO function * @func: SDIO function to change * @blksz: new block size or 0 to use the default. * * The default block size is the largest supported by both the function * and the host, with a maximum of 512 to ensure that arbitrarily sized * data transfer use the optimal (least) number of commands. * * A driver may call this to override the default block size set by the * core. This can be used to set a block size greater than the maximum * that reported by the card; it is the driver's responsibility to ensure * it uses a value that the card supports. * * Returns 0 on success, -EINVAL if the host does not support the * requested block size, or -EIO (etc.) if one of the resultant FBR block * size register writes failed. * */ int sdio_set_block_size(struct sdio_func *func, unsigned blksz) { int ret; if (blksz > func->card->host->max_blk_size) return -EINVAL; if (blksz == 0) { blksz = min(func->max_blksize, func->card->host->max_blk_size); blksz = min(blksz, 512u); } ret = mmc_io_rw_direct(func->card, 1, 0, SDIO_FBR_BASE(func->num) + SDIO_FBR_BLKSIZE, blksz & 0xff, NULL); if (ret) return ret; ret = mmc_io_rw_direct(func->card, 1, 0, SDIO_FBR_BASE(func->num) + SDIO_FBR_BLKSIZE + 1, (blksz >> 8) & 0xff, NULL); if (ret) return ret; func->cur_blksize = blksz; return 0; } EXPORT_SYMBOL_GPL(sdio_set_block_size); /* * Calculate the maximum byte mode transfer size */ static inline unsigned int sdio_max_byte_size(struct sdio_func *func) { unsigned mval = func->card->host->max_blk_size; if (mmc_blksz_for_byte_mode(func->card)) mval = min(mval, func->cur_blksize); else mval = min(mval, func->max_blksize); if (mmc_card_broken_byte_mode_512(func->card)) return min(mval, 511u); return min(mval, 512u); /* maximum size for byte mode */ } /* * This is legacy code, which needs to be re-worked some day. Basically we need * to take into account the properties of the host, as to enable the SDIO func * driver layer to allocate optimal buffers. */ static inline unsigned int _sdio_align_size(unsigned int sz) { /* * FIXME: We don't have a system for the controller to tell * the core about its problems yet, so for now we just 32-bit * align the size. */ return ALIGN(sz, 4); } /** * sdio_align_size - pads a transfer size to a more optimal value * @func: SDIO function * @sz: original transfer size * * Pads the original data size with a number of extra bytes in * order to avoid controller bugs and/or performance hits * (e.g. some controllers revert to PIO for certain sizes). * * If possible, it will also adjust the size so that it can be * handled in just a single request. * * Returns the improved size, which might be unmodified. */ unsigned int sdio_align_size(struct sdio_func *func, unsigned int sz) { unsigned int orig_sz; unsigned int blk_sz, byte_sz; unsigned chunk_sz; orig_sz = sz; /* * Do a first check with the controller, in case it * wants to increase the size up to a point where it * might need more than one block. */ sz = _sdio_align_size(sz); /* * If we can still do this with just a byte transfer, then * we're done. */ if (sz <= sdio_max_byte_size(func)) return sz; if (func->card->cccr.multi_block) { /* * Check if the transfer is already block aligned */ if ((sz % func->cur_blksize) == 0) return sz; /* * Realign it so that it can be done with one request, * and recheck if the controller still likes it. */ blk_sz = ((sz + func->cur_blksize - 1) / func->cur_blksize) * func->cur_blksize; blk_sz = _sdio_align_size(blk_sz); /* * This value is only good if it is still just * one request. */ if ((blk_sz % func->cur_blksize) == 0) return blk_sz; /* * We failed to do one request, but at least try to * pad the remainder properly. */ byte_sz = _sdio_align_size(sz % func->cur_blksize); if (byte_sz <= sdio_max_byte_size(func)) { blk_sz = sz / func->cur_blksize; return blk_sz * func->cur_blksize + byte_sz; } } else { /* * We need multiple requests, so first check that the * controller can handle the chunk size; */ chunk_sz = _sdio_align_size(sdio_max_byte_size(func)); if (chunk_sz == sdio_max_byte_size(func)) { /* * Fix up the size of the remainder (if any) */ byte_sz = orig_sz % chunk_sz; if (byte_sz) { byte_sz = _sdio_align_size(byte_sz); } return (orig_sz / chunk_sz) * chunk_sz + byte_sz; } } /* * The controller is simply incapable of transferring the size * we want in decent manner, so just return the original size. */ return orig_sz; } EXPORT_SYMBOL_GPL(sdio_align_size); /* Split an arbitrarily sized data transfer into several * IO_RW_EXTENDED commands. */ static int sdio_io_rw_ext_helper(struct sdio_func *func, int write, unsigned addr, int incr_addr, u8 *buf, unsigned size) { unsigned remainder = size; unsigned max_blocks; int ret; if (!func || (func->num > 7)) return -EINVAL; /* Do the bulk of the transfer using block mode (if supported). */ if (func->card->cccr.multi_block && (size > sdio_max_byte_size(func))) { /* Blocks per command is limited by host count, host transfer * size and the maximum for IO_RW_EXTENDED of 511 blocks. */ max_blocks = min(func->card->host->max_blk_count, 511u); while (remainder >= func->cur_blksize) { unsigned blocks; blocks = remainder / func->cur_blksize; if (blocks > max_blocks) blocks = max_blocks; size = blocks * func->cur_blksize; ret = mmc_io_rw_extended(func->card, write, func->num, addr, incr_addr, buf, blocks, func->cur_blksize); if (ret) return ret; remainder -= size; buf += size; if (incr_addr) addr += size; } } /* Write the remainder using byte mode. */ while (remainder > 0) { size = min(remainder, sdio_max_byte_size(func)); /* Indicate byte mode by setting "blocks" = 0 */ ret = mmc_io_rw_extended(func->card, write, func->num, addr, incr_addr, buf, 0, size); if (ret) return ret; remainder -= size; buf += size; if (incr_addr) addr += size; } return 0; } /** * sdio_readb - read a single byte from a SDIO function * @func: SDIO function to access * @addr: address to read * @err_ret: optional status value from transfer * * Reads a single byte from the address space of a given SDIO * function. If there is a problem reading the address, 0xff * is returned and @err_ret will contain the error code. */ u8 sdio_readb(struct sdio_func *func, unsigned int addr, int *err_ret) { int ret; u8 val; if (!func) { if (err_ret) *err_ret = -EINVAL; return 0xFF; } ret = mmc_io_rw_direct(func->card, 0, func->num, addr, 0, &val); if (err_ret) *err_ret = ret; if (ret) return 0xFF; return val; } EXPORT_SYMBOL_GPL(sdio_readb); /** * sdio_writeb - write a single byte to a SDIO function * @func: SDIO function to access * @b: byte to write * @addr: address to write to * @err_ret: optional status value from transfer * * Writes a single byte to the address space of a given SDIO * function. @err_ret will contain the status of the actual * transfer. */ void sdio_writeb(struct sdio_func *func, u8 b, unsigned int addr, int *err_ret) { int ret; if (!func) { if (err_ret) *err_ret = -EINVAL; return; } ret = mmc_io_rw_direct(func->card, 1, func->num, addr, b, NULL); if (err_ret) *err_ret = ret; } EXPORT_SYMBOL_GPL(sdio_writeb); /** * sdio_writeb_readb - write and read a byte from SDIO function * @func: SDIO function to access * @write_byte: byte to write * @addr: address to write to * @err_ret: optional status value from transfer * * Performs a RAW (Read after Write) operation as defined by SDIO spec - * single byte is written to address space of a given SDIO function and * response is read back from the same address, both using single request. * If there is a problem with the operation, 0xff is returned and * @err_ret will contain the error code. */ u8 sdio_writeb_readb(struct sdio_func *func, u8 write_byte, unsigned int addr, int *err_ret) { int ret; u8 val; ret = mmc_io_rw_direct(func->card, 1, func->num, addr, write_byte, &val); if (err_ret) *err_ret = ret; if (ret) return 0xff; return val; } EXPORT_SYMBOL_GPL(sdio_writeb_readb); /** * sdio_memcpy_fromio - read a chunk of memory from a SDIO function * @func: SDIO function to access * @dst: buffer to store the data * @addr: address to begin reading from * @count: number of bytes to read * * Reads from the address space of a given SDIO function. Return * value indicates if the transfer succeeded or not. */ int sdio_memcpy_fromio(struct sdio_func *func, void *dst, unsigned int addr, int count) { return sdio_io_rw_ext_helper(func, 0, addr, 1, dst, count); } EXPORT_SYMBOL_GPL(sdio_memcpy_fromio); /** * sdio_memcpy_toio - write a chunk of memory to a SDIO function * @func: SDIO function to access * @addr: address to start writing to * @src: buffer that contains the data to write * @count: number of bytes to write * * Writes to the address space of a given SDIO function. Return * value indicates if the transfer succeeded or not. */ int sdio_memcpy_toio(struct sdio_func *func, unsigned int addr, void *src, int count) { return sdio_io_rw_ext_helper(func, 1, addr, 1, src, count); } EXPORT_SYMBOL_GPL(sdio_memcpy_toio); /** * sdio_readsb - read from a FIFO on a SDIO function * @func: SDIO