Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Brian Norris | 8343 | 51.15% | 6 | 6.32% |
Kamal Dasu | 2432 | 14.91% | 15 | 15.79% |
david regan | 2400 | 14.71% | 4 | 4.21% |
William Zhang | 726 | 4.45% | 9 | 9.47% |
Florian Fainelli | 717 | 4.40% | 14 | 14.74% |
Boris Brezillon | 715 | 4.38% | 15 | 15.79% |
Álvaro Fernández Rojas | 476 | 2.92% | 8 | 8.42% |
Miquel Raynal | 218 | 1.34% | 11 | 11.58% |
Simon Arlott | 167 | 1.02% | 1 | 1.05% |
Anup Patel | 34 | 0.21% | 1 | 1.05% |
Julia Lawall | 25 | 0.15% | 1 | 1.05% |
Rafał Miłecki | 17 | 0.10% | 1 | 1.05% |
ruanjinjie | 11 | 0.07% | 1 | 1.05% |
Fabio Estevam | 11 | 0.07% | 1 | 1.05% |
Masahiro Yamada | 7 | 0.04% | 1 | 1.05% |
Ray Jui | 4 | 0.02% | 1 | 1.05% |
Thomas Gleixner | 2 | 0.01% | 1 | 1.05% |
Claire Lin | 2 | 0.01% | 1 | 1.05% |
Hauke Mehrtens | 1 | 0.01% | 1 | 1.05% |
Uwe Kleine-König | 1 | 0.01% | 1 | 1.05% |
Lee Jones | 1 | 0.01% | 1 | 1.05% |
Total | 16310 | 95 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright © 2010-2015 Broadcom Corporation */ #include <linux/clk.h> #include <linux/module.h> #include <linux/init.h> #include <linux/delay.h> #include <linux/device.h> #include <linux/platform_device.h> #include <linux/platform_data/brcmnand.h> #include <linux/err.h> #include <linux/completion.h> #include <linux/interrupt.h> #include <linux/spinlock.h> #include <linux/dma-mapping.h> #include <linux/ioport.h> #include <linux/bug.h> #include <linux/kernel.h> #include <linux/bitops.h> #include <linux/mm.h> #include <linux/mtd/mtd.h> #include <linux/mtd/rawnand.h> #include <linux/mtd/partitions.h> #include <linux/of.h> #include <linux/of_platform.h> #include <linux/slab.h> #include <linux/static_key.h> #include <linux/list.h> #include <linux/log2.h> #include "brcmnand.h" /* * This flag controls if WP stays on between erase/write commands to mitigate * flash corruption due to power glitches. Values: * 0: NAND_WP is not used or not available * 1: NAND_WP is set by default, cleared for erase/write operations * 2: NAND_WP is always cleared */ static int wp_on = 1; module_param(wp_on, int, 0444); /*********************************************************************** * Definitions ***********************************************************************/ #define DRV_NAME "brcmnand" #define CMD_NULL 0x00 #define CMD_PAGE_READ 0x01 #define CMD_SPARE_AREA_READ 0x02 #define CMD_STATUS_READ 0x03 #define CMD_PROGRAM_PAGE 0x04 #define CMD_PROGRAM_SPARE_AREA 0x05 #define CMD_COPY_BACK 0x06 #define CMD_DEVICE_ID_READ 0x07 #define CMD_BLOCK_ERASE 0x08 #define CMD_FLASH_RESET 0x09 #define CMD_BLOCKS_LOCK 0x0a #define CMD_BLOCKS_LOCK_DOWN 0x0b #define CMD_BLOCKS_UNLOCK 0x0c #define CMD_READ_BLOCKS_LOCK_STATUS 0x0d #define CMD_PARAMETER_READ 0x0e #define CMD_PARAMETER_CHANGE_COL 0x0f #define CMD_LOW_LEVEL_OP 0x10 struct brcm_nand_dma_desc { u32 next_desc; u32 next_desc_ext; u32 cmd_irq; u32 dram_addr; u32 dram_addr_ext; u32 tfr_len; u32 total_len; u32 flash_addr; u32 flash_addr_ext; u32 cs; u32 pad2[5]; u32 status_valid; } __packed; /* Bitfields for brcm_nand_dma_desc::status_valid */ #define FLASH_DMA_ECC_ERROR (1 << 8) #define FLASH_DMA_CORR_ERROR (1 << 9) /* Bitfields for DMA_MODE */ #define FLASH_DMA_MODE_STOP_ON_ERROR BIT(1) /* stop in Uncorr ECC error */ #define FLASH_DMA_MODE_MODE BIT(0) /* link list */ #define FLASH_DMA_MODE_MASK (FLASH_DMA_MODE_STOP_ON_ERROR | \ FLASH_DMA_MODE_MODE) /* 512B flash cache in the NAND controller HW */ #define FC_SHIFT 9U #define FC_BYTES 512U #define FC_WORDS (FC_BYTES >> 2) #define BRCMNAND_MIN_PAGESIZE 512 #define BRCMNAND_MIN_BLOCKSIZE (8 * 1024) #define BRCMNAND_MIN_DEVSIZE (4ULL * 1024 * 1024) #define NAND_CTRL_RDY (INTFC_CTLR_READY | INTFC_FLASH_READY) #define NAND_POLL_STATUS_TIMEOUT_MS 100 #define EDU_CMD_WRITE 0x00 #define EDU_CMD_READ 0x01 #define EDU_STATUS_ACTIVE BIT(0) #define EDU_ERR_STATUS_ERRACK BIT(0) #define EDU_DONE_MASK GENMASK(1, 0) #define EDU_CONFIG_MODE_NAND BIT(0) #define EDU_CONFIG_SWAP_BYTE BIT(1) #ifdef CONFIG_CPU_BIG_ENDIAN #define EDU_CONFIG_SWAP_CFG EDU_CONFIG_SWAP_BYTE #else #define EDU_CONFIG_SWAP_CFG 0 #endif /* edu registers */ enum edu_reg { EDU_CONFIG = 0, EDU_DRAM_ADDR, EDU_EXT_ADDR, EDU_LENGTH, EDU_CMD, EDU_STOP, EDU_STATUS, EDU_DONE, EDU_ERR_STATUS, }; static const u16 edu_regs[] = { [EDU_CONFIG] = 0x00, [EDU_DRAM_ADDR] = 0x04, [EDU_EXT_ADDR] = 0x08, [EDU_LENGTH] = 0x0c, [EDU_CMD] = 0x10, [EDU_STOP] = 0x14, [EDU_STATUS] = 0x18, [EDU_DONE] = 0x1c, [EDU_ERR_STATUS] = 0x20, }; /* flash_dma registers */ enum flash_dma_reg { FLASH_DMA_REVISION = 0, FLASH_DMA_FIRST_DESC, FLASH_DMA_FIRST_DESC_EXT, FLASH_DMA_CTRL, FLASH_DMA_MODE, FLASH_DMA_STATUS, FLASH_DMA_INTERRUPT_DESC, FLASH_DMA_INTERRUPT_DESC_EXT, FLASH_DMA_ERROR_STATUS, FLASH_DMA_CURRENT_DESC, FLASH_DMA_CURRENT_DESC_EXT, }; /* flash_dma registers v0*/ static const u16 flash_dma_regs_v0[] = { [FLASH_DMA_REVISION] = 0x00, [FLASH_DMA_FIRST_DESC] = 0x04, [FLASH_DMA_CTRL] = 0x08, [FLASH_DMA_MODE] = 0x0c, [FLASH_DMA_STATUS] = 0x10, [FLASH_DMA_INTERRUPT_DESC] = 0x14, [FLASH_DMA_ERROR_STATUS] = 0x18, [FLASH_DMA_CURRENT_DESC] = 0x1c, }; /* flash_dma registers v1*/ static const u16 flash_dma_regs_v1[] = { [FLASH_DMA_REVISION] = 0x00, [FLASH_DMA_FIRST_DESC] = 0x04, [FLASH_DMA_FIRST_DESC_EXT] = 0x08, [FLASH_DMA_CTRL] = 0x0c, [FLASH_DMA_MODE] = 0x10, [FLASH_DMA_STATUS] = 0x14, [FLASH_DMA_INTERRUPT_DESC] = 0x18, [FLASH_DMA_INTERRUPT_DESC_EXT] = 0x1c, [FLASH_DMA_ERROR_STATUS] = 0x20, [FLASH_DMA_CURRENT_DESC] = 0x24, [FLASH_DMA_CURRENT_DESC_EXT] = 0x28, }; /* flash_dma registers v4 */ static const u16 flash_dma_regs_v4[] = { [FLASH_DMA_REVISION] = 0x00, [FLASH_DMA_FIRST_DESC] = 0x08, [FLASH_DMA_FIRST_DESC_EXT] = 0x0c, [FLASH_DMA_CTRL] = 0x10, [FLASH_DMA_MODE] = 0x14, [FLASH_DMA_STATUS] = 0x18, [FLASH_DMA_INTERRUPT_DESC] = 0x20, [FLASH_DMA_INTERRUPT_DESC_EXT] = 0x24, [FLASH_DMA_ERROR_STATUS] = 0x28, [FLASH_DMA_CURRENT_DESC] = 0x30, [FLASH_DMA_CURRENT_DESC_EXT] = 0x34, }; /* Controller feature flags */ enum { BRCMNAND_HAS_1K_SECTORS = BIT(0), BRCMNAND_HAS_PREFETCH = BIT(1), BRCMNAND_HAS_CACHE_MODE = BIT(2), BRCMNAND_HAS_WP = BIT(3), }; struct brcmnand_host; static DEFINE_STATIC_KEY_FALSE(brcmnand_soc_has_ops_key); struct brcmnand_controller { struct device *dev; struct nand_controller controller; void __iomem *nand_base; void __iomem *nand_fc; /* flash cache */ void __iomem *flash_dma_base; int irq; unsigned int dma_irq; int nand_version; /* Some SoCs provide custom interrupt status register(s) */ struct brcmnand_soc *soc; /* Some SoCs have a gateable clock for the controller */ struct clk *clk; int cmd_pending; bool dma_pending; bool edu_pending; struct completion done; struct completion dma_done; struct completion edu_done; /* List of NAND hosts (one for each chip-select) */ struct list_head host_list; /* EDU info, per-transaction */ const u16 *edu_offsets; void __iomem *edu_base; int edu_irq; int edu_count; u64 edu_dram_addr; u32 edu_ext_addr; u32 edu_cmd; u32 edu_config; int sas; /* spare area size, per flash cache */ int sector_size_1k; u8 *oob; /* flash_dma reg */ const u16 *flash_dma_offsets; struct brcm_nand_dma_desc *dma_desc; dma_addr_t dma_pa; int (*dma_trans)(struct brcmnand_host *host, u64 addr, u32 *buf, u8 *oob, u32 len, u8 dma_cmd); /* in-memory cache of the FLASH_CACHE, used only for some commands */ u8 flash_cache[FC_BYTES]; /* Controller revision details */ const u16 *reg_offsets; unsigned int reg_spacing; /* between CS1, CS2, ... regs */ const u8 *cs_offsets; /* within each chip-select */ const u8 *cs0_offsets; /* within CS0, if different */ unsigned int max_block_size; const unsigned int *block_sizes; unsigned int max_page_size; const unsigned int *page_sizes; unsigned int page_size_shift; unsigned int max_oob; u32 ecc_level_shift; u32 features; /* for low-power standby/resume only */ u32 nand_cs_nand_select; u32 nand_cs_nand_xor; u32 corr_stat_threshold; u32 flash_dma_mode; u32 flash_edu_mode; bool pio_poll_mode; }; struct brcmnand_cfg { u64 device_size; unsigned int block_size; unsigned int page_size; unsigned int spare_area_size; unsigned int device_width; unsigned int col_adr_bytes; unsigned int blk_adr_bytes; unsigned int ful_adr_bytes; unsigned int sector_size_1k; unsigned int ecc_level; /* use for low-power standby/resume only */ u32 acc_control; u32 config; u32 config_ext; u32 timing_1; u32 timing_2; }; struct brcmnand_host { struct list_head node; struct nand_chip chip; struct platform_device *pdev; int cs; unsigned int last_cmd; unsigned int last_byte; u64 last_addr; struct brcmnand_cfg hwcfg; struct brcmnand_controller *ctrl; }; enum brcmnand_reg { BRCMNAND_CMD_START = 0, BRCMNAND_CMD_EXT_ADDRESS, BRCMNAND_CMD_ADDRESS, BRCMNAND_INTFC_STATUS, BRCMNAND_CS_SELECT, BRCMNAND_CS_XOR, BRCMNAND_LL_OP, BRCMNAND_CS0_BASE, BRCMNAND_CS1_BASE, /* CS1 regs, if non-contiguous */ BRCMNAND_CORR_THRESHOLD, BRCMNAND_CORR_THRESHOLD_EXT, BRCMNAND_UNCORR_COUNT, BRCMNAND_CORR_COUNT, BRCMNAND_CORR_EXT_ADDR, BRCMNAND_CORR_ADDR, BRCMNAND_UNCORR_EXT_ADDR, BRCMNAND_UNCORR_ADDR, BRCMNAND_SEMAPHORE, BRCMNAND_ID, BRCMNAND_ID_EXT, BRCMNAND_LL_RDATA, BRCMNAND_OOB_READ_BASE, BRCMNAND_OOB_READ_10_BASE, /* offset 0x10, if non-contiguous */ BRCMNAND_OOB_WRITE_BASE, BRCMNAND_OOB_WRITE_10_BASE, /* offset 