Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Russell King | 3160 | 26.26% | 40 | 15.69% |
Ludovic Barre | 2386 | 19.83% | 36 | 14.12% |
Ulf Hansson | 1966 | 16.34% | 51 | 20.00% |
Linus Walleij | 1599 | 13.29% | 45 | 17.65% |
Rabin Vincent | 571 | 4.75% | 9 | 3.53% |
Srinivas Kandagatla | 522 | 4.34% | 15 | 5.88% |
Patrice Chotard | 293 | 2.43% | 5 | 1.96% |
Christophe Kerello | 237 | 1.97% | 3 | 1.18% |
Per Forlin | 237 | 1.97% | 1 | 0.39% |
Marek Vašut | 236 | 1.96% | 2 | 0.78% |
Yann Gautier | 206 | 1.71% | 5 | 1.96% |
Lee Jones | 181 | 1.50% | 6 | 2.35% |
Pawel Moll | 90 | 0.75% | 2 | 0.78% |
Philippe Langlais | 75 | 0.62% | 1 | 0.39% |
Peter Ujfalusi | 73 | 0.61% | 1 | 0.39% |
Pierre Ossman | 46 | 0.38% | 4 | 1.57% |
Jean-Nicolas Graux | 27 | 0.22% | 1 | 0.39% |
Wei Yongjun | 18 | 0.15% | 1 | 0.39% |
Heiner Kallweit | 12 | 0.10% | 1 | 0.39% |
Rob Herring | 11 | 0.09% | 1 | 0.39% |
Ben Dooks | 10 | 0.08% | 1 | 0.39% |
Björn Andersson | 9 | 0.07% | 1 | 0.39% |
Viresh Kumar | 9 | 0.07% | 2 | 0.78% |
Ben Wolsieffer | 8 | 0.07% | 1 | 0.39% |
Dave P Martin | 7 | 0.06% | 1 | 0.39% |
Greg Kroah-Hartman | 5 | 0.04% | 1 | 0.39% |
Vinod Koul | 4 | 0.03% | 1 | 0.39% |
Davide Ciminaghi | 4 | 0.03% | 1 | 0.39% |
Thomas Gleixner | 4 | 0.03% | 2 | 0.78% |
Seungwon Jeon | 4 | 0.03% | 1 | 0.39% |
Julia Lawall | 4 | 0.03% | 1 | 0.39% |
Will Deacon | 4 | 0.03% | 1 | 0.39% |
Nico Pitre | 3 | 0.02% | 1 | 0.39% |
Yang Yingliang | 2 | 0.02% | 1 | 0.39% |
Alessandro Rubini | 2 | 0.02% | 1 | 0.39% |
Uwe Kleine-König | 1 | 0.01% | 1 | 0.39% |
Bill Pemberton | 1 | 0.01% | 1 | 0.39% |
Martin K. Petersen | 1 | 0.01% | 1 | 0.39% |
Xiang wangx | 1 | 0.01% | 1 | 0.39% |
Jens Axboe | 1 | 0.01% | 1 | 0.39% |
Rafael J. Wysocki | 1 | 0.01% | 1 | 0.39% |
Arvind Yadav | 1 | 0.01% | 1 | 0.39% |
Alex Bounine | 1 | 0.01% | 1 | 0.39% |
Total | 12033 | 255 |
// SPDX-License-Identifier: GPL-2.0-only /* * linux/drivers/mmc/host/mmci.c - ARM PrimeCell MMCI PL180/1 driver * * Copyright (C) 2003 Deep Blue Solutions, Ltd, All Rights Reserved. * Copyright (C) 2010 ST-Ericsson SA */ #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/init.h> #include <linux/ioport.h> #include <linux/device.h> #include <linux/io.h> #include <linux/interrupt.h> #include <linux/kernel.h> #include <linux/slab.h> #include <linux/delay.h> #include <linux/err.h> #include <linux/highmem.h> #include <linux/log2.h> #include <linux/mmc/mmc.h> #include <linux/mmc/pm.h> #include <linux/mmc/host.h> #include <linux/mmc/card.h> #include <linux/mmc/sd.h> #include <linux/mmc/slot-gpio.h> #include <linux/amba/bus.h> #include <linux/clk.h> #include <linux/scatterlist.h> #include <linux/of.h> #include <linux/regulator/consumer.h> #include <linux/dmaengine.h> #include <linux/dma-mapping.h> #include <linux/amba/mmci.h> #include <linux/pm_runtime.h> #include <linux/types.h> #include <linux/pinctrl/consumer.h> #include <linux/reset.h> #include <linux/gpio/consumer.h> #include <linux/workqueue.h> #include <asm/div64.h> #include <asm/io.h> #include "mmci.h" #define DRIVER_NAME "mmci-pl18x" static void mmci_variant_init(struct mmci_host *host); static void ux500_variant_init(struct mmci_host *host); static void ux500v2_variant_init(struct mmci_host *host); static unsigned int fmax = 515633; static struct variant_data variant_arm = { .fifosize = 16 * 4, .fifohalfsize = 8 * 4, .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, .cmdreg_srsp = MCI_CPSM_RESPONSE, .datalength_bits = 16, .datactrl_blocksz = 11, .pwrreg_powerup = MCI_PWR_UP, .f_max = 100000000, .reversed_irq_handling = true, .mmcimask1 = true, .irq_pio_mask = MCI_IRQ_PIO_MASK, .start_err = MCI_STARTBITERR, .opendrain = MCI_ROD, .init = mmci_variant_init, }; static struct variant_data variant_arm_extended_fifo = { .fifosize = 128 * 4, .fifohalfsize = 64 * 4, .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, .cmdreg_srsp = MCI_CPSM_RESPONSE, .datalength_bits = 16, .datactrl_blocksz = 11, .pwrreg_powerup = MCI_PWR_UP, .f_max = 100000000, .mmcimask1 = true, .irq_pio_mask = MCI_IRQ_PIO_MASK, .start_err = MCI_STARTBITERR, .opendrain = MCI_ROD, .init = mmci_variant_init, }; static struct variant_data variant_arm_extended_fifo_hwfc = { .fifosize = 128 * 4, .fifohalfsize = 64 * 4, .clkreg_enable = MCI_ARM_HWFCEN, .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, .cmdreg_srsp = MCI_CPSM_RESPONSE, .datalength_bits = 16, .datactrl_blocksz = 11, .pwrreg_powerup = MCI_PWR_UP, .f_max = 100000000, .mmcimask1 = true, .irq_pio_mask = MCI_IRQ_PIO_MASK, .start_err = MCI_STARTBITERR, .opendrain = MCI_ROD, .init = mmci_variant_init, }; static struct variant_data variant_u300 = { .fifosize = 16 * 4, .fifohalfsize = 8 * 4, .clkreg_enable = MCI_ST_U300_HWFCEN, .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, .cmdreg_srsp = MCI_CPSM_RESPONSE, .datalength_bits = 16, .datactrl_blocksz = 11, .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, .st_sdio = true, .pwrreg_powerup = MCI_PWR_ON, .f_max = 100000000, .signal_direction = true, .pwrreg_clkgate = true, .pwrreg_nopower = true, .mmcimask1 = true, .irq_pio_mask = MCI_IRQ_PIO_MASK, .start_err = MCI_STARTBITERR, .opendrain = MCI_OD, .init = mmci_variant_init, }; static struct variant_data variant_nomadik = { .fifosize = 16 * 4, .fifohalfsize = 8 * 4, .clkreg = MCI_CLK_ENABLE, .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, .cmdreg_srsp = MCI_CPSM_RESPONSE, .datalength_bits = 24, .datactrl_blocksz = 11, .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, .st_sdio = true, .st_clkdiv = true, .pwrreg_powerup = MCI_PWR_ON, .f_max = 100000000, .signal_direction = true, .pwrreg_clkgate = true, .pwrreg_nopower = true, .mmcimask1 = true, .irq_pio_mask = MCI_IRQ_PIO_MASK, .start_err = MCI_STARTBITERR, .opendrain = MCI_OD, .init = mmci_variant_init, }; static struct variant_data variant_ux500 = { .fifosize = 30 * 4, .fifohalfsize = 8 * 4, .clkreg = MCI_CLK_ENABLE, .clkreg_enable = MCI_ST_UX500_HWFCEN, .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE, .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, .cmdreg_srsp = MCI_CPSM_RESPONSE, .datalength_bits = 24, .datactrl_blocksz = 11, .datactrl_any_blocksz = true, .dma_power_of_2 = true, .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, .st_sdio = true, .st_clkdiv = true, .pwrreg_powerup = MCI_PWR_ON, .f_max = 100000000, .signal_direction = true, .pwrreg_clkgate = true, .busy_detect = true, .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE, .busy_detect_flag = MCI_ST_CARDBUSY, .busy_detect_mask = MCI_ST_BUSYENDMASK, .pwrreg_nopower = true, .mmcimask1 = true, .irq_pio_mask = MCI_IRQ_PIO_MASK, .start_err = MCI_STARTBITERR, .opendrain = MCI_OD, .init = ux500_variant_init, }; static struct variant_data variant_ux500v2 = { .fifosize = 30 * 4, .fifohalfsize = 8 * 4, .clkreg = MCI_CLK_ENABLE, .clkreg_enable = MCI_ST_UX500_HWFCEN, .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE, .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, .cmdreg_srsp = MCI_CPSM_RESPONSE, .datactrl_mask_ddrmode = MCI_DPSM_ST_DDRMODE, .datalength_bits = 24, .datactrl_blocksz = 11, .datactrl_any_blocksz = true, .dma_power_of_2 = true, .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, .st_sdio = true, .st_clkdiv = true, .pwrreg_powerup = MCI_PWR_ON, .f_max = 100000000, .signal_direction = true, .pwrreg_clkgate = true, .busy_detect = true, .busy_dpsm_flag = MCI_DPSM_ST_BUSYMODE, .busy_detect_flag = MCI_ST_CARDBUSY, .busy_detect_mask = MCI_ST_BUSYENDMASK, .pwrreg_nopower = true, .mmcimask1 = true, .irq_pio_mask = MCI_IRQ_PIO_MASK, .start_err = MCI_STARTBITERR, .opendrain = MCI_OD, .init = ux500v2_variant_init, }; static struct variant_data variant_stm32 = { .fifosize = 32 * 4, .fifohalfsize = 8 * 4, .clkreg = MCI_CLK_ENABLE, .clkreg_enable = MCI_ST_UX500_HWFCEN, .clkreg_8bit_bus_enable = MCI_ST_8BIT_BUS, .clkreg_neg_edge_enable = MCI_ST_UX500_NEG_EDGE, .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, .cmdreg_srsp = MCI_CPSM_RESPONSE, .irq_pio_mask = MCI_IRQ_PIO_MASK, .datalength_bits = 24, .datactrl_blocksz = 11, .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, .st_sdio = true, .st_clkdiv = true, .pwrreg_powerup = MCI_PWR_ON, .f_max = 48000000, .pwrreg_clkgate = true, .pwrreg_nopower = true, .dma_flow_controller = true, .init = mmci_variant_init, }; static struct variant_data variant_stm32_sdmmc = { .fifosize = 16 * 4, .fifohalfsize = 8 * 4, .f_max = 208000000, .stm32_clkdiv = true, .