Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Guennadi Liakhovetski | 3059 | 41.62% | 37 | 33.33% |
Yusuke Goda | 2403 | 32.69% | 1 | 0.90% |
Kuninori Morimoto | 592 | 8.05% | 7 | 6.31% |
Linus Walleij | 341 | 4.64% | 6 | 5.41% |
Teppei Kamijou | 250 | 3.40% | 5 | 4.50% |
Arnd Bergmann | 145 | 1.97% | 1 | 0.90% |
Ulf Hansson | 143 | 1.95% | 13 | 11.71% |
Magnus Damm | 81 | 1.10% | 1 | 0.90% |
Kouichi Tomita | 75 | 1.02% | 2 | 1.80% |
Laurent Pinchart | 71 | 0.97% | 3 | 2.70% |
Shinya Kuribayashi | 36 | 0.49% | 1 | 0.90% |
Ben Dooks | 34 | 0.46% | 6 | 5.41% |
Koji Matsuoka | 15 | 0.20% | 1 | 0.90% |
Arnd Hannemann | 15 | 0.20% | 1 | 0.90% |
Simon Baatz | 11 | 0.15% | 1 | 0.90% |
Rafael J. Wysocki | 11 | 0.15% | 1 | 0.90% |
Jiasheng Jiang | 9 | 0.12% | 1 | 0.90% |
Peter Ujfalusi | 8 | 0.11% | 1 | 0.90% |
Wolfram Sang | 8 | 0.11% | 3 | 2.70% |
Geert Uytterhoeven | 7 | 0.10% | 3 | 2.70% |
Simon Horman | 6 | 0.08% | 1 | 0.90% |
Doug Anderson | 5 | 0.07% | 1 | 0.90% |
Sergey Shtylyov | 4 | 0.05% | 1 | 0.90% |
Yangtao Li | 4 | 0.05% | 2 | 1.80% |
Paul Gortmaker | 3 | 0.04% | 1 | 0.90% |
Vinod Koul | 2 | 0.03% | 1 | 0.90% |
Seungwon Jeon | 2 | 0.03% | 1 | 0.90% |
Axel Lin | 2 | 0.03% | 1 | 0.90% |
Alex Bounine | 2 | 0.03% | 1 | 0.90% |
Chris Paterson | 1 | 0.01% | 1 | 0.90% |
Geliang Tang | 1 | 0.01% | 1 | 0.90% |
Martin K. Petersen | 1 | 0.01% | 1 | 0.90% |
Takeshi Kihara | 1 | 0.01% | 1 | 0.90% |
Julia Lawall | 1 | 0.01% | 1 | 0.90% |
Kirill A. Shutemov | 1 | 0.01% | 1 | 0.90% |
Total | 7350 | 111 |
// SPDX-License-Identifier: GPL-2.0 /* * MMCIF eMMC driver. * * Copyright (C) 2010 Renesas Solutions Corp. * Yusuke Goda <yusuke.goda.sx@renesas.com> */ /* * The MMCIF driver is now processing MMC requests asynchronously, according * to the Linux MMC API requirement. * * The MMCIF driver processes MMC requests in up to 3 stages: command, optional * data, and optional stop. To achieve asynchronous processing each of these * stages is split into two halves: a top and a bottom half. The top half * initialises the hardware, installs a timeout handler to handle completion * timeouts, and returns. In case of the command stage this immediately returns * control to the caller, leaving all further processing to run asynchronously. * All further request processing is performed by the bottom halves. * * The bottom half further consists of a "hard" IRQ handler, an IRQ handler * thread, a DMA completion callback, if DMA is used, a timeout work, and * request- and stage-specific handler methods. * * Each bottom half run begins with either a hardware interrupt, a DMA callback * invocation, or a timeout work run. In case of an error or a successful * processing completion, the MMC core is informed and the request processing is * finished. In case processing has to continue, i.e., if data has to be read * from or written to the card, or if a stop command has to be sent, the next * top half is called, which performs the necessary hardware handling and * reschedules the timeout work. This returns the driver state machine into the * bottom half waiting state. */ #include <linux/bitops.h> #include <linux/clk.h> #include <linux/completion.h> #include <linux/delay.h> #include <linux/dma-mapping.h> #include <linux/dmaengine.h> #include <linux/mmc/card.h> #include <linux/mmc/core.h> #include <linux/mmc/host.h> #include <linux/mmc/mmc.h> #include <linux/mmc/sdio.h> #include <linux/mmc/slot-gpio.h> #include <linux/mod_devicetable.h> #include <linux/mutex.h> #include <linux/pagemap.h> #include <linux/platform_data/sh_mmcif.h> #include <linux/platform_device.h> #include <linux/pm_qos.h> #include <linux/pm_runtime.h> #include <linux/sh_dma.h> #include <linux/spinlock.h> #include <linux/module.h> #define DRIVER_NAME "sh_mmcif" /* CE_CMD_SET */ #define CMD_MASK 0x3f000000 #define CMD_SET_RTYP_NO ((0 << 23) | (0 << 22)) #define CMD_SET_RTYP_6B ((0 << 23) | (1 << 22)) /* R1/R1b/R3/R4/R5 */ #define CMD_SET_RTYP_17B ((1 << 23) | (0 << 22)) /* R2 */ #define CMD_SET_RBSY (1 << 21) /* R1b */ #define CMD_SET_CCSEN (1 << 20) #define CMD_SET_WDAT (1 << 19) /* 1: on data, 0: no data */ #define CMD_SET_DWEN (1 << 18) /* 1: write, 0: read */ #define CMD_SET_CMLTE (1 << 17) /* 1: multi block trans, 0: single */ #define CMD_SET_CMD12EN (1 << 16) /* 1: CMD12 auto issue */ #define CMD_SET_RIDXC_INDEX ((0 << 15) | (0 << 14)) /* index check */ #define CMD_SET_RIDXC_BITS ((0 << 15) | (1 << 14)) /* check bits check */ #define CMD_SET_RIDXC_NO ((1 << 15) | (0 << 14)) /* no check */ #define CMD_SET_CRC7C ((0 << 13) | (0 << 12)) /* CRC7 check*/ #define CMD_SET_CRC7C_BITS ((0 << 13) | (1 << 12)) /* check bits check*/ #define CMD_SET_CRC7C_INTERNAL ((1 << 13) | (0 << 12)) /* internal CRC7 check*/ #define CMD_SET_CRC16C (1 << 10) /* 0: CRC16 check*/ #define CMD_SET_CRCSTE (1 << 8) /* 1: not receive CRC status */ #define CMD_SET_TBIT (1 << 7) /* 1: tran mission bit "Low" */ #define CMD_SET_OPDM (1 << 6) /* 1: open/drain */ #define CMD_SET_CCSH (1 << 5) #define CMD_SET_DARS (1 << 2) /* Dual Data Rate */ #define CMD_SET_DATW_1 ((0 << 1) | (0 << 0)) /* 1bit */ #define CMD_SET_DATW_4 ((0 << 1) | (1 << 0)) /* 4bit */ #define CMD_SET_DATW_8 ((1 << 1) | (0 << 0)) /* 8bit */ /* CE_CMD_CTRL */ #define CMD_CTRL_BREAK (1 << 