0x10, if non-contiguous */ BRCMNAND_FC_BASE, }; /* BRCMNAND v2.1-v2.2 */ static const u16 brcmnand_regs_v21[] = { [BRCMNAND_CMD_START] = 0x04, [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, [BRCMNAND_CMD_ADDRESS] = 0x0c, [BRCMNAND_INTFC_STATUS] = 0x5c, [BRCMNAND_CS_SELECT] = 0x14, [BRCMNAND_CS_XOR] = 0x18, [BRCMNAND_LL_OP] = 0, [BRCMNAND_CS0_BASE] = 0x40, [BRCMNAND_CS1_BASE] = 0, [BRCMNAND_CORR_THRESHOLD] = 0, [BRCMNAND_CORR_THRESHOLD_EXT] = 0, [BRCMNAND_UNCORR_COUNT] = 0, [BRCMNAND_CORR_COUNT] = 0, [BRCMNAND_CORR_EXT_ADDR] = 0x60, [BRCMNAND_CORR_ADDR] = 0x64, [BRCMNAND_UNCORR_EXT_ADDR] = 0x68, [BRCMNAND_UNCORR_ADDR] = 0x6c, [BRCMNAND_SEMAPHORE] = 0x50, [BRCMNAND_ID] = 0x54, [BRCMNAND_ID_EXT] = 0, [BRCMNAND_LL_RDATA] = 0, [BRCMNAND_OOB_READ_BASE] = 0x20, [BRCMNAND_OOB_READ_10_BASE] = 0, [BRCMNAND_OOB_WRITE_BASE] = 0x30, [BRCMNAND_OOB_WRITE_10_BASE] = 0, [BRCMNAND_FC_BASE] = 0x200, }; /* BRCMNAND v3.3-v4.0 */ static const u16 brcmnand_regs_v33[] = { [BRCMNAND_CMD_START] = 0x04, [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, [BRCMNAND_CMD_ADDRESS] = 0x0c, [BRCMNAND_INTFC_STATUS] = 0x6c, [BRCMNAND_CS_SELECT] = 0x14, [BRCMNAND_CS_XOR] = 0x18, [BRCMNAND_LL_OP] = 0x178, [BRCMNAND_CS0_BASE] = 0x40, [BRCMNAND_CS1_BASE] = 0xd0, [BRCMNAND_CORR_THRESHOLD] = 0x84, [BRCMNAND_CORR_THRESHOLD_EXT] = 0, [BRCMNAND_UNCORR_COUNT] = 0, [BRCMNAND_CORR_COUNT] = 0, [BRCMNAND_CORR_EXT_ADDR] = 0x70, [BRCMNAND_CORR_ADDR] = 0x74, [BRCMNAND_UNCORR_EXT_ADDR] = 0x78, [BRCMNAND_UNCORR_ADDR] = 0x7c, [BRCMNAND_SEMAPHORE] = 0x58, [BRCMNAND_ID] = 0x60, [BRCMNAND_ID_EXT] = 0x64, [BRCMNAND_LL_RDATA] = 0x17c, [BRCMNAND_OOB_READ_BASE] = 0x20, [BRCMNAND_OOB_READ_10_BASE] = 0x130, [BRCMNAND_OOB_WRITE_BASE] = 0x30, [BRCMNAND_OOB_WRITE_10_BASE] = 0, [BRCMNAND_FC_BASE] = 0x200, }; /* BRCMNAND v5.0 */ static const u16 brcmnand_regs_v50[] = { [BRCMNAND_CMD_START] = 0x04, [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, [BRCMNAND_CMD_ADDRESS] = 0x0c, [BRCMNAND_INTFC_STATUS] = 0x6c, [BRCMNAND_CS_SELECT] = 0x14, [BRCMNAND_CS_XOR] = 0x18, [BRCMNAND_LL_OP] = 0x178, [BRCMNAND_CS0_BASE] = 0x40, [BRCMNAND_CS1_BASE] = 0xd0, [BRCMNAND_CORR_THRESHOLD] = 0x84, [BRCMNAND_CORR_THRESHOLD_EXT] = 0, [BRCMNAND_UNCORR_COUNT] = 0, [BRCMNAND_CORR_COUNT] = 0, [BRCMNAND_CORR_EXT_ADDR] = 0x70, [BRCMNAND_CORR_ADDR] = 0x74, [BRCMNAND_UNCORR_EXT_ADDR] = 0x78, [BRCMNAND_UNCORR_ADDR] = 0x7c, [BRCMNAND_SEMAPHORE] = 0x58, [BRCMNAND_ID] = 0x60, [BRCMNAND_ID_EXT] = 0x64, [BRCMNAND_LL_RDATA] = 0x17c, [BRCMNAND_OOB_READ_BASE] = 0x20, [BRCMNAND_OOB_READ_10_BASE] = 0x130, [BRCMNAND_OOB_WRITE_BASE] = 0x30, [BRCMNAND_OOB_WRITE_10_BASE] = 0x140, [BRCMNAND_FC_BASE] = 0x200, }; /* BRCMNAND v6.0 - v7.1 */ static const u16 brcmnand_regs_v60[] = { [BRCMNAND_CMD_START] = 0x04, [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, [BRCMNAND_CMD_ADDRESS] = 0x0c, [BRCMNAND_INTFC_STATUS] = 0x14, [BRCMNAND_CS_SELECT] = 0x18, [BRCMNAND_CS_XOR] = 0x1c, [BRCMNAND_LL_OP] = 0x20, [BRCMNAND_CS0_BASE] = 0x50, [BRCMNAND_CS1_BASE] = 0, [BRCMNAND_CORR_THRESHOLD] = 0xc0, [BRCMNAND_CORR_THRESHOLD_EXT] = 0xc4, [BRCMNAND_UNCORR_COUNT] = 0xfc, [BRCMNAND_CORR_COUNT] = 0x100, [BRCMNAND_CORR_EXT_ADDR] = 0x10c, [BRCMNAND_CORR_ADDR] = 0x110, [BRCMNAND_UNCORR_EXT_ADDR] = 0x114, [BRCMNAND_UNCORR_ADDR] = 0x118, [BRCMNAND_SEMAPHORE] = 0x150, [BRCMNAND_ID] = 0x194, [BRCMNAND_ID_EXT] = 0x198, [BRCMNAND_LL_RDATA] = 0x19c, [BRCMNAND_OOB_READ_BASE] = 0x200, [BRCMNAND_OOB_READ_10_BASE] = 0, [BRCMNAND_OOB_WRITE_BASE] = 0x280, [BRCMNAND_OOB_WRITE_10_BASE] = 0, [BRCMNAND_FC_BASE] = 0x400, }; /* BRCMNAND v7.1 */ static const u16 brcmnand_regs_v71[] = { [BRCMNAND_CMD_START] = 0x04, [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, [BRCMNAND_CMD_ADDRESS] = 0x0c, [BRCMNAND_INTFC_STATUS] = 0x14, [BRCMNAND_CS_SELECT] = 0x18, [BRCMNAND_CS_XOR] = 0x1c, [BRCMNAND_LL_OP] = 0x20, [BRCMNAND_CS0_BASE] = 0x50, [BRCMNAND_CS1_BASE] = 0, [BRCMNAND_CORR_THRESHOLD] = 0xdc, [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0, [BRCMNAND_UNCORR_COUNT] = 0xfc, [BRCMNAND_CORR_COUNT] = 0x100, [BRCMNAND_CORR_EXT_ADDR] = 0x10c, [BRCMNAND_CORR_ADDR] = 0x110, [BRCMNAND_UNCORR_EXT_ADDR] = 0x114, [BRCMNAND_UNCORR_ADDR] = 0x118, [BRCMNAND_SEMAPHORE] = 0x150, [BRCMNAND_ID] = 0x194, [BRCMNAND_ID_EXT] = 0x198, [BRCMNAND_LL_RDATA] = 0x19c, [BRCMNAND_OOB_READ_BASE] = 0x200, [BRCMNAND_OOB_READ_10_BASE] = 0, [BRCMNAND_OOB_WRITE_BASE] = 0x280, [BRCMNAND_OOB_WRITE_10_BASE] = 0, [BRCMNAND_FC_BASE] = 0x400, }; /* BRCMNAND v7.2 */ static const u16 brcmnand_regs_v72[] = { [BRCMNAND_CMD_START] = 0x04, [BRCMNAND_CMD_EXT_ADDRESS] = 0x08, [BRCMNAND_CMD_ADDRESS] = 0x0c, [BRCMNAND_INTFC_STATUS] = 0x14, [BRCMNAND_CS_SELECT] = 0x18, [BRCMNAND_CS_XOR] = 0x1c, [BRCMNAND_LL_OP] = 0x20, [BRCMNAND_CS0_BASE] = 0x50, [BRCMNAND_CS1_BASE] = 0, [BRCMNAND_CORR_THRESHOLD] = 0xdc, [BRCMNAND_CORR_THRESHOLD_EXT] = 0xe0, [BRCMNAND_UNCORR_COUNT] = 0xfc, [BRCMNAND_CORR_COUNT] = 0x100, [BRCMNAND_CORR_EXT_ADDR] = 0x10c, [BRCMNAND_CORR_ADDR] = 0x110, [BRCMNAND_UNCORR_EXT_ADDR] = 0x114, [BRCMNAND_UNCORR_ADDR] = 0x118, [BRCMNAND_SEMAPHORE] = 0x150, [BRCMNAND_ID] = 0x194, [BRCMNAND_ID_EXT] = 0x198, [BRCMNAND_LL_RDATA] = 0x19c, [BRCMNAND_OOB_READ_BASE] = 0x200, [BRCMNAND_OOB_READ_10_BASE] = 0, [BRCMNAND_OOB_WRITE_BASE] = 0x400, [BRCMNAND_OOB_WRITE_10_BASE] = 0, [BRCMNAND_FC_BASE] = 0x600, }; enum brcmnand_cs_reg { BRCMNAND_CS_CFG_EXT = 0, BRCMNAND_CS_CFG, BRCMNAND_CS_ACC_CONTROL, BRCMNAND_CS_TIMING1, BRCMNAND_CS_TIMING2, }; /* Per chip-select offsets for v7.1 */ static const u8 brcmnand_cs_offsets_v71[] = { [BRCMNAND_CS_ACC_CONTROL] = 0x00, [BRCMNAND_CS_CFG_EXT] = 0x04, [BRCMNAND_CS_CFG] = 0x08, [BRCMNAND_CS_TIMING1] = 0x0c, [BRCMNAND_CS_TIMING2] = 0x10, }; /* Per chip-select offsets for pre v7.1, except CS0 on <= v5.0 */ static const u8 brcmnand_cs_offsets[] = { [BRCMNAND_CS_ACC_CONTROL] = 0x00, [BRCMNAND_CS_CFG_EXT] = 0x04, [BRCMNAND_CS_CFG] = 0x04, [BRCMNAND_CS_TIMING1] = 0x08, [BRCMNAND_CS_TIMING2] = 0x0c, }; /* Per chip-select offset for <= v5.0 on CS0 only */ static const u8 brcmnand_cs_offsets_cs0[] = { [BRCMNAND_CS_ACC_CONTROL] = 0x00, [BRCMNAND_CS_CFG_EXT] = 0x08, [BRCMNAND_CS_CFG] = 0x08, [BRCMNAND_CS_TIMING1] = 0x10, [BRCMNAND_CS_TIMING2] = 0x14, }; /* * Bitfields for the CFG and CFG_EXT registers. Pre-v7.1 controllers only had * one config register, but once the bitfields overflowed, newer controllers * (v7.1 and newer) added a CFG_EXT register and shuffled a few fields around. */ enum { CFG_BLK_ADR_BYTES_SHIFT = 8, CFG_COL_ADR_BYTES_SHIFT = 12, CFG_FUL_ADR_BYTES_SHIFT = 16, CFG_BUS_WIDTH_SHIFT = 23, CFG_BUS_WIDTH = BIT(CFG_BUS_WIDTH_SHIFT), CFG_DEVICE_SIZE_SHIFT = 24, /* Only for v2.1 */ CFG_PAGE_SIZE_SHIFT_v2_1 = 30, /* Only for pre-v7.1 (with no CFG_EXT register) */ CFG_PAGE_SIZE_SHIFT = 20, CFG_BLK_SIZE_SHIFT = 28, /* Only for v7.1+ (with CFG_EXT register) */ CFG_EXT_PAGE_SIZE_SHIFT = 0, CFG_EXT_BLK_SIZE_SHIFT = 4, }; /* BRCMNAND_INTFC_STATUS */ enum { INTFC_FLASH_STATUS = GENMASK(7, 0), INTFC_ERASED = BIT(27), INTFC_OOB_VALID = BIT(28), INTFC_CACHE_VALID = BIT(29), INTFC_FLASH_READY = BIT(30), INTFC_CTLR_READY = BIT(31), }; /*********************************************************************** * NAND ACC CONTROL bitfield * * Some bits have remained constant throughout hardware revision, while * others have shifted around. ***********************************************************************/ /* Constant for all versions (where supported) */ enum { /* See BRCMNAND_HAS_CACHE_MODE */ ACC_CONTROL_CACHE_MODE = BIT(22), /* See BRCMNAND_HAS_PREFETCH */ ACC_CONTROL_PREFETCH = BIT(23), ACC_CONTROL_PAGE_HIT = BIT(24), ACC_CONTROL_WR_PREEMPT = BIT(25), ACC_CONTROL_PARTIAL_PAGE = BIT(26), ACC_CONTROL_RD_ERASED = BIT(27), ACC_CONTROL_FAST_PGM_RDIN = BIT(28), ACC_CONTROL_WR_ECC = BIT(30), ACC_CONTROL_RD_ECC = BIT(31), }; #define ACC_CONTROL_ECC_SHIFT 16 /* Only for v7.2 */ #define ACC_CONTROL_ECC_EXT_SHIFT 13 static int brcmnand_status(struct brcmnand_host *host); static inline bool brcmnand_non_mmio_ops(struct brcmnand_controller *ctrl) { #if IS_ENABLED(CONFIG_MTD_NAND_BRCMNAND_BCMA) return static_branch_unlikely(&brcmnand_soc_has_ops_key); #else return false; #endif } static inline u32 nand_readreg(struct brcmnand_controller *ctrl, u32 offs) { if (brcmnand_non_mmio_ops(ctrl)) return brcmnand_soc_read(ctrl->soc, offs); return brcmnand_readl(ctrl->nand_base + offs); } static inline void nand_writereg(struct brcmnand_controller *ctrl, u32 offs, u32 val) { if (brcmnand_non_mmio_ops(ctrl)) brcmnand_soc_write(ctrl->soc, val, offs); else brcmnand_writel(val, ctrl->nand_base + offs); } static int brcmnand_revision_init(struct brcmnand_controller *ctrl) { static const unsigned int block_sizes_v6[] = { 8, 16, 128, 256, 512, 1024, 2048, 0 }; static const unsigned int block_sizes_v4[] = { 16, 128, 8, 512, 256, 1024, 2048, 0 }; static const unsigned int block_sizes_v2_2[] = { 16, 128, 8, 512, 256, 0 }; static const unsigned int block_sizes_v2_1[] = { 16, 128, 8, 512, 0 }; static const unsigned int page_sizes_v3_4[] = { 512, 2048, 4096, 8192, 0 }; static const unsigned int page_sizes_v2_2[] = { 512, 2048, 4096, 0 }; static const unsigned int page_sizes_v2_1[] = { 512, 2048, 0 }; ctrl->nand_version = nand_readreg(ctrl, 