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE, .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC, .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC, .cmdreg_srsp = MCI_CPSM_STM32_SRSP, .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP, .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS, .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK, .datactrl_first = true, .datacnt_useless = true, .datalength_bits = 25, .datactrl_blocksz = 14, .datactrl_any_blocksz = true, .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, .stm32_idmabsize_mask = GENMASK(12, 5), .stm32_idmabsize_align = BIT(5), .supports_sdio_irq = true, .busy_timeout = true, .busy_detect = true, .busy_detect_flag = MCI_STM32_BUSYD0, .busy_detect_mask = MCI_STM32_BUSYD0ENDMASK, .init = sdmmc_variant_init, }; static struct variant_data variant_stm32_sdmmcv2 = { .fifosize = 16 * 4, .fifohalfsize = 8 * 4, .f_max = 267000000, .stm32_clkdiv = true, .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE, .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC, .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC, .cmdreg_srsp = MCI_CPSM_STM32_SRSP, .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP, .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS, .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK, .datactrl_first = true, .datacnt_useless = true, .datalength_bits = 25, .datactrl_blocksz = 14, .datactrl_any_blocksz = true, .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, .stm32_idmabsize_mask = GENMASK(16, 5), .stm32_idmabsize_align = BIT(5), .supports_sdio_irq = true, .dma_lli = true, .busy_timeout = true, .busy_detect = true, .busy_detect_flag = MCI_STM32_BUSYD0, .busy_detect_mask = MCI_STM32_BUSYD0ENDMASK, .init = sdmmc_variant_init, }; static struct variant_data variant_stm32_sdmmcv3 = { .fifosize = 256 * 4, .fifohalfsize = 128 * 4, .f_max = 267000000, .stm32_clkdiv = true, .cmdreg_cpsm_enable = MCI_CPSM_STM32_ENABLE, .cmdreg_lrsp_crc = MCI_CPSM_STM32_LRSP_CRC, .cmdreg_srsp_crc = MCI_CPSM_STM32_SRSP_CRC, .cmdreg_srsp = MCI_CPSM_STM32_SRSP, .cmdreg_stop = MCI_CPSM_STM32_CMDSTOP, .data_cmd_enable = MCI_CPSM_STM32_CMDTRANS, .irq_pio_mask = MCI_IRQ_PIO_STM32_MASK, .datactrl_first = true, .datacnt_useless = true, .datalength_bits = 25, .datactrl_blocksz = 14, .datactrl_any_blocksz = true, .datactrl_mask_sdio = MCI_DPSM_ST_SDIOEN, .stm32_idmabsize_mask = GENMASK(16, 6), .stm32_idmabsize_align = BIT(6), .supports_sdio_irq = true, .dma_lli = true, .busy_timeout = true, .busy_detect = true, .busy_detect_flag = MCI_STM32_BUSYD0, .busy_detect_mask = MCI_STM32_BUSYD0ENDMASK, .init = sdmmc_variant_init, }; static struct variant_data variant_qcom = { .fifosize = 16 * 4, .fifohalfsize = 8 * 4, .clkreg = MCI_CLK_ENABLE, .clkreg_enable = MCI_QCOM_CLK_FLOWENA | MCI_QCOM_CLK_SELECT_IN_FBCLK, .clkreg_8bit_bus_enable = MCI_QCOM_CLK_WIDEBUS_8, .datactrl_mask_ddrmode = MCI_QCOM_CLK_SELECT_IN_DDR_MODE, .cmdreg_cpsm_enable = MCI_CPSM_ENABLE, .cmdreg_lrsp_crc = MCI_CPSM_RESPONSE | MCI_CPSM_LONGRSP, .cmdreg_srsp_crc = MCI_CPSM_RESPONSE, .cmdreg_srsp = MCI_CPSM_RESPONSE, .data_cmd_enable = MCI_CPSM_QCOM_DATCMD, .datalength_bits = 24, .datactrl_blocksz = 11, .datactrl_any_blocksz = true, .pwrreg_powerup = MCI_PWR_UP, .f_max = 208000000, .explicit_mclk_control = true, .qcom_fifo = true, .qcom_dml = true, .mmcimask1 = true, .irq_pio_mask = MCI_IRQ_PIO_MASK, .start_err = MCI_STARTBITERR, .opendrain = MCI_ROD, .init = qcom_variant_init, }; /* Busy detection for the ST Micro variant */ static int mmci_card_busy(struct mmc_host *mmc) { struct mmci_host *host = mmc_priv(mmc); unsigned long flags; int busy = 0; spin_lock_irqsave(&host->lock, flags); if (readl(host->base + MMCISTATUS) & host->variant->busy_detect_flag) busy = 1; spin_unlock_irqrestore(&host->lock, flags); return busy; } static void mmci_reg_delay(struct mmci_host *host) { /* * According to the spec, at least three feedback clock cycles * of max 52 MHz must pass between two writes to the MMCICLOCK reg. * Three MCLK clock cycles must pass between two MMCIPOWER reg writes. * Worst delay time during card init is at 100 kHz => 30 us. * Worst delay time when up and running is at 25 MHz => 120 ns. */ if (host->cclk < 25000000) udelay(30); else ndelay(120); } /* * This must be called with host->lock held */ void mmci_write_clkreg(struct mmci_host *host, u32 clk) { if (host->clk_reg != clk) { host->clk_reg = clk; writel(clk, host->base + MMCICLOCK); } } /* * This must be called with host->lock held */ void mmci_write_pwrreg(struct mmci_host *host, u32 pwr) { if (host->pwr_reg != pwr) { host->pwr_reg = pwr; writel(pwr, host->base + MMCIPOWER); } } /* * This must be called with host->lock held */ static void mmci_write_datactrlreg(struct mmci_host *host, u32 datactrl) { /* Keep busy mode in DPSM and SDIO mask if enabled */ datactrl |= host->datactrl_reg & (host->variant->busy_dpsm_flag | host->variant->datactrl_mask_sdio); if (host->datactrl_reg != datactrl) { host->datactrl_reg = datactrl; writel(datactrl, host->base + MMCIDATACTRL); } } /* * This must be called with host->lock held */ static void mmci_set_clkreg(struct mmci_host *host, unsigned int desired) { struct variant_data *variant = host->variant; u32 clk = variant->clkreg; /* Make sure cclk reflects the current calculated clock */ host->cclk = 0; if (desired) { if (variant->explicit_mclk_control) { host->cclk = host->mclk; } else if (desired >= host->mclk) { clk = MCI_CLK_BYPASS; if (variant->st_clkdiv) clk |= MCI_ST_UX500_NEG_EDGE; host->cclk = host->mclk; } else if (variant->st_clkdiv) { /* * DB8500 TRM says f = mclk / (clkdiv + 2) * => clkdiv = (mclk / f) - 2 * Round the divider up so we don't exceed the max * frequency */ clk = DIV_ROUND_UP(host->mclk, desired) - 2; if (clk >= 256) clk = 255; host->cclk = host->mclk / (clk + 2); } else { /* * PL180 TRM says f = mclk / (2 * (clkdiv + 1)) * => clkdiv = mclk / (2 * f) - 1 */ clk = host->mclk / (2 * desired) - 1; if (clk >= 256) clk = 255; host->cclk = host->mclk / (2 * (clk + 1)); } clk |= variant->clkreg_enable; clk |= MCI_CLK_ENABLE; /* This hasn't proven to be worthwhile */ /* clk |= MCI_CLK_PWRSAVE; */ } /* Set actual clock for debug */ host->mmc->actual_clock = host->cclk; if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_4) clk |= MCI_4BIT_BUS; if (host->mmc->ios.bus_width == MMC_BUS_WIDTH_8) clk |= variant->clkreg_8bit_bus_enable; if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 || host->mmc->ios.timing == MMC_TIMING_MMC_DDR52) clk |= variant->clkreg_neg_edge_enable; mmci_write_clkreg(host, clk); } static void mmci_dma_release(struct mmci_host *host) { if (host->ops && host->ops->dma_release) host->ops->dma_release(host); host->use_dma = false; } static void mmci_dma_setup(struct mmci_host *host) { if (!host->ops || !host->ops->dma_setup) return; if (host->ops->dma_setup(host)) return; /* initialize pre request cookie */ host->next_cookie = 1; host->use_dma = true; } /* * Validate mmc prerequisites */ static int mmci_validate_data(struct mmci_host *host, struct mmc_data *data) { struct variant_data *variant = host->variant; if (!data) return 0; if (!is_power_of_2(data->blksz) && !variant->datactrl_any_blocksz) { dev_err(mmc_dev(host->mmc), "unsupported block size (%d bytes)\n", data->blksz); return -EINVAL; } if (host->ops && host->ops->validate_data) return host->ops->validate_data(host, data); return 0; } static int mmci_prep_data(struct mmci_host *host, struct mmc_data *data, bool next) { int err; if (!host->ops || !host->ops->prep_data) return 0; err = host->ops->prep_data(host, data, next); if (next && !err) data->host_cookie = ++host->next_cookie < 0 ? 