0) /* CE_BLOCK_SET */ #define BLOCK_SIZE_MASK 0x0000ffff /* CE_INT */ #define INT_CCSDE (1 << 29) #define INT_CMD12DRE (1 << 26) #define INT_CMD12RBE (1 << 25) #define INT_CMD12CRE (1 << 24) #define INT_DTRANE (1 << 23) #define INT_BUFRE (1 << 22) #define INT_BUFWEN (1 << 21) #define INT_BUFREN (1 << 20) #define INT_CCSRCV (1 << 19) #define INT_RBSYE (1 << 17) #define INT_CRSPE (1 << 16) #define INT_CMDVIO (1 << 15) #define INT_BUFVIO (1 << 14) #define INT_WDATERR (1 << 11) #define INT_RDATERR (1 << 10) #define INT_RIDXERR (1 << 9) #define INT_RSPERR (1 << 8) #define INT_CCSTO (1 << 5) #define INT_CRCSTO (1 << 4) #define INT_WDATTO (1 << 3) #define INT_RDATTO (1 << 2) #define INT_RBSYTO (1 << 1) #define INT_RSPTO (1 << 0) #define INT_ERR_STS (INT_CMDVIO | INT_BUFVIO | INT_WDATERR | \ INT_RDATERR | INT_RIDXERR | INT_RSPERR | \ INT_CCSTO | INT_CRCSTO | INT_WDATTO | \ INT_RDATTO | INT_RBSYTO | INT_RSPTO) #define INT_ALL (INT_RBSYE | INT_CRSPE | INT_BUFREN | \ INT_BUFWEN | INT_CMD12DRE | INT_BUFRE | \ INT_DTRANE | INT_CMD12RBE | INT_CMD12CRE) #define INT_CCS (INT_CCSTO | INT_CCSRCV | INT_CCSDE) /* CE_INT_MASK */ #define MASK_ALL 0x00000000 #define MASK_MCCSDE (1 << 29) #define MASK_MCMD12DRE (1 << 26) #define MASK_MCMD12RBE (1 << 25) #define MASK_MCMD12CRE (1 << 24) #define MASK_MDTRANE (1 << 23) #define MASK_MBUFRE (1 << 22) #define MASK_MBUFWEN (1 << 21) #define MASK_MBUFREN (1 << 20) #define MASK_MCCSRCV (1 << 19) #define MASK_MRBSYE (1 << 17) #define MASK_MCRSPE (1 << 16) #define MASK_MCMDVIO (1 << 15) #define MASK_MBUFVIO (1 << 14) #define MASK_MWDATERR (1 << 11) #define MASK_MRDATERR (1 << 10) #define MASK_MRIDXERR (1 << 9) #define MASK_MRSPERR (1 << 8) #define MASK_MCCSTO (1 << 5) #define MASK_MCRCSTO (1 << 4) #define MASK_MWDATTO (1 << 3) #define MASK_MRDATTO (1 << 2) #define MASK_MRBSYTO (1 << 1) #define MASK_MRSPTO (1 << 0) #define MASK_START_CMD (MASK_MCMDVIO | MASK_MBUFVIO | MASK_MWDATERR | \ MASK_MRDATERR | MASK_MRIDXERR | MASK_MRSPERR | \ MASK_MCRCSTO | MASK_MWDATTO | \ MASK_MRDATTO | MASK_MRBSYTO | MASK_MRSPTO) #define MASK_CLEAN (INT_ERR_STS | MASK_MRBSYE | MASK_MCRSPE | \ MASK_MBUFREN | MASK_MBUFWEN | \ MASK_MCMD12DRE | MASK_MBUFRE | MASK_MDTRANE | \ MASK_MCMD12RBE | MASK_MCMD12CRE) /* CE_HOST_STS1 */ #define STS1_CMDSEQ (1 << 31) /* CE_HOST_STS2 */ #define STS2_CRCSTE (1 << 31) #define STS2_CRC16E (1 << 30) #define STS2_AC12CRCE (1 << 29) #define STS2_RSPCRC7E (1 << 28) #define STS2_CRCSTEBE (1 << 27) #define STS2_RDATEBE (1 << 26) #define STS2_AC12REBE (1 << 25) #define STS2_RSPEBE (1 << 24) #define STS2_AC12IDXE (1 << 23) #define STS2_RSPIDXE (1 << 22) #define STS2_CCSTO (1 << 15) #define STS2_RDATTO (1 << 14) #define STS2_DATBSYTO (1 << 13) #define STS2_CRCSTTO (1 << 12) #define STS2_AC12BSYTO (1 << 11) #define STS2_RSPBSYTO (1 << 10) #define STS2_AC12RSPTO (1 << 9) #define STS2_RSPTO (1 << 8) #define STS2_CRC_ERR (STS2_CRCSTE | STS2_CRC16E | \ STS2_AC12CRCE | STS2_RSPCRC7E | STS2_CRCSTEBE) #define STS2_TIMEOUT_ERR (STS2_CCSTO | STS2_RDATTO | \ STS2_DATBSYTO | STS2_CRCSTTO | \ STS2_AC12BSYTO | STS2_RSPBSYTO | \ STS2_AC12RSPTO | STS2_RSPTO) #define CLKDEV_EMMC_DATA 52000000 /* 52 MHz */ #define CLKDEV_MMC_DATA 20000000 /* 20 MHz */ #define CLKDEV_INIT 400000 /* 400 kHz */ enum sh_mmcif_state { STATE_IDLE, STATE_REQUEST, STATE_IOS, STATE_TIMEOUT, }; enum sh_mmcif_wait_for { MMCIF_WAIT_FOR_REQUEST, MMCIF_WAIT_FOR_CMD, MMCIF_WAIT_FOR_MREAD, MMCIF_WAIT_FOR_MWRITE, MMCIF_WAIT_FOR_READ, MMCIF_WAIT_FOR_WRITE, MMCIF_WAIT_FOR_READ_END, MMCIF_WAIT_FOR_WRITE_END, MMCIF_WAIT_FOR_STOP, }; /* * difference for each SoC */ struct sh_mmcif_host { struct mmc_host *mmc; struct mmc_request *mrq; struct platform_device *pd; struct clk *clk; int bus_width; unsigned char timing; bool sd_error; bool dying; long timeout; void __iomem *addr; spinlock_t lock; /* protect sh_mmcif_host::state */ enum sh_mmcif_state state; enum sh_mmcif_wait_for wait_for; struct delayed_work timeout_work; size_t blocksize; struct sg_mapping_iter sg_miter; bool power; bool ccs_enable; /* Command Completion Signal support */ bool clk_ctrl2_enable; struct mutex thread_lock; u32 clkdiv_map; /* see CE_CLK_CTRL::CLKDIV */ /* DMA support */ struct dma_chan *chan_rx; struct dma_chan *chan_tx; struct completion dma_complete; bool dma_active; }; static const struct of_device_id sh_mmcif_of_match[] = { { .compatible = "renesas,sh-mmcif" }, { } }; MODULE_DEVICE_TABLE(of, sh_mmcif_of_match); #define sh_mmcif_host_to_dev(host) (&host->pd->dev) static inline void sh_mmcif_bitset(struct sh_mmcif_host *host, unsigned int reg, u32 val) { writel(val | readl(host->addr + reg), host->addr + reg); } static inline void sh_mmcif_bitclr(struct sh_mmcif_host *host, unsigned int reg, u32 val) { writel(~val & readl(host->addr + reg), host->addr + reg); } static void sh_mmcif_dma_complete(void *arg) { struct sh_mmcif_host *host = arg; struct mmc_request *mrq = host->mrq; struct device *dev = sh_mmcif_host_to_dev(host); dev_dbg(dev, "Command completed\n"); if (WARN(!mrq || !mrq->data, "%s: NULL data in DMA completion!