0) & 0xffff; /* Only support v2.1+ */ if (ctrl->nand_version < 0x0201) { dev_err(ctrl->dev, "version %#x not supported\n", ctrl->nand_version); return -ENODEV; } /* Register offsets */ if (ctrl->nand_version >= 0x0702) ctrl->reg_offsets = brcmnand_regs_v72; else if (ctrl->nand_version == 0x0701) ctrl->reg_offsets = brcmnand_regs_v71; else if (ctrl->nand_version >= 0x0600) ctrl->reg_offsets = brcmnand_regs_v60; else if (ctrl->nand_version >= 0x0500) ctrl->reg_offsets = brcmnand_regs_v50; else if (ctrl->nand_version >= 0x0303) ctrl->reg_offsets = brcmnand_regs_v33; else if (ctrl->nand_version >= 0x0201) ctrl->reg_offsets = brcmnand_regs_v21; /* Chip-select stride */ if (ctrl->nand_version >= 0x0701) ctrl->reg_spacing = 0x14; else ctrl->reg_spacing = 0x10; /* Per chip-select registers */ if (ctrl->nand_version >= 0x0701) { ctrl->cs_offsets = brcmnand_cs_offsets_v71; } else { ctrl->cs_offsets = brcmnand_cs_offsets; /* v3.3-5.0 have a different CS0 offset layout */ if (ctrl->nand_version >= 0x0303 && ctrl->nand_version <= 0x0500) ctrl->cs0_offsets = brcmnand_cs_offsets_cs0; } /* Page / block sizes */ if (ctrl->nand_version >= 0x0701) { /* >= v7.1 use nice power-of-2 values! */ ctrl->max_page_size = 16 * 1024; ctrl->max_block_size = 2 * 1024 * 1024; } else { if (ctrl->nand_version >= 0x0304) ctrl->page_sizes = page_sizes_v3_4; else if (ctrl->nand_version >= 0x0202) ctrl->page_sizes = page_sizes_v2_2; else ctrl->page_sizes = page_sizes_v2_1; if (ctrl->nand_version >= 0x0202) ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT; else ctrl->page_size_shift = CFG_PAGE_SIZE_SHIFT_v2_1; if (ctrl->nand_version >= 0x0600) ctrl->block_sizes = block_sizes_v6; else if (ctrl->nand_version >= 0x0400) ctrl->block_sizes = block_sizes_v4; else if (ctrl->nand_version >= 0x0202) ctrl->block_sizes = block_sizes_v2_2; else ctrl->block_sizes = block_sizes_v2_1; if (ctrl->nand_version < 0x0400) { if (ctrl->nand_version < 0x0202) ctrl->max_page_size = 2048; else ctrl->max_page_size = 4096; ctrl->max_block_size = 512 * 1024; } } /* Maximum spare area sector size (per 512B) */ if (ctrl->nand_version == 0x0702) ctrl->max_oob = 128; else if (ctrl->nand_version >= 0x0600) ctrl->max_oob = 64; else if (ctrl->nand_version >= 0x0500) ctrl->max_oob = 32; else ctrl->max_oob = 16; /* v6.0 and newer (except v6.1) have prefetch support */ if (ctrl->nand_version >= 0x0600 && ctrl->nand_version != 0x0601) ctrl->features |= BRCMNAND_HAS_PREFETCH; /* * v6.x has cache mode, but it's implemented differently. Ignore it for * now. */ if (ctrl->nand_version >= 0x0700) ctrl->features |= BRCMNAND_HAS_CACHE_MODE; if (ctrl->nand_version >= 0x0500) ctrl->features |= BRCMNAND_HAS_1K_SECTORS; if (ctrl->nand_version >= 0x0700) ctrl->features |= BRCMNAND_HAS_WP; else if (of_property_read_bool(ctrl->dev->of_node, "brcm,nand-has-wp")) ctrl->features |= BRCMNAND_HAS_WP; /* v7.2 has different ecc level shift in the acc register */ if (ctrl->nand_version == 0x0702) ctrl->ecc_level_shift = ACC_CONTROL_ECC_EXT_SHIFT; else ctrl->ecc_level_shift = ACC_CONTROL_ECC_SHIFT; return 0; } static void brcmnand_flash_dma_revision_init(struct brcmnand_controller *ctrl) { /* flash_dma register offsets */ if (ctrl->nand_version >= 0x0703) ctrl->flash_dma_offsets = flash_dma_regs_v4; else if (ctrl->nand_version == 0x0602) ctrl->flash_dma_offsets = flash_dma_regs_v0; else ctrl->flash_dma_offsets = flash_dma_regs_v1; } static inline u32 brcmnand_read_reg(struct brcmnand_controller *ctrl, enum brcmnand_reg reg) { u16 offs = ctrl->reg_offsets[reg]; if (offs) return nand_readreg(ctrl, offs); else return 0; } static inline void brcmnand_write_reg(struct brcmnand_controller *ctrl, enum brcmnand_reg reg, u32 val) { u16 offs = ctrl->reg_offsets[reg]; if (offs) nand_writereg(ctrl, offs, val); } static inline void brcmnand_rmw_reg(struct brcmnand_controller *ctrl, enum brcmnand_reg reg, u32 mask, unsigned int shift, u32 val) { u32 tmp = brcmnand_read_reg(ctrl, reg); tmp &= ~mask; tmp |= val << shift; brcmnand_write_reg(ctrl, reg, tmp); } static inline u32 brcmnand_read_fc(struct brcmnand_controller *ctrl, int word) { if (brcmnand_non_mmio_ops(ctrl)) return brcmnand_soc_read(ctrl->soc, BRCMNAND_NON_MMIO_FC_ADDR); return __raw_readl(ctrl->nand_fc + word * 4); } static inline void brcmnand_write_fc(struct brcmnand_controller *ctrl, int word, u32 val) { if (brcmnand_non_mmio_ops(ctrl)) brcmnand_soc_write(ctrl->soc, val, BRCMNAND_NON_MMIO_FC_ADDR); else __raw_writel(val, ctrl->nand_fc + word * 4); } static inline void edu_writel(struct brcmnand_controller *ctrl, enum edu_reg reg, u32 val) { u16 offs = ctrl->edu_offsets[reg]; brcmnand_writel(val, ctrl->edu_base + offs); } static inline u32 edu_readl(struct brcmnand_controller *ctrl, enum edu_reg reg) { u16 offs = ctrl->edu_offsets[reg]; return brcmnand_readl(ctrl->edu_base + offs); } static inline void brcmnand_read_data_bus(struct brcmnand_controller *ctrl, void __iomem *flash_cache, u32 *buffer, int fc_words) { struct brcmnand_soc *soc = ctrl->soc; int i; if (soc && soc->read_data_bus) { soc->read_data_bus(soc, flash_cache, buffer, fc_words); } else { for (i = 0; i < fc_words; i++) buffer[i] = brcmnand_read_fc(ctrl, i); } } static void brcmnand_clear_ecc_addr(struct brcmnand_controller *ctrl) { /* Clear error addresses */ brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_ADDR, 0); brcmnand_write_reg(ctrl, BRCMNAND_CORR_ADDR, 0); brcmnand_write_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR, 0); brcmnand_write_reg(ctrl, BRCMNAND_CORR_EXT_ADDR, 0); } static u64 brcmnand_get_uncorrecc_addr(struct brcmnand_controller *ctrl) { u64 err_addr; err_addr = brcmnand_read_reg(ctrl, BRCMNAND_UNCORR_ADDR); err_addr |= ((u64)(brcmnand_read_reg(ctrl, BRCMNAND_UNCORR_EXT_ADDR) & 0xffff) << 32); return err_addr; } static u64 brcmnand_get_correcc_addr(struct brcmnand_controller *ctrl) { u64 err_addr; err_addr = brcmnand_read_reg(ctrl, BRCMNAND_CORR_ADDR); err_addr |= ((u64)(brcmnand_read_reg(ctrl, BRCMNAND_CORR_EXT_ADDR) & 0xffff) << 32); return err_addr; } static void brcmnand_set_cmd_addr(struct mtd_info *mtd, u64 addr) { struct nand_chip *chip = mtd_to_nand(mtd); struct brcmnand_host *host = nand_get_controller_data(chip); struct brcmnand_controller *ctrl = host->ctrl; brcmnand_write_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS, (host->cs << 16) | ((addr >> 32) & 0xffff)); (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_EXT_ADDRESS); brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, lower_32_bits(addr)); (void)brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS); } static inline u16 brcmnand_cs_offset(struct brcmnand_controller *ctrl, int cs, enum brcmnand_cs_reg reg) { u16 offs_cs0 = ctrl->reg_offsets[BRCMNAND_CS0_BASE]; u16 offs_cs1 = ctrl->reg_offsets[BRCMNAND_CS1_BASE]; u8 cs_offs; if (cs == 0 && ctrl->cs0_offsets) cs_offs = ctrl->cs0_offsets[reg]; else cs_offs = ctrl->cs_offsets[reg]; if (cs && offs_cs1) return offs_cs1 + (cs - 1) * ctrl->reg_spacing + cs_offs; return offs_cs0 + cs * ctrl->reg_spacing + cs_offs; } static inline u32 brcmnand_count_corrected(struct brcmnand_controller *ctrl) { if (ctrl->nand_version < 0x0600) return 1; return brcmnand_read_reg(ctrl, BRCMNAND_CORR_COUNT); } static void brcmnand_wr_corr_thresh(struct brcmnand_host *host, u8 val) { struct brcmnand_controller *ctrl = host->ctrl; unsigned int shift = 0, bits; enum brcmnand_reg reg = BRCMNAND_CORR_THRESHOLD; int cs = host->cs; if (!ctrl->reg_offsets[reg]) return; if (ctrl->nand_version == 0x0702) bits = 7; else if (ctrl->nand_version >= 0x0600) bits = 6; else if (ctrl->nand_version >= 0x0500) bits = 5; else bits = 4; if (ctrl->nand_version >= 0x0702) { if (cs >= 4) reg = BRCMNAND_CORR_THRESHOLD_EXT; shift = (cs % 4) * bits; } else if (ctrl->nand_version >= 0x0600) { if (cs >= 5) reg = BRCMNAND_CORR_THRESHOLD_EXT; shift = (cs % 5) * bits; } brcmnand_rmw_reg(ctrl, reg, (bits - 1) << shift, shift, val); } static inline int brcmnand_cmd_shift(struct brcmnand_controller *ctrl) { /* Kludge for the BCMA-based NAND controller which does not actually * shift the command */ if (ctrl->nand_version == 0x0304 && brcmnand_non_mmio_ops(ctrl)) return 0; if (ctrl->nand_version < 0x0602) return 24; return 0; } static inline u32 brcmnand_spare_area_mask(struct brcmnand_controller *ctrl) { if (ctrl->nand_version == 0x0702) return GENMASK(7, 0); else if (ctrl->nand_version >= 0x0600) return GENMASK(6, 0); else if (ctrl->nand_version >= 0x0303) return GENMASK(5, 0); else return GENMASK(4, 0); } static inline u32 brcmnand_ecc_level_mask(struct brcmnand_controller *ctrl) { u32 mask = (ctrl->nand_version >= 0x0600) ? 