Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Li Wei | 1180 | 54.15% | 1 | 5.56% |
Zhangfei Gao | 879 | 40.34% | 4 | 22.22% |
Jin Guojun | 40 | 1.84% | 1 | 5.56% |
Shawn Lin | 24 | 1.10% | 2 | 11.11% |
Jérôme Forissier | 19 | 0.87% | 1 | 5.56% |
Will Newton | 12 | 0.55% | 1 | 5.56% |
Geert Uytterhoeven | 12 | 0.55% | 1 | 5.56% |
Doug Anderson | 5 | 0.23% | 1 | 5.56% |
Gustavo A. R. Silva | 2 | 0.09% | 1 | 5.56% |
Marek Vašut | 2 | 0.09% | 1 | 5.56% |
Colin Ian King | 1 | 0.05% | 1 | 5.56% |
Uwe Kleine-König | 1 | 0.05% | 1 | 5.56% |
Thomas Gleixner | 1 | 0.05% | 1 | 5.56% |
Hao Fang | 1 | 0.05% | 1 | 5.56% |
Total | 2179 | 18 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright (c) 2013 Linaro Ltd. * Copyright (c) 2013 HiSilicon Limited. */ #include <linux/bitops.h> #include <linux/bitfield.h> #include <linux/clk.h> #include <linux/mfd/syscon.h> #include <linux/mmc/host.h> #include <linux/module.h> #include <linux/of_address.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/regmap.h> #include <linux/regulator/consumer.h> #include "dw_mmc.h" #include "dw_mmc-pltfm.h" /* * hi6220 sd only support io voltage 1.8v and 3v * Also need config AO_SCTRL_SEL18 accordingly */ #define AO_SCTRL_SEL18 BIT(10) #define AO_SCTRL_CTRL3 0x40C #define DWMMC_SDIO_ID 2 #define SOC_SCTRL_SCPERCTRL5 (0x314) #define SDCARD_IO_SEL18 BIT(2) #define SDCARD_RD_THRESHOLD (512) #define GENCLK_DIV (7) #define GPIO_CLK_ENABLE BIT(16) #define GPIO_CLK_DIV_MASK GENMASK(11, 8) #define GPIO_USE_SAMPLE_DLY_MASK GENMASK(13, 13) #define UHS_REG_EXT_SAMPLE_PHASE_MASK GENMASK(20, 16) #define UHS_REG_EXT_SAMPLE_DRVPHASE_MASK GENMASK(25, 21) #define UHS_REG_EXT_SAMPLE_DLY_MASK GENMASK(30, 26) #define TIMING_MODE 3 #define TIMING_CFG_NUM 10 #define NUM_PHASES (40) #define ENABLE_SHIFT_MIN_SMPL (4) #define ENABLE_SHIFT_MAX_SMPL (12) #define USE_DLY_MIN_SMPL (11) #define USE_DLY_MAX_SMPL (14) struct k3_priv { int ctrl_id; u32 cur_speed; struct regmap *reg; }; static unsigned long dw_mci_hi6220_caps[] = { MMC_CAP_CMD23, MMC_CAP_CMD23, 0 }; struct hs_timing { u32 drv_phase; u32 smpl_dly; u32 smpl_phase_max; u32 smpl_phase_min; }; static struct hs_timing hs_timing_cfg[TIMING_MODE][TIMING_CFG_NUM] = { { /* reserved */ }, { /* SD */ {7, 0, 15, 15,}, /* 0: LEGACY 400k */ {6, 0, 4, 4,}, /* 1: MMC_HS */ {6, 0, 3, 3,}, /* 2: SD_HS */ {6, 0, 15, 15,}, /* 3: SDR12 */ {6, 0, 2, 2,}, /* 4: SDR25 */ {4, 0, 11, 0,}, /* 5: SDR50 */ {6, 4, 15, 0,}, /* 6: SDR104 */ {0}, /* 7: DDR50 */ {0}, /* 8: DDR52 */ {0}, /* 9: HS200 */ }, { /* SDIO */ {7, 0, 15, 15,}, /* 0: LEGACY 400k */ {0}, /* 1: MMC_HS */ {6, 0, 15, 15,}, /* 2: SD_HS */ {6, 0, 15, 15,}, /* 3: SDR12 */ {6, 0, 0, 0,}, /* 4: SDR25 */ {4, 0, 12, 0,}, /* 5: SDR50 */ {5, 4, 15, 0,}, /* 6: SDR104 */ {0}, /* 7: DDR50 */ {0}, /* 8: DDR52 */ {0}, /* 9: HS200 */ } }; static void dw_mci_k3_set_ios(struct dw_mci *host, struct mmc_ios *ios) { int ret; ret = clk_set_rate(host->ciu_clk, ios->clock); if (ret) dev_warn(host->dev, "failed to set rate %uHz\n", ios->clock); host->bus_hz = clk_get_rate(host->ciu_clk); } static const struct dw_mci_drv_data k3_drv_data = { .set_ios = dw_mci_k3_set_ios, }; static int dw_mci_hi6220_parse_dt(struct dw_mci *host) { struct k3_priv *priv; priv = devm_kzalloc(host->dev, sizeof(*priv), GFP_KERNEL); if (!priv) return -ENOMEM; priv->reg = syscon_regmap_lookup_by_phandle(host->dev->of_node, "hisilicon,peripheral-syscon"); if (IS_ERR(priv->reg)) priv->reg = NULL; priv->ctrl_id = of_alias_get_id(host->dev->of_node, "mshc"); if (priv->ctrl_id < 0) priv->ctrl_id = 0; if (priv->ctrl_id >= TIMING_MODE) return -EINVAL; host->priv = priv; return 0; } static int dw_mci_hi6220_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios) { struct dw_mci_slot *slot = mmc_priv(mmc); struct k3_priv *priv; struct dw_mci *host; int min_uv, max_uv; int ret; host = slot->host; priv = host->priv; if (!priv || !priv->reg) return 0; if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330) { ret = regmap_update_bits(priv->reg, AO_SCTRL_CTRL3, AO_SCTRL_SEL18, 0); min_uv = 3000000; max_uv = 3000000; } else if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180) { ret = regmap_update_bits(priv->reg, AO_SCTRL_CTRL3, AO_SCTRL_SEL18, AO_SCTRL_SEL18); min_uv = 1800000; max_uv = 1800000; } else { dev_dbg(host->dev, "voltage not supported\n"); return -EINVAL; } if (ret) { dev_dbg(host->dev, "switch voltage failed\n"); return ret; } if (IS_ERR_OR_NULL(mmc->supply.vqmmc)) return 0; ret = regulator_set_voltage(mmc->supply.vqmmc, min_uv, max_uv); if (ret) { dev_dbg(host->dev, "Regulator set error %d: %d - %d\n", ret, min_uv, max_uv); return ret; } return 0; } static void dw_mci_hi6220_set_ios(struct dw_mci *host, struct mmc_ios *ios) { int ret; unsigned int clock; clock = (ios->clock <= 25000000) ? 25000000 : ios->clock; ret = clk_set_rate(host->biu_clk, clock); if (ret) dev_warn(host->dev, "failed to set rate %uHz\n", clock); host->bus_hz = clk_get_rate(host->biu_clk); } static int dw_mci_hi6220_execute_tuning(struct dw_mci_slot *slot, u32 opcode) { return 0; } static const struct dw_mci_drv_data hi6220_data = { .caps = dw_mci_hi6220_caps, .num_caps = ARRAY_SIZE(dw_mci_hi6220_caps), .switch_voltage = dw_mci_hi6220_switch_voltage, .set_ios = dw_mci_hi6220_set_ios, .parse_dt = dw_mci_hi6220_parse_dt, .execute_tuning = dw_mci_hi6220_execute_tuning, }; static void dw_mci_hs_set_timing(struct dw_mci *host, int timing, int smpl_phase) { u32 drv_phase; u32 smpl_dly; u32 use_smpl_dly = 0; u32 enable_shift = 0; u32 reg_value; int ctrl_id; struct k3_priv *priv; priv = host->priv; ctrl_id = priv->ctrl_id; drv_phase = hs_timing_cfg[ctrl_id][timing].drv_phase; smpl_dly = hs_timing_cfg[ctrl_id][timing].smpl_dly; if (smpl_phase == -1) smpl_phase = (hs_timing_cfg[ctrl_id][timing].smpl_phase_max + hs_timing_cfg[ctrl_id][timing].smpl_phase_min) / 2; switch (timing) { case MMC_TIMING_UHS_SDR104: if (smpl_phase >= USE_DLY_MIN_SMPL && smpl_phase <= USE_DLY_MAX_SMPL) use_smpl_dly = 1; fallthrough; case MMC_TIMING_UHS_SDR50: if (smpl_phase >= ENABLE_SHIFT_MIN_SMPL && smpl_phase <= ENABLE_SHIFT_MAX_SMPL) enable_shift = 1; break; } mci_writel(host, GPIO, 0x0); usleep_range(5, 10); reg_value = FIELD_PREP(UHS_REG_EXT_SAMPLE_PHASE_MASK, smpl_phase) | FIELD_PREP(UHS_REG_EXT_SAMPLE_DLY_MASK, smpl_dly) | FIELD_PREP(UHS_REG_EXT_SAMPLE_DRVPHASE_MASK, drv_phase); mci_writel(host, UHS_REG_EXT, reg_value); mci_writel(host, ENABLE_SHIFT, enable_shift); reg_value = FIELD_PREP(GPIO_CLK_DIV_MASK, GENCLK_DIV) | FIELD_PREP(GPIO_USE_SAMPLE_DLY_MASK, use_smpl_dly); mci_writel(host, GPIO, (unsigned int)reg_value | GPIO_CLK_ENABLE); /* We should delay 1ms wait for timing setting finished. */ usleep_range(1000, 2000); } static int dw_mci_hi3660_init(struct dw_mci *host) { mci_writel(host, CDTHRCTL, SDMMC_SET_THLD(SDCARD_RD_THRESHOLD, SDMMC_CARD_RD_THR_EN)); dw_mci_hs_set_timing(host, MMC_TIMING_LEGACY, -1); host->bus_hz /= (GENCLK_DIV + 1); return 0; } static int dw_mci_set_sel18(struct dw_mci *host, bool set) { int ret; unsigned int val; struct k3_priv *priv; priv = host->priv; val = set ? SDCARD_IO_SEL18 : 0; ret = regmap_update_bits(priv->reg, SOC_SCTRL_SCPERCTRL5, SDCARD_IO_SEL18, val); if (ret) { dev_err(host->dev, "sel18 %u error\n", val); return ret; } return 0; } static void dw_mci_hi3660_set_ios(struct dw_mci *host, struct mmc_ios *ios) { int ret; unsigned long wanted; unsigned long actual; struct k3_priv *priv = host->priv; if (!ios->clock || ios->clock == priv->cur_speed) return; wanted = ios->clock * (GENCLK_DIV + 1); ret = clk_set_rate(host->ciu_clk, wanted); if (ret) { dev_err(host->dev, "failed to set rate %luHz\n", wanted); return; } actual = clk_get_rate(host->ciu_clk); dw_mci_hs_set_timing(host, ios->timing, -1); host->bus_hz = actual / (GENCLK_DIV + 1); host->current_speed = 0; priv->cur_speed = host->bus_hz; } static int dw_mci_get_best_clksmpl(unsigned int sample_flag) { int i; int interval; unsigned int v; unsigned int len; unsigned int range_start = 0; unsigned int range_length = 0; unsigned int middle_range = 0; if (!sample_flag) return -EIO; if (~sample_flag == 0) return 0; i = ffs(sample_flag) - 1; /* * A clock cycle is divided into 32 phases, * each of which is represented by a bit, * finding the optimal phase. */ while (i < 32) { v = ror32(sample_flag, i); len = ffs(~v) - 1; if (len > range_length) { range_length = len; range_start = i; } interval = ffs(v >> len) - 1; if (interval < 0) break; i += len + interval; } middle_range = range_start + range_length / 2; if (middle_range >= 32) middle_range %= 32; return middle_range; } static int dw_mci_hi3660_execute_tuning(struct dw_mci_slot *slot, u32 opcode) { int i = 0; struct