\n", dev_name(dev))) return; complete(&host->dma_complete); } static void sh_mmcif_start_dma_rx(struct sh_mmcif_host *host) { struct mmc_data *data = host->mrq->data; struct scatterlist *sg = data->sg; struct dma_async_tx_descriptor *desc = NULL; struct dma_chan *chan = host->chan_rx; struct device *dev = sh_mmcif_host_to_dev(host); dma_cookie_t cookie = -EINVAL; int ret; ret = dma_map_sg(chan->device->dev, sg, data->sg_len, DMA_FROM_DEVICE); if (ret > 0) { host->dma_active = true; desc = dmaengine_prep_slave_sg(chan, sg, ret, DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); } if (desc) { desc->callback = sh_mmcif_dma_complete; desc->callback_param = host; cookie = dmaengine_submit(desc); sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN); dma_async_issue_pending(chan); } dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n", __func__, data->sg_len, ret, cookie); if (!desc) { /* DMA failed, fall back to PIO */ if (ret >= 0) ret = -EIO; host->chan_rx = NULL; host->dma_active = false; dma_release_channel(chan); /* Free the Tx channel too */ chan = host->chan_tx; if (chan) { host->chan_tx = NULL; dma_release_channel(chan); } dev_warn(dev, "DMA failed: %d, falling back to PIO\n", ret); sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN); } dev_dbg(dev, "%s(): desc %p, cookie %d, sg[%d]\n", __func__, desc, cookie, data->sg_len); } static void sh_mmcif_start_dma_tx(struct sh_mmcif_host *host) { struct mmc_data *data = host->mrq->data; struct scatterlist *sg = data->sg; struct dma_async_tx_descriptor *desc = NULL; struct dma_chan *chan = host->chan_tx; struct device *dev = sh_mmcif_host_to_dev(host); dma_cookie_t cookie = -EINVAL; int ret; ret = dma_map_sg(chan->device->dev, sg, data->sg_len, DMA_TO_DEVICE); if (ret > 0) { host->dma_active = true; desc = dmaengine_prep_slave_sg(chan, sg, ret, DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); } if (desc) { desc->callback = sh_mmcif_dma_complete; desc->callback_param = host; cookie = dmaengine_submit(desc); sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAWEN); dma_async_issue_pending(chan); } dev_dbg(dev, "%s(): mapped %d -> %d, cookie %d\n", __func__, data->sg_len, ret, cookie); if (!desc) { /* DMA failed, fall back to PIO */ if (ret >= 0) ret = -EIO; host->chan_tx = NULL; host->dma_active = false; dma_release_channel(chan); /* Free the Rx channel too */ chan = host->chan_rx; if (chan) { host->chan_rx = NULL; dma_release_channel(chan); } dev_warn(dev, "DMA failed: %d, falling back to PIO\n", ret); sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN); } dev_dbg(dev, "%s(): desc %p, cookie %d\n", __func__, desc, cookie); } static struct dma_chan * sh_mmcif_request_dma_pdata(struct sh_mmcif_host *host, uintptr_t slave_id) { dma_cap_mask_t mask; dma_cap_zero(mask); dma_cap_set(DMA_SLAVE, mask); if (slave_id <= 0) return NULL; return dma_request_channel(mask, shdma_chan_filter, (void *)slave_id); } static int sh_mmcif_dma_slave_config(struct sh_mmcif_host *host, struct dma_chan *chan, enum dma_transfer_direction direction) { struct resource *res; struct dma_slave_config cfg = { 0, }; res = platform_get_resource(host->pd, IORESOURCE_MEM, 0); if (!res) return -EINVAL; cfg.direction = direction; if (direction == DMA_DEV_TO_MEM) { cfg.src_addr = res->start + MMCIF_CE_DATA; cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; } else { cfg.dst_addr = res->start + MMCIF_CE_DATA; cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; } return dmaengine_slave_config(chan, &cfg); } static void sh_mmcif_request_dma(struct sh_mmcif_host *host) { struct device *dev = sh_mmcif_host_to_dev(host); host->dma_active = false; /* We can only either use DMA for both Tx and Rx or not use it at all */ if (IS_ENABLED(CONFIG_SUPERH) && dev->platform_data) { struct sh_mmcif_plat_data *pdata = dev->platform_data; host->chan_tx = sh_mmcif_request_dma_pdata(host, pdata->slave_id_tx); host->chan_rx = sh_mmcif_request_dma_pdata(host, pdata->slave_id_rx); } else { host->chan_tx = dma_request_chan(dev, "tx"); if (IS_ERR(host->chan_tx)) host->chan_tx = NULL; host->chan_rx = dma_request_chan(dev, "rx"); if (IS_ERR(host->chan_rx)) host->chan_rx = NULL; } dev_dbg(dev, "%s: got channel TX %p RX %p\n", __func__, host->chan_tx, host->chan_rx); if (!host->chan_tx || !host->chan_rx || sh_mmcif_dma_slave_config(host, host->chan_tx, DMA_MEM_TO_DEV) || sh_mmcif_dma_slave_config(host, host->chan_rx, DMA_DEV_TO_MEM)) goto error; return; error: if (host->chan_tx) dma_release_channel(host->chan_tx); if (host->chan_rx) dma_release_channel(host->chan_rx); host->chan_tx = host->chan_rx = NULL; } static void sh_mmcif_release_dma(struct sh_mmcif_host *host) { sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN); /* Descriptors are freed automatically */ if (host->chan_tx) { struct dma_chan *chan = host->chan_tx; host->chan_tx = NULL; dma_release_channel(chan); } if (host->chan_rx) { struct dma_chan *chan = host->chan_rx; host->chan_rx = NULL; dma_release_channel(chan); } host->dma_active = false; } static void sh_mmcif_clock_control(struct sh_mmcif_host *host, unsigned int clk) { struct device *dev = sh_mmcif_host_to_dev(host); struct sh_mmcif_plat_data *p = dev->platform_data; bool sup_pclk = p ? p->sup_pclk : false; unsigned int current_clk = clk_get_rate(host->clk); unsigned int clkdiv; sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE); sh_mmcif_bitclr(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR); if (!clk) return; if (host->clkdiv_map) { unsigned int freq, best_freq, myclk, div, diff_min, diff; int i; clkdiv = 0; diff_min = ~0; best_freq = 0; for (i = 31; i >= 0; i--) { if (!