0x1f : 0x0f; mask <<= ACC_CONTROL_ECC_SHIFT; /* v7.2 includes additional ECC levels */ if (ctrl->nand_version == 0x0702) mask |= 0x7 << ACC_CONTROL_ECC_EXT_SHIFT; return mask; } static void brcmnand_set_ecc_enabled(struct brcmnand_host *host, int en) { struct brcmnand_controller *ctrl = host->ctrl; u16 offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL); u32 acc_control = nand_readreg(ctrl, offs); u32 ecc_flags = ACC_CONTROL_WR_ECC | ACC_CONTROL_RD_ECC; if (en) { acc_control |= ecc_flags; /* enable RD/WR ECC */ acc_control &= ~brcmnand_ecc_level_mask(ctrl); acc_control |= host->hwcfg.ecc_level << ctrl->ecc_level_shift; } else { acc_control &= ~ecc_flags; /* disable RD/WR ECC */ acc_control &= ~brcmnand_ecc_level_mask(ctrl); } nand_writereg(ctrl, offs, acc_control); } static inline int brcmnand_sector_1k_shift(struct brcmnand_controller *ctrl) { if (ctrl->nand_version >= 0x0702) return 9; else if (ctrl->nand_version >= 0x0600) return 7; else if (ctrl->nand_version >= 0x0500) return 6; else return -1; } static bool brcmnand_get_sector_size_1k(struct brcmnand_host *host) { struct brcmnand_controller *ctrl = host->ctrl; int sector_size_bit = brcmnand_sector_1k_shift(ctrl); u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL); u32 acc_control; if (sector_size_bit < 0) return false; acc_control = nand_readreg(ctrl, acc_control_offs); return ((acc_control & BIT(sector_size_bit)) != 0); } static void brcmnand_set_sector_size_1k(struct brcmnand_host *host, int val) { struct brcmnand_controller *ctrl = host->ctrl; int shift = brcmnand_sector_1k_shift(ctrl); u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL); u32 tmp; if (shift < 0) return; tmp = nand_readreg(ctrl, acc_control_offs); tmp &= ~(1 << shift); tmp |= (!!val) << shift; nand_writereg(ctrl, acc_control_offs, tmp); } static int brcmnand_get_spare_size(struct brcmnand_host *host) { struct brcmnand_controller *ctrl = host->ctrl; u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL); u32 acc = nand_readreg(ctrl, acc_control_offs); return (acc & brcmnand_spare_area_mask(ctrl)); } static void brcmnand_get_ecc_settings(struct brcmnand_host *host, struct nand_chip *chip) { struct brcmnand_controller *ctrl = host->ctrl; u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL); bool sector_size_1k = brcmnand_get_sector_size_1k(host); int spare_area_size, ecc_level; u32 acc; spare_area_size = brcmnand_get_spare_size(host); acc = nand_readreg(ctrl, acc_control_offs); ecc_level = (acc & brcmnand_ecc_level_mask(ctrl)) >> ctrl->ecc_level_shift; if (sector_size_1k) chip->ecc.strength = ecc_level * 2; else if (spare_area_size == 16 && ecc_level == 15) chip->ecc.strength = 1; /* hamming */ else chip->ecc.strength = ecc_level; if (chip->ecc.size == 0) { if (sector_size_1k) chip->ecc.size = 1024; else chip->ecc.size = 512; } } /*********************************************************************** * CS_NAND_SELECT ***********************************************************************/ enum { CS_SELECT_NAND_WP = BIT(29), CS_SELECT_AUTO_DEVICE_ID_CFG = BIT(30), }; static int bcmnand_ctrl_poll_status(struct brcmnand_host *host, u32 mask, u32 expected_val, unsigned long timeout_ms) { struct brcmnand_controller *ctrl = host->ctrl; unsigned long limit; u32 val; if (!timeout_ms) timeout_ms = NAND_POLL_STATUS_TIMEOUT_MS; limit = jiffies + msecs_to_jiffies(timeout_ms); do { if (mask & INTFC_FLASH_STATUS) brcmnand_status(host); val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS); if ((val & mask) == expected_val) return 0; cpu_relax(); } while (time_after(limit, jiffies)); /* * do a final check after time out in case the CPU was busy and the driver * did not get enough time to perform the polling to avoid false alarms */ if (mask & INTFC_FLASH_STATUS) brcmnand_status(host); val = brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS); if ((val & mask) == expected_val) return 0; dev_err(ctrl->dev, "timeout on status poll (expected %x got %x)\n", expected_val, val & mask); return -ETIMEDOUT; } static inline void brcmnand_set_wp(struct brcmnand_controller *ctrl, bool en) { u32 val = en ? CS_SELECT_NAND_WP : 0; brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_NAND_WP, 0, val); } /*********************************************************************** * Flash DMA ***********************************************************************/ static inline bool has_flash_dma(struct brcmnand_controller *ctrl) { return ctrl->flash_dma_base; } static inline bool has_edu(struct brcmnand_controller *ctrl) { return ctrl->edu_base; } static inline bool use_dma(struct brcmnand_controller *ctrl) { return has_flash_dma(ctrl) || has_edu(ctrl); } static inline void disable_ctrl_irqs(struct brcmnand_controller *ctrl) { if (ctrl->pio_poll_mode) return; if (has_flash_dma(ctrl)) { ctrl->flash_dma_base = NULL; disable_irq(ctrl->dma_irq); } disable_irq(ctrl->irq); ctrl->pio_poll_mode = true; } static inline bool flash_dma_buf_ok(const void *buf) { return buf && !is_vmalloc_addr(buf) && likely(IS_ALIGNED((uintptr_t)buf, 4)); } static inline void flash_dma_writel(struct brcmnand_controller *ctrl, enum flash_dma_reg dma_reg, u32 val) { u16 offs = ctrl->flash_dma_offsets[dma_reg]; brcmnand_writel(val, ctrl->flash_dma_base + offs); } static inline u32 flash_dma_readl(struct brcmnand_controller *ctrl, enum flash_dma_reg dma_reg) { u16 offs = ctrl->flash_dma_offsets[dma_reg]; return brcmnand_readl(ctrl->flash_dma_base + offs); } /* Low-level operation types: command, address, write, or read */ enum brcmnand_llop_type { LL_OP_CMD, LL_OP_ADDR, LL_OP_WR, LL_OP_RD, }; /*********************************************************************** * Internal support functions ***********************************************************************/ static inline bool is_hamming_ecc(struct brcmnand_controller *ctrl, struct brcmnand_cfg *cfg) { if (ctrl->nand_version <= 0x0701) return cfg->sector_size_1k == 0 && cfg->spare_area_size == 16 && cfg->ecc_level == 15; else return cfg->sector_size_1k == 0 && ((cfg->spare_area_size == 16 && cfg->ecc_level == 15) || (cfg->spare_area_size == 28 && cfg->ecc_level == 16)); } /* * Set mtd->ooblayout to the appropriate mtd_ooblayout_ops given * the layout/configuration. * Returns -ERRCODE on failure. */ static int brcmnand_hamming_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct brcmnand_host *host = nand_get_controller_data(chip); struct brcmnand_cfg *cfg = &host->hwcfg; int sas = cfg->spare_area_size << cfg->sector_size_1k; int sectors = cfg->page_size / (512 << cfg->sector_size_1k); if (section >= sectors) return -ERANGE; oobregion->offset = (section * sas) + 6; oobregion->length = 3; return 0; } static int brcmnand_hamming_ooblayout_free(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct brcmnand_host *host = nand_get_controller_data(chip); struct brcmnand_cfg *cfg = &host->hwcfg; int sas = cfg->spare_area_size << cfg->sector_size_1k; int sectors = cfg->page_size / (512 << cfg->sector_size_1k); u32 next; if (section > sectors) return -ERANGE; next = (section * sas); if (section < sectors) next += 6; if (section) { oobregion->offset = ((section - 1) * sas) + 9; } else { if (cfg->page_size > 512) { /* Large page NAND uses first 2 bytes for BBI */ oobregion->offset = 2; } else { /* Small page NAND uses last byte before ECC for BBI */ oobregion->offset = 0; next--; } } oobregion->length = next - oobregion->offset; return 0; } static const struct mtd_ooblayout_ops brcmnand_hamming_ooblayout_ops = { .ecc = brcmnand_hamming_ooblayout_ecc, .free = brcmnand_hamming_ooblayout_free, }; static int brcmnand_bch_ooblayout_ecc(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct brcmnand_host *host = nand_get_controller_data(chip); struct brcmnand_cfg *cfg = &host->hwcfg; int sas = cfg->spare_area_size << cfg->sector_size_1k; int sectors = cfg->page_size / (512 << cfg->sector_size_1k); if (section >= sectors) return -ERANGE; oobregion->offset = ((section + 1) * sas) - chip->ecc.bytes; oobregion->length = chip->ecc.bytes; return 0; } static int brcmnand_bch_ooblayout_free_lp(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct brcmnand_host *host = nand_get_controller_data(chip); struct brcmnand_cfg *cfg = &host->hwcfg; int sas = cfg->spare_area_size << cfg->sector_size_1k; int sectors = cfg->page_size / (512 << cfg->sector_size_1k); if (section >= sectors) return -ERANGE; if (sas <= chip->ecc.bytes) return 0; oobregion->offset = section * sas; oobregion->length = sas - chip->ecc.bytes; if (!section) { oobregion->offset++; oobregion->length--; } return 0; } static int brcmnand_bch_ooblayout_free_sp(struct mtd_info *mtd, int section, struct mtd_oob_region *oobregion) { struct nand_chip *chip = mtd_to_nand(mtd); struct brcmnand_host *host = nand_get_controller_data(chip); struct brcmnand_cfg *cfg = &host->hwcfg; int sas = cfg->spare_area_size << cfg->sector_size_1k; if (section > 1 || sas - chip->ecc.bytes < 6 || (section && sas - chip->ecc.bytes == 6)) return -ERANGE; if (!section) { oobregion->offset = 0; oobregion->length = 5; } else { oobregion->offset = 6; oobregion->length = sas - chip->ecc.bytes - 6; } return 0; } static const struct mtd_ooblayout_ops brcmnand_bch_lp_ooblayout_ops = { .ecc = brcmnand_bch_ooblayout_ecc, .free = brcmnand_bch_ooblayout_free_lp, }; static const struct mtd_ooblayout_ops brcmnand_bch_sp_ooblayout_ops = { .ecc = brcmnand_bch_ooblayout_ecc, .free = brcmnand_bch_ooblayout_free_sp, }; static int brcmstb_choose_ecc_layout(struct brcmnand_host *host) { struct brcmnand_cfg *p = &host->hwcfg; struct mtd_info *mtd = nand_to_mtd(&host->chip); struct nand_ecc_ctrl *ecc = &host->chip.ecc; unsigned int ecc_level = p->ecc_level; int sas = p->spare_area_size << p->sector_size_1k; int sectors = p->page_size / (512 << p->sector_size_1k); if (p->sector_size_1k) ecc_level <<= 1; if (is_hamming_ecc(host->ctrl, p)) { ecc->bytes = 3 * sectors; mtd_set_ooblayout(mtd, &brcmnand_hamming_ooblayout_ops); return 0; } /* * CONTROLLER_VERSION: * < v5.0: ECC_REQ = ceil(BCH_T * 13/8) * >= v5.0: ECC_REQ = ceil(BCH_T * 14/8) * But we will just be conservative. */ ecc->bytes = DIV_ROUND_UP(ecc_level * 14, 8); if (p->page_size == 512) mtd_set_ooblayout(mtd, &brcmnand_bch_sp_ooblayout_ops); else mtd_set_ooblayout(mtd, &brcmnand_bch_lp_ooblayout_ops); if (ecc->bytes >= sas) { dev_err(&host->pdev->dev, "error: ECC too large for OOB (ECC bytes %d, spare sector %d)\n", ecc->bytes, sas); return -EINVAL; } return 0; } static void brcmnand_wp(struct mtd_info *mtd, int wp) { struct nand_chip *chip = mtd_to_nand(mtd); struct brcmnand_host *host = nand_get_controller_data(chip); struct brcmnand_controller *ctrl = host->ctrl; if ((ctrl->features & BRCMNAND_HAS_WP) && wp_on == 1) { static int old_wp = -1; int ret; if (old_wp != wp) { dev_dbg(ctrl->dev, "WP %s\n", wp ? "on" : "off"); old_wp = wp; } /* * make sure ctrl/flash ready before and after * changing state of #WP pin */ ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY | NAND_STATUS_READY, NAND_CTRL_RDY | NAND_STATUS_READY, 0); if (ret) return; brcmnand_set_wp(ctrl, wp); /* force controller operation to update internal copy of NAND chip status */ brcmnand_status(host); /* NAND_STATUS_WP 0x00 = protected, 0x80 = not protected */ ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY | NAND_STATUS_READY | NAND_STATUS_WP, NAND_CTRL_RDY | NAND_STATUS_READY | (wp ? 0 : NAND_STATUS_WP), 0); if (ret) dev_err_ratelimited(&host->pdev->dev, "nand #WP expected %s\n", wp ? "on" : "off"); } } /* Helper functions for reading and writing OOB registers */ static inline u8 oob_reg_read(struct brcmnand_controller *ctrl, u32 offs) { u16 offset0, offset10, reg_offs; offset0 = ctrl->reg_offsets[BRCMNAND_OOB_READ_BASE]; offset10 = ctrl->reg_offsets[BRCMNAND_OOB_READ_10_BASE]; if (offs >= ctrl->max_oob) return 0x77; if (offs >= 16 && offset10) reg_offs = offset10 + ((offs - 0x10) & ~0x03); else reg_offs = offset0 + (offs & ~0x03); return nand_readreg(ctrl, reg_offs) >> (24 - ((offs & 0x03) << 3)); } static inline void oob_reg_write(struct brcmnand_controller *ctrl, u32 offs, u32 data) { u16 offset0, offset10, reg_offs; offset0 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_BASE]; offset10 = ctrl->reg_offsets[BRCMNAND_OOB_WRITE_10_BASE]; if (offs >= ctrl->max_oob) return; if (offs >= 16 && offset10) reg_offs = offset10 + ((offs - 0x10) & ~0x03); else reg_offs = offset0 + (offs & ~0x03); nand_writereg(ctrl, reg_offs, data); } /* * read_oob_from_regs - read data from OOB registers * @ctrl: NAND controller * @i: sub-page sector index * @oob: buffer to read to * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE) * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal */ static int read_oob_from_regs(struct brcmnand_controller *ctrl, int i, u8 *oob, int sas, int sector_1k) { int tbytes = sas << sector_1k; int j; /* Adjust OOB values for 1K sector size */ if (sector_1k && (i & 0x01)) tbytes = max(0, tbytes - (int)ctrl->max_oob); tbytes = min_t(int, tbytes, ctrl->max_oob); for (j = 0; j < tbytes; j++) oob[j] = oob_reg_read(ctrl, j); return tbytes; } /* * write_oob_to_regs - write data to OOB registers * @i: sub-page sector index * @oob: buffer to write from * @sas: spare area sector size (i.e., OOB size per FLASH_CACHE) * @sector_1k: 1 for 1KiB sectors, 0 for 512B, other values are illegal */ static int write_oob_to_regs(struct brcmnand_controller *ctrl, int i, const u8 *oob, int sas, int sector_1k) { int tbytes = sas << sector_1k; int j, k = 0; u32 last = 0xffffffff; u8 *plast = (u8 *)&last; /* Adjust OOB values for 1K sector size */ if (sector_1k && (i & 0x01)) tbytes = max(0, tbytes - (int)ctrl->max_oob); tbytes = min_t(int, tbytes, ctrl->max_oob); /* * tbytes may not be multiple of words. Make sure we don't read out of * the boundary and stop at last word. */ for (j = 0; (j + 3) < tbytes; j += 4) oob_reg_write(ctrl, j, (oob[j + 0] << 24) | (oob[j + 1] << 16) | (oob[j + 2] << 8) | (oob[j + 3] << 0)); /* handle the remaing bytes */ while (j < tbytes) plast[k++] = oob[j++]; if (tbytes & 0x3) oob_reg_write(ctrl, (tbytes & ~0x3), (__force u32)cpu_to_be32(last)); return tbytes; } static void brcmnand_edu_init(struct brcmnand_controller *ctrl) { /* initialize edu */ edu_writel(ctrl, EDU_ERR_STATUS, 0); edu_readl(ctrl, EDU_ERR_STATUS); edu_writel(ctrl, EDU_DONE, 0); edu_writel(ctrl, EDU_DONE, 0); edu_writel(ctrl, EDU_DONE, 0); edu_writel(ctrl, EDU_DONE, 0); edu_readl(ctrl, EDU_DONE); } /* edu irq */ static irqreturn_t brcmnand_edu_irq(int irq, void *data) { struct brcmnand_controller *ctrl = data; if (ctrl->edu_count) { ctrl->edu_count--; while (!(edu_readl(ctrl, EDU_DONE) & EDU_DONE_MASK)) udelay(1); edu_writel(ctrl, EDU_DONE, 0); edu_readl(ctrl, EDU_DONE); } if (ctrl->edu_count) { ctrl->edu_dram_addr += FC_BYTES; ctrl->edu_ext_addr += FC_BYTES; edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr); edu_readl(ctrl, EDU_DRAM_ADDR); edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr); edu_readl(ctrl, EDU_EXT_ADDR); if (ctrl->oob) { if (ctrl->edu_cmd == EDU_CMD_READ) { ctrl->oob += read_oob_from_regs(ctrl, ctrl->edu_count + 1, ctrl->oob, ctrl->sas, ctrl->sector_size_1k); } else { brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, ctrl->edu_ext_addr); brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS); ctrl->oob += write_oob_to_regs(ctrl, ctrl->edu_count, ctrl->oob, ctrl->sas, ctrl->sector_size_1k); } } mb(); /* flush previous writes */ edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd); edu_readl(ctrl, EDU_CMD); return IRQ_HANDLED; } complete(&ctrl->edu_done); return IRQ_HANDLED; } static irqreturn_t brcmnand_ctlrdy_irq(int irq, void *data) { struct brcmnand_controller *ctrl = data; /* Discard all NAND_CTLRDY interrupts during DMA */ if (ctrl->dma_pending) return IRQ_HANDLED; /* check if you need to piggy back on the ctrlrdy irq */ if (ctrl->edu_pending) { if (irq == ctrl->irq && ((int)ctrl->edu_irq >= 0)) /* Discard interrupts while using dedicated edu irq */ return IRQ_HANDLED; /* no registered edu irq, call handler */ return brcmnand_edu_irq(irq, data); } complete(&ctrl->done); return IRQ_HANDLED; } /* Handle SoC-specific interrupt hardware */ static irqreturn_t brcmnand_irq(int irq, void *data) { struct brcmnand_controller *ctrl = data; if (ctrl->soc->ctlrdy_ack(ctrl->soc)) return brcmnand_ctlrdy_irq(irq, data); return IRQ_NONE; } static irqreturn_t brcmnand_dma_irq(int irq, void *data) { struct brcmnand_controller *ctrl = data; complete(&ctrl->dma_done); return IRQ_HANDLED; } static void brcmnand_send_cmd(struct brcmnand_host *host, int cmd) { struct brcmnand_controller *ctrl = host->ctrl; int ret; u64 cmd_addr; cmd_addr = brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS); dev_dbg(ctrl->dev, "send native cmd %d addr 0x%llx\n", cmd, cmd_addr); /* * If we came here through _panic_write and there is a pending * command, try to wait for it. If it times out, rather than * hitting BUG_ON, just return so we don't crash while crashing. */ if (oops_in_progress) { if (ctrl->cmd_pending && bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0)) return; } else BUG_ON(ctrl->cmd_pending != 0); ctrl->cmd_pending = cmd; ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0); WARN_ON(ret); mb(); /* flush previous writes */ brcmnand_write_reg(ctrl, BRCMNAND_CMD_START, cmd << brcmnand_cmd_shift(ctrl)); } static bool brcmstb_nand_wait_for_completion(struct nand_chip *chip) { struct brcmnand_host *host = nand_get_controller_data(chip); struct brcmnand_controller *ctrl = host->ctrl; struct mtd_info *mtd = nand_to_mtd(chip); bool err = false; int sts; if (mtd->oops_panic_write || ctrl->irq < 0) { /* switch to interrupt polling and PIO mode */ disable_ctrl_irqs(ctrl); sts = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0); err = sts < 0; } else { unsigned long timeo = msecs_to_jiffies( NAND_POLL_STATUS_TIMEOUT_MS); /* wait for completion interrupt */ sts = wait_for_completion_timeout(&ctrl->done, timeo); err = !sts; } return err; } static int brcmnand_waitfunc(struct nand_chip *chip) { struct brcmnand_host *host = nand_get_controller_data(chip); struct brcmnand_controller *ctrl = host->ctrl; bool err = false; dev_dbg(ctrl->dev, "wait on native cmd %d\n", ctrl->cmd_pending); if (ctrl->cmd_pending) err = brcmstb_nand_wait_for_completion(chip); ctrl->cmd_pending = 0; if (err) { u32 cmd = brcmnand_read_reg(ctrl, BRCMNAND_CMD_START) >> brcmnand_cmd_shift(ctrl); dev_err_ratelimited(ctrl->dev, "timeout waiting for command %#02x\n", cmd); dev_err_ratelimited(ctrl->dev, "intfc status %08x\n", brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS)); return -ETIMEDOUT; } return brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) & INTFC_FLASH_STATUS; } static int brcmnand_status(struct brcmnand_host *host) { struct nand_chip *chip = &host->chip; struct mtd_info *mtd = nand_to_mtd(chip); brcmnand_set_cmd_addr(mtd, 0); brcmnand_send_cmd(host, CMD_STATUS_READ); return brcmnand_waitfunc(chip); } static int brcmnand_reset(struct brcmnand_host *host) { struct nand_chip *chip = &host->chip; brcmnand_send_cmd(host, CMD_FLASH_RESET); return brcmnand_waitfunc(chip); } enum { LLOP_RE = BIT(16), LLOP_WE = BIT(17), LLOP_ALE = BIT(18), LLOP_CLE = BIT(19), LLOP_RETURN_IDLE = BIT(31), LLOP_DATA_MASK = GENMASK(15, 0), }; static int brcmnand_low_level_op(struct brcmnand_host *host, enum brcmnand_llop_type type, u32 data, bool last_op) { struct nand_chip *chip = &host->chip; struct brcmnand_controller *ctrl = host->ctrl; u32 tmp; tmp = data & LLOP_DATA_MASK; switch (type) { case LL_OP_CMD: tmp |= LLOP_WE | LLOP_CLE; break; case LL_OP_ADDR: /* WE | ALE */ tmp |= LLOP_WE | LLOP_ALE; break; case LL_OP_WR: /* WE */ tmp |= LLOP_WE; break; case LL_OP_RD: /* RE */ tmp |= LLOP_RE; break; } if (last_op) /* RETURN_IDLE */ tmp |= LLOP_RETURN_IDLE; dev_dbg(ctrl->dev, "ll_op cmd %#x\n", tmp); brcmnand_write_reg(ctrl, BRCMNAND_LL_OP, tmp); (void)brcmnand_read_reg(ctrl, BRCMNAND_LL_OP); brcmnand_send_cmd(host, CMD_LOW_LEVEL_OP); return brcmnand_waitfunc(chip); } /* * Kick EDU engine */ static int brcmnand_edu_trans(struct brcmnand_host *host, u64 addr, u32 *buf, u8 *oob, u32 len, u8 cmd) { struct brcmnand_controller *ctrl = host->ctrl; struct brcmnand_cfg *cfg = &host->hwcfg; unsigned long timeo = msecs_to_jiffies(200); int ret = 0; int dir = (cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE); u8 edu_cmd = (cmd == CMD_PAGE_READ ? EDU_CMD_READ : EDU_CMD_WRITE); unsigned int trans = len >> FC_SHIFT; dma_addr_t pa; dev_dbg(ctrl->dev, "EDU %s %p:%p\n", ((edu_cmd == EDU_CMD_READ) ? "read" : "write"), buf, oob); pa = dma_map_single(ctrl->dev, buf, len, dir); if (dma_mapping_error(ctrl->dev, pa)) { dev_err(ctrl->dev, "unable to map buffer for EDU DMA\n"); return -ENOMEM; } ctrl->edu_pending = true; ctrl->edu_dram_addr = pa; ctrl->edu_ext_addr = addr; ctrl->edu_cmd = edu_cmd; ctrl->edu_count = trans; ctrl->sas = cfg->spare_area_size; ctrl->oob = oob; edu_writel(ctrl, EDU_DRAM_ADDR, (u32)ctrl->edu_dram_addr); edu_readl(ctrl, EDU_DRAM_ADDR); edu_writel(ctrl, EDU_EXT_ADDR, ctrl->edu_ext_addr); edu_readl(ctrl, EDU_EXT_ADDR); edu_writel(ctrl, EDU_LENGTH, FC_BYTES); edu_readl(ctrl, EDU_LENGTH); if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_WRITE)) { brcmnand_write_reg(ctrl, BRCMNAND_CMD_ADDRESS, ctrl->edu_ext_addr); brcmnand_read_reg(ctrl, BRCMNAND_CMD_ADDRESS); ctrl->oob += write_oob_to_regs(ctrl, 1, ctrl->oob, ctrl->sas, ctrl->sector_size_1k); } /* Start edu engine */ mb(); /* flush previous writes */ edu_writel(ctrl, EDU_CMD, ctrl->edu_cmd); edu_readl(ctrl, EDU_CMD); if (wait_for_completion_timeout(&ctrl->edu_done, timeo) <= 0) { dev_err(ctrl->dev, "timeout waiting for EDU; status %#x, error status %#x\n", edu_readl(ctrl, EDU_STATUS), edu_readl(ctrl, EDU_ERR_STATUS)); } dma_unmap_single(ctrl->dev, pa, len, dir); /* read last subpage oob */ if (ctrl->oob && (ctrl->edu_cmd == EDU_CMD_READ)) { ctrl->oob += read_oob_from_regs(ctrl, 1, ctrl->oob, ctrl->sas, ctrl->sector_size_1k); } /* for program page check NAND status */ if (((brcmnand_read_reg(ctrl, BRCMNAND_INTFC_STATUS) & INTFC_FLASH_STATUS) & NAND_STATUS_FAIL) && edu_cmd == EDU_CMD_WRITE) { dev_info(ctrl->dev, "program failed at %llx\n", (unsigned long long)addr); ret = -EIO; } /* Make sure the EDU status is clean */ if (edu_readl(ctrl, EDU_STATUS) & EDU_STATUS_ACTIVE) dev_warn(ctrl->dev, "EDU still active: %#x\n", edu_readl(ctrl, EDU_STATUS)); if (unlikely(edu_readl(ctrl, EDU_ERR_STATUS) & EDU_ERR_STATUS_ERRACK)) { dev_warn(ctrl->dev, "EDU RBUS error at addr %llx\n", (unsigned long long)addr); ret = -EIO; } ctrl->edu_pending = false; brcmnand_edu_init(ctrl); edu_writel(ctrl, EDU_STOP, 0); /* force stop */ edu_readl(ctrl, EDU_STOP); if (!ret && edu_cmd == EDU_CMD_READ) { u64 err_addr = 0; /* * check for ECC errors here, subpage ECC errors are * retained in ECC error address register */ err_addr = brcmnand_get_uncorrecc_addr(ctrl); if (!err_addr) { err_addr = brcmnand_get_correcc_addr(ctrl); if (err_addr) ret = -EUCLEAN; } else ret = -EBADMSG; } return ret; } /* * Construct a FLASH_DMA descriptor as part of a linked list. You must know the * following ahead of time: * - Is this descriptor the beginning or end of a linked list? * - What is the (DMA) address of the next descriptor in the linked list? */ static int brcmnand_fill_dma_desc(struct brcmnand_host *host, struct brcm_nand_dma_desc *desc, u64 addr, dma_addr_t buf, u32 len, u8 dma_cmd, bool begin, bool end, dma_addr_t next_desc) { memset(desc, 0, sizeof(*desc)); /* Descriptors are written in native byte order (wordwise) */ desc->next_desc = lower_32_bits(next_desc); desc->next_desc_ext = upper_32_bits(next_desc); desc->cmd_irq = (dma_cmd << 24) | (end ? (0x03 << 8) : 0) | /* IRQ | STOP */ (!!begin) | ((!!end) << 1); /* head, tail */ #ifdef CONFIG_CPU_BIG_ENDIAN desc->cmd_irq |= 0x01 << 12; #endif desc->dram_addr = lower_32_bits(buf); desc->dram_addr_ext = upper_32_bits(buf); desc->tfr_len = len; desc->total_len = len; desc->flash_addr = lower_32_bits(addr); desc->flash_addr_ext = upper_32_bits(addr); desc->cs = host->cs; desc->status_valid = 0x01; return 0; } /* * Kick the FLASH_DMA engine, with a given DMA descriptor */ static void brcmnand_dma_run(struct brcmnand_host *host, dma_addr_t desc) { struct brcmnand_controller *ctrl = host->ctrl; unsigned long timeo = msecs_to_jiffies(100); flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC, lower_32_bits(desc)); (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC); if (ctrl->nand_version > 0x0602) { flash_dma_writel(ctrl, FLASH_DMA_FIRST_DESC_EXT, upper_32_bits(desc)); (void)flash_dma_readl(ctrl, FLASH_DMA_FIRST_DESC_EXT); } /* Start FLASH_DMA engine */ ctrl->dma_pending = true; mb(); /* flush previous writes */ flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0x03); /* wake | run */ if (wait_for_completion_timeout(&ctrl->dma_done, timeo) <= 0) { dev_err(ctrl->dev, "timeout waiting for DMA; status %#x, error status %#x\n", flash_dma_readl(ctrl, FLASH_DMA_STATUS), flash_dma_readl(ctrl, FLASH_DMA_ERROR_STATUS)); } ctrl->dma_pending = false; flash_dma_writel(ctrl, FLASH_DMA_CTRL, 0); /* force stop */ } static int brcmnand_dma_trans(struct brcmnand_host *host, u64 addr, u32 *buf, u8 *oob, u32 len, u8 dma_cmd) { struct brcmnand_controller *ctrl = host->ctrl; dma_addr_t buf_pa; int dir = dma_cmd == CMD_PAGE_READ ? DMA_FROM_DEVICE : DMA_TO_DEVICE; buf_pa = dma_map_single(ctrl->dev, buf, len, dir); if (dma_mapping_error(ctrl->dev, buf_pa)) { dev_err(ctrl->dev, "unable to map buffer for DMA\n"); return -ENOMEM; } brcmnand_fill_dma_desc(host, ctrl->dma_desc, addr, buf_pa, len, dma_cmd, true, true, 0); brcmnand_dma_run(host, ctrl->dma_pa); dma_unmap_single(ctrl->dev, buf_pa, len, dir); if (ctrl->dma_desc->status_valid & FLASH_DMA_ECC_ERROR) return -EBADMSG; else if (ctrl->dma_desc->status_valid & FLASH_DMA_CORR_ERROR) return -EUCLEAN; return 0; } /* * Assumes proper CS is already set */ static int brcmnand_read_by_pio(struct mtd_info *mtd, struct nand_chip *chip, u64 addr, unsigned int trans, u32 *buf, u8 *oob, u64 *err_addr) { struct brcmnand_host *host = nand_get_controller_data(chip); struct brcmnand_controller *ctrl = host->ctrl; int i, ret = 0; brcmnand_clear_ecc_addr(ctrl); for (i = 0; i < trans; i++, addr += FC_BYTES) { brcmnand_set_cmd_addr(mtd, addr); /* SPARE_AREA_READ does not use ECC, so just use PAGE_READ */ brcmnand_send_cmd(host, CMD_PAGE_READ); brcmnand_waitfunc(chip); if (likely(buf)) { brcmnand_soc_data_bus_prepare(ctrl->soc, false); brcmnand_read_data_bus(ctrl, ctrl->nand_fc, buf, FC_WORDS); buf += FC_WORDS; brcmnand_soc_data_bus_unprepare(ctrl->soc, false); } if (oob) oob += read_oob_from_regs(ctrl, i, oob, mtd->oobsize / trans, host->hwcfg.sector_size_1k); if (ret != -EBADMSG) { *err_addr = brcmnand_get_uncorrecc_addr(ctrl); if (*err_addr) ret = -EBADMSG; } if (!ret) { *err_addr = brcmnand_get_correcc_addr(ctrl); if (*err_addr) ret = -EUCLEAN; } } return ret; } /* * Check a page to see if it is erased (w/ bitflips) after an uncorrectable ECC * error * * Because the HW ECC signals an ECC error if an erase paged has even a single * bitflip, we must check each ECC error to see if it is actually an erased * page with bitflips, not a truly corrupted page. * * On a real error, return a negative error code (-EBADMSG for ECC error), and * buf will contain raw data. * Otherwise, buf gets filled with 0xffs and return the maximum number of * bitflips-per-ECC-sector to the caller. * */ static int brcmstb_nand_verify_erased_page(struct mtd_info *mtd, struct nand_chip *chip, void *buf, u64 addr) { struct mtd_oob_region ecc; int i; int bitflips = 0; int page = addr >> chip->page_shift; int ret; void *ecc_bytes; void *ecc_chunk; if (!buf) buf = nand_get_data_buf(chip); /* read without ecc for verification */ ret = chip->ecc.read_page_raw(chip, buf, true, page); if (ret) return ret; for (i = 0; i < chip->ecc.steps; i++) { ecc_chunk = buf + chip->ecc.size * i; mtd_ooblayout_ecc(mtd, i, &ecc); ecc_bytes = chip->oob_poi + ecc.offset; ret = nand_check_erased_ecc_chunk(ecc_chunk, chip->ecc.size, ecc_bytes, ecc.length, NULL, 0, chip->ecc.strength); if (ret < 0) return ret; bitflips = max(bitflips, ret); } return bitflips; } static int brcmnand_read(struct mtd_info *mtd, struct nand_chip *chip, u64 