1 : host->next_cookie; return err; } static void mmci_unprep_data(struct mmci_host *host, struct mmc_data *data, int err) { if (host->ops && host->ops->unprep_data) host->ops->unprep_data(host, data, err); data->host_cookie = 0; } static void mmci_get_next_data(struct mmci_host *host, struct mmc_data *data) { WARN_ON(data->host_cookie && data->host_cookie != host->next_cookie); if (host->ops && host->ops->get_next_data) host->ops->get_next_data(host, data); } static int mmci_dma_start(struct mmci_host *host, unsigned int datactrl) { struct mmc_data *data = host->data; int ret; if (!host->use_dma) return -EINVAL; ret = mmci_prep_data(host, data, false); if (ret) return ret; if (!host->ops || !host->ops->dma_start) return -EINVAL; /* Okay, go for it. */ dev_vdbg(mmc_dev(host->mmc), "Submit MMCI DMA job, sglen %d blksz %04x blks %04x flags %08x\n", data->sg_len, data->blksz, data->blocks, data->flags); ret = host->ops->dma_start(host, &datactrl); if (ret) return ret; /* Trigger the DMA transfer */ mmci_write_datactrlreg(host, datactrl); /* * Let the MMCI say when the data is ended and it's time * to fire next DMA request. When that happens, MMCI will * call mmci_data_end() */ writel(readl(host->base + MMCIMASK0) | MCI_DATAENDMASK, host->base + MMCIMASK0); return 0; } static void mmci_dma_finalize(struct mmci_host *host, struct mmc_data *data) { if (!host->use_dma) return; if (host->ops && host->ops->dma_finalize) host->ops->dma_finalize(host, data); } static void mmci_dma_error(struct mmci_host *host) { if (!host->use_dma) return; if (host->ops && host->ops->dma_error) host->ops->dma_error(host); } static void mmci_request_end(struct mmci_host *host, struct mmc_request *mrq) { writel(0, host->base + MMCICOMMAND); BUG_ON(host->data); host->mrq = NULL; host->cmd = NULL; mmc_request_done(host->mmc, mrq); } static void mmci_set_mask1(struct mmci_host *host, unsigned int mask) { void __iomem *base = host->base; struct variant_data *variant = host->variant; if (host->singleirq) { unsigned int mask0 = readl(base + MMCIMASK0); mask0 &= ~variant->irq_pio_mask; mask0 |= mask; writel(mask0, base + MMCIMASK0); } if (variant->mmcimask1) writel(mask, base + MMCIMASK1); host->mask1_reg = mask; } static void mmci_stop_data(struct mmci_host *host) { mmci_write_datactrlreg(host, 0); mmci_set_mask1(host, 0); host->data = NULL; } static void mmci_init_sg(struct mmci_host *host, struct mmc_data *data) { unsigned int flags = SG_MITER_ATOMIC; if (data->flags & MMC_DATA_READ) flags |= SG_MITER_TO_SG; else flags |= SG_MITER_FROM_SG; sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags); } static u32 mmci_get_dctrl_cfg(struct mmci_host *host) { return MCI_DPSM_ENABLE | mmci_dctrl_blksz(host); } static u32 ux500v2_get_dctrl_cfg(struct mmci_host *host) { return MCI_DPSM_ENABLE | (host->data->blksz << 16); } static void ux500_busy_clear_mask_done(struct mmci_host *host) { void __iomem *base = host->base; writel(host->variant->busy_detect_mask, base + MMCICLEAR); writel(readl(base + MMCIMASK0) & ~host->variant->busy_detect_mask, base + MMCIMASK0); host->busy_state = MMCI_BUSY_DONE; host->busy_status = 0; } /* * ux500_busy_complete() - this will wait until the busy status * goes off, saving any status that occur in the meantime into * host->busy_status until we know the card is not busy any more. * The function returns true when the busy detection is ended * and we should continue processing the command. * * The Ux500 typically fires two IRQs over a busy cycle like this: * * DAT0 busy +-----------------+ * | | * DAT0 not busy ----+ +-------- * * ^ ^ * | | * IRQ1 IRQ2 */ static bool ux500_busy_complete(struct mmci_host *host, struct mmc_command *cmd, u32 status, u32 err_msk) { void __iomem *base = host->base; int retries = 10; if (status & err_msk) { /* Stop any ongoing busy detection if an error occurs */ ux500_busy_clear_mask_done(host); goto out_ret_state; } /* * The state transitions are encoded in a state machine crossing * the edges in this switch statement. */ switch (host->busy_state) { /* * Before unmasking for the busy end IRQ, confirm that the * command was sent successfully. To keep track of having a * command in-progress, waiting for busy signaling to end, * store the status in host->busy_status. * * Note that, the card may need a couple of clock cycles before * it starts signaling busy on DAT0, hence re-read the * MMCISTATUS register here, to allow the busy bit to be set. */ case MMCI_BUSY_DONE: /* * Save the first status register read to be sure to catch * all bits that may be lost will retrying. If the command * is still busy this will result in assigning 0 to * host->busy_status, which is what it should be in IDLE. */ host->busy_status = status & (MCI_CMDSENT | MCI_CMDRESPEND); while (retries) { status = readl(base + MMCISTATUS); /* Keep accumulating status bits */ host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND); if (status & host->variant->busy_detect_flag) { writel(readl(base + MMCIMASK0) | host->variant->busy_detect_mask, base + MMCIMASK0); host->busy_state = MMCI_BUSY_WAITING_FOR_START_IRQ; schedule_delayed_work(&host->ux500_busy_timeout_work, msecs_to_jiffies(cmd->busy_timeout)); goto out_ret_state; } retries--; } dev_dbg(mmc_dev(host->mmc), "no busy signalling in time CMD%02x\n", cmd->opcode); ux500_busy_clear_mask_done(host); break; /* * If there is a command in-progress that has been successfully * sent, then bail out if busy status is set and wait for the * busy end IRQ. * * Note that, the HW triggers an IRQ on both edges while * monitoring DAT0 for busy completion, but there is only one * status bit in MMCISTATUS for the busy state. Therefore * both the start and the end interrupts needs to be cleared, * one after the other. So, clear the busy start IRQ here. */ case MMCI_BUSY_WAITING_FOR_START_IRQ: if (status & host->variant->busy_detect_flag) { host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND); writel(host->variant->busy_detect_mask, base + MMCICLEAR); host->busy_state = MMCI_BUSY_WAITING_FOR_END_IRQ; } else { dev_dbg(mmc_dev(host->mmc), "lost busy status when waiting for busy start IRQ CMD%02x\n", cmd->opcode); cancel_delayed_work(&host->ux500_busy_timeout_work); ux500_busy_clear_mask_done(host); } break; case MMCI_BUSY_WAITING_FOR_END_IRQ: if (!(status & host->variant->busy_detect_flag)) { host->busy_status |= status & (MCI_CMDSENT | MCI_CMDRESPEND); writel(host->variant->busy_detect_mask, base + MMCICLEAR); cancel_delayed_work(&host->ux500_busy_timeout_work); ux500_busy_clear_mask_done(host); } else { dev_dbg(mmc_dev(host->mmc), "busy status still asserted when handling busy end IRQ - will keep waiting CMD%02x\n", cmd->opcode); } break; default: dev_dbg(mmc_dev(host->mmc), "fell through on state %d, CMD%02x\n", host->busy_state, cmd->opcode); break; } out_ret_state: return (host->busy_state == MMCI_BUSY_DONE); } /* * All the DMA operation mode stuff goes inside this ifdef. * This assumes that you have a generic DMA device interface, * no custom DMA interfaces are supported. */ #ifdef CONFIG_DMA_ENGINE struct mmci_dmae_next { struct dma_async_tx_descriptor *desc; struct dma_chan *chan; }; struct mmci_dmae_priv { struct dma_chan *cur; struct dma_chan *rx_channel; struct dma_chan *tx_channel; struct dma_async_tx_descriptor *desc_current; struct mmci_dmae_next next_data; }; int mmci_dmae_setup(struct mmci_host *host) { const char *rxname, *txname; struct mmci_dmae_priv *dmae; dmae = devm_kzalloc(mmc_dev(host->mmc), sizeof(*dmae), GFP_KERNEL); if (!dmae) return -ENOMEM; host->dma_priv = dmae; dmae->rx_channel = dma_request_chan(mmc_dev(host->mmc), "rx"); if (IS_ERR(dmae->rx_channel)) { int ret = PTR_ERR(dmae->rx_channel); dmae->rx_channel = NULL; return ret; } dmae->tx_channel = dma_request_chan(mmc_dev(host->mmc), "tx"); if (IS_ERR(dmae->tx_channel)) { if (PTR_ERR(dmae->tx_channel) == -EPROBE_DEFER) dev_warn(mmc_dev(host->mmc), "Deferred probe for TX channel ignored\n"); dmae->tx_channel = NULL; } /* * If only an RX channel is specified, the driver will * attempt to use it bidirectionally, however if it * is specified but cannot be located, DMA will be disabled. */ if (dmae->rx_channel && !dmae->tx_channel) dmae->tx_channel = dmae->rx_channel; if (dmae->rx_channel) rxname = dma_chan_name(dmae->rx_channel); else rxname = "none"; if (dmae->tx_channel) txname = dma_chan_name(dmae->tx_channel); else txname = "none"; dev_info(mmc_dev(host->mmc), "DMA channels RX %s, TX %s\n", rxname, txname); /* * Limit the maximum segment size in any SG entry according to * the parameters of the DMA engine device. */ if (dmae->tx_channel) { struct device *dev = dmae->tx_channel->device->dev; unsigned int max_seg_size = dma_get_max_seg_size(dev); if (max_seg_size < host->mmc->max_seg_size) host->mmc->max_seg_size = max_seg_size; } if (dmae->rx_channel) { struct device *dev = dmae->rx_channel->device->dev; unsigned int max_seg_size = dma_get_max_seg_size(dev); if (max_seg_size < host->mmc->max_seg_size) host->mmc->max_seg_size = max_seg_size; } if (!dmae->tx_channel || !dmae->rx_channel) { mmci_dmae_release(host); return -EINVAL; } return 0; } /* * This is used in or so inline it * so it can be discarded. */ void mmci_dmae_release(struct mmci_host *host) { struct mmci_dmae_priv *dmae = host->dma_priv; if (dmae->rx_channel) dma_release_channel(dmae->rx_channel); if (dmae->tx_channel) dma_release_channel(dmae->tx_channel); dmae->rx_channel = dmae->tx_channel = NULL; } static void mmci_dma_unmap(struct mmci_host *host, struct mmc_data *data) { struct mmci_dmae_priv *dmae = host->dma_priv; struct dma_chan *chan; if (data->flags & MMC_DATA_READ) chan = dmae->rx_channel; else chan = dmae->tx_channel; dma_unmap_sg(chan->device->dev, data->sg, data->sg_len, mmc_get_dma_dir(data)); } void mmci_dmae_error(struct mmci_host *host) { struct mmci_dmae_priv *dmae = host->dma_priv; if (!dma_inprogress(host)) return; dev_err(mmc_dev(host->mmc), "error during DMA transfer!