Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Miquel Raynal | 2540 | 97.50% | 7 | 77.78% |
Boris Brezillon | 62 | 2.38% | 1 | 11.11% |
Rob Herring | 3 | 0.12% | 1 | 11.11% |
Total | 2605 | 9 |
// SPDX-License-Identifier: GPL-2.0+ /* * Generic Error-Correcting Code (ECC) engine * * Copyright (C) 2019 Macronix * Author: * Miquèl RAYNAL <miquel.raynal@bootlin.com> * * * This file describes the abstraction of any NAND ECC engine. It has been * designed to fit most cases, including parallel NANDs and SPI-NANDs. * * There are three main situations where instantiating this ECC engine makes * sense: * - external: The ECC engine is outside the NAND pipeline, typically this * is a software ECC engine, or an hardware engine that is * outside the NAND controller pipeline. * - pipelined: The ECC engine is inside the NAND pipeline, ie. on the * controller's side. This is the case of most of the raw NAND * controllers. In the pipeline case, the ECC bytes are * generated/data corrected on the fly when a page is * written/read. * - ondie: The ECC engine is inside the NAND pipeline, on the chip's side. * Some NAND chips can correct themselves the data. * * Besides the initial setup and final cleanups, the interfaces are rather * simple: * - prepare: Prepare an I/O request. Enable/disable the ECC engine based on * the I/O request type. In case of software correction or external * engine, this step may involve to derive the ECC bytes and place * them in the OOB area before a write. * - finish: Finish an I/O request. Correct the data in case of a read * request and report the number of corrected bits/uncorrectable * errors. Most likely empty for write operations, unless you have * hardware specific stuff to do, like shutting down the engine to * save power. * * The I/O request should be enclosed in a prepare()/finish() pair of calls * and will behave differently depending on the requested I/O type: * - raw: Correction disabled * - ecc: Correction enabled * * The request direction is impacting the logic as well: * - read: Load data from the NAND chip * - write: Store data in the NAND chip * * Mixing all this combinations together gives the following behavior. * Those are just examples, drivers are free to add custom steps in their * prepare/finish hook. * * [external ECC engine] * - external + prepare + raw + read: do nothing * - external + finish + raw + read: do nothing * - external + prepare + raw + write: do nothing * - external + finish + raw + write: do nothing * - external + prepare + ecc + read: do nothing * - external + finish + ecc + read: calculate expected ECC bytes, extract * ECC bytes from OOB buffer, correct * and report any bitflip/error * - external + prepare + ecc + write: calculate ECC bytes and store them at * the right place in the OOB buffer based * on the OOB layout * - external + finish + ecc + write: do nothing * * [pipelined ECC engine] * - pipelined + prepare + raw + read: disable the controller's ECC engine if * activated * - pipelined + finish + raw + read: do nothing * - pipelined + prepare + raw + write: disable the controller's ECC engine if * activated * - pipelined + finish + raw + write: do nothing * - pipelined + prepare + ecc + read: enable the controller's ECC engine if * deactivated * - pipelined + finish + ecc + read: check the status, report any * error/bitflip * - pipelined + prepare + ecc + write: enable the controller's ECC engine if * deactivated * - pipelined + finish + ecc + write: do nothing * * [ondie ECC engine] * - ondie + prepare + raw + read: send commands to disable the on-chip ECC * engine if activated * - ondie + finish + raw + read: do nothing * - ondie + prepare + raw + write: send commands to disable the on-chip ECC * engine if activated * - ondie + finish + raw + write: do nothing * - ondie + prepare + ecc + read: send commands to enable the on-chip ECC * engine if deactivated * - ondie + finish + ecc + read: send commands to check the status, report * any error/bitflip * - ondie + prepare + ecc + write: send commands to enable the on-chip ECC * engine if deactivated * - ondie + finish + ecc + write: do nothing */ #include <linux/module.h> #include <linux/mtd/nand.h> #include <linux/platform_device.h> #include <linux/slab.h> #include <linux/of.h> #include <linux/of_platform.h> static LIST_HEAD(on_host_hw_engines); static DEFINE_MUTEX(on_host_hw_engines_mutex); /** * nand_ecc_init_ctx - Init the ECC engine context * @nand: the NAND device * * On success, the caller is responsible of calling @nand_ecc_cleanup_ctx(). */ int nand_ecc_init_ctx(struct nand_device *nand) { if (!nand->ecc.engine || !nand->ecc.engine->ops->init_ctx) return 0; return nand->ecc.engine->ops->init_ctx(nand); } EXPORT_SYMBOL(nand_ecc_init_ctx); /** * nand_ecc_cleanup_ctx - Cleanup the ECC engine context * @nand: the NAND device */ void nand_ecc_cleanup_ctx(struct nand_device *nand) { if (nand->ecc.engine && nand->ecc.engine->ops->cleanup_ctx) nand->ecc.engine->ops->cleanup_ctx(nand); } EXPORT_SYMBOL(nand_ecc_cleanup_ctx); /** * nand_ecc_prepare_io_req - Prepare an I/O request * @nand: the NAND device * @req: the I/O request */ int nand_ecc_prepare_io_req(struct nand_device *nand, struct nand_page_io_req *req) { if (!nand->ecc.engine || !nand->ecc.engine->ops->prepare_io_req) return 0; return nand->ecc.engine->ops->prepare_io_req(nand, req); } EXPORT_SYMBOL(nand_ecc_prepare_io_req); /** * nand_ecc_finish_io_req - Finish an I/O request * @nand: the NAND device * @req: the I/O request */ int nand_ecc_finish_io_req(struct nand_device *nand, struct nand_page_io_req *req) { if (!nand->ecc.engine || !nand->ecc.engine->ops->finish_io_req) return 0; return nand->ecc.engine->ops->finish_io_req(nand, req); } EXPORT_SYMBOL(nand_ecc_finish_io_req); /* Define default OOB placement schemes for large and small page devices */ static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_device *nand = mtd_to_nanddev(mtd); unsigned int total_ecc_bytes = nand->ecc.ctx.total; if (section > 1) return -ERANGE; if (!section) { oobregion->offset = 0; if (mtd->oobsize == 16) oobregion->length = 4; else oobregion->length = 3; } else { if (mtd->oobsize == 8) return -ERANGE; oobregion->offset = 6; oobregion->length = total_ecc_bytes - 4; } return 0; } static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { if (section > 1) return -ERANGE; if (mtd->oobsize == 16) { if (section) return -ERANGE; oobregion->length = 8; oobregion->offset = 8; } else { oobregion->length = 2; if (!section) oobregion->offset = 3; else oobregion->offset = 6; } return 0; } static const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = { .ecc = nand_ooblayout_ecc_sp, .free = nand_ooblayout_free_sp, }; const struct mtd_ooblayout_ops *nand_get_small_page_ooblayout(void) { return &nand_ooblayout_sp_ops; } EXPORT_SYMBOL_GPL(nand_get_small_page_ooblayout); static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_device *nand = mtd_to_nanddev(mtd); unsigned int total_ecc_bytes = nand->ecc.ctx.total; if (section || !total_ecc_bytes) return -ERANGE; oobregion->length = total_ecc_bytes; oobregion->offset = mtd->oobsize - oobregion->length; return 0; } static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_device *nand = mtd_to_nanddev(mtd); unsigned int total_ecc_bytes = nand->ecc.ctx.total; if (section) return -ERANGE; oobregion->length = mtd->oobsize - total_ecc_bytes - 2; oobregion->offset = 2; return 0; } static const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = { .ecc = nand_ooblayout_ecc_lp, .free = nand_ooblayout_free_lp, }; const struct mtd_ooblayout_ops *nand_get_large_page_ooblayout(void) { return &nand_ooblayout_lp_ops; } EXPORT_SYMBOL_GPL(nand_get_large_page_ooblayout); /* * Support the old "large page" layout used for 1-bit Hamming ECC where ECC * are placed at a fixed offset. */ static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_device *nand = mtd_to_nanddev(mtd); unsigned int total_ecc_bytes = nand->ecc.ctx.total; if (section) return -ERANGE; switch (mtd->oobsize) { case 64: oobregion->offset = 40; break; case 128: oobregion->offset = 80; break; default: return -EINVAL; } oobregion->length = total_ecc_bytes; if (oobregion->offset + oobregion->length > mtd->oobsize) return -ERANGE; return 0; } static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_device *nand = mtd_to_nanddev(mtd); unsigned int total_ecc_bytes = nand->ecc.ctx.total; int ecc_offset = 0; if (section < 0 || section > 1) return -ERANGE; switch (mtd->oobsize) { case 64: ecc_offset = 40; break; case 128: ecc_offset = 80; break; default: return -EINVAL; } if (section == 0) { oobregion->offset = 2; oobregion->length = ecc_offset - 2; } else { oobregion->offset = ecc_offset + total_ecc_bytes; oobregion->length = mtd->oobsize - oobregion->offset; } return 0; } static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = { .ecc = nand_ooblayout_ecc_lp_hamming, .free = nand_ooblayout_free_lp_hamming, }; const struct mtd_ooblayout_ops *nand_get_large_page_hamming_ooblayout(void) { return &nand_ooblayout_lp_hamming_ops; } EXPORT_SYMBOL_GPL(nand_get_large_page_hamming_ooblayout); static enum nand_ecc_engine_type of_get_nand_ecc_engine_type(struct device_node *np) { struct device_node *eng_np; if (of_property_read_bool(np, "nand-no-ecc-engine")) return NAND_ECC_ENGINE_TYPE_NONE; if (of_property_read_bool(np, "nand-use-soft-ecc-engine")) return NAND_ECC_ENGINE_TYPE_SOFT; eng_np = of_parse_phandle(np, "nand-ecc-engine", 0); of_node_put(eng_np); if (eng_np) { if (eng_np == np) return NAND_ECC_ENGINE_TYPE_ON_DIE; else return NAND_ECC_ENGINE_TYPE_ON_HOST; } return NAND_ECC_ENGINE_TYPE_INVALID; } static const char * const nand_ecc_placement[] = { [NAND_ECC_PLACEMENT_OOB] = "oob", [NAND_ECC_PLACEMENT_INTERLEAVED] = "interleaved", }; static enum nand_ecc_placement of_get_nand_ecc_placement(struct device_node *np) { enum nand_ecc_placement placement; const char *pm; int err; err = of_property_read_string(np, "nand-ecc-placement", &pm); if (!err) { for (placement = NAND_ECC_PLACEMENT_OOB; placement < ARRAY_SIZE(nand_ecc_placement); placement++) { if (!strcasecmp(pm, nand_ecc_placement[placement])) return placement; } } return NAND_ECC_PLACEMENT_UNKNOWN; } static const char * const nand_ecc_algos[] = { [NAND_ECC_ALGO_HAMMING] = "hamming", [NAND_ECC_ALGO_BCH] = "bch", [NAND_ECC_ALGO_RS] = "rs", }; static enum nand_ecc_algo of_get_nand_ecc_algo(struct device_node *np) { enum nand_ecc_algo ecc_algo; const char *pm; int err; err = of_property_read_string(np, "nand-ecc-algo", &pm); if (!err) { for (ecc_algo = NAND_ECC_ALGO_HAMMING; ecc_algo < ARRAY_SIZE(nand_ecc_algos); ecc_algo++) { if (!strcasecmp(pm, nand_ecc_algos[ecc_algo])) return ecc_algo; } } return NAND_ECC_ALGO_UNKNOWN; } static int of_get_nand_ecc_step_size(struct device_node *np) { int ret; u32 val; ret = of_property_read_u32(np, "nand-ecc-step-size", &val); return ret ? ret : val; } static int of_get_nand_ecc_strength(struct device_node *np) { int ret; u32 val; ret = of_property_read_u32(np, "nand-ecc-strength", &val); return ret ? ret : val; } void of_get_nand_ecc_user_config(struct nand_device *nand) { struct device_node *dn = nanddev_get_of_node(nand); int strength, size; nand->ecc.user_conf.engine_type = of_get_nand_ecc_engine_type(dn); nand->ecc.user_conf.algo = of_get_nand_ecc_algo(dn); nand->ecc.user_conf.placement = of_get_nand_ecc_placement(dn); strength = of_get_nand_ecc_strength(dn); if (strength >= 0) nand->ecc.user_conf.strength = strength; size = of_get_nand_ecc_step_size(dn); if (size >= 0) nand->ecc.user_conf.step_size = size; if (of_property_read_bool(dn, "nand-ecc-maximize")) nand->ecc.user_conf.flags |= NAND_ECC_MAXIMIZE_STRENGTH; } EXPORT_SYMBOL(of_get_nand_ecc_user_config); /** * nand_ecc_is_strong_enough - Check if the chip configuration meets the * datasheet requirements. * * @nand: Device to check * * If our configuration corrects A bits per B bytes and the minimum * required correction level is X bits per Y bytes, then we must ensure * both of the following are true: * * (1) A / B >= X / Y * (2) A >= X * * Requirement (1) ensures we can correct for the required bitflip density. * Requirement (2) ensures we can correct even when all bitflips are clumped * in the same sector. */ bool nand_ecc_is_strong_enough(struct nand_device *nand) { const struct nand_ecc_props *reqs = nanddev_get_ecc_requirements(nand); const struct nand_ecc_props *conf = nanddev_get_ecc_conf(nand); struct mtd_info *mtd = nanddev_to_mtd(nand); int corr, ds_corr; if (conf->step_size == 0 || reqs->step_size == 0) /* Not enough information */ return true; /* * We get the number of corrected bits per page to compare * the correction density. */ corr = (mtd->writesize * conf->strength) / conf->step_size; ds_corr = (mtd->writesize * reqs->strength) / reqs->step_size; return corr >= ds_corr && conf->strength >= reqs->strength; } EXPORT_SYMBOL(nand_ecc_is_strong_enough); /* ECC engine driver internal helpers */ int nand_ecc_init_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx, struct nand_device *nand) { unsigned int total_buffer_size; ctx->nand = nand; /* Let the user decide the exact length of each buffer */ if (!ctx->page_buffer_size) ctx->page_buffer_size = nanddev_page_size(nand); if (!ctx->oob_buffer_size) ctx->oob_buffer_size = nanddev_per_page_oobsize(nand); total_buffer_size = ctx->page_buffer_size + ctx->oob_buffer_size; ctx->spare_databuf = kzalloc(total_buffer_size, GFP_KERNEL); if (!ctx->spare_databuf) return -ENOMEM; ctx->spare_oobbuf = ctx->spare_databuf + ctx->page_buffer_size; return 0; } EXPORT_SYMBOL_GPL(nand_ecc_init_req_tweaking); void nand_ecc_cleanup_req_tweaking(struct nand_ecc_req_tweak_ctx *ctx) { kfree(ctx->spare_databuf); } EXPORT_SYMBOL_GPL(nand_ecc_cleanup_req_tweaking); /* * Ensure data and OOB area is fully read/written otherwise the correction might * not work as expected. */ void nand_ecc_tweak_req(struct nand_ecc_req_tweak_ctx *ctx, struct nand_page_io_req *req) { struct nand_device *nand = ctx->nand; struct nand_page_io_req *orig, *tweak; /* Save the original request */ ctx->orig_req = *req; ctx->bounce_data = false; ctx->bounce_oob = false; orig = &ctx->orig_req; tweak = req; /* Ensure the request covers the entire page */ if (orig->datalen < nanddev_page_size(nand)) { ctx->bounce_data = true; tweak->dataoffs = 0; tweak->datalen = nanddev_page_size(nand); tweak->databuf.in = ctx->spare_databuf; memset(tweak->databuf.in, 0xFF, ctx->page_buffer_size); } if (orig->ooblen < nanddev_per_page_oobsize(nand)) { ctx->bounce_oob = true; tweak->ooboffs = 0; tweak->ooblen = nanddev_per_page_oobsize(nand); tweak->oobbuf.in = ctx->spare_oobbuf; memset(tweak->oobbuf.in, 0xFF, ctx->oob_buffer_size); } /* Copy the data that must be writen in the bounce buffers, if needed */ if (orig->type == NAND_PAGE_WRITE) { if (ctx->bounce_data) memcpy((void *)tweak->databuf.out + orig->dataoffs, orig->databuf.out, orig->datalen); if (ctx->bounce_oob) memcpy((void *)tweak->oobbuf.out + orig->ooboffs, orig->oobbuf.out, orig->ooblen); } } EXPORT_SYMBOL_GPL(nand_ecc_tweak_req); void nand_ecc_restore_req(struct nand_ecc_req_tweak_ctx *ctx, struct nand_page_io_req *req) { struct nand_page_io_req *orig, *tweak; orig = &ctx->orig_req; tweak = req; /* Restore the data read from the bounce buffers, if needed */ if (orig->type == NAND_PAGE_READ) { if (ctx->bounce_data) memcpy(orig->databuf.in, tweak->databuf.in + orig->dataoffs, orig->datalen); if (ctx->bounce_oob) memcpy(orig->oobbuf.in, tweak->oobbuf.in + orig->ooboffs, orig->ooblen); } /* Ensure the original request is restored */ *req = *orig; } EXPORT_SYMBOL_GPL(nand_ecc_restore_req); struct nand_ecc_engine *nand_ecc_get_sw_engine(struct nand_device *nand) { unsigned int algo = nand->ecc.user_conf.algo; if (algo == NAND_ECC_ALGO_UNKNOWN) algo = nand->ecc.defaults.algo; switch (algo) { case NAND_ECC_ALGO_HAMMING: return nand_ecc_sw_hamming_get_engine(); case NAND_ECC_ALGO_BCH: return nand_ecc_sw_bch_get_engine(); default: break; } return NULL; } EXPORT_SYMBOL(nand_ecc_get_sw_engine); struct nand_ecc_engine *nand_ecc_get_on_die_hw_engine(struct nand_device *nand) { return nand->ecc.ondie_engine; } EXPORT_SYMBOL(nand_ecc_get_on_die_hw_engine); int nand_ecc_register_on_host_hw_engine(struct nand_ecc_engine *engine) { struct nand_ecc_engine *item; if (!engine) return -EINVAL; /* Prevent multiple registrations of one engine */ list_for_each_entry(item, &on_host_hw_engines, node) if (item == engine) return 0; mutex_lock(&on_host_hw_engines_mutex); list_add_tail(&engine->node, &on_host_hw_engines); mutex_unlock(&on_host_hw_engines_mutex); return 0; } EXPORT_SYMBOL(nand_ecc_register_on_host_hw_engine); int nand_ecc_unregister_on_host_hw_engine(struct nand_ecc_engine *engine) { if (!engine) return -EINVAL; mutex_lock(&on_host_hw_engines_mutex); list_del(&engine->node); mutex_unlock(&on_host_hw_engines_mutex); return 0; } EXPORT_SYMBOL(nand_ecc_unregister_on_host_hw_engine); static struct nand_ecc_engine *nand_ecc_match_on_host_hw_engine(struct device *dev) { struct nand_ecc_engine *item; list_for_each_entry(item, &on_host_hw_engines, node) if (item->dev == dev) return item; return NULL; } struct nand_ecc_engine *nand_ecc_get_on_host_hw_engine(struct nand_device *nand) { struct nand_ecc_engine *engine = NULL; struct device *dev = &nand->mtd.dev; struct platform_device *pdev; struct device_node *np; if (list_empty(&on_host_hw_engines)) return NULL; /* Check for an explicit nand-ecc-engine property */ np = of_parse_phandle(dev->of_node, "nand-ecc-engine", 0); if (np) { pdev = of_find_device_by_node(np); if (!pdev) return ERR_PTR(-EPROBE_DEFER); engine = nand_ecc_match_on_host_hw_engine(&pdev->dev); platform_device_put(pdev); of_node_put(np); if (!engine) return ERR_PTR(-EPROBE_DEFER); } if (engine) get_device(engine->dev); return engine; } EXPORT_SYMBOL(nand_ecc_get_on_host_hw_engine); void nand_ecc_put_on_host_hw_engine(struct nand_device *nand) { put_device(nand->ecc.engine->dev); } EXPORT_SYMBOL(nand_ecc_put_on_host_hw_engine); /* * In the case of a pipelined engine, the device registering the ECC * engine is not necessarily the ECC engine itself but may be a host controller. * It is then useful to provide a helper to retrieve the right device object * which actually represents the ECC engine. */ struct device *nand_ecc_get_engine_dev(struct device *host) { struct platform_device *ecc_pdev; struct device_node *np; /* * If the device node contains this property, it means we need to follow * it in order to get the right ECC engine device we are looking for. */ np = of_parse_phandle(host->of_node, "nand-ecc-engine", 0); if (!np) return host; ecc_pdev = of_find_device_by_node(np); if (!ecc_pdev) { of_node_put(np); return NULL; } platform_device_put(ecc_pdev); of_node_put(np); return &ecc_pdev->dev; } MODULE_LICENSE("GPL"); MODULE_AUTHOR("Miquel Raynal <miquel.raynal@bootlin.com>"); MODULE_DESCRIPTION("Generic ECC engine");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1