addr, unsigned int trans, u32 *buf, u8 *oob) { struct brcmnand_host *host = nand_get_controller_data(chip); struct brcmnand_controller *ctrl = host->ctrl; u64 err_addr = 0; int err; bool retry = true; bool edu_err = false; dev_dbg(ctrl->dev, "read %llx -> %p\n", (unsigned long long)addr, buf); try_dmaread: brcmnand_clear_ecc_addr(ctrl); if (ctrl->dma_trans && (has_edu(ctrl) || !oob) && flash_dma_buf_ok(buf)) { err = ctrl->dma_trans(host, addr, buf, oob, trans * FC_BYTES, CMD_PAGE_READ); if (err) { if (mtd_is_bitflip_or_eccerr(err)) err_addr = addr; else return -EIO; } if (has_edu(ctrl) && err_addr) edu_err = true; } else { if (oob) memset(oob, 0x99, mtd->oobsize); err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf, oob, &err_addr); } if (mtd_is_eccerr(err)) { /* * On controller version and 7.0, 7.1 , DMA read after a * prior PIO read that reported uncorrectable error, * the DMA engine captures this error following DMA read * cleared only on subsequent DMA read, so just retry once * to clear a possible false error reported for current DMA * read */ if ((ctrl->nand_version == 0x0700) || (ctrl->nand_version == 0x0701)) { if (retry) { retry = false; goto try_dmaread; } } /* * Controller version 7.2 has hw encoder to detect erased page * bitflips, apply sw verification for older controllers only */ if (ctrl->nand_version < 0x0702) { err = brcmstb_nand_verify_erased_page(mtd, chip, buf, addr); /* erased page bitflips corrected */ if (err >= 0) return err; } dev_err(ctrl->dev, "uncorrectable error at 0x%llx\n", (unsigned long long)err_addr); mtd->ecc_stats.failed++; /* NAND layer expects zero on ECC errors */ return 0; } if (mtd_is_bitflip(err)) { unsigned int corrected = brcmnand_count_corrected(ctrl); /* in case of EDU correctable error we read again using PIO */ if (edu_err) err = brcmnand_read_by_pio(mtd, chip, addr, trans, buf, oob, &err_addr); dev_dbg(ctrl->dev, "corrected error at 0x%llx\n", (unsigned long long)err_addr); mtd->ecc_stats.corrected += corrected; /* Always exceed the software-imposed threshold */ return max(mtd->bitflip_threshold, corrected); } return 0; } static int brcmnand_read_page(struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct brcmnand_host *host = nand_get_controller_data(chip); u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL; u64 addr = (u64)page << chip->page_shift; host->last_addr = addr; return brcmnand_read(mtd, chip, host->last_addr, mtd->writesize >> FC_SHIFT, (u32 *)buf, oob); } static int brcmnand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required, int page) { struct brcmnand_host *host = nand_get_controller_data(chip); struct mtd_info *mtd = nand_to_mtd(chip); u8 *oob = oob_required ? (u8 *)chip->oob_poi : NULL; int ret; u64 addr = (u64)page << chip->page_shift; host->last_addr = addr; brcmnand_set_ecc_enabled(host, 0); ret = brcmnand_read(mtd, chip, host->last_addr, mtd->writesize >> FC_SHIFT, (u32 *)buf, oob); brcmnand_set_ecc_enabled(host, 1); return ret; } static int brcmnand_read_oob(struct nand_chip *chip, int page) { struct mtd_info *mtd = nand_to_mtd(chip); return brcmnand_read(mtd, chip, (u64)page << chip->page_shift, mtd->writesize >> FC_SHIFT, NULL, (u8 *)chip->oob_poi); } static int brcmnand_read_oob_raw(struct nand_chip *chip, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct brcmnand_host *host = nand_get_controller_data(chip); brcmnand_set_ecc_enabled(host, 0); brcmnand_read(mtd, chip, (u64)page << chip->page_shift, mtd->writesize >> FC_SHIFT, NULL, (u8 *)chip->oob_poi); brcmnand_set_ecc_enabled(host, 1); return 0; } static int brcmnand_write(struct mtd_info *mtd, struct nand_chip *chip, u64 addr, const u32 *buf, u8 *oob) { struct brcmnand_host *host = nand_get_controller_data(chip); struct brcmnand_controller *ctrl = host->ctrl; unsigned int i, j, trans = mtd->writesize >> FC_SHIFT; int status, ret = 0; dev_dbg(ctrl->dev, "write %llx <- %p\n", (unsigned long long)addr, buf); if (unlikely((unsigned long)buf & 0x03)) { dev_warn(ctrl->dev, "unaligned buffer: %p\n", buf); buf = (u32 *)((unsigned long)buf & ~0x03); } brcmnand_wp(mtd, 0); for (i = 0; i < ctrl->max_oob; i += 4) oob_reg_write(ctrl, i, 0xffffffff); if (mtd->oops_panic_write) /* switch to interrupt polling and PIO mode */ disable_ctrl_irqs(ctrl); if (use_dma(ctrl) && (has_edu(ctrl) || !oob) && flash_dma_buf_ok(buf)) { if (ctrl->dma_trans(host, addr, (u32 *)buf, oob, mtd->writesize, CMD_PROGRAM_PAGE)) ret = -EIO; goto out; } for (i = 0; i < trans; i++, addr += FC_BYTES) { /* full address MUST be set before populating FC */ brcmnand_set_cmd_addr(mtd, addr); if (buf) { brcmnand_soc_data_bus_prepare(ctrl->soc, false); for (j = 0; j < FC_WORDS; j++, buf++) brcmnand_write_fc(ctrl, j, *buf); brcmnand_soc_data_bus_unprepare(ctrl->soc, false); } else if (oob) { for (j = 0; j < FC_WORDS; j++) brcmnand_write_fc(ctrl, j, 0xffffffff); } if (oob) { oob += write_oob_to_regs(ctrl, i, oob, mtd->oobsize / trans, host->hwcfg.sector_size_1k); } /* we cannot use SPARE_AREA_PROGRAM when PARTIAL_PAGE_EN=0 */ brcmnand_send_cmd(host, CMD_PROGRAM_PAGE); status = brcmnand_waitfunc(chip); if (status & NAND_STATUS_FAIL) { dev_info(ctrl->dev, "program failed at %llx\n", (unsigned long long)addr); ret = -EIO; goto out; } } out: brcmnand_wp(mtd, 1); return ret; } static int brcmnand_write_page(struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct brcmnand_host *host = nand_get_controller_data(chip); void *oob = oob_required ? chip->oob_poi : NULL; u64 addr = (u64)page << chip->page_shift; host->last_addr = addr; return brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob); } static int brcmnand_write_page_raw(struct nand_chip *chip, const uint8_t *buf, int oob_required, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct brcmnand_host *host = nand_get_controller_data(chip); void *oob = oob_required ? chip->oob_poi : NULL; u64 addr = (u64)page << chip->page_shift; int ret = 0; host->last_addr = addr; brcmnand_set_ecc_enabled(host, 0); ret = brcmnand_write(mtd, chip, host->last_addr, (const u32 *)buf, oob); brcmnand_set_ecc_enabled(host, 1); return ret; } static int brcmnand_write_oob(struct nand_chip *chip, int page) { return brcmnand_write(nand_to_mtd(chip), chip, (u64)page << chip->page_shift, NULL, chip->oob_poi); } static int brcmnand_write_oob_raw(struct nand_chip *chip, int page) { struct mtd_info *mtd = nand_to_mtd(chip); struct brcmnand_host *host = nand_get_controller_data(chip); int ret; brcmnand_set_ecc_enabled(host, 0); ret = brcmnand_write(mtd, chip, (u64)page << chip->page_shift, NULL, (u8 *)chip->oob_poi); brcmnand_set_ecc_enabled(host, 1); return ret; } static int brcmnand_exec_instr(struct brcmnand_host *host, int i, const struct nand_operation *op) { const struct nand_op_instr *instr = &op->instrs[i]; struct brcmnand_controller *ctrl = host->ctrl; const u8 *out; bool last_op; int ret = 0; u8 *in; /* * The controller needs to be aware of the last command in the operation * (WAITRDY excepted). */ last_op = ((i == (op->ninstrs - 1)) && (instr->type != NAND_OP_WAITRDY_INSTR)) || ((i == (op->ninstrs - 2)) && (op->instrs[i + 1].type == NAND_OP_WAITRDY_INSTR)); switch (instr->type) { case NAND_OP_CMD_INSTR: brcmnand_low_level_op(host, LL_OP_CMD, instr->ctx.cmd.opcode, last_op); break; case NAND_OP_ADDR_INSTR: for (i = 0; i < instr->ctx.addr.naddrs; i++) brcmnand_low_level_op(host, LL_OP_ADDR, instr->ctx.addr.addrs[i], last_op && (i == (instr->ctx.addr.naddrs - 1))); break; case NAND_OP_DATA_IN_INSTR: in = instr->ctx.data.buf.in; for (i = 0; i < instr->ctx.data.len; i++) { brcmnand_low_level_op(host, LL_OP_RD, 0, last_op && (i == (instr->ctx.data.len - 1))); in[i] = brcmnand_read_reg(host->ctrl, BRCMNAND_LL_RDATA); } break; case NAND_OP_DATA_OUT_INSTR: out = instr->ctx.data.buf.out; for (i = 0; i < instr->ctx.data.len; i++) brcmnand_low_level_op(host, LL_OP_WR, out[i], last_op && (i == (instr->ctx.data.len - 1))); break; case NAND_OP_WAITRDY_INSTR: ret = bcmnand_ctrl_poll_status(host, NAND_CTRL_RDY, NAND_CTRL_RDY, 0); break; default: dev_err(ctrl->dev, "unsupported instruction type: %d\n", instr->type); ret = -EINVAL; break; } return ret; } static int brcmnand_op_is_status(const struct nand_operation *op) { if (op->ninstrs == 2 && op->instrs[0].type == NAND_OP_CMD_INSTR && op->instrs[0].ctx.cmd.opcode == NAND_CMD_STATUS && op->instrs[1].type == NAND_OP_DATA_IN_INSTR) return 1; return 0; } static int brcmnand_op_is_reset(const struct nand_operation *op) { if (op->ninstrs == 2 && op->instrs[0].type == NAND_OP_CMD_INSTR && op->instrs[0].ctx.cmd.opcode == NAND_CMD_RESET && op->instrs[1].type == NAND_OP_WAITRDY_INSTR) return 1; return 0; } static int brcmnand_exec_op(struct nand_chip *chip, const struct nand_operation *op, bool check_only) { struct brcmnand_host *host = nand_get_controller_data(chip); struct mtd_info *mtd = nand_to_mtd(chip); u8 *status; unsigned int i; int ret = 0; if (check_only) return 0; if (brcmnand_op_is_status(op)) { status = op->instrs[1].ctx.data.buf.in; ret = brcmnand_status(host); if (ret < 0) return ret; *status = ret & 0xFF; return 0; } else if (brcmnand_op_is_reset(op)) { ret = brcmnand_reset(host); if (ret < 0) return ret; brcmnand_wp(mtd, 1); return 0; } if (op->deassert_wp) brcmnand_wp(mtd, 