function to access * @dst: buffer to store the data * @addr: address of (single byte) FIFO * @count: number of bytes to read * * Reads from the specified FIFO of a given SDIO function. Return * value indicates if the transfer succeeded or not. */ int sdio_readsb(struct sdio_func *func, void *dst, unsigned int addr, int count) { return sdio_io_rw_ext_helper(func, 0, addr, 0, dst, count); } EXPORT_SYMBOL_GPL(sdio_readsb); /** * sdio_writesb - write to a FIFO of a SDIO function * @func: SDIO function to access * @addr: address of (single byte) FIFO * @src: buffer that contains the data to write * @count: number of bytes to write * * Writes to the specified FIFO of a given SDIO function. Return * value indicates if the transfer succeeded or not. */ int sdio_writesb(struct sdio_func *func, unsigned int addr, void *src, int count) { return sdio_io_rw_ext_helper(func, 1, addr, 0, src, count); } EXPORT_SYMBOL_GPL(sdio_writesb); /** * sdio_readw - read a 16 bit integer from a SDIO function * @func: SDIO function to access * @addr: address to read * @err_ret: optional status value from transfer * * Reads a 16 bit integer from the address space of a given SDIO * function. If there is a problem reading the address, 0xffff * is returned and @err_ret will contain the error code. */ u16 sdio_readw(struct sdio_func *func, unsigned int addr, int *err_ret) { int ret; ret = sdio_memcpy_fromio(func, func->tmpbuf, addr, 2); if (err_ret) *err_ret = ret; if (ret) return 0xFFFF; return le16_to_cpup((__le16 *)func->tmpbuf); } EXPORT_SYMBOL_GPL(sdio_readw); /** * sdio_writew - write a 16 bit integer to a SDIO function * @func: SDIO function to access * @b: integer to write * @addr: address to write to * @err_ret: optional status value from transfer * * Writes a 16 bit integer to the address space of a given SDIO * function. @err_ret will contain the status of the actual * transfer. */ void sdio_writew(struct sdio_func *func, u16 b, unsigned int addr, int *err_ret) { int ret; *(__le16 *)func->tmpbuf = cpu_to_le16(b); ret = sdio_memcpy_toio(func, addr, func->tmpbuf, 2); if (err_ret) *err_ret = ret; } EXPORT_SYMBOL_GPL(sdio_writew); /** * sdio_readl - read a 32 bit integer from a SDIO function * @func: SDIO function to access * @addr: address to read * @err_ret: optional status value from transfer * * Reads a 32 bit integer from the address space of a given SDIO * function. If there is a problem reading the address, * 0xffffffff is returned and @err_ret will contain the error * code. */ u32 sdio_readl(struct sdio_func *func, unsigned int addr, int *err_ret) { int ret; ret = sdio_memcpy_fromio(func, func->tmpbuf, addr, 4); if (err_ret) *err_ret = ret; if (ret) return 0xFFFFFFFF; return le32_to_cpup((__le32 *)func->tmpbuf); } EXPORT_SYMBOL_GPL(sdio_readl); /** * sdio_writel - write a 32 bit integer to a SDIO function * @func: SDIO function to access * @b: integer to write * @addr: address to write to * @err_ret: optional status value from transfer * * Writes a 32 bit integer to the address space of a given SDIO * function. @err_ret will contain the status of the actual * transfer. */ void sdio_writel(struct sdio_func *func, u32 b, unsigned int addr, int *err_ret) { int ret; *(__le32 *)func->tmpbuf = cpu_to_le32(b); ret = sdio_memcpy_toio(func, addr, func->tmpbuf, 4); if (err_ret) *err_ret = ret; } EXPORT_SYMBOL_GPL(sdio_writel); /** * sdio_f0_readb - read a single byte from SDIO function 0 * @func: an SDIO function of the card * @addr: address to read * @err_ret: optional status value from transfer * * Reads a single byte from the address space of SDIO function 0. * If there is a problem reading the address, 0xff is returned * and @err_ret will contain the error code. */ unsigned char sdio_f0_readb(struct sdio_func *func, unsigned int addr, int *err_ret) { int ret; unsigned char val; if (!func) { if (err_ret) *err_ret = -EINVAL; return 0xFF; } ret = mmc_io_rw_direct(func->card, 0, 0, addr, 0, &val); if (err_ret) *err_ret = ret; if (ret) return 0xFF; return val; } EXPORT_SYMBOL_GPL(sdio_f0_readb); /** * sdio_f0_writeb - write a single byte to SDIO function 0 * @func: an SDIO function of the card * @b: byte to write * @addr: address to write to * @err_ret: optional status value from transfer * * Writes a single byte to the address space of SDIO function 0. * @err_ret will contain the status of the actual transfer. * * Only writes to the vendor specific CCCR registers (0xF0 - * 0xFF) are permiited; @err_ret will be set to -EINVAL for * * writes outside this range. */ void sdio_f0_writeb(struct sdio_func *func, unsigned char b, unsigned int addr, int *err_ret) { int ret; if (!func) { if (err_ret) *err_ret = -EINVAL; return; } if ((addr < 0xF0 || addr > 0xFF) && (!mmc_card_lenient_fn0(func->card))) { if (err_ret) *err_ret = -EINVAL; return; } ret = mmc_io_rw_direct(func->card, 1, 0, addr, b, NULL); if (err_ret) *err_ret = ret; } EXPORT_SYMBOL_GPL(sdio_f0_writeb); /** * sdio_get_host_pm_caps - get host power management capabilities * @func: SDIO function attached to host * * Returns a capability bitmask corresponding to power management * features supported by the host controller that the card function * might rely upon during a system suspend. The host doesn't need * to be claimed, nor the function active, for this information to be * obtained. */ mmc_pm_flag_t sdio_get_host_pm_caps(struct sdio_func *func) { if (!func) return 0; return func->card->host->pm_caps; } EXPORT_SYMBOL_GPL(sdio_get_host_pm_caps); /** * sdio_set_host_pm_flags - set wanted host power management capabilities * @func: SDIO function attached to host * @flags: Power Management flags to set * * Set a capability bitmask corresponding to wanted host controller * power management features for the upcoming suspend state. * This must be called, if needed, each time the suspend method of * the function driver is called, and must contain only bits that * were returned by sdio_get_host_pm_caps(). * The host doesn't need to be claimed, nor the function active, * for this information to be set. */ int sdio_set_host_pm_flags(struct sdio_func *func, mmc_pm_flag_t flags) { struct mmc_host *host; if (!func) return -EINVAL; host = func->card->host; if (flags & ~host->pm_caps) return -EINVAL; /* function suspend methods are serialized, hence no lock needed */ host->pm_flags |= flags; return 0; } EXPORT_SYMBOL_GPL(sdio_set_host_pm_flags); /** * sdio_retune_crc_disable - temporarily disable retuning on CRC errors * @func: SDIO function attached to host * * If the SDIO card is known to be in a state where it might produce * CRC errors on the bus in response to commands (like if we know it is * transitioning between power states), an SDIO function driver can * call this function to temporarily disable the SD/MMC core behavior of * triggering an automatic retuning. * * This function should be called while the host is claimed and the host * should remain claimed until sdio_retune_crc_enable() is called. * Specifically, the expected sequence of calls is: * - sdio_claim_host() * - sdio_retune_crc_disable() * - some number of calls like sdio_writeb() and sdio_readb() * - sdio_retune_crc_enable() * - sdio_release_host() */ void sdio_retune_crc_disable(struct sdio_func *func) { func->card->host->retune_crc_disable = true; } EXPORT_SYMBOL_GPL(sdio_retune_crc_disable); /** * sdio_retune_crc_enable - re-enable retuning on CRC errors * @func: SDIO function attached to host * * This is the complement to sdio_retune_crc_disable(). */ void sdio_retune_crc_enable(struct sdio_func *func) { func->card->host->retune_crc_disable = false; } EXPORT_SYMBOL_GPL(sdio_retune_crc_enable); /** * sdio_retune_hold_now - start deferring retuning requests till release * @func: SDIO function attached to host * * This function can be called if it's currently a bad time to do * a retune of the SDIO card. Retune requests made during this time * will be held and we'll actually do the retune sometime after the * release. * * This function could be useful if an SDIO card is in a power state * where it can respond to a small subset of commands that doesn't * include the retuning command. Care should be taken when using * this function since (presumably) the retuning request we might be * deferring was made for a good reason. * * This function should be called while the host is claimed. */ void sdio_retune_hold_now(struct sdio_func *func) { mmc_retune_hold_now(func->card->host); } EXPORT_SYMBOL_GPL(sdio_retune_hold_now); /** * sdio_retune_release - signal that it's OK to retune now * @func: SDIO function attached to host * * This is the complement to sdio_retune_hold_now(). Calling this * function won't make a retune happen right away but will allow * them to be scheduled normally. * * This function should be called while the host is claimed. */ void sdio_retune_release(struct sdio_func *func) { mmc_retune_release(func->card->host); } EXPORT_SYMBOL_GPL(sdio_retune_release);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1