((1 << i) & host->clkdiv_map)) continue; /* * clk = parent_freq / div * -> parent_freq = clk x div */ div = 1 << (i + 1); freq = clk_round_rate(host->clk, clk * div); myclk = freq / div; diff = (myclk > clk) ? myclk - clk : clk - myclk; if (diff <= diff_min) { best_freq = freq; clkdiv = i; diff_min = diff; } } dev_dbg(dev, "clk %u/%u (%u, 0x%x)\n", (best_freq >> (clkdiv + 1)), clk, best_freq, clkdiv); clk_set_rate(host->clk, best_freq); clkdiv = clkdiv << 16; } else if (sup_pclk && clk == current_clk) { clkdiv = CLK_SUP_PCLK; } else { clkdiv = (fls(DIV_ROUND_UP(current_clk, clk) - 1) - 1) << 16; } sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_CLEAR & clkdiv); sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, CLK_ENABLE); } static void sh_mmcif_sync_reset(struct sh_mmcif_host *host) { u32 tmp; tmp = 0x010f0000 & sh_mmcif_readl(host->addr, MMCIF_CE_CLK_CTRL); sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_ON); sh_mmcif_writel(host->addr, MMCIF_CE_VERSION, SOFT_RST_OFF); if (host->ccs_enable) tmp |= SCCSTO_29; if (host->clk_ctrl2_enable) sh_mmcif_writel(host->addr, MMCIF_CE_CLK_CTRL2, 0x0F0F0000); sh_mmcif_bitset(host, MMCIF_CE_CLK_CTRL, tmp | SRSPTO_256 | SRBSYTO_29 | SRWDTO_29); /* byte swap on */ sh_mmcif_bitset(host, MMCIF_CE_BUF_ACC, BUF_ACC_ATYP); } static int sh_mmcif_error_manage(struct sh_mmcif_host *host) { struct device *dev = sh_mmcif_host_to_dev(host); u32 state1, state2; int ret, timeout; host->sd_error = false; state1 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1); state2 = sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS2); dev_dbg(dev, "ERR HOST_STS1 = %08x\n", state1); dev_dbg(dev, "ERR HOST_STS2 = %08x\n", state2); if (state1 & STS1_CMDSEQ) { sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, CMD_CTRL_BREAK); sh_mmcif_bitset(host, MMCIF_CE_CMD_CTRL, ~CMD_CTRL_BREAK); for (timeout = 10000; timeout; timeout--) { if (!(sh_mmcif_readl(host->addr, MMCIF_CE_HOST_STS1) & STS1_CMDSEQ)) break; mdelay(1); } if (!timeout) { dev_err(dev, "Forced end of command sequence timeout err\n"); return -EIO; } sh_mmcif_sync_reset(host); dev_dbg(dev, "Forced end of command sequence\n"); return -EIO; } if (state2 & STS2_CRC_ERR) { dev_err(dev, " CRC error: state %u, wait %u\n", host->state, host->wait_for); ret = -EIO; } else if (state2 & STS2_TIMEOUT_ERR) { dev_err(dev, " Timeout: state %u, wait %u\n", host->state, host->wait_for); ret = -ETIMEDOUT; } else { dev_dbg(dev, " End/Index error: state %u, wait %u\n", host->state, host->wait_for); ret = -EIO; } return ret; } static void sh_mmcif_single_read(struct sh_mmcif_host *host, struct mmc_request *mrq) { struct mmc_data *data = mrq->data; host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & BLOCK_SIZE_MASK) + 3; sg_miter_start(&host->sg_miter, data->sg, data->sg_len, SG_MITER_TO_SG); host->wait_for = MMCIF_WAIT_FOR_READ; /* buf read enable */ sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN); } static bool sh_mmcif_read_block(struct sh_mmcif_host *host) { struct sg_mapping_iter *sgm = &host->sg_miter; struct device *dev = sh_mmcif_host_to_dev(host); struct mmc_data *data = host->mrq->data; u32 *p; int i; if (host->sd_error) { sg_miter_stop(sgm); data->error = sh_mmcif_error_manage(host); dev_dbg(dev, "%s(): %d\n", __func__, data->error); return false; } if (!sg_miter_next(sgm)) { /* This should not happen on single blocks */ sg_miter_stop(sgm); return false; } p = sgm->addr; for (i = 0; i < host->blocksize / 4; i++) *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA); sg_miter_stop(&host->sg_miter); /* buffer read end */ sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFRE); host->wait_for = MMCIF_WAIT_FOR_READ_END; return true; } static void sh_mmcif_multi_read(struct sh_mmcif_host *host, struct mmc_request *mrq) { struct sg_mapping_iter *sgm = &host->sg_miter; struct mmc_data *data = mrq->data; if (!data->sg_len || !data->sg->length) return; host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & BLOCK_SIZE_MASK; sg_miter_start(sgm, data->sg, data->sg_len, SG_MITER_TO_SG); /* Advance to the first sglist entry */ if (!sg_miter_next(sgm)) { sg_miter_stop(sgm); return; } host->wait_for = MMCIF_WAIT_FOR_MREAD; sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN); } static bool sh_mmcif_mread_block(struct sh_mmcif_host *host) { struct sg_mapping_iter *sgm = &host->sg_miter; struct device *dev = sh_mmcif_host_to_dev(host); struct mmc_data *data = host->mrq->data; u32 *p; int i; if (host->sd_error) { sg_miter_stop(sgm); data->error = sh_mmcif_error_manage(host); dev_dbg(dev, "%s(): %d\n", __func__, data->error); return false; } p = sgm->addr; for (i = 0; i < host->blocksize / 4; i++) *p++ = sh_mmcif_readl(host->addr, MMCIF_CE_DATA); sgm->consumed = host->blocksize; sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFREN); if (!sg_miter_next(sgm)) { sg_miter_stop(sgm); return false; } return true; } static void sh_mmcif_single_write(struct sh_mmcif_host *host, struct mmc_request *mrq) { struct mmc_data *data = mrq->data; host->blocksize = (sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & BLOCK_SIZE_MASK) + 3; sg_miter_start(&host->sg_miter, data->sg, data->sg_len, SG_MITER_FROM_SG); host->wait_for = MMCIF_WAIT_FOR_WRITE; /* buf write enable */ sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN); } static bool sh_mmcif_write_block(struct sh_mmcif_host *host) { struct sg_mapping_iter *sgm = &host->sg_miter; struct device *dev = sh_mmcif_host_to_dev(host); struct mmc_data *data = host->mrq->data; u32 *p; int i; if (host->sd_error) { sg_miter_stop(sgm); data->error = sh_mmcif_error_manage(host); dev_dbg(dev, "%s(): %d\n", __func__, data->error); return false; } if (!sg_miter_next(sgm)) { /* This should not happen on single blocks */ sg_miter_stop(sgm); return false; } p = sgm->addr; for (i = 0; i < host->blocksize / 4; i++) sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++); sg_miter_stop(&host->sg_miter); /* buffer write end */ sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MDTRANE); host->wait_for = MMCIF_WAIT_FOR_WRITE_END; return true; } static void sh_mmcif_multi_write(struct sh_mmcif_host *host, struct mmc_request *mrq) { struct sg_mapping_iter *sgm = &host->sg_miter; struct mmc_data *data = mrq->data; if (!data->sg_len || !data->sg->length) return; host->blocksize = sh_mmcif_readl(host->addr, MMCIF_CE_BLOCK_SET) & BLOCK_SIZE_MASK; sg_miter_start(sgm, data->sg, data->sg_len, SG_MITER_FROM_SG); /* Advance to the first sglist entry */ if (!sg_miter_next(sgm)) { sg_miter_stop(sgm); return; } host->wait_for = MMCIF_WAIT_FOR_MWRITE; sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN); } static bool sh_mmcif_mwrite_block(struct sh_mmcif_host *host) { struct sg_mapping_iter *sgm = &host->sg_miter; struct device *dev = sh_mmcif_host_to_dev(host); struct mmc_data *data = host->mrq->data; u32 *p; int i; if (host->sd_error) { sg_miter_stop(sgm); data->error = sh_mmcif_error_manage(host); dev_dbg(dev, "%s(): %d\n", __func__, data->error); return false; } p = sgm->addr; for (i = 0; i < host->blocksize / 4; i++) sh_mmcif_writel(host->addr, MMCIF_CE_DATA, *p++); sgm->consumed = host->blocksize; if (!sg_miter_next(sgm)) { sg_miter_stop(sgm); return false; } sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MBUFWEN); return true; } static void sh_mmcif_get_response(struct sh_mmcif_host *host, struct mmc_command *cmd) { if (cmd->flags & MMC_RSP_136) { cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP3); cmd->resp[1] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP2); cmd->resp[2] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP1); cmd->resp[3] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0); } else cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP0); } static void sh_mmcif_get_cmd12response(struct sh_mmcif_host *host, struct mmc_command *cmd) { cmd->resp[0] = sh_mmcif_readl(host->addr, MMCIF_CE_RESP_CMD12); } static u32 sh_mmcif_set_cmd(struct sh_mmcif_host *host, struct mmc_request *mrq) { struct device *dev = sh_mmcif_host_to_dev(host); struct mmc_data *data = mrq->data; struct mmc_command *cmd = mrq->cmd; u32 opc = cmd->opcode; u32 tmp = 0; /* Response Type check */ switch (mmc_resp_type(cmd)) { case MMC_RSP_NONE: tmp |= CMD_SET_RTYP_NO; break; case MMC_RSP_R1: case MMC_RSP_R3: tmp |= CMD_SET_RTYP_6B; break; case MMC_RSP_R1B: tmp |= CMD_SET_RBSY | CMD_SET_RTYP_6B; break; case MMC_RSP_R2: tmp |= CMD_SET_RTYP_17B; break; default: dev_err(dev, "Unsupported response type.\n"); break; } /* WDAT / DATW */ if (data) { tmp |= CMD_SET_WDAT; switch (host->bus_width) { case MMC_BUS_WIDTH_1: tmp |= CMD_SET_DATW_1; break; case MMC_BUS_WIDTH_4: tmp |= CMD_SET_DATW_4; break; case MMC_BUS_WIDTH_8: tmp |= CMD_SET_DATW_8; break; default: dev_err(dev, "Unsupported bus width.\n"); break; } switch (host->timing) { case MMC_TIMING_MMC_DDR52: /* * MMC core will only set this timing, if the host * advertises the MMC_CAP_1_8V_DDR/MMC_CAP_1_2V_DDR * capability. MMCIF implementations with this * capability, e.g. sh73a0, will have to set it * in their platform data. */ tmp |= CMD_SET_DARS; break; } } /* DWEN */ if (opc == MMC_WRITE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) tmp |= CMD_SET_DWEN; /* CMLTE/CMD12EN */ if (opc == MMC_READ_MULTIPLE_BLOCK || opc == MMC_WRITE_MULTIPLE_BLOCK) { tmp |= CMD_SET_CMLTE | CMD_SET_CMD12EN; sh_mmcif_bitset(host, MMCIF_CE_BLOCK_SET, data->blocks << 16); } /* RIDXC[1:0] check bits */ if (opc == MMC_SEND_OP_COND || opc == MMC_ALL_SEND_CID || opc == MMC_SEND_CSD || opc == MMC_SEND_CID) tmp |= CMD_SET_RIDXC_BITS; /* RCRC7C[1:0] check bits */ if (opc == MMC_SEND_OP_COND) tmp |= CMD_SET_CRC7C_BITS; /* RCRC7C[1:0] internal CRC7 */ if (opc == MMC_ALL_SEND_CID || opc == MMC_SEND_CSD || opc == MMC_SEND_CID) tmp |= CMD_SET_CRC7C_INTERNAL; return (opc << 24) | tmp; } static int sh_mmcif_data_trans(struct sh_mmcif_host *host, struct mmc_request *mrq, u32 opc) { struct device *dev = sh_mmcif_host_to_dev(host); switch (opc) { case MMC_READ_MULTIPLE_BLOCK: sh_mmcif_multi_read(host, mrq); return 0; case MMC_WRITE_MULTIPLE_BLOCK: sh_mmcif_multi_write(host, mrq); return 0; case MMC_WRITE_BLOCK: sh_mmcif_single_write(host, mrq); return 0; case MMC_READ_SINGLE_BLOCK: case MMC_SEND_EXT_CSD: sh_mmcif_single_read(host, mrq); return 0; default: dev_err(dev, "Unsupported CMD%d\n", opc); return -EINVAL; } } static void sh_mmcif_start_cmd(struct sh_mmcif_host *host, struct mmc_request *mrq) { struct mmc_command *cmd = mrq->cmd; u32 opc; u32 mask = 0; unsigned long flags; if (cmd->flags & MMC_RSP_BUSY) mask = MASK_START_CMD | MASK_MRBSYE; else mask = MASK_START_CMD | MASK_MCRSPE; if (host->ccs_enable) mask |= MASK_MCCSTO; if (mrq->data) { sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, 0); sh_mmcif_writel(host->addr, MMCIF_CE_BLOCK_SET, mrq->data->blksz); } opc = sh_mmcif_set_cmd(host, mrq); if (host->ccs_enable) sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0); else sh_mmcif_writel(host->addr, MMCIF_CE_INT, 0xD80430C0 | INT_CCS); sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, mask); /* set arg */ sh_mmcif_writel(host->addr, MMCIF_CE_ARG, cmd->arg); /* set cmd */ spin_lock_irqsave(&host->lock, flags); sh_mmcif_writel(host->addr, MMCIF_CE_CMD_SET, opc); host->wait_for = MMCIF_WAIT_FOR_CMD; schedule_delayed_work(&host->timeout_work, host->timeout); spin_unlock_irqrestore(&host->lock, flags); } static void sh_mmcif_stop_cmd(struct sh_mmcif_host *host, struct mmc_request *mrq) { struct device *dev = sh_mmcif_host_to_dev(host); switch (mrq->cmd->opcode) { case MMC_READ_MULTIPLE_BLOCK: sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12DRE); break; case MMC_WRITE_MULTIPLE_BLOCK: sh_mmcif_bitset(host, MMCIF_CE_INT_MASK, MASK_MCMD12RBE); break; default: dev_err(dev, "unsupported stop cmd\n"); mrq->stop->error = sh_mmcif_error_manage(host); return; } host->wait_for = MMCIF_WAIT_FOR_STOP; } static void sh_mmcif_request(struct mmc_host *mmc, struct mmc_request *mrq) { struct sh_mmcif_host *host = mmc_priv(mmc); struct device *dev = sh_mmcif_host_to_dev(host); unsigned long flags; spin_lock_irqsave(&host->lock, flags); if (host->state != STATE_IDLE) { dev_dbg(dev, "%s() rejected, state %u\n", __func__, host->state); spin_unlock_irqrestore(&host->lock, flags); mrq->cmd->error = -EAGAIN; mmc_request_done(mmc, mrq); return; } host->state = STATE_REQUEST; spin_unlock_irqrestore(&host->lock, flags); host->mrq = mrq; sh_mmcif_start_cmd(host, mrq); } static void sh_mmcif_clk_setup(struct sh_mmcif_host *host) { struct device *dev = sh_mmcif_host_to_dev(host); if (host->mmc->f_max) { unsigned int f_max, f_min = 0, f_min_old; f_max = host->mmc->f_max; for (f_min_old = f_max; f_min_old > 2;) { f_min = clk_round_rate(host->clk, f_min_old / 2); if (f_min == f_min_old) break; f_min_old = f_min; } /* * This driver assumes this SoC is R-Car Gen2 or later */ host->clkdiv_map = 0x3ff; host->mmc->f_max = f_max >> ffs(host->clkdiv_map); host->mmc->f_min = f_min >> fls(host->clkdiv_map); } else { unsigned int clk = clk_get_rate(host->clk); host->mmc->f_max = clk / 2; host->mmc->f_min = clk / 512; } dev_dbg(dev, "clk max/min = %d/%d\n", host->mmc->f_max, host->mmc->f_min); } static void sh_mmcif_set_ios(struct mmc_host *mmc, struct mmc_ios *ios) { struct sh_mmcif_host *host = mmc_priv(mmc); struct device *dev = sh_mmcif_host_to_dev(host); unsigned long flags; spin_lock_irqsave(&host->lock, flags); if (host->state != STATE_IDLE) { dev_dbg(dev, "%s() rejected, state %u\n", __func__, host->state); spin_unlock_irqrestore(&host->lock, flags); return; } host->state = STATE_IOS; spin_unlock_irqrestore(&host->lock, flags); switch (ios->power_mode) { case MMC_POWER_UP: if (!IS_ERR(mmc->supply.vmmc)) mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, ios->vdd); if (!host->power) { clk_prepare_enable(host->clk); pm_runtime_get_sync(dev); sh_mmcif_sync_reset(host); sh_mmcif_request_dma(host); host->power = true; } break; case MMC_POWER_OFF: if (!IS_ERR(mmc->supply.vmmc)) mmc_regulator_set_ocr(mmc, mmc->supply.vmmc, 0); if (host->power) { sh_mmcif_clock_control(host, 0); sh_mmcif_release_dma(host); pm_runtime_put(dev); clk_disable_unprepare(host->clk); host->power = false; } break; case MMC_POWER_ON: sh_mmcif_clock_control(host, ios->clock); break; } host->timing = ios->timing; host->bus_width = ios->bus_width; host->state = STATE_IDLE; } static const struct mmc_host_ops sh_mmcif_ops = { .request = sh_mmcif_request, .set_ios = sh_mmcif_set_ios, .get_cd = mmc_gpio_get_cd, }; static bool sh_mmcif_end_cmd(struct sh_mmcif_host *host) { struct mmc_command *cmd = host->mrq->cmd; struct mmc_data *data = host->mrq->data; struct device *dev = sh_mmcif_host_to_dev(host); long time; if (host->sd_error) { switch (cmd->opcode) { case MMC_ALL_SEND_CID: case MMC_SELECT_CARD: case MMC_APP_CMD: cmd->error = -ETIMEDOUT; break; default: cmd->error = sh_mmcif_error_manage(host); break; } dev_dbg(dev, "CMD%d error %d\n", cmd->opcode, cmd->error); host->sd_error = false; return false; } if (!(cmd->flags & MMC_RSP_PRESENT)) { cmd->error = 0; return false; } sh_mmcif_get_response(host, cmd); if (!data) return false; /* * Completion can be signalled from DMA callback and error, so, have to * reset here, before setting .dma_active */ init_completion(&host->dma_complete); if (data->flags & MMC_DATA_READ) { if (host->chan_rx) sh_mmcif_start_dma_rx(host); } else { if (host->chan_tx) sh_mmcif_start_dma_tx(host); } if (!host->dma_active) { data->error = sh_mmcif_data_trans(host, host->mrq, cmd->opcode); return !data->error; } /* Running in the IRQ thread, can sleep */ time = wait_for_completion_interruptible_timeout(&host->dma_complete, host->timeout); if (data->flags & MMC_DATA_READ) dma_unmap_sg(host->chan_rx->device->dev, data->sg, data->sg_len, DMA_FROM_DEVICE); else dma_unmap_sg(host->chan_tx->device->dev, data->sg, data->sg_len, DMA_TO_DEVICE); if (host->sd_error) { dev_err(host->mmc->parent, "Error IRQ while waiting for DMA completion!