0); for (i = 0; i < op->ninstrs; i++) { ret = brcmnand_exec_instr(host, i, op); if (ret) break; } if (op->deassert_wp) brcmnand_wp(mtd, 1); return ret; } /*********************************************************************** * Per-CS setup (1 NAND device) ***********************************************************************/ static int brcmnand_set_cfg(struct brcmnand_host *host, struct brcmnand_cfg *cfg) { struct brcmnand_controller *ctrl = host->ctrl; struct nand_chip *chip = &host->chip; u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG); u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG_EXT); u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL); u8 block_size = 0, page_size = 0, device_size = 0; u32 tmp; if (ctrl->block_sizes) { int i, found; for (i = 0, found = 0; ctrl->block_sizes[i]; i++) if (ctrl->block_sizes[i] * 1024 == cfg->block_size) { block_size = i; found = 1; } if (!found) { dev_warn(ctrl->dev, "invalid block size %u\n", cfg->block_size); return -EINVAL; } } else { block_size = ffs(cfg->block_size) - ffs(BRCMNAND_MIN_BLOCKSIZE); } if (cfg->block_size < BRCMNAND_MIN_BLOCKSIZE || (ctrl->max_block_size && cfg->block_size > ctrl->max_block_size)) { dev_warn(ctrl->dev, "invalid block size %u\n", cfg->block_size); block_size = 0; } if (ctrl->page_sizes) { int i, found; for (i = 0, found = 0; ctrl->page_sizes[i]; i++) if (ctrl->page_sizes[i] == cfg->page_size) { page_size = i; found = 1; } if (!found) { dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size); return -EINVAL; } } else { page_size = ffs(cfg->page_size) - ffs(BRCMNAND_MIN_PAGESIZE); } if (cfg->page_size < BRCMNAND_MIN_PAGESIZE || (ctrl->max_page_size && cfg->page_size > ctrl->max_page_size)) { dev_warn(ctrl->dev, "invalid page size %u\n", cfg->page_size); return -EINVAL; } if (fls64(cfg->device_size) < fls64(BRCMNAND_MIN_DEVSIZE)) { dev_warn(ctrl->dev, "invalid device size 0x%llx\n", (unsigned long long)cfg->device_size); return -EINVAL; } device_size = fls64(cfg->device_size) - fls64(BRCMNAND_MIN_DEVSIZE); tmp = (cfg->blk_adr_bytes << CFG_BLK_ADR_BYTES_SHIFT) | (cfg->col_adr_bytes << CFG_COL_ADR_BYTES_SHIFT) | (cfg->ful_adr_bytes << CFG_FUL_ADR_BYTES_SHIFT) | (!!(cfg->device_width == 16) << CFG_BUS_WIDTH_SHIFT) | (device_size << CFG_DEVICE_SIZE_SHIFT); if (cfg_offs == cfg_ext_offs) { tmp |= (page_size << ctrl->page_size_shift) | (block_size << CFG_BLK_SIZE_SHIFT); nand_writereg(ctrl, cfg_offs, tmp); } else { nand_writereg(ctrl, cfg_offs, tmp); tmp = (page_size << CFG_EXT_PAGE_SIZE_SHIFT) | (block_size << CFG_EXT_BLK_SIZE_SHIFT); nand_writereg(ctrl, cfg_ext_offs, tmp); } tmp = nand_readreg(ctrl, acc_control_offs); tmp &= ~brcmnand_ecc_level_mask(ctrl); tmp &= ~brcmnand_spare_area_mask(ctrl); if (ctrl->nand_version >= 0x0302) { tmp |= cfg->ecc_level << ctrl->ecc_level_shift; tmp |= cfg->spare_area_size; } nand_writereg(ctrl, acc_control_offs, tmp); brcmnand_set_sector_size_1k(host, cfg->sector_size_1k); /* threshold = ceil(BCH-level * 0.75) */ brcmnand_wr_corr_thresh(host, DIV_ROUND_UP(chip->ecc.strength * 3, 4)); return 0; } static void brcmnand_print_cfg(struct brcmnand_host *host, char *buf, struct brcmnand_cfg *cfg) { buf += sprintf(buf, "%lluMiB total, %uKiB blocks, %u%s pages, %uB OOB, %u-bit", (unsigned long long)cfg->device_size >> 20, cfg->block_size >> 10, cfg->page_size >= 1024 ? cfg->page_size >> 10 : cfg->page_size, cfg->page_size >= 1024 ? "KiB" : "B", cfg->spare_area_size, cfg->device_width); /* Account for Hamming ECC and for BCH 512B vs 1KiB sectors */ if (is_hamming_ecc(host->ctrl, cfg)) sprintf(buf, ", Hamming ECC"); else if (cfg->sector_size_1k) sprintf(buf, ", BCH-%u (1KiB sector)", cfg->ecc_level << 1); else sprintf(buf, ", BCH-%u", cfg->ecc_level); } /* * Minimum number of bytes to address a page. Calculated as: * roundup(log2(size / page-size) / 8) * * NB: the following does not "round up" for non-power-of-2 'size'; but this is * OK because many other things will break if 'size' is irregular... */ static inline int get_blk_adr_bytes(u64 size, u32 writesize) { return ALIGN(ilog2(size) - ilog2(writesize), 8) >> 3; } static int brcmnand_setup_dev(struct brcmnand_host *host) { struct mtd_info *mtd = nand_to_mtd(&host->chip); struct nand_chip *chip = &host->chip; const struct nand_ecc_props *requirements = nanddev_get_ecc_requirements(&chip->base); struct nand_memory_organization *memorg = nanddev_get_memorg(&chip->base); struct brcmnand_controller *ctrl = host->ctrl; struct brcmnand_cfg *cfg = &host->hwcfg; struct device_node *np = nand_get_flash_node(chip); u32 offs, tmp, oob_sector; bool use_strap = false; char msg[128]; int ret; memset(cfg, 0, sizeof(*cfg)); use_strap = of_property_read_bool(np, "brcm,nand-ecc-use-strap"); /* * Either nand-ecc-xxx or brcm,nand-ecc-use-strap can be set. Error out * if both exist. */ if (chip->ecc.strength && use_strap) { dev_err(ctrl->dev, "ECC strap and DT ECC configuration properties are mutually exclusive\n"); return -EINVAL; } if (use_strap) brcmnand_get_ecc_settings(host, chip); ret = of_property_read_u32(np, "brcm,nand-oob-sector-size", &oob_sector); if (ret) { if (use_strap) cfg->spare_area_size = brcmnand_get_spare_size(host); else /* Use detected size */ cfg->spare_area_size = mtd->oobsize / (mtd->writesize >> FC_SHIFT); } else { cfg->spare_area_size = oob_sector; } if (cfg->spare_area_size > ctrl->max_oob) cfg->spare_area_size = ctrl->max_oob; /* * Set mtd and memorg oobsize to be consistent with controller's * spare_area_size, as the rest is inaccessible. */ mtd->oobsize = cfg->spare_area_size * (mtd->writesize >> FC_SHIFT); memorg->oobsize = mtd->oobsize; cfg->device_size = mtd->size; cfg->block_size = mtd->erasesize; cfg->page_size = mtd->writesize; cfg->device_width = (chip->options & NAND_BUSWIDTH_16) ? 16 : 8; cfg->col_adr_bytes = 2; cfg->blk_adr_bytes = get_blk_adr_bytes(mtd->size, mtd->writesize); if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST) { dev_err(ctrl->dev, "only HW ECC supported; selected: %d\n", chip->ecc.engine_type); return -EINVAL; } if (chip->ecc.algo == NAND_ECC_ALGO_UNKNOWN) { if (chip->ecc.strength == 1 && chip->ecc.size == 512) /* Default to Hamming for 1-bit ECC, if unspecified */ chip->ecc.algo = NAND_ECC_ALGO_HAMMING; else /* Otherwise, BCH */ chip->ecc.algo = NAND_ECC_ALGO_BCH; } if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING && (chip->ecc.strength != 1 || chip->ecc.size != 512)) { dev_err(ctrl->dev, "invalid Hamming params: %d bits per %d bytes\n", chip->ecc.strength, chip->ecc.size); return -EINVAL; } if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_NONE && (!chip->ecc.size || !chip->ecc.strength)) { if (requirements->step_size && requirements->strength) { /* use detected ECC parameters */ chip->ecc.size = requirements->step_size; chip->ecc.strength = requirements->strength; dev_info(ctrl->dev, "Using ECC step-size %d, strength %d\n", chip->ecc.size, chip->ecc.strength); } } switch (chip->ecc.size) { case 512: if (chip->ecc.algo == NAND_ECC_ALGO_HAMMING) cfg->ecc_level = 15; else cfg->ecc_level = chip->ecc.strength; cfg->sector_size_1k = 0; break; case 1024: if (!(ctrl->features & BRCMNAND_HAS_1K_SECTORS)) { dev_err(ctrl->dev, "1KB sectors not supported\n"); return -EINVAL; } if (chip->ecc.strength & 0x1) { dev_err(ctrl->dev, "odd ECC not supported with 1KB sectors\n"); return -EINVAL; } cfg->ecc_level = chip->ecc.strength >> 1; cfg->sector_size_1k = 1; break; default: dev_err(ctrl->dev, "unsupported ECC size: %d\n", chip->ecc.size); return -EINVAL; } cfg->ful_adr_bytes = cfg->blk_adr_bytes; if (mtd->writesize > 512) cfg->ful_adr_bytes += cfg->col_adr_bytes; else cfg->ful_adr_bytes += 1; ret = brcmnand_set_cfg(host, cfg); if (ret) return ret; brcmnand_set_ecc_enabled(host, 1); brcmnand_print_cfg(host, msg, cfg); dev_info(ctrl->dev, "detected %s\n", msg); /* Configure ACC_CONTROL */ offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL); tmp = nand_readreg(ctrl, offs); tmp &= ~ACC_CONTROL_PARTIAL_PAGE; tmp &= ~ACC_CONTROL_RD_ERASED; /* We need to turn on Read from erased paged protected by ECC */ if (ctrl->nand_version >= 0x0702) tmp |= ACC_CONTROL_RD_ERASED; tmp &= ~ACC_CONTROL_FAST_PGM_RDIN; if (ctrl->features & BRCMNAND_HAS_PREFETCH) tmp &= ~ACC_CONTROL_PREFETCH; nand_writereg(ctrl, offs, tmp); return 0; } static int brcmnand_attach_chip(struct nand_chip *chip) { struct mtd_info *mtd = nand_to_mtd(chip); struct brcmnand_host *host = nand_get_controller_data(chip); int ret; chip->options |= NAND_NO_SUBPAGE_WRITE; /* * Avoid (for instance) kmap()'d buffers from JFFS2, which we can't DMA * to/from, and have nand_base pass us a bounce buffer instead, as * needed. */ chip->options |= NAND_USES_DMA; if (chip->bbt_options & NAND_BBT_USE_FLASH) chip->bbt_options |= NAND_BBT_NO_OOB; if (brcmnand_setup_dev(host)) return -ENXIO; chip->ecc.size = host->hwcfg.sector_size_1k ? 1024 : 512; /* only use our internal HW threshold */ mtd->bitflip_threshold = 1; ret = brcmstb_choose_ecc_layout(host); /* If OOB is written with ECC enabled it will cause ECC errors */ if (is_hamming_ecc(host->ctrl, &host->hwcfg)) { chip->ecc.write_oob = brcmnand_write_oob_raw; chip->ecc.read_oob = brcmnand_read_oob_raw; } return ret; } static const struct