Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Chunyan Zhang | 2227 | 53.25% | 6 | 17.14% |
Baolin Wang | 955 | 22.84% | 13 | 37.14% |
Wenchao Chen | 902 | 21.57% | 6 | 17.14% |
Zhenxiong Lai | 70 | 1.67% | 1 | 2.86% |
Krzysztof Kozlowski | 6 | 0.14% | 2 | 5.71% |
Christophe Jaillet | 6 | 0.14% | 1 | 2.86% |
Doug Anderson | 5 | 0.12% | 1 | 2.86% |
Dan Carpenter | 4 | 0.10% | 1 | 2.86% |
Marek Vašut | 2 | 0.05% | 1 | 2.86% |
Yangtao Li | 2 | 0.05% | 1 | 2.86% |
Gustavo A. R. Silva | 2 | 0.05% | 1 | 2.86% |
Adrian Hunter | 1 | 0.02% | 1 | 2.86% |
Total | 4182 | 35 |
// SPDX-License-Identifier: GPL-2.0 // // Secure Digital Host Controller // // Copyright (C) 2018 Spreadtrum, Inc. // Author: Chunyan Zhang <chunyan.zhang@unisoc.com> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/highmem.h> #include <linux/iopoll.h> #include <linux/mmc/host.h> #include <linux/mmc/mmc.h> #include <linux/module.h> #include <linux/of.h> #include <linux/pinctrl/consumer.h> #include <linux/platform_device.h> #include <linux/pm_runtime.h> #include <linux/regulator/consumer.h> #include <linux/slab.h> #include "sdhci-pltfm.h" #include "mmc_hsq.h" /* SDHCI_ARGUMENT2 register high 16bit */ #define SDHCI_SPRD_ARG2_STUFF GENMASK(31, 16) #define SDHCI_SPRD_REG_32_DLL_CFG 0x200 #define SDHCI_SPRD_DLL_ALL_CPST_EN (BIT(18) | BIT(24) | BIT(25) | BIT(26) | BIT(27)) #define SDHCI_SPRD_DLL_EN BIT(21) #define SDHCI_SPRD_DLL_SEARCH_MODE BIT(16) #define SDHCI_SPRD_DLL_INIT_COUNT 0xc00 #define SDHCI_SPRD_DLL_PHASE_INTERNAL 0x3 #define SDHCI_SPRD_REG_32_DLL_DLY 0x204 #define SDHCI_SPRD_REG_32_DLL_DLY_OFFSET 0x208 #define SDHCIBSPRD_IT_WR_DLY_INV BIT(5) #define SDHCI_SPRD_BIT_CMD_DLY_INV BIT(13) #define SDHCI_SPRD_BIT_POSRD_DLY_INV BIT(21) #define SDHCI_SPRD_BIT_NEGRD_DLY_INV BIT(29) #define SDHCI_SPRD_REG_32_DLL_STS0 0x210 #define SDHCI_SPRD_DLL_LOCKED BIT(18) #define SDHCI_SPRD_REG_32_BUSY_POSI 0x250 #define SDHCI_SPRD_BIT_OUTR_CLK_AUTO_EN BIT(25) #define SDHCI_SPRD_BIT_INNR_CLK_AUTO_EN BIT(24) #define SDHCI_SPRD_REG_DEBOUNCE 0x28C #define SDHCI_SPRD_BIT_DLL_BAK BIT(0) #define SDHCI_SPRD_BIT_DLL_VAL BIT(1) #define SDHCI_SPRD_INT_SIGNAL_MASK 0x1B7F410B /* SDHCI_HOST_CONTROL2 */ #define SDHCI_SPRD_CTRL_HS200 0x0005 #define SDHCI_SPRD_CTRL_HS400 0x0006 #define SDHCI_SPRD_CTRL_HS400ES 0x0007 /* * According to the standard specification, BIT(3) of SDHCI_SOFTWARE_RESET is * reserved, and only used on Spreadtrum's design, the hardware cannot work * if this bit is cleared. * 1 : normal work * 0 : hardware reset */ #define SDHCI_HW_RESET_CARD BIT(3) #define SDHCI_SPRD_MAX_CUR 0xFFFFFF #define SDHCI_SPRD_CLK_MAX_DIV 1023 #define SDHCI_SPRD_CLK_DEF_RATE 26000000 #define SDHCI_SPRD_PHY_DLL_CLK 52000000 #define SDHCI_SPRD_MAX_RANGE 0xff #define SDHCI_SPRD_CMD_DLY_MASK GENMASK(15, 8) #define SDHCI_SPRD_POSRD_DLY_MASK GENMASK(23, 16) #define SDHCI_SPRD_CPST_EN GENMASK(27, 24) struct sdhci_sprd_host { u32 version; struct clk *clk_sdio; struct clk *clk_enable; struct clk *clk_2x_enable; struct pinctrl *pinctrl; struct pinctrl_state *pins_uhs; struct pinctrl_state *pins_default; u32 base_rate; int flags; /* backup of host attribute */ u32 phy_delay[MMC_TIMING_MMC_HS400 + 2]; }; enum