\n"); /* Woken up by an error IRQ: abort DMA */ data->error = sh_mmcif_error_manage(host); } else if (!time) { dev_err(host->mmc->parent, "DMA timeout!\n"); data->error = -ETIMEDOUT; } else if (time < 0) { dev_err(host->mmc->parent, "wait_for_completion_...() error %ld!\n", time); data->error = time; } sh_mmcif_bitclr(host, MMCIF_CE_BUF_ACC, BUF_ACC_DMAREN | BUF_ACC_DMAWEN); host->dma_active = false; if (data->error) { data->bytes_xfered = 0; /* Abort DMA */ if (data->flags & MMC_DATA_READ) dmaengine_terminate_sync(host->chan_rx); else dmaengine_terminate_sync(host->chan_tx); } return false; } static irqreturn_t sh_mmcif_irqt(int irq, void *dev_id) { struct sh_mmcif_host *host = dev_id; struct mmc_request *mrq; struct device *dev = sh_mmcif_host_to_dev(host); bool wait = false; unsigned long flags; int wait_work; spin_lock_irqsave(&host->lock, flags); wait_work = host->wait_for; spin_unlock_irqrestore(&host->lock, flags); cancel_delayed_work_sync(&host->timeout_work); mutex_lock(&host->thread_lock); mrq = host->mrq; if (!mrq) { dev_dbg(dev, "IRQ thread state %u, wait %u: NULL mrq!\n", host->state, host->wait_for); mutex_unlock(&host->thread_lock); return IRQ_HANDLED; } /* * All handlers return true, if processing continues, and false, if the * request has to be completed - successfully or not */ switch (wait_work) { case MMCIF_WAIT_FOR_REQUEST: /* We're too late, the timeout has already kicked in */ mutex_unlock(&host->thread_lock); return IRQ_HANDLED; case MMCIF_WAIT_FOR_CMD: /* Wait for data? */ wait = sh_mmcif_end_cmd(host); break; case MMCIF_WAIT_FOR_MREAD: /* Wait for more data? */ wait = sh_mmcif_mread_block(host); break; case MMCIF_WAIT_FOR_READ: /* Wait for data end? */ wait = sh_mmcif_read_block(host); break; case MMCIF_WAIT_FOR_MWRITE: /* Wait data to write? */ wait = sh_mmcif_mwrite_block(host); break; case MMCIF_WAIT_FOR_WRITE: /* Wait for data end? */ wait = sh_mmcif_write_block(host); break; case MMCIF_WAIT_FOR_STOP: if (host->sd_error) { mrq->stop->error = sh_mmcif_error_manage(host); dev_dbg(dev, "%s(): %d\n", __func__, mrq->stop->error); break; } sh_mmcif_get_cmd12response(host, mrq->stop); mrq->stop->error = 0; break; case MMCIF_WAIT_FOR_READ_END: case MMCIF_WAIT_FOR_WRITE_END: if (host->sd_error) { mrq->data->error = sh_mmcif_error_manage(host); dev_dbg(dev, "%s(): %d\n", __func__, mrq->data->error); } break; default: BUG(); } if (wait) { schedule_delayed_work(&host->timeout_work, host->timeout); /* Wait for more data */ mutex_unlock(&host->thread_lock); return IRQ_HANDLED; } if (host->wait_for != MMCIF_WAIT_FOR_STOP) { struct mmc_data *data = mrq->data; if (!mrq->cmd->error && data && !data->error) data->bytes_xfered = data->blocks * data->blksz; if (mrq->stop && !mrq->cmd->error && (!data || !data->error)) { sh_mmcif_stop_cmd(host, mrq); if (!mrq->stop->error) { schedule_delayed_work(&host->timeout_work, host->timeout); mutex_unlock(&host->thread_lock); return IRQ_HANDLED; } } } host->wait_for = MMCIF_WAIT_FOR_REQUEST; host->state = STATE_IDLE; host->mrq = NULL; mmc_request_done(host->mmc, mrq); mutex_unlock(&host->thread_lock); return IRQ_HANDLED; } static irqreturn_t sh_mmcif_intr(int irq, void *dev_id) { struct sh_mmcif_host *host = dev_id; struct device *dev = sh_mmcif_host_to_dev(host); u32 state, mask; state = sh_mmcif_readl(host->addr, MMCIF_CE_INT); mask = sh_mmcif_readl(host->addr, MMCIF_CE_INT_MASK); if (host->ccs_enable) sh_mmcif_writel(host->addr, MMCIF_CE_INT, ~(state & mask)); else sh_mmcif_writel(host->addr, MMCIF_CE_INT, INT_CCS | ~(state & mask)); sh_mmcif_bitclr(host, MMCIF_CE_INT_MASK, state & MASK_CLEAN); if (state & ~MASK_CLEAN) dev_dbg(dev, "IRQ state = 0x%08x incompletely cleared\n", state); if (state & INT_ERR_STS || state & ~INT_ALL) { host->sd_error = true; dev_dbg(dev, "int err state = 0x%08x\n", state); } if (state & ~(INT_CMD12RBE | INT_CMD12CRE)) { if (!host->mrq) dev_dbg(dev, "NULL IRQ state = 0x%08x\n", state); if (!host->dma_active) return IRQ_WAKE_THREAD; else if (host->sd_error) sh_mmcif_dma_complete(host); } else { dev_dbg(dev, "Unexpected IRQ 0x%x\n", state); } return IRQ_HANDLED; } static void sh_mmcif_timeout_work(struct work_struct *work) { struct delayed_work *d = to_delayed_work(work); struct sh_mmcif_host *host = container_of(d, struct sh_mmcif_host, timeout_work); struct mmc_request *mrq = host->mrq; struct device *dev = sh_mmcif_host_to_dev(host); unsigned long flags; if (host->dying) /* Don't run after mmc_remove_host() */ return; spin_lock_irqsave(&host->lock, flags); if (host->state == STATE_IDLE) { spin_unlock_irqrestore(&host->lock, flags); return; } dev_err(dev, "Timeout waiting for %u on CMD%u\n", host->wait_for, mrq->cmd->opcode); host->state = STATE_TIMEOUT; spin_unlock_irqrestore(&host->lock, flags); /* * Handle races with cancel_delayed_work(), unless * cancel_delayed_work_sync() is