\n"); dmaengine_terminate_all(dmae->cur); host->dma_in_progress = false; dmae->cur = NULL; dmae->desc_current = NULL; host->data->host_cookie = 0; mmci_dma_unmap(host, host->data); } void mmci_dmae_finalize(struct mmci_host *host, struct mmc_data *data) { struct mmci_dmae_priv *dmae = host->dma_priv; u32 status; int i; if (!dma_inprogress(host)) return; /* Wait up to 1ms for the DMA to complete */ for (i = 0; ; i++) { status = readl(host->base + MMCISTATUS); if (!(status & MCI_RXDATAAVLBLMASK) || i >= 100) break; udelay(10); } /* * Check to see whether we still have some data left in the FIFO - * this catches DMA controllers which are unable to monitor the * DMALBREQ and DMALSREQ signals while allowing us to DMA to non- * contiguous buffers. On TX, we'll get a FIFO underrun error. */ if (status & MCI_RXDATAAVLBLMASK) { mmci_dma_error(host); if (!data->error) data->error = -EIO; } else if (!data->host_cookie) { mmci_dma_unmap(host, data); } /* * Use of DMA with scatter-gather is impossible. * Give up with DMA and switch back to PIO mode. */ if (status & MCI_RXDATAAVLBLMASK) { dev_err(mmc_dev(host->mmc), "buggy DMA detected. Taking evasive action.\n"); mmci_dma_release(host); } host->dma_in_progress = false; dmae->cur = NULL; dmae->desc_current = NULL; } /* prepares DMA channel and DMA descriptor, returns non-zero on failure */ static int _mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data, struct dma_chan **dma_chan, struct dma_async_tx_descriptor **dma_desc) { struct mmci_dmae_priv *dmae = host->dma_priv; struct variant_data *variant = host->variant; struct dma_slave_config conf = { .src_addr = host->phybase + MMCIFIFO, .dst_addr = host->phybase + MMCIFIFO, .src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, .dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES, .src_maxburst = variant->fifohalfsize >> 2, /* # of words */ .dst_maxburst = variant->fifohalfsize >> 2, /* # of words */ .device_fc = variant->dma_flow_controller, }; struct dma_chan *chan; struct dma_device *device; struct dma_async_tx_descriptor *desc; int nr_sg; unsigned long flags = DMA_CTRL_ACK; if (data->flags & MMC_DATA_READ) { conf.direction = DMA_DEV_TO_MEM; chan = dmae->rx_channel; } else { conf.direction = DMA_MEM_TO_DEV; chan = dmae->tx_channel; } /* If there's no DMA channel, fall back to PIO */ if (!chan) return -EINVAL; /* If less than or equal to the fifo size, don't bother with DMA */ if (data->blksz * data->blocks <= variant->fifosize) return -EINVAL; /* * This is necessary to get SDIO working on the Ux500. We do not yet * know if this is a bug in: * - The Ux500 DMA controller (DMA40) * - The MMCI DMA interface on the Ux500 * some power of two blocks (such as 64 bytes) are sent regularly * during SDIO traffic and those work fine so for these we enable DMA * transfers. */ if (host->variant->dma_power_of_2 && !is_power_of_2(data->blksz)) return -EINVAL; device = chan->device; nr_sg = dma_map_sg(device->dev, data->sg, data->sg_len, mmc_get_dma_dir(data)); if (nr_sg == 0) return -EINVAL; if (host->variant->qcom_dml) flags |= DMA_PREP_INTERRUPT; dmaengine_slave_config(chan, &conf); desc = dmaengine_prep_slave_sg(chan, data->sg, nr_sg, conf.direction, flags); if (!desc) goto unmap_exit; *dma_chan = chan; *dma_desc = desc; return 0; unmap_exit: dma_unmap_sg(device->dev, data->sg, data->sg_len, mmc_get_dma_dir(data)); return -ENOMEM; } int mmci_dmae_prep_data(struct mmci_host *host, struct mmc_data *data, bool next) { struct mmci_dmae_priv *dmae = host->dma_priv; struct mmci_dmae_next *nd = &dmae->next_data; if (!host->use_dma) return -EINVAL; if (next) return _mmci_dmae_prep_data(host, data, &nd->chan, &nd->desc); /* Check if next job is already prepared. */ if (dmae->cur && dmae->desc_current) return 0; /* No job were prepared thus do it now. */ return _mmci_dmae_prep_data(host, data, &dmae->cur, &dmae->desc_current); } int mmci_dmae_start(struct mmci_host *host, unsigned int *datactrl) { struct mmci_dmae_priv *dmae = host->dma_priv; int ret; host->dma_in_progress = true; ret = dma_submit_error(dmaengine_submit(dmae->desc_current)); if (ret < 0) { host->dma_in_progress = false; return ret; } dma_async_issue_pending(dmae->cur); *datactrl |= MCI_DPSM_DMAENABLE; return 0; } void mmci_dmae_get_next_data(struct mmci_host *host, struct mmc_data *data) { struct mmci_dmae_priv *dmae = host->dma_priv; struct mmci_dmae_next *next = &dmae->next_data; if (!host->use_dma) return; WARN_ON(!data->host_cookie && (next->desc || next->chan)); dmae->desc_current = next->desc; dmae->cur = next->chan; next->desc = NULL; next->chan = NULL; } void mmci_dmae_unprep_data(struct mmci_host *host, struct mmc_data *data, int err) { struct mmci_dmae_priv *dmae = host->dma_priv; if (!host->use_dma) return; mmci_dma_unmap(host, data); if (err) { struct mmci_dmae_next *next = &dmae->next_data; struct dma_chan *chan; if (data->flags & MMC_DATA_READ) chan = dmae->rx_channel; else chan = dmae->tx_channel; dmaengine_terminate_all(chan); if (dmae->desc_current == next->desc) dmae->desc_current = NULL; if (dmae->cur == next->chan) { host->dma_in_progress = false; dmae->cur = NULL; } next->desc = NULL; next->chan = NULL; } } static struct mmci_host_ops mmci_variant_ops = { .prep_data = mmci_dmae_prep_data, .unprep_data = mmci_dmae_unprep_data, .get_datactrl_cfg = mmci_get_dctrl_cfg, .get_next_data = mmci_dmae_get_next_data, .dma_setup = mmci_dmae_setup, .dma_release = mmci_dmae_release, .dma_start = mmci_dmae_start, .dma_finalize = mmci_dmae_finalize, .dma_error = mmci_dmae_error, }; #else static struct mmci_host_ops mmci_variant_ops = { .get_datactrl_cfg = mmci_get_dctrl_cfg, }; #endif static void mmci_variant_init(struct mmci_host *host) { host->ops = &mmci_variant_ops; } static void ux500_variant_init(struct mmci_host *host) { host->ops = &mmci_variant_ops; host->ops->busy_complete = ux500_busy_complete; } static void ux500v2_variant_init(struct mmci_host *host) { host->ops = &mmci_variant_ops; host->ops->busy_complete = ux500_busy_complete; host->ops->get_datactrl_cfg = ux500v2_get_dctrl_cfg; } static void mmci_pre_request(struct mmc_host *mmc, struct mmc_request *mrq) { struct mmci_host *host = mmc_priv(mmc); struct mmc_data *data = mrq->data; if (!data) return; WARN_ON(data->host_cookie); if (mmci_validate_data(host, data)) return; mmci_prep_data(host, data, true); } static void mmci_post_request(struct mmc_host *mmc, struct mmc_request *mrq, int err) { struct mmci_host *host = mmc_priv(mmc); struct mmc_data *data = mrq->data; if (!data || !data->host_cookie) return; mmci_unprep_data(host, data, err); } static void mmci_start_data(struct mmci_host *host, struct mmc_data *data) { struct variant_data *variant = host->variant; unsigned int datactrl, timeout, irqmask; unsigned long long clks; void __iomem *base; dev_dbg(mmc_dev(host->mmc), "blksz %04x blks %04x flags %08x\n", data->blksz, data->blocks, data->flags); host->data = data; host->size = data->blksz * data->blocks; data->bytes_xfered = 0; clks = (unsigned long long)data->timeout_ns * host->cclk; do_div(clks, NSEC_PER_SEC); timeout = data->timeout_clks + (unsigned int)clks; base = host->base; writel(timeout, base + MMCIDATATIMER); writel(host->size, base + MMCIDATALENGTH); datactrl = host->ops->get_datactrl_cfg(host); datactrl |= host->data->flags & MMC_DATA_READ ? MCI_DPSM_DIRECTION : 0; if (host->mmc->card && mmc_card_sdio(host->mmc->card)) { u32 clk; datactrl |= variant->datactrl_mask_sdio; /* * The ST Micro variant for SDIO small write transfers * needs to