sdhci_sprd_tuning_type { SDHCI_SPRD_TUNING_SD_HS_CMD, SDHCI_SPRD_TUNING_SD_HS_DATA, }; struct sdhci_sprd_phy_cfg { const char *property; u8 timing; }; static const struct sdhci_sprd_phy_cfg sdhci_sprd_phy_cfgs[] = { { "sprd,phy-delay-legacy", MMC_TIMING_LEGACY, }, { "sprd,phy-delay-sd-highspeed", MMC_TIMING_SD_HS, }, { "sprd,phy-delay-sd-uhs-sdr50", MMC_TIMING_UHS_SDR50, }, { "sprd,phy-delay-sd-uhs-sdr104", MMC_TIMING_UHS_SDR104, }, { "sprd,phy-delay-mmc-highspeed", MMC_TIMING_MMC_HS, }, { "sprd,phy-delay-mmc-ddr52", MMC_TIMING_MMC_DDR52, }, { "sprd,phy-delay-mmc-hs200", MMC_TIMING_MMC_HS200, }, { "sprd,phy-delay-mmc-hs400", MMC_TIMING_MMC_HS400, }, { "sprd,phy-delay-mmc-hs400es", MMC_TIMING_MMC_HS400 + 1, }, }; #define TO_SPRD_HOST(host) sdhci_pltfm_priv(sdhci_priv(host)) static void sdhci_sprd_init_config(struct sdhci_host *host) { u16 val; /* set dll backup mode */ val = sdhci_readl(host, SDHCI_SPRD_REG_DEBOUNCE); val |= SDHCI_SPRD_BIT_DLL_BAK | SDHCI_SPRD_BIT_DLL_VAL; sdhci_writel(host, val, SDHCI_SPRD_REG_DEBOUNCE); } static inline u32 sdhci_sprd_readl(struct sdhci_host *host, int reg) { if (unlikely(reg == SDHCI_MAX_CURRENT)) return SDHCI_SPRD_MAX_CUR; return readl_relaxed(host->ioaddr + reg); } static inline void sdhci_sprd_writel(struct sdhci_host *host, u32 val, int reg) { /* SDHCI_MAX_CURRENT is reserved on Spreadtrum's platform */ if (unlikely(reg == SDHCI_MAX_CURRENT)) return; if (unlikely(reg == SDHCI_SIGNAL_ENABLE || reg == SDHCI_INT_ENABLE)) val = val & SDHCI_SPRD_INT_SIGNAL_MASK; writel_relaxed(val, host->ioaddr + reg); } static inline void sdhci_sprd_writew(struct sdhci_host *host, u16 val, int reg) { /* SDHCI_BLOCK_COUNT is Read Only on Spreadtrum's platform */ if (unlikely(reg == SDHCI_BLOCK_COUNT)) return; writew_relaxed(val, host->ioaddr + reg); } static inline void sdhci_sprd_writeb(struct sdhci_host *host, u8 val, int reg) { /* * Since BIT(3) of SDHCI_SOFTWARE_RESET is reserved according to the * standard specification, sdhci_reset() write this register directly * without checking other reserved bits, that will clear BIT(3) which * is defined as hardware reset on Spreadtrum's platform and clearing * it by mistake will lead the card not work. So here we need to work * around it. */ if (unlikely(reg == SDHCI_SOFTWARE_RESET)) { if (readb_relaxed(host->ioaddr + reg) & SDHCI_HW_RESET_CARD) val |= SDHCI_HW_RESET_CARD; } writeb_relaxed(val, host->ioaddr + reg); } static inline void sdhci_sprd_sd_clk_off(struct sdhci_host *host) { u16 ctrl = sdhci_readw(host, SDHCI_CLOCK_CONTROL); ctrl &= ~SDHCI_CLOCK_CARD_EN; sdhci_writew(host, ctrl, SDHCI_CLOCK_CONTROL); } static inline void sdhci_sprd_sd_clk_on(struct sdhci_host *host) { u16 ctrl; ctrl = sdhci_readw(host, SDHCI_CLOCK_CONTROL); ctrl |= SDHCI_CLOCK_CARD_EN; sdhci_writew(host, ctrl, SDHCI_CLOCK_CONTROL); } static inline void sdhci_sprd_set_dll_invert(struct sdhci_host *host, u32 mask, bool en) { u32 dll_dly_offset; dll_dly_offset = sdhci_readl(host, SDHCI_SPRD_REG_32_DLL_DLY_OFFSET); if (en) dll_dly_offset |= mask; else dll_dly_offset &= ~mask; sdhci_writel(host, dll_dly_offset, SDHCI_SPRD_REG_32_DLL_DLY_OFFSET); } static inline u32 sdhci_sprd_calc_div(u32 base_clk, u32 