dw_mci *host = slot->host; struct mmc_host *mmc = slot->mmc; int smpl_phase = 0; u32 tuning_sample_flag = 0; int best_clksmpl = 0; for (i = 0; i < NUM_PHASES; ++i, ++smpl_phase) { smpl_phase %= 32; mci_writel(host, TMOUT, ~0); dw_mci_hs_set_timing(host, mmc->ios.timing, smpl_phase); if (!mmc_send_tuning(mmc, opcode, NULL)) tuning_sample_flag |= (1 << smpl_phase); else tuning_sample_flag &= ~(1 << smpl_phase); } best_clksmpl = dw_mci_get_best_clksmpl(tuning_sample_flag); if (best_clksmpl < 0) { dev_err(host->dev, "All phases bad!\n"); return -EIO; } dw_mci_hs_set_timing(host, mmc->ios.timing, best_clksmpl); dev_info(host->dev, "tuning ok best_clksmpl %u tuning_sample_flag %x\n", best_clksmpl, tuning_sample_flag); return 0; } static int dw_mci_hi3660_switch_voltage(struct mmc_host *mmc, struct mmc_ios *ios) { int ret = 0; struct dw_mci_slot *slot = mmc_priv(mmc); struct k3_priv *priv; struct dw_mci *host; host = slot->host; priv = host->priv; if (!priv || !priv->reg) return 0; if (priv->ctrl_id == DWMMC_SDIO_ID) return 0; if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_330) ret = dw_mci_set_sel18(host, 0); else if (ios->signal_voltage == MMC_SIGNAL_VOLTAGE_180) ret = dw_mci_set_sel18(host, 1); if (ret) return ret; if (!IS_ERR(mmc->supply.vqmmc)) { ret = mmc_regulator_set_vqmmc(mmc, ios); if (ret < 0) { dev_err(host->dev, "Regulator set error %d\n", ret); return ret; } } return 0; } static const struct dw_mci_drv_data hi3660_data = { .init = dw_mci_hi3660_init, .set_ios = dw_mci_hi3660_set_ios, .parse_dt = dw_mci_hi6220_parse_dt, .execute_tuning = dw_mci_hi3660_execute_tuning, .switch_voltage = dw_mci_hi3660_switch_voltage, }; static const struct of_device_id dw_mci_k3_match[] = { { .compatible = "hisilicon,hi3660-dw-mshc", .data = &hi3660_data, }, { .compatible = "hisilicon,hi4511-dw-mshc", .data = &k3_drv_data, }, { .compatible = "hisilicon,hi6220-dw-mshc", .data = &hi6220_data, }, {}, }; MODULE_DEVICE_TABLE(of, dw_mci_k3_match); static int dw_mci_k3_probe(struct platform_device *pdev) { const struct dw_mci_drv_data *drv_data; const struct of_device_id *match; match = of_match_node(dw_mci_k3_match, pdev->dev.of_node); drv_data = match->data; return dw_mci_pltfm_register(pdev, drv_data); } static const struct dev_pm_ops dw_mci_k3_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) SET_RUNTIME_PM_OPS(dw_mci_runtime_suspend, dw_mci_runtime_resume, NULL) }; static struct platform_driver dw_mci_k3_pltfm_driver = { .probe = dw_mci_k3_probe, .remove_new = dw_mci_pltfm_remove, .driver = { .name = "dwmmc_k3", .probe_type = PROBE_PREFER_ASYNCHRONOUS, .of_match_table = dw_mci_k3_match, .pm = &dw_mci_k3_dev_pm_ops, }, }; module_platform_driver(dw_mci_k3_pltfm_driver); MODULE_DESCRIPTION("K3 Specific DW-MSHC Driver Extension"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:dwmmc_k3");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1