have clock H/W flow control disabled, * otherwise the transfer will not start. The threshold * depends on the rate of MCLK. */ if (variant->st_sdio && data->flags & MMC_DATA_WRITE && (host->size < 8 || (host->size <= 8 && host->mclk > 50000000))) clk = host->clk_reg & ~variant->clkreg_enable; else clk = host->clk_reg | variant->clkreg_enable; mmci_write_clkreg(host, clk); } if (host->mmc->ios.timing == MMC_TIMING_UHS_DDR50 || host->mmc->ios.timing == MMC_TIMING_MMC_DDR52) datactrl |= variant->datactrl_mask_ddrmode; /* * Attempt to use DMA operation mode, if this * should fail, fall back to PIO mode */ if (!mmci_dma_start(host, datactrl)) return; /* IRQ mode, map the SG list for CPU reading/writing */ mmci_init_sg(host, data); if (data->flags & MMC_DATA_READ) { irqmask = MCI_RXFIFOHALFFULLMASK; /* * If we have less than the fifo 'half-full' threshold to * transfer, trigger a PIO interrupt as soon as any data * is available. */ if (host->size < variant->fifohalfsize) irqmask |= MCI_RXDATAAVLBLMASK; } else { /* * We don't actually need to include "FIFO empty" here * since its implicit in "FIFO half empty". */ irqmask = MCI_TXFIFOHALFEMPTYMASK; } mmci_write_datactrlreg(host, datactrl); writel(readl(base + MMCIMASK0) & ~MCI_DATAENDMASK, base + MMCIMASK0); mmci_set_mask1(host, irqmask); } static void mmci_start_command(struct mmci_host *host, struct mmc_command *cmd, u32 c) { void __iomem *base = host->base; bool busy_resp = cmd->flags & MMC_RSP_BUSY; unsigned long long clks; dev_dbg(mmc_dev(host->mmc), "op %02x arg %08x flags %08x\n", cmd->opcode, cmd->arg, cmd->flags); if (readl(base + MMCICOMMAND) & host->variant->cmdreg_cpsm_enable) { writel(0, base + MMCICOMMAND); mmci_reg_delay(host); } if (host->variant->cmdreg_stop && cmd->opcode == MMC_STOP_TRANSMISSION) c |= host->variant->cmdreg_stop; c |= cmd->opcode | host->variant->cmdreg_cpsm_enable; if (cmd->flags & MMC_RSP_PRESENT) { if (cmd->flags & MMC_RSP_136) c |= host->variant->cmdreg_lrsp_crc; else if (cmd->flags & MMC_RSP_CRC) c |= host->variant->cmdreg_srsp_crc; else c |= host->variant->cmdreg_srsp; } host->busy_status = 0; host->busy_state = MMCI_BUSY_DONE; /* Assign a default timeout if the core does not provide one */ if (busy_resp && !cmd->busy_timeout) cmd->busy_timeout = 10 * MSEC_PER_SEC; if (busy_resp && host->variant->busy_timeout) { if (cmd->busy_timeout > host->mmc->max_busy_timeout) clks = (unsigned long long)host->mmc->max_busy_timeout * host->cclk; else clks = (unsigned long long)cmd->busy_timeout * host->cclk; do_div(clks, MSEC_PER_SEC); writel_relaxed(clks, host->base + MMCIDATATIMER); } if (host->ops->pre_sig_volt_switch && cmd->opcode == SD_SWITCH_VOLTAGE) host->ops->pre_sig_volt_switch(host); if (/*interrupt*/0) c |= MCI_CPSM_INTERRUPT; if (mmc_cmd_type(cmd) == MMC_CMD_ADTC) c |= host->variant->data_cmd_enable; host->cmd = cmd; writel(cmd->arg, base + MMCIARGUMENT); writel(c, base + MMCICOMMAND); } static void mmci_stop_command(struct mmci_host *host) { host->stop_abort.error = 0; mmci_start_command(host, &host->stop_abort, 0); } static void mmci_data_irq(struct mmci_host *host, struct mmc_data *data, unsigned int status) { unsigned int status_err; /* Make sure we have data to handle */ if (!data) return; /* First check for errors */ status_err = status & (host->variant->start_err | MCI_DATACRCFAIL | MCI_DATATIMEOUT | MCI_TXUNDERRUN | MCI_RXOVERRUN); if (status_err) { u32 remain, success; /* Terminate the DMA transfer */ mmci_dma_error(host); /* * Calculate how far we are into the transfer. Note that * the data counter gives the number of bytes transferred * on the MMC bus, not on the host side. On reads, this * can be as much as a FIFO-worth of data ahead. This * matters for FIFO overruns only. */ if (!host->variant->datacnt_useless) { remain = readl(host->base + MMCIDATACNT); success = data->blksz * data->blocks - remain; } else { success = 0; } dev_dbg(mmc_dev(host->mmc), "MCI ERROR IRQ, status 0x%08x at 0x%08x\n", status_err, success); if (status_err & MCI_DATACRCFAIL) { /* Last block was not successful */ success -= 1; data->error = -EILSEQ; } else if (status_err & MCI_DATATIMEOUT) { data->error = -ETIMEDOUT; } else if (status_err & MCI_STARTBITERR) { data->error = -ECOMM; } else if (status_err & MCI_TXUNDERRUN) { data->error = -EIO; } else if (status_err & MCI_RXOVERRUN) { if (success > host->variant->fifosize) success -= host->variant->fifosize; else success = 0; data->error = -EIO; } data->bytes_xfered = round_down(success, data->blksz); } if (status & MCI_DATABLOCKEND) dev_err(mmc_dev(host->mmc), "stray MCI_DATABLOCKEND interrupt\n"); if (status & MCI_DATAEND || data->error) { mmci_dma_finalize(host, data); mmci_stop_data(host); if (!data->error) /* The error clause is handled above, success! */ data->bytes_xfered = data->blksz * data->blocks; if (!data->stop) { if (host->variant->cmdreg_stop && data->error) mmci_stop_command(host); else mmci_request_end(host, data->mrq); } else if (host->mrq->sbc && !data->error) { mmci_request_end(host, data->mrq); } else { mmci_start_command(host, data->stop, 0); } } } static void mmci_cmd_irq(struct mmci_host *host, struct mmc_command *cmd, unsigned int status) { u32 err_msk = MCI_CMDCRCFAIL | MCI_CMDTIMEOUT; void __iomem *base = host->base; bool sbc, busy_resp; if (!cmd) return; sbc = (cmd == host->mrq->sbc); busy_resp = !!(cmd->flags & MMC_RSP_BUSY); /* * We need to be one of these interrupts to be considered worth * handling. Note that we tag on any latent IRQs postponed * due to waiting for busy status. */ if (host->variant->busy_timeout && busy_resp) err_msk |= MCI_DATATIMEOUT; if (!((status | host->busy_status) & (err_msk | MCI_CMDSENT | MCI_CMDRESPEND))) return; /* Handle busy detection on DAT0 if the variant supports it. */ if (busy_resp && host->variant->busy_detect) if (!host->ops->busy_complete(host, cmd, status, err_msk)) return; host->cmd = NULL; if (status & MCI_CMDTIMEOUT) { cmd->error = -ETIMEDOUT; } else if (status & MCI_CMDCRCFAIL && cmd->flags & MMC_RSP_CRC) { cmd->error = -EILSEQ; } else if (host->variant->busy_timeout && busy_resp && status & MCI_DATATIMEOUT) { cmd->error = -ETIMEDOUT; /* * This will wake up mmci_irq_thread() which will issue * a hardware reset of the MMCI block. */ host->irq_action = IRQ_WAKE_THREAD; } else { cmd->resp[0] = readl(base + MMCIRESPONSE0); cmd->resp[1] = readl(base + MMCIRESPONSE1); cmd->resp[2] = readl(base + MMCIRESPONSE2); cmd->resp[3] = readl(base + MMCIRESPONSE3); } if ((!sbc && !cmd->data) || cmd->error) { if (host->data) { /* Terminate the DMA transfer */ mmci_dma_error(host); mmci_stop_data(host); if (host->variant->cmdreg_stop && cmd->error) { mmci_stop_command(host); return; } } if (host->irq_action != IRQ_WAKE_THREAD) mmci_request_end(host, host->mrq); } else if (sbc) { mmci_start_command(host, host->mrq->cmd, 0); } else if (!host->variant->datactrl_first && !(cmd->data->flags & MMC_DATA_READ)) { mmci_start_data(host, cmd->data); } } static char *ux500_state_str(struct mmci_host *host) { switch (host->busy_state) { case MMCI_BUSY_WAITING_FOR_START_IRQ: return "waiting for start IRQ"; case MMCI_BUSY_WAITING_FOR_END_IRQ: return "waiting for end IRQ"; case MMCI_BUSY_DONE: return "not waiting for IRQs"; default: return "unknown"; } } /* * This busy timeout worker is used to "kick" the command IRQ if a * busy detect IRQ fails to appear in reasonable time. Only used on * variants with busy detection IRQ delivery. */ static void ux500_busy_timeout_work(struct work_struct *work) { struct mmci_host *host = container_of(work, struct mmci_host, ux500_busy_timeout_work.work); unsigned long flags; u32 status; spin_lock_irqsave(&host->lock, flags); if (host->cmd) { /* If we are still busy let's tag on a cmd-timeout error. */ status = readl(host->base + MMCISTATUS); if (status & host->variant->busy_detect_flag) { status |= MCI_CMDTIMEOUT; dev_err(mmc_dev(host->mmc), "timeout in state %s still busy with CMD%02x\n", ux500_state_str(host), host->cmd->opcode); } else { dev_err(mmc_dev(host->mmc), "timeout in state %s waiting for busy CMD%02x\n", ux500_state_str(host), host->cmd->opcode); } mmci_cmd_irq(host, host->cmd, status); } spin_unlock_irqrestore(&host->lock, flags); } static int mmci_get_rx_fifocnt(struct mmci_host *host, u32 status, int remain) { return remain - (readl(host->base + MMCIFIFOCNT) << 2); } static int mmci_qcom_get_rx_fifocnt(struct mmci_host *host, u32 