clk) { u32 div; /* select 2x clock source */ if (base_clk <= clk * 2) return 0; div = (u32) (base_clk / (clk * 2)); if ((base_clk / div) > (clk * 2)) div++; if (div % 2) div = (div + 1) / 2; else div = div / 2; if (div > SDHCI_SPRD_CLK_MAX_DIV) div = SDHCI_SPRD_CLK_MAX_DIV; return div; } static inline void _sdhci_sprd_set_clock(struct sdhci_host *host, unsigned int clk) { struct sdhci_sprd_host *sprd_host = TO_SPRD_HOST(host); u32 div, val, mask; sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL); div = sdhci_sprd_calc_div(sprd_host->base_rate, clk); div = ((div & 0x300) >> 2) | ((div & 0xFF) << 8); sdhci_enable_clk(host, div); val = sdhci_readl(host, SDHCI_SPRD_REG_32_BUSY_POSI); mask = SDHCI_SPRD_BIT_OUTR_CLK_AUTO_EN | SDHCI_SPRD_BIT_INNR_CLK_AUTO_EN; /* Enable CLK_AUTO when the clock is greater than 400K. */ if (clk > 400000) { if (mask != (val & mask)) { val |= mask; sdhci_writel(host, val, SDHCI_SPRD_REG_32_BUSY_POSI); } } else { if (val & mask) { val &= ~mask; sdhci_writel(host, val, SDHCI_SPRD_REG_32_BUSY_POSI); } } } static void sdhci_sprd_enable_phy_dll(struct sdhci_host *host) { u32 tmp; tmp = sdhci_readl(host, SDHCI_SPRD_REG_32_DLL_CFG); tmp &= ~(SDHCI_SPRD_DLL_EN | SDHCI_SPRD_DLL_ALL_CPST_EN); sdhci_writel(host, tmp, SDHCI_SPRD_REG_32_DLL_CFG); /* wait 1ms */ usleep_range(1000, 1250); tmp = sdhci_readl(host, SDHCI_SPRD_REG_32_DLL_CFG); tmp |= SDHCI_SPRD_DLL_ALL_CPST_EN | SDHCI_SPRD_DLL_SEARCH_MODE | SDHCI_SPRD_DLL_INIT_COUNT | SDHCI_SPRD_DLL_PHASE_INTERNAL; sdhci_writel(host, tmp, SDHCI_SPRD_REG_32_DLL_CFG); /* wait 1ms */ usleep_range(1000, 1250); tmp = sdhci_readl(host, SDHCI_SPRD_REG_32_DLL_CFG); tmp |= SDHCI_SPRD_DLL_EN; sdhci_writel(host, tmp, SDHCI_SPRD_REG_32_DLL_CFG); /* wait 1ms */ usleep_range(1000, 1250); if (read_poll_timeout(sdhci_readl, tmp, (tmp & SDHCI_SPRD_DLL_LOCKED), 2000, USEC_PER_SEC, false, host, SDHCI_SPRD_REG_32_DLL_STS0)) { pr_err("%s: DLL locked fail!\n", mmc_hostname(host->mmc)); pr_info("%s: DLL_STS0 : 0x%x, DLL_CFG : 0x%x\n", mmc_hostname(host->mmc), sdhci_readl(host, SDHCI_SPRD_REG_32_DLL_STS0), sdhci_readl(host, SDHCI_SPRD_REG_32_DLL_CFG)); } } static void sdhci_sprd_set_clock(struct sdhci_host *host, unsigned int clock) { bool en = false, clk_changed = false; if (clock == 0) { sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL); } else if (clock != host->clock) { sdhci_sprd_sd_clk_off(host); _sdhci_sprd_set_clock(host, clock); if (clock <= 400000) en = true; sdhci_sprd_set_dll_invert(host, SDHCI_SPRD_BIT_CMD_DLY_INV | SDHCI_SPRD_BIT_POSRD_DLY_INV, en); clk_changed = true; } else { _sdhci_sprd_set_clock(host, clock); } /* * According to the Spreadtrum SD host specification, when we changed * the clock to be more than 52M, we should enable the PHY DLL which * is used to track the clock frequency to make the clock work more * stable. Otherwise deviation may occur of the higher clock. */ if (clk_changed && clock > SDHCI_SPRD_PHY_DLL_CLK) sdhci_sprd_enable_phy_dll(host); } static unsigned int sdhci_sprd_get_max_clock(struct sdhci_host *host) { struct sdhci_sprd_host *sprd_host = TO_SPRD_HOST(host); return clk_round_rate(sprd_host->clk_sdio, ULONG_MAX); } static unsigned int sdhci_sprd_get_min_clock(struct