used */ switch (host->wait_for) { case MMCIF_WAIT_FOR_CMD: mrq->cmd->error = sh_mmcif_error_manage(host); break; case MMCIF_WAIT_FOR_STOP: mrq->stop->error = sh_mmcif_error_manage(host); break; case MMCIF_WAIT_FOR_MREAD: case MMCIF_WAIT_FOR_MWRITE: case MMCIF_WAIT_FOR_READ: case MMCIF_WAIT_FOR_WRITE: case MMCIF_WAIT_FOR_READ_END: case MMCIF_WAIT_FOR_WRITE_END: mrq->data->error = sh_mmcif_error_manage(host); break; default: BUG(); } host->state = STATE_IDLE; host->wait_for = MMCIF_WAIT_FOR_REQUEST; host->mrq = NULL; mmc_request_done(host->mmc, mrq); } static void sh_mmcif_init_ocr(struct sh_mmcif_host *host) { struct device *dev = sh_mmcif_host_to_dev(host); struct sh_mmcif_plat_data *pd = dev->platform_data; struct mmc_host *mmc = host->mmc; mmc_regulator_get_supply(mmc); if (!pd) return; if (!mmc->ocr_avail) mmc->ocr_avail = pd->ocr; else if (pd->ocr) dev_warn(mmc_dev(mmc), "Platform OCR mask is ignored\n"); } static int sh_mmcif_probe(struct platform_device *pdev) { int ret = 0, irq[2]; struct mmc_host *mmc; struct sh_mmcif_host *host; struct device *dev = &pdev->dev; struct sh_mmcif_plat_data *pd = dev->platform_data; void __iomem *reg; const char *name; irq[0] = platform_get_irq(pdev, 0); irq[1] = platform_get_irq_optional(pdev, 1); if (irq[0] < 0) return irq[0]; reg = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(reg)) return PTR_ERR(reg); mmc = mmc_alloc_host(sizeof(struct sh_mmcif_host), dev); if (!mmc) return -ENOMEM; ret = mmc_of_parse(mmc); if (ret < 0) goto err_host; host = mmc_priv(mmc); host->mmc = mmc; host->addr = reg; host->timeout = msecs_to_jiffies(10000); host->ccs_enable = true; host->clk_ctrl2_enable = false; host->pd = pdev; spin_lock_init(&host->lock); mmc->ops = &sh_mmcif_ops; sh_mmcif_init_ocr(host); mmc->caps |= MMC_CAP_MMC_HIGHSPEED | MMC_CAP_WAIT_WHILE_BUSY; mmc->caps2 |= MMC_CAP2_NO_SD | MMC_CAP2_NO_SDIO; mmc->max_busy_timeout = 10000; if (pd && pd->caps) mmc->caps |= pd->caps; mmc->max_segs = 32; mmc->max_blk_size = 512; mmc->max_req_size = PAGE_SIZE * mmc->max_segs; mmc->max_blk_count = mmc->max_req_size / mmc->max_blk_size; mmc->max_seg_size = mmc->max_req_size; platform_set_drvdata(pdev, host); host->clk = devm_clk_get(dev, NULL); if (IS_ERR(host->clk)) { ret = PTR_ERR(host->clk); dev_err(dev, "cannot get clock: %d\n", ret); goto err_host; } ret = clk_prepare_enable(host->clk); if (ret < 0) goto err_host; sh_mmcif_clk_setup(host); pm_runtime_enable(dev); host->power = false; ret = pm_runtime_get_sync(dev); if (ret < 0) goto err_clk; INIT_DELAYED_WORK(&host->timeout_work, sh_mmcif_timeout_work); sh_mmcif_sync_reset(host); sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL); name = irq[1] < 0 ? dev_name(dev) : "sh_mmc:error"; ret = devm_request_threaded_irq(dev, irq[0], sh_mmcif_intr, sh_mmcif_irqt, 0, name, host); if (ret) { dev_err(dev, "request_irq error (%s)\n", name); goto err_clk; } if (irq[1] >= 0) { ret = devm_request_threaded_irq(dev, irq[1], sh_mmcif_intr, sh_mmcif_irqt, 0, "sh_mmc:int", host); if (ret) { dev_err(dev, "request_irq error (sh_mmc:int)\n"); goto err_clk; } } mutex_init(&host->thread_lock); ret = mmc_add_host(mmc); if (ret < 0) goto err_clk; dev_pm_qos_expose_latency_limit(dev, 100); dev_info(dev, "Chip version 0x%04x, clock rate %luMHz\n", sh_mmcif_readl(host->addr, MMCIF_CE_VERSION) & 0xffff, clk_get_rate(host->clk) / 1000000UL); pm_runtime_put(dev); clk_disable_unprepare(host->clk); return ret; err_clk: clk_disable_unprepare(host->clk); pm_runtime_put_sync(dev); pm_runtime_disable(dev); err_host: mmc_free_host(mmc); return ret; } static void sh_mmcif_remove(struct platform_device *pdev) { struct sh_mmcif_host *host = platform_get_drvdata(pdev); host->dying = true; clk_prepare_enable(host->clk); pm_runtime_get_sync(&pdev->dev); dev_pm_qos_hide_latency_limit(&pdev->dev); mmc_remove_host(host->mmc); sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL); /* * FIXME: cancel_delayed_work(_sync)() and free_irq() race with the * mmc_remove_host() call above. But swapping order doesn't help either * (a query on the linux-mmc mailing list didn't bring any replies). */ cancel_delayed_work_sync(&host->timeout_work); clk_disable_unprepare(host->clk); mmc_free_host(host->mmc); pm_runtime_put_sync(&pdev->dev); pm_runtime_disable(&pdev->dev); } #ifdef CONFIG_PM_SLEEP static int sh_mmcif_suspend(struct device *dev) { struct sh_mmcif_host *host = dev_get_drvdata(dev); pm_runtime_get_sync(dev); sh_mmcif_writel(host->addr, MMCIF_CE_INT_MASK, MASK_ALL); pm_runtime_put(dev); return 0; } static int sh_mmcif_resume(struct device *dev) { return 0; } #endif static const struct dev_pm_ops sh_mmcif_dev_pm_ops = { SET_SYSTEM_SLEEP_PM_OPS(sh_mmcif_suspend, sh_mmcif_resume) }; static struct platform_driver sh_mmcif_driver = { .probe = sh_mmcif_probe, .remove_new = sh_mmcif_remove, .driver = { .name = DRIVER_NAME, .probe_type = PROBE_PREFER_ASYNCHRONOUS, .pm = &sh_mmcif_dev_pm_ops, .of_match_table = sh_mmcif_of_match, }, }; module_platform_driver(sh_mmcif_driver); MODULE_DESCRIPTION("SuperH on-chip MMC/eMMC interface driver"); MODULE_LICENSE("GPL v2"); MODULE_ALIAS("platform:" DRIVER_NAME); MODULE_AUTHOR("Yusuke Goda <yusuke.goda.sx@renesas.com>");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1