status, int r) { /* * on qcom SDCC4 only 8 words are used in each burst so only 8 addresses * from the fifo range should be used */ if (status & MCI_RXFIFOHALFFULL) return host->variant->fifohalfsize; else if (status & MCI_RXDATAAVLBL) return 4; return 0; } static int mmci_pio_read(struct mmci_host *host, char *buffer, unsigned int remain) { void __iomem *base = host->base; char *ptr = buffer; u32 status = readl(host->base + MMCISTATUS); int host_remain = host->size; do { int count = host->get_rx_fifocnt(host, status, host_remain); if (count > remain) count = remain; if (count <= 0) break; /* * SDIO especially may want to send something that is * not divisible by 4 (as opposed to card sectors * etc). Therefore make sure to always read the last bytes * while only doing full 32-bit reads towards the FIFO. */ if (unlikely(count & 0x3)) { if (count < 4) { unsigned char buf[4]; ioread32_rep(base + MMCIFIFO, buf, 1); memcpy(ptr, buf, count); } else { ioread32_rep(base + MMCIFIFO, ptr, count >> 2); count &= ~0x3; } } else { ioread32_rep(base + MMCIFIFO, ptr, count >> 2); } ptr += count; remain -= count; host_remain -= count; if (remain == 0) break; status = readl(base + MMCISTATUS); } while (status & MCI_RXDATAAVLBL); return ptr - buffer; } static int mmci_pio_write(struct mmci_host *host, char *buffer, unsigned int remain, u32 status) { struct variant_data *variant = host->variant; void __iomem *base = host->base; char *ptr = buffer; do { unsigned int count, maxcnt; maxcnt = status & MCI_TXFIFOEMPTY ? variant->fifosize : variant->fifohalfsize; count = min(remain, maxcnt); /* * SDIO especially may want to send something that is * not divisible by 4 (as opposed to card sectors * etc), and the FIFO only accept full 32-bit writes. * So compensate by adding +3 on the count, a single * byte become a 32bit write, 7 bytes will be two * 32bit writes etc. */ iowrite32_rep(base + MMCIFIFO, ptr, (count + 3) >> 2); ptr += count; remain -= count; if (remain == 0) break; status = readl(base + MMCISTATUS); } while (status & MCI_TXFIFOHALFEMPTY); return ptr - buffer; } /* * PIO data transfer IRQ handler. */ static irqreturn_t mmci_pio_irq(int irq, void *dev_id) { struct mmci_host *host = dev_id; struct sg_mapping_iter *sg_miter = &host->sg_miter; struct variant_data *variant = host->variant; void __iomem *base = host->base; u32 status; status = readl(base + MMCISTATUS); dev_dbg(mmc_dev(host->mmc), "irq1 (pio) %08x\n", status); do { unsigned int remain, len; char *buffer; /* * For write, we only need to test the half-empty flag * here - if the FIFO is completely empty, then by * definition it is more than half empty. * * For read, check for data available. */ if (!(status & (MCI_TXFIFOHALFEMPTY|MCI_RXDATAAVLBL))) break; if (!sg_miter_next(sg_miter)) break; buffer = sg_miter->addr; remain = sg_miter->length; len = 0; if (status & MCI_RXACTIVE) len = mmci_pio_read(host, buffer, remain); if (status & MCI_TXACTIVE) len = mmci_pio_write(host, buffer, remain, status); sg_miter->consumed = len; host->size -= len; remain -= len; if (remain) break; status = readl(base + MMCISTATUS); } while (1); sg_miter_stop(sg_miter); /* * If we have less than the fifo 'half-full' threshold to transfer, * trigger a PIO interrupt as soon as any data is available. */ if (status & MCI_RXACTIVE && host->size < variant->fifohalfsize) mmci_set_mask1(host, MCI_RXDATAAVLBLMASK); /* * If we run out of data, disable the data IRQs; this * prevents a race where the FIFO becomes empty before * the chip itself has disabled the data path, and * stops us racing with our data end IRQ. */ if (host->size == 0) { mmci_set_mask1(host, 0); writel(readl(base + MMCIMASK0) | MCI_DATAENDMASK, base + MMCIMASK0); } return IRQ_HANDLED; } static void mmci_write_sdio_irq_bit(struct mmci_host *host, int enable) { void __iomem *base = host->base; u32 mask = readl_relaxed(base + MMCIMASK0); if (enable) writel_relaxed(mask | MCI_ST_SDIOITMASK, base + MMCIMASK0); else writel_relaxed(mask & ~MCI_ST_SDIOITMASK, base + MMCIMASK0); } static void mmci_signal_sdio_irq(struct mmci_host *host, u32 status) { if (status & MCI_ST_SDIOIT) { mmci_write_sdio_irq_bit(host, 0); sdio_signal_irq(host->mmc); } } /* * Handle completion of command and data transfers. */ static irqreturn_t mmci_irq(int irq, void *dev_id) { struct mmci_host *host = dev_id; u32 status; spin_lock(&host->lock); host->irq_action = IRQ_HANDLED; do { status = readl(host->base + MMCISTATUS); if (!status) break; if (host->singleirq) { if (status & host->mask1_reg) mmci_pio_irq(irq, dev_id); status &= ~host->variant->irq_pio_mask; } /* * Busy detection is managed by mmci_cmd_irq(), including to * clear the corresponding IRQ. */ status &= readl(host->base + MMCIMASK0); if (host->variant->busy_detect) writel(status & ~host->variant->busy_detect_mask, host->base + MMCICLEAR); else writel(status, host->base + MMCICLEAR); dev_dbg(mmc_dev(host->mmc), "irq0 (data+cmd) %08x\n", status); if (host->variant->reversed_irq_handling) { mmci_data_irq(host, host->data, status); mmci_cmd_irq(host, host->cmd, status); } else { mmci_cmd_irq(host, host->cmd, status); mmci_data_irq(host, host->data, status); } if (host->variant->supports_sdio_irq) mmci_signal_sdio_irq(host, status); /* * Busy detection has been handled by mmci_cmd_irq() above. * Clear the status bit to prevent polling in IRQ context. */ if (host->variant->busy_detect_flag) status &= ~host->variant->busy_detect_flag; } while (status); spin_unlock(&host->lock); return host->irq_action; } /* * mmci_irq_thread() - A threaded IRQ handler that manages a reset of the HW. * * A reset is needed for some variants, where a datatimeout for a R1B request * causes the DPSM to stay busy (non-functional). */ static irqreturn_t mmci_irq_thread(int irq, void *dev_id) { struct mmci_host *host = dev_id; unsigned long flags; if (host->rst) { reset_control_assert(host->rst); udelay(2); reset_control_deassert(host->rst); } spin_lock_irqsave(&host->lock, flags); writel(host->clk_reg, host->base + MMCICLOCK); writel(host->pwr_reg, host->base + MMCIPOWER); writel(MCI_IRQENABLE | host->variant->start_err, host->base + MMCIMASK0); host->irq_action = IRQ_HANDLED; mmci_request_end(host, host->mrq); spin_unlock_irqrestore(&host->lock, flags); return host->irq_action; } static void mmci_request(struct mmc_host *mmc, struct mmc_request *mrq) { struct mmci_host *host = mmc_priv(mmc); unsigned long flags; WARN_ON(host->mrq != NULL); mrq->cmd->error = mmci_validate_data(host, mrq->data); if (mrq->cmd->error) { mmc_request_done(mmc, mrq); return; } spin_lock_irqsave(&host->lock, flags); host->mrq = mrq; if (mrq->data) mmci_get_next_data(host, mrq->data); if (mrq->data && (host->variant->datactrl_first || mrq->data->flags & MMC_DATA_READ)) mmci_start_data(host, mrq->data); if (mrq->sbc) mmci_start_command(host, mrq->sbc, 0); else mmci_start_command(host, mrq->cmd, 0); spin_unlock_irqrestore(&host->lock, flags); } static void mmci_set_max_busy_timeout(struct mmc_host *mmc) { struct mmci_host *host = mmc_priv(mmc); u32 max_busy_timeout = 0; if (!host->variant->busy_detect) return; if (host->variant->busy_timeout && mmc->actual_clock) max_busy_timeout = U32_MAX / DIV_ROUND_UP(mmc->actual_clock, MSEC_PER_SEC); mmc->max_busy_timeout = max_busy_timeout; } static void mmci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct mmci_host *host = mmc_priv(mmc); struct variant_data *variant = host->variant; u32 pwr = 0; unsigned long flags; int ret; switch (ios->power_mode) { case MMC_POWER_OFF: if (!IS_ERR(mmc->supply.vmmc)) mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); if (!IS_ERR(mmc->supply.vqmmc) && host->vqmmc_enabled) { regulator_disable(mmc->supply.vqmmc); host->vqmmc_enabled = false; } break; case MMC_POWER_UP: if (!IS_ERR(mmc->supply.vmmc)) mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); /* * The ST Micro variant doesn't have the PL180s MCI_PWR_UP * and instead uses MCI_PWR_ON so apply whatever value is * configured in the variant data. */ pwr |= variant->pwrreg_powerup; break; case MMC_POWER_ON: if (!IS_ERR(mmc->supply.vqmmc) && !host->vqmmc_enabled) { ret = regulator_enable(mmc->supply.vqmmc); if (ret < 0) dev_err(mmc_dev(mmc), "failed to enable vqmmc regulator\n"); else host->vqmmc_enabled = true; } pwr |= MCI_PWR_ON; break; } if (variant->signal_direction && ios->power_mode != MMC_POWER_OFF) { /* * The ST Micro variant has some additional bits * indicating signal direction for the signals in * the SD/MMC bus and feedback-clock usage. */ pwr |= host->pwr_reg_add; if (ios->bus_width == MMC_BUS_WIDTH_4) pwr &= ~MCI_ST_DATA74DIREN; else if (ios->bus_width == MMC_BUS_WIDTH_1) pwr &= (~MCI_ST_DATA74DIREN & ~MCI_ST_DATA31DIREN & ~MCI_ST_DATA2DIREN); } if (variant->opendrain) { if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) pwr |= variant->opendrain; } else { /* * If the variant cannot configure the pads by its own, then we * expect the pinctrl to be able to do that for us */ if (ios->bus_mode == MMC_BUSMODE_OPENDRAIN) pinctrl_select_state(host->pinctrl, host->pins_opendrain); else pinctrl_select_default_state(mmc_dev(mmc)); } /* * If clock = 0 and the variant requires the MMCIPOWER to be used for * gating the clock, the MCI_PWR_ON bit is cleared. */ if (!ios->clock && variant->pwrreg_clkgate) pwr &= ~MCI_PWR_ON; if (host->variant->explicit_mclk_control && ios->clock != host->clock_cache) { ret = clk_set_rate(host->clk, ios->clock); if (ret < 0) dev_err(mmc_dev(host->mmc), "Error setting clock rate (%d)\n", ret); else host->mclk = clk_get_rate(host->clk); } host->clock_cache = ios->clock; spin_lock_irqsave(&host->lock, flags); if (host->ops && host->ops->set_clkreg) host->ops->set_clkreg(host, ios->clock); else mmci_set_clkreg(host, ios->clock); mmci_set_max_busy_timeout(mmc); if (host->ops && host->ops->set_pwrreg) host->ops->set_pwrreg(host, pwr); else mmci_write_pwrreg(host, pwr); mmci_reg_delay(host); spin_unlock_irqrestore(&host->lock, flags); } static int mmci_get_cd(struct mmc_host *mmc) { struct mmci_host *host = mmc_priv(mmc); struct mmci_platform_data *plat = host->plat; unsigned int status = mmc_gpio_get_cd(mmc); if (status == -ENOSYS) { if (!plat->status) return 1; /* Assume always present */ status = plat->status(mmc_dev(host->mmc)); } return status; } static int mmci_sig_volt_switch(struct mmc_host *mmc, struct mmc_ios *ios) { struct mmci_host *host = mmc_priv(mmc); int ret; ret = mmc_regulator_set_vqmmc(mmc, ios); if (!ret && host->ops && host->ops->post_sig_volt_switch) ret = host->ops->post_sig_volt_switch(host, ios); else if (ret) ret = 0; if (ret < 0) dev_warn(mmc_dev(mmc), "Voltage switch failed\n"); return ret; } static void mmci_enable_sdio_irq(struct mmc_host *mmc, int enable) { struct mmci_host *host = mmc_priv(mmc); unsigned long flags; if (enable) /* Keep the SDIO mode bit if SDIO irqs are enabled */ pm_runtime_get_sync(mmc_dev(mmc)); spin_lock_irqsave(&host->lock, flags); mmci_write_sdio_irq_bit(host, enable); spin_unlock_irqrestore(&host->lock, flags); if (!enable) { pm_runtime_mark_last_busy(mmc_dev(mmc)); pm_runtime_put_autosuspend(mmc_dev(mmc)); } } static void mmci_ack_sdio_irq(struct mmc_host *mmc) { struct mmci_host *host = mmc_priv(mmc); unsigned long flags; spin_lock_irqsave(&host->lock, flags); mmci_write_sdio_irq_bit(host, 1); spin_unlock_irqrestore(&host->lock, flags); } static struct mmc_host_ops mmci_ops = { .request = mmci_request, .pre_req = mmci_pre_request, .post_req = mmci_post_request, .set_ios = mmci_set_ios, .get_ro = mmc_gpio_get_ro, .get_cd = mmci_get_cd, .start_signal_voltage_switch = mmci_sig_volt_switch, }; static void mmci_probe_level_translator(struct mmc_host *mmc) { struct device *dev = mmc_dev(mmc); struct mmci_host *host = mmc_priv(mmc); struct gpio_desc *cmd_gpio; struct gpio_desc *ck_gpio; struct gpio_desc *ckin_gpio; int clk_hi, clk_lo; /* * Assume the level translator is present if st,use-ckin is set. * This is to cater for DTs which do not implement this test. */ host->clk_reg_add |= MCI_STM32_CLK_SELCKIN; cmd_gpio = gpiod_get(dev, "st,cmd", GPIOD_OUT_HIGH); if (IS_ERR(cmd_gpio)) goto exit_cmd; ck_gpio = gpiod_get(dev, "st,ck", GPIOD_OUT_HIGH); if (IS_ERR(ck_gpio)) goto exit_ck; ckin_gpio = gpiod_get(dev, "st,ckin", GPIOD_IN); if (IS_ERR(ckin_gpio)) goto exit_ckin; /* All GPIOs are valid, test whether level translator works */ /* Sample CKIN */ clk_hi = !!gpiod_get_value(ckin_gpio); /* Set CK low */ gpiod_set_value(ck_gpio, 0); /* Sample CKIN */ clk_lo = !!gpiod_get_value(ckin_gpio); /* Tristate all */ gpiod_direction_input(cmd_gpio); gpiod_direction_input(ck_gpio); /* Level translator is present if CK signal is propagated to CKIN */ if (!clk_hi || clk_lo) { host->clk_reg_add &= ~MCI_STM32_CLK_SELCKIN; dev_warn(dev, "Level translator inoperable, CK signal not detected on CKIN, disabling.\n"); } gpiod_put(ckin_gpio); exit_ckin: gpiod_put(ck_gpio); exit_ck: gpiod_put(cmd_gpio); exit_cmd: pinctrl_select_default_state(dev); } static int mmci_of_parse(struct device_node *np, struct mmc_host *mmc) { struct mmci_host *host = mmc_priv(mmc); int ret = mmc_of_parse(mmc); if (ret) return ret; if (of_property_read_bool(np, "st,sig-dir-dat0")) host->pwr_reg_add |= MCI_ST_DATA0DIREN; if (of_property_read_bool(np, "st,sig-dir-dat2")) host->pwr_reg_add |= MCI_ST_DATA2DIREN; if (of_property_read_bool(np, "st,sig-dir-dat31")) host->pwr_reg_add |= MCI_ST_DATA31DIREN; if (of_property_read_bool(np, "st,sig-dir-dat74")) host->pwr_reg_add |= MCI_ST_DATA74DIREN; if (of_property_read_bool(np, "st,sig-dir-cmd")) host->pwr_reg_add |= MCI_ST_CMDDIREN; if (of_property_read_bool(np, "st,sig-pin-fbclk")) host->pwr_reg_add |= MCI_ST_FBCLKEN; if (of_property_read_bool(np, "st,sig-dir")) host->pwr_reg_add |= MCI_STM32_DIRPOL; if (of_property_read_bool(np, "st,neg-edge")) host->clk_reg_add |= MCI_STM32_CLK_NEGEDGE; if (of_property_read_bool(np, "st,use-ckin")) mmci_probe_level_translator(mmc); if (of_property_read_bool(np, "mmc-cap-mmc-highspeed")) mmc->caps |= MMC_CAP_MMC_HIGHSPEED; if (of_property_read_bool(np, "mmc-cap-sd-highspeed")) mmc->caps |= MMC_CAP_SD_HIGHSPEED; return 0; } static int mmci_probe(struct amba_device *dev, const struct amba_id *id) { struct mmci_platform_data *plat = dev->dev.platform_data; struct device_node *np = dev->dev.of_node; struct variant_data *variant = id->data; struct mmci_host *host; struct mmc_host *mmc; int ret; /* Must have platform data or Device Tree. */ if (!plat && !np) { dev_err(&dev->dev, "No plat data or DT found\n"); return -EINVAL; } if (!plat) { plat = devm_kzalloc(&dev->dev, sizeof(*plat), GFP_KERNEL); if (!plat) return -ENOMEM; } mmc = mmc_alloc_host(sizeof(struct mmci_host), &dev->dev); if (!mmc) return -ENOMEM; host = mmc_priv(mmc); host->mmc = mmc; host->mmc_ops = &mmci_ops; mmc->ops = &mmci_ops; ret = mmci_of_parse(np, mmc); if (ret) goto host_free; /* * Some variant (STM32) doesn't have opendrain bit, nevertheless * pins can be set accordingly using pinctrl */ if (!variant->opendrain) { host->pinctrl = devm_pinctrl_get(&dev->dev); if (IS_ERR(host->pinctrl)) { dev_err(&dev->dev, "failed to get pinctrl"); ret = PTR_ERR(host->pinctrl); goto host_free; } host->pins_opendrain = pinctrl_lookup_state(host->pinctrl, MMCI_PINCTRL_STATE_OPENDRAIN); if (IS_ERR(host->pins_opendrain)) { dev_err(mmc_dev(mmc), "Can't select opendrain pins\n"); ret = PTR_ERR(host->pins_opendrain); goto host_free; } } host->hw_designer = amba_manf(dev); host->hw_revision = amba_rev(dev); dev_dbg(mmc_dev(mmc), "designer ID = 0x%02x\n", host->hw_designer); dev_dbg(mmc_dev(mmc), "revision = 0x%01x\n", host->hw_revision); host->clk = devm_clk_get(&dev->dev, NULL); if (IS_ERR(host->clk)) { ret = PTR_ERR(host->clk); goto host_free; } ret = clk_prepare_enable(host->clk); if (ret) goto host_free; if (variant->qcom_fifo) host->get_rx_fifocnt = mmci_qcom_get_rx_fifocnt; else host->get_rx_fifocnt = mmci_get_rx_fifocnt; host->plat = plat; host->variant = variant; host->mclk = clk_get_rate(host->clk); /* * According to the spec, mclk is max 100 MHz, * so we try to adjust the clock down to this, * (if possible). */ if (host->mclk > variant->f_max) { ret = clk_set_rate(host->clk, variant->f_max); if (ret < 0) goto clk_disable; host->mclk = clk_get_rate(host->clk); dev_dbg(mmc_dev(mmc), "eventual mclk rate: %u Hz\n", host->mclk); } host->phybase = dev->res.start; host->base = devm_ioremap_resource(&dev->dev, &dev->res); if (IS_ERR(host->base)) { ret = PTR_ERR(host->base); goto clk_disable; } if (variant->init) variant->init(host); /* * The ARM and ST versions of the block have slightly different * clock divider equations which means that the minimum divider * differs too. * on Qualcomm like controllers get the nearest minimum clock to 100Khz */ if (variant->st_clkdiv) mmc->f_min = DIV_ROUND_UP(host->mclk, 257); else if (variant->stm32_clkdiv) mmc->f_min = DIV_ROUND_UP(host->mclk, 2046); else if (variant->explicit_mclk_control) mmc->f_min = clk_round_rate(host->clk, 100000); else mmc->f_min = DIV_ROUND_UP(host->mclk, 512); /* * If no maximum operating frequency is supplied, fall back to use * the module parameter, which has a (low) default value in case it * is not specified. Either value must not exceed the clock rate into * the block, of course. */ if (mmc->f_max) mmc->f_max = variant->explicit_mclk_control ? min(variant->f_max, mmc->f_max) : min(host->mclk, mmc->f_max); else mmc->f_max = variant->explicit_mclk_control ? fmax : min(host->mclk, fmax); dev_dbg(mmc_dev(mmc), "clocking block at %u Hz\n", mmc->f_max); host->rst = devm_reset_control_get_optional_exclusive(&dev->dev, NULL); if (IS_ERR(host->rst)) { ret = PTR_ERR(host->rst); goto clk_disable; } ret = reset_control_deassert(host->rst); if (ret) dev_err(mmc_dev(mmc), "failed to de-assert reset\n"); /* Get regulators and the supported OCR mask */ ret = mmc_regulator_get_supply(mmc); if (ret) goto clk_disable; if (!mmc->ocr_avail) mmc->ocr_avail = plat->ocr_mask; else if (plat->ocr_mask) dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n"); /* We support these capabilities. */ mmc->caps |= MMC_CAP_CMD23; /* * Enable busy detection. */ if (variant->busy_detect) { mmci_ops.card_busy = mmci_card_busy; /* * Not all variants have a flag to enable busy detection * in the DPSM, but if they do, set it here. */ if (variant->busy_dpsm_flag) mmci_write_datactrlreg(host, host->variant->busy_dpsm_flag); mmc->caps |= MMC_CAP_WAIT_WHILE_BUSY; } if (variant->supports_sdio_irq && host->mmc->caps & MMC_CAP_SDIO_IRQ) { mmc->caps2 |= MMC_CAP2_SDIO_IRQ_NOTHREAD; mmci_ops.enable_sdio_irq = mmci_enable_sdio_irq; mmci_ops.ack_sdio_irq = mmci_ack_sdio_irq; mmci_write_datactrlreg(host, host->variant->datactrl_mask_sdio); } /* Variants with mandatory busy timeout in HW needs R1B responses. */ if (variant->busy_timeout) mmc->caps |= MMC_CAP_NEED_RSP_BUSY; /* Prepare a CMD12 - needed to clear the DPSM on some variants. */ host->stop_abort.opcode = MMC_STOP_TRANSMISSION; host->stop_abort.arg = 0; host->stop_abort.flags = MMC_RSP_R1B | MMC_CMD_AC; /* We support these PM capabilities. */ mmc->pm_caps |= MMC_PM_KEEP_POWER; /* * We can do SGIO */ mmc->max_segs = NR_SG; /* * Since only a certain number of bits are valid in the data length * register, we must ensure that we don't exceed 2^num-1 bytes in a * single request. */ mmc->max_req_size = (1 << variant->datalength_bits) - 1; /* * Set the maximum segment size. Since we aren't doing DMA * (yet) we are only limited by the data length register. */ mmc->max_seg_size = mmc->max_req_size; /* * Block size can be up to 2048 bytes, but must be a power of two. */ mmc->max_blk_size = 1 << variant->datactrl_blocksz; /* * Limit the number of blocks transferred so that we don't overflow * the maximum request size. */ mmc->max_blk_count = mmc->max_req_size >> variant->datactrl_blocksz; spin_lock_init(&host->lock); writel(0, host->base + MMCIMASK0); if (variant->mmcimask1) writel(0, host->base + MMCIMASK1); writel(0xfff, host->base + MMCICLEAR); /* * If: * - not using DT but using a descriptor table, or * - using a table of descriptors ALONGSIDE DT, or * look up these descriptors named "cd" and "wp" right here, fail * silently of these do not exist */ if (!np) { ret = mmc_gpiod_request_cd(mmc, "cd", 0, false, 0); if (ret == -EPROBE_DEFER) goto clk_disable; ret = mmc_gpiod_request_ro(mmc, "wp", 0, 0); if (ret == -EPROBE_DEFER) goto clk_disable; } ret = devm_request_threaded_irq(&dev->dev, dev->irq[0], mmci_irq, mmci_irq_thread, IRQF_SHARED, DRIVER_NAME " (cmd)", host); if (ret) goto clk_disable; if (!dev->irq[1]) host->singleirq = true; else { ret = devm_request_irq(&dev->dev, dev->irq[1], mmci_pio_irq, IRQF_SHARED, DRIVER_NAME " (pio)", host); if (ret) goto clk_disable; } if (host->variant->busy_detect) INIT_DELAYED_WORK(&host->ux500_busy_timeout_work, ux500_busy_timeout_work); writel(MCI_IRQENABLE | variant->start_err, host->base + MMCIMASK0); amba_set_drvdata(dev, mmc); dev_info(&dev->dev, "%s: PL%03x manf %x rev%u at 0x%08llx irq %d,%d (pio)\n", mmc_hostname(mmc), amba_part(dev), amba_manf(dev), amba_rev(dev), (unsigned long long)dev->res.start, dev->irq[0], dev->irq[1]); mmci_dma_setup(host); pm_runtime_set_autosuspend_delay(&dev->dev, 50); pm_runtime_use_autosuspend(&dev->dev); ret = mmc_add_host(mmc); if (ret) goto clk_disable; pm_runtime_put(&dev->dev); return 0; clk_disable: clk_disable_unprepare(host->clk); host_free: mmc_free_host(mmc); return ret; } static void mmci_remove(struct amba_device *dev) { struct mmc_host *mmc = amba_get_drvdata(dev); if (mmc) { struct mmci_host *host = mmc_priv(mmc); struct variant_data *variant = host->variant; /* * Undo pm_runtime_put() in probe. We use the _sync * version here so that we can access the primecell. */ pm_runtime_get_sync(&dev->dev); mmc_remove_host(mmc); writel(0, host->base + MMCIMASK0); if (variant->mmcimask1) writel(0, host->base + MMCIMASK1); writel(0, host->base + MMCICOMMAND); writel(0, host->base + MMCIDATACTRL); mmci_dma_release(host); clk_disable_unprepare(host->clk); mmc_free_host(mmc); } } #ifdef CONFIG_PM static void mmci_save(struct mmci_host *host) { unsigned long flags; spin_lock_irqsave(&host->lock, flags); writel(0, host->base + MMCIMASK0); if (host->variant->pwrreg_nopower) { writel(0, host->base + MMCIDATACTRL); writel(0, host->base + MMCIPOWER); writel(0, host->base + MMCICLOCK); } mmci_reg_delay(host); spin_unlock_irqrestore(&host->lock, flags); } static void mmci_restore(struct mmci_host *host) { unsigned long flags; spin_lock_irqsave(&host->lock, flags); if (host->variant->pwrreg_nopower) { writel(host->clk_reg, host->base + MMCICLOCK); writel(host->datactrl_reg, host->base + MMCIDATACTRL); writel(host->pwr_reg, host->base + MMCIPOWER); } writel(MCI_IRQENABLE | host->variant->start_err, host->base + MMCIMASK0); mmci_reg_delay(host); spin_unlock_irqrestore(&host->lock, flags); } static int mmci_runtime_suspend(struct device *dev) { struct amba_device *adev = to_amba_device(dev); struct mmc_host *mmc = amba_get_drvdata(adev); if (mmc) { struct mmci_host *host = mmc_priv(mmc); pinctrl_pm_select_sleep_state(dev); mmci_save(host); clk_disable_unprepare(host->clk); } return 0; } static int mmci_runtime_resume(struct device *dev) { struct amba_device *adev = to_amba_device(dev); struct mmc_host *mmc = amba_get_drvdata(adev); if (mmc) { struct mmci_host *host = mmc_priv(mmc); clk_prepare_enable(host->clk); mmci_restore(host); pinctrl_select_default_state(dev); } return 0; } #endif static const struct dev_pm_ops mmci_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) SET_RUNTIME_PM_OPS(mmci_runtime_suspend, mmci_runtime_resume, NULL) }; static const struct amba_id mmci_ids[] = { { .id = 0x00041180, .mask = 0xff0fffff, .data = &variant_arm, }, { .id = 0x01041180, .mask = 0xff0fffff, .data = &variant_arm_extended_fifo, }, { .id = 0x02041180, .mask = 0xff0fffff, .data = &variant_arm_extended_fifo_hwfc, }, { .id = 0x00041181, .mask = 0x000fffff, .data = &variant_arm, }, /* ST Micro variants */ { .id = 0x00180180, .mask = 0x00ffffff, .data = &variant_u300, }, { .id = 0x10180180, .mask = 0xf0ffffff, .data = &variant_nomadik, }, { .id = 0x00280180, .mask = 0x00ffffff, .data = &variant_nomadik, }, { .id = 0x00480180, .mask = 0xf0ffffff, .data = &variant_ux500, }, { .id = 0x10480180, .mask = 0xf0ffffff, .data = &variant_ux500v2, }, { .id = 0x00880180, .mask = 0x00ffffff, .data = &variant_stm32, }, { .id = 0x10153180, .mask = 0xf0ffffff, .data = &variant_stm32_sdmmc, }, { .id = 0x00253180, .mask = 0xf0ffffff, .data = &variant_stm32_sdmmcv2, }, { .id = 0x20253180, .mask = 0xf0ffffff, .data = &variant_stm32_sdmmcv2, }, { .id = 0x00353180, .mask = 0xf0ffffff, .data = &variant_stm32_sdmmcv3, }, /* Qualcomm variants */ { .id = 0x00051180, .mask = 0x000fffff, .data = &variant_qcom, }, { 0, 0 }, }; MODULE_DEVICE_TABLE(amba, mmci_ids); static struct amba_driver mmci_driver = { .drv = { .name = DRIVER_NAME, .pm = &mmci_dev_pm_ops, .probe_type = PROBE_PREFER_ASYNCHRONOUS, }, .probe = mmci_probe, .remove = mmci_remove, .id_table = mmci_ids, }; module_amba_driver(mmci_driver); module_param(fmax, uint, 0444); MODULE_DESCRIPTION("ARM PrimeCell PL180/181 Multimedia Card Interface driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1