sdhci_host *host) { return 100000; } static void sdhci_sprd_set_uhs_signaling(struct sdhci_host *host, unsigned int timing) { struct sdhci_sprd_host *sprd_host = TO_SPRD_HOST(host); struct mmc_host *mmc = host->mmc; u32 *p = sprd_host->phy_delay; u16 ctrl_2; if (timing == host->timing) return; ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); /* Select Bus Speed Mode for host */ ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; switch (timing) { case MMC_TIMING_UHS_SDR12: ctrl_2 |= SDHCI_CTRL_UHS_SDR12; break; case MMC_TIMING_MMC_HS: case MMC_TIMING_SD_HS: case MMC_TIMING_UHS_SDR25: ctrl_2 |= SDHCI_CTRL_UHS_SDR25; break; case MMC_TIMING_UHS_SDR50: ctrl_2 |= SDHCI_CTRL_UHS_SDR50; break; case MMC_TIMING_UHS_SDR104: ctrl_2 |= SDHCI_CTRL_UHS_SDR104; break; case MMC_TIMING_UHS_DDR50: case MMC_TIMING_MMC_DDR52: ctrl_2 |= SDHCI_CTRL_UHS_DDR50; break; case MMC_TIMING_MMC_HS200: ctrl_2 |= SDHCI_SPRD_CTRL_HS200; break; case MMC_TIMING_MMC_HS400: ctrl_2 |= SDHCI_SPRD_CTRL_HS400; break; default: break; } sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2); if (!mmc->ios.enhanced_strobe) sdhci_writel(host, p[timing], SDHCI_SPRD_REG_32_DLL_DLY); } static void sdhci_sprd_hw_reset(struct sdhci_host *host) { int val; /* * Note: don't use sdhci_writeb() API here since it is redirected to * sdhci_sprd_writeb() in which we have a workaround for * SDHCI_SOFTWARE_RESET which would make bit SDHCI_HW_RESET_CARD can * not be cleared. */ val = readb_relaxed(host->ioaddr + SDHCI_SOFTWARE_RESET); val &= ~SDHCI_HW_RESET_CARD; writeb_relaxed(val, host->ioaddr + SDHCI_SOFTWARE_RESET); /* wait for 10 us */ usleep_range(10, 20); val |= SDHCI_HW_RESET_CARD; writeb_relaxed(val, host->ioaddr + SDHCI_SOFTWARE_RESET); usleep_range(300, 500); } static unsigned int sdhci_sprd_get_max_timeout_count(struct sdhci_host *host) { /* The Spredtrum controller actual maximum timeout count is 1 << 31 */ return 1 << 31; } static unsigned int sdhci_sprd_get_ro(struct sdhci_host *host) { return 0; } static void sdhci_sprd_request_done(struct sdhci_host *host, struct mmc_request *mrq) { /* Validate if the request was from software queue firstly. */ if (mmc_hsq_finalize_request(host->mmc, mrq)) return; mmc_request_done(host->mmc, mrq); } static void sdhci_sprd_set_power(struct sdhci_host *host, unsigned char mode, unsigned short vdd) { struct mmc_host *mmc = host->mmc; switch (mode) { case MMC_POWER_OFF: mmc_regulator_set_ocr(host->mmc, mmc->supply.vmmc, 0); mmc_regulator_disable_vqmmc(mmc); break; case MMC_POWER_ON: mmc_regulator_enable_vqmmc(mmc); break; case MMC_POWER_UP: mmc_regulator_set_ocr(host->mmc, mmc->supply.vmmc, vdd); break; } } static const struct sdhci_ops sdhci_sprd_ops = { .read_l = sdhci_sprd_readl, .write_l = sdhci_sprd_writel, .write_w = sdhci_sprd_writew, .write_b = sdhci_sprd_writeb, .set_clock = sdhci_sprd_set_clock, .set_power = sdhci_sprd_set_power, .get_max_clock = sdhci_sprd_get_max_clock, .get_min_clock = sdhci_sprd_get_min_clock, .set_bus_width = sdhci_set_bus_width, .reset = sdhci_reset, .set_uhs_signaling = sdhci_sprd_set_uhs_signaling, .hw_reset = sdhci_sprd_hw_reset, .get_max_timeout_count = sdhci_sprd_get_max_timeout_count, .get_ro = sdhci_sprd_get_ro, .request_done = sdhci_sprd_request_done, }; static void sdhci_sprd_check_auto_cmd23(struct mmc_host *mmc, struct mmc_request *mrq) { struct sdhci_host *host = mmc_priv(mmc); struct sdhci_sprd_host *sprd_host = TO_SPRD_HOST(host); host->flags |= sprd_host->flags & SDHCI_AUTO_CMD23; /* * From version 4.10 onward, ARGUMENT2 register is also as 32-bit * block count register which doesn't support stuff bits of * CMD23 argument on Spreadtrum's sd host controller. */ if (host->version >= SDHCI_SPEC_410 && mrq->sbc && (mrq->sbc->arg & SDHCI_SPRD_ARG2_STUFF) && (host->flags & SDHCI_AUTO_CMD23)) host->flags &= ~SDHCI_AUTO_CMD23; } static void sdhci_sprd_request(struct mmc_host *mmc, struct mmc_request *mrq) { sdhci_sprd_check_auto_cmd23(mmc, mrq); sdhci_request(mmc, mrq); } static int sdhci_sprd_request_atomic(struct mmc_host *mmc, struct mmc_request *mrq) { sdhci_sprd_check_auto_cmd23(mmc, mrq); return sdhci_request_atomic(mmc, mrq); } static int sdhci_sprd_voltage_switch(struct mmc_host *mmc, struct mmc_ios *ios) { struct sdhci_host *host = mmc_priv(mmc); struct sdhci_sprd_host *sprd_host = TO_SPRD_HOST(host); int ret; if (!IS_ERR(mmc->supply.vqmmc)) { ret = mmc_regulator_set_vqmmc(mmc, ios); if (ret < 0) { pr_err("%s: Switching signalling voltage failed\n", mmc_hostname(mmc)); return ret; } } if (IS_ERR(sprd_host->pinctrl)) goto reset; switch (ios->signal_voltage) { case MMC_SIGNAL_VOLTAGE_180: ret = pinctrl_select_state(sprd_host->pinctrl, sprd_host->pins_uhs); if (ret) { pr_err("%s: failed to select uhs pin state\n", mmc_hostname(mmc)); return ret; } break; default: fallthrough; case MMC_SIGNAL_VOLTAGE_330: ret = pinctrl_select_state(sprd_host->pinctrl, sprd_host->pins_default); if (ret) { pr_err("%s: failed to select default pin state\n", mmc_hostname(mmc)); return ret; } break; } /* Wait for 300 ~ 500 us for pin state stable */ usleep_range(300, 500); reset: sdhci_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA); return 0; } static void sdhci_sprd_hs400_enhanced_strobe(struct mmc_host *mmc, struct mmc_ios *ios) { struct sdhci_host *host = mmc_priv(mmc); struct sdhci_sprd_host *sprd_host = TO_SPRD_HOST(host); u32 *p = sprd_host->phy_delay; u16 ctrl_2; if (!ios->enhanced_strobe) return; sdhci_sprd_sd_clk_off(host); /* Set HS400 enhanced strobe mode */ ctrl_2 = sdhci_readw(host, SDHCI_HOST_CONTROL2); ctrl_2 &= ~SDHCI_CTRL_UHS_MASK; ctrl_2 |= SDHCI_SPRD_CTRL_HS400ES; sdhci_writew(host, ctrl_2, SDHCI_HOST_CONTROL2); sdhci_sprd_sd_clk_on(host); /* Set the PHY DLL delay value for HS400 enhanced strobe mode */ sdhci_writel(host, p[MMC_TIMING_MMC_HS400 + 1], SDHCI_SPRD_REG_32_DLL_DLY); } static int mmc_send_tuning_cmd(struct mmc_card *card) { return mmc_send_status(card, NULL); } static int mmc_send_tuning_data(struct mmc_card *card) { u8 *status; int ret; status = kmalloc(64, GFP_KERNEL); if (!status) return -ENOMEM; ret = mmc_sd_switch(card, 0, 0, 0, status); kfree(status); return ret; } static int sdhci_sprd_get_best_clk_sample(struct mmc_host *mmc, u8 *value) { int range_end = SDHCI_SPRD_MAX_RANGE; int range_length = 0; int middle_range = 0; int count = 0; int i; for (i = 0; i <= SDHCI_SPRD_MAX_RANGE; i++) { if (value[i]) { pr_debug("%s: tuning ok: %d\n", mmc_hostname(mmc), i); count++; } else { pr_debug("%s: tuning fail: %d\n", mmc_hostname(mmc), i); if (range_length < count) { range_length = count; range_end = i - 1; count = 0; } } } if (!count) return -EIO; if (count > range_length) { range_length = count; range_end = i - 1; } middle_range = range_end - (range_length - 1) / 2; return middle_range; } static int sdhci_sprd_tuning(struct mmc_host *mmc, struct mmc_card *card, enum sdhci_sprd_tuning_type type) { struct sdhci_host *host = mmc_priv(mmc); struct sdhci_sprd_host *sprd_host = TO_SPRD_HOST(host); u32 *p = sprd_host->phy_delay; u32 dll_cfg, dll_dly; int best_clk_sample; int err = 0; u8 *value; int i; value = kmalloc(SDHCI_SPRD_MAX_RANGE + 1, GFP_KERNEL); if (!value) return -ENOMEM; sdhci_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA); dll_cfg = sdhci_readl(host, SDHCI_SPRD_REG_32_DLL_CFG); dll_cfg &= ~SDHCI_SPRD_CPST_EN; sdhci_writel(host, dll_cfg, SDHCI_SPRD_REG_32_DLL_CFG); dll_dly = p[mmc->ios.timing]; for (i = 0; i <= SDHCI_SPRD_MAX_RANGE; i++) { if (type == SDHCI_SPRD_TUNING_SD_HS_CMD) { dll_dly &= ~SDHCI_SPRD_CMD_DLY_MASK; dll_dly |= ((i << 8) & SDHCI_SPRD_CMD_DLY_MASK); } else { dll_dly &= ~SDHCI_SPRD_POSRD_DLY_MASK; dll_dly |= ((i << 16) & SDHCI_SPRD_POSRD_DLY_MASK); } sdhci_writel(host, dll_dly, SDHCI_SPRD_REG_32_DLL_DLY); if (type == SDHCI_SPRD_TUNING_SD_HS_CMD) value[i] = !mmc_send_tuning_cmd(card); else value[i] = !mmc_send_tuning_data(card); } best_clk_sample = sdhci_sprd_get_best_clk_sample(mmc, value); if (best_clk_sample < 0) { dev_err(mmc_dev(host->mmc), "all tuning phase fail!\n"); err = best_clk_sample; goto out; } if (type == SDHCI_SPRD_TUNING_SD_HS_CMD) { p[mmc->ios.timing] &= ~SDHCI_SPRD_CMD_DLY_MASK; p[mmc->ios.timing] |= ((best_clk_sample << 8) & SDHCI_SPRD_CMD_DLY_MASK); } else { p[mmc->ios.timing] &= ~(SDHCI_SPRD_POSRD_DLY_MASK); p[mmc->ios.timing] |= ((best_clk_sample << 16) & SDHCI_SPRD_POSRD_DLY_MASK); } pr_debug("%s: the best clk sample %d, delay value 0x%08x\n", mmc_hostname(host->mmc), best_clk_sample, p[mmc->ios.timing]); out: sdhci_writel(host, p[mmc->ios.timing], SDHCI_SPRD_REG_32_DLL_DLY); kfree(value); return err; } static int sdhci_sprd_prepare_sd_hs_cmd_tuning(struct mmc_host *mmc, struct mmc_card *card) { return sdhci_sprd_tuning(mmc, card, SDHCI_SPRD_TUNING_SD_HS_CMD); } static int sdhci_sprd_execute_sd_hs_data_tuning(struct mmc_host *mmc, struct mmc_card *card) { return sdhci_sprd_tuning(mmc, card, SDHCI_SPRD_TUNING_SD_HS_DATA); } static void sdhci_sprd_phy_param_parse(struct sdhci_sprd_host *sprd_host, struct device_node *np) { u32 *p = sprd_host->phy_delay; int ret, i, index; u32 val[4]; for (i = 0; i < ARRAY_SIZE(sdhci_sprd_phy_cfgs); i++) { ret = of_property_read_u32_array(np, sdhci_sprd_phy_cfgs[i].property, val, 4); if (ret) continue; index = sdhci_sprd_phy_cfgs[i].timing; p[index] = val[0] | (val[1] << 8) | (val[2] << 16) | (val[3] << 24); } } static const struct sdhci_pltfm_data sdhci_sprd_pdata = { .quirks = SDHCI_QUIRK_BROKEN_CARD_DETECTION | SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK, .quirks2 = SDHCI_QUIRK2_BROKEN_HS200 | SDHCI_QUIRK2_USE_32BIT_BLK_CNT | SDHCI_QUIRK2_PRESET_VALUE_BROKEN, .ops = &sdhci_sprd_ops, }; static int sdhci_sprd_probe(struct platform_device *pdev) { struct sdhci_host *host; struct sdhci_sprd_host *sprd_host; struct mmc_hsq *hsq; struct clk *clk; int ret = 0; host = sdhci_pltfm_init(pdev, &sdhci_sprd_pdata, sizeof(*sprd_host)); if (IS_ERR(host)) return PTR_ERR(host); host->dma_mask = DMA_BIT_MASK(64); pdev->dev.dma_mask = &host->dma_mask; host->mmc_host_ops.request = sdhci_sprd_request; host->mmc_host_ops.hs400_enhanced_strobe = sdhci_sprd_hs400_enhanced_strobe; host->mmc_host_ops.prepare_sd_hs_tuning = sdhci_sprd_prepare_sd_hs_cmd_tuning; host->mmc_host_ops.execute_sd_hs_tuning = sdhci_sprd_execute_sd_hs_data_tuning; /* * We can not use the standard ops to change and detect the voltage * signal for Spreadtrum SD host controller, since our voltage regulator * for I/O is fixed in hardware, that means we do not need control * the standard SD host controller to change the I/O voltage. */ host->mmc_host_ops.start_signal_voltage_switch = sdhci_sprd_voltage_switch; host->mmc->caps = MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY; ret = mmc_of_parse(host->mmc); if (ret) goto pltfm_free; if (!mmc_card_is_removable(host->mmc)) host->mmc_host_ops.request_atomic = sdhci_sprd_request_atomic; else host->always_defer_done = true; sprd_host = TO_SPRD_HOST(host); sdhci_sprd_phy_param_parse(sprd_host, pdev->dev.of_node); sprd_host->pinctrl = devm_pinctrl_get(&pdev->dev); if (!IS_ERR(sprd_host->pinctrl)) { sprd_host->pins_uhs = pinctrl_lookup_state(sprd_host->pinctrl, "state_uhs"); if (IS_ERR(sprd_host->pins_uhs)) { ret = PTR_ERR(sprd_host->pins_uhs); goto pltfm_free; } sprd_host->pins_default = pinctrl_lookup_state(sprd_host->pinctrl, "default"); if (IS_ERR(sprd_host->pins_default)) { ret = PTR_ERR(sprd_host->pins_default); goto pltfm_free; } } clk = devm_clk_get(&pdev->dev, "sdio"); if (IS_ERR(clk)) { ret = PTR_ERR(clk); goto pltfm_free; } sprd_host->clk_sdio = clk; sprd_host->base_rate = clk_get_rate(sprd_host->clk_sdio); if (!sprd_host->base_rate) sprd_host->base_rate = SDHCI_SPRD_CLK_DEF_RATE; clk = devm_clk_get(&pdev->dev, "enable"); if (IS_ERR(clk)) { ret = PTR_ERR(clk); goto pltfm_free; } sprd_host->clk_enable = clk; clk = devm_clk_get(&pdev->dev, "2x_enable"); if (!IS_ERR(clk)) sprd_host->clk_2x_enable = clk; ret = clk_prepare_enable(sprd_host->clk_sdio); if (ret) goto pltfm_free; ret = clk_prepare_enable(sprd_host->clk_enable); if (ret) goto clk_disable; ret = clk_prepare_enable(sprd_host->clk_2x_enable); if (ret) goto clk_disable2; sdhci_sprd_init_config(host); host->version = sdhci_readw(host, SDHCI_HOST_VERSION); sprd_host->version = ((host->version & SDHCI_VENDOR_VER_MASK) >> SDHCI_VENDOR_VER_SHIFT); pm_runtime_get_noresume(&pdev->dev); pm_runtime_set_active(&pdev->dev); pm_runtime_enable(&pdev->dev); pm_runtime_set_autosuspend_delay(&pdev->dev, 50); pm_runtime_use_autosuspend(&pdev->dev); pm_suspend_ignore_children(&pdev->dev, 1); sdhci_enable_v4_mode(host); /* * Supply the existing CAPS, but clear the UHS-I modes. This * will allow these modes to be specified only by device * tree properties through mmc_of_parse(). */ sdhci_read_caps(host); host->caps1 &= ~(SDHCI_SUPPORT_SDR50 | SDHCI_SUPPORT_SDR104 | SDHCI_SUPPORT_DDR50); ret = mmc_regulator_get_supply(host->mmc); if (ret) goto pm_runtime_disable; ret = sdhci_setup_host(host); if (ret) goto pm_runtime_disable; sprd_host->flags = host->flags; hsq = devm_kzalloc(&pdev->dev, sizeof(*hsq), GFP_KERNEL); if (!hsq) { ret = -ENOMEM; goto err_cleanup_host; } ret = mmc_hsq_init(hsq, host->mmc); if (ret) goto err_cleanup_host; ret = __sdhci_add_host(host); if (ret) goto err_cleanup_host; pm_runtime_mark_last_busy(&pdev->dev); pm_runtime_put_autosuspend(&pdev->dev); return 0; err_cleanup_host: sdhci_cleanup_host(host); pm_runtime_disable: pm_runtime_put_noidle(&pdev->dev); pm_runtime_disable(&pdev->dev); pm_runtime_set_suspended(&pdev->dev); clk_disable_unprepare(sprd_host->clk_2x_enable); clk_disable2: clk_disable_unprepare(sprd_host->clk_enable); clk_disable: clk_disable_unprepare(sprd_host->clk_sdio); pltfm_free: sdhci_pltfm_free(pdev); return ret; } static void sdhci_sprd_remove(struct platform_device *pdev) { struct sdhci_host *host = platform_get_drvdata(pdev); struct sdhci_sprd_host *sprd_host = TO_SPRD_HOST(host); sdhci_remove_host(host, 0); clk_disable_unprepare(sprd_host->clk_sdio); clk_disable_unprepare(sprd_host->clk_enable); clk_disable_unprepare(sprd_host->clk_2x_enable); sdhci_pltfm_free(pdev); } static const struct of_device_id sdhci_sprd_of_match[] = { { .compatible = "sprd,sdhci-r11", }, { } }; MODULE_DEVICE_TABLE(of, sdhci_sprd_of_match); #ifdef CONFIG_PM static int sdhci_sprd_runtime_suspend(struct device *dev) { struct sdhci_host *host = dev_get_drvdata(dev); struct sdhci_sprd_host *sprd_host = TO_SPRD_HOST(host); mmc_hsq_suspend(host->mmc); sdhci_runtime_suspend_host(host); clk_disable_unprepare(sprd_host->clk_sdio); clk_disable_unprepare(sprd_host->clk_enable); clk_disable_unprepare(sprd_host->clk_2x_enable); return 0; } static int sdhci_sprd_runtime_resume(struct device *dev) { struct sdhci_host *host = dev_get_drvdata(dev); struct sdhci_sprd_host *sprd_host = TO_SPRD_HOST(host); int ret; ret = clk_prepare_enable(sprd_host->clk_2x_enable); if (ret) return ret; ret = clk_prepare_enable(sprd_host->clk_enable); if (ret) goto clk_2x_disable; ret = clk_prepare_enable(sprd_host->clk_sdio); if (ret) goto clk_disable; sdhci_runtime_resume_host(host, 1); mmc_hsq_resume(host->mmc); return 0; clk_disable: clk_disable_unprepare(sprd_host->clk_enable); clk_2x_disable: clk_disable_unprepare(sprd_host->clk_2x_enable); return ret; } #endif static const struct dev_pm_ops sdhci_sprd_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(pm_runtime_force_suspend, pm_runtime_force_resume) SET_RUNTIME_PM_OPS(sdhci_sprd_runtime_suspend, sdhci_sprd_runtime_resume, NULL) }; static struct platform_driver sdhci_sprd_driver = { .probe = sdhci_sprd_probe, .remove_new = sdhci_sprd_remove, .driver = { .name = "sdhci_sprd_r11", .probe_type = PROBE_PREFER_ASYNCHRONOUS, .of_match_table = sdhci_sprd_of_match, .pm = &sdhci_sprd_pm_ops, }, }; module_platform_driver(sdhci_sprd_driver); MODULE_DESCRIPTION("Spreadtrum sdio host controller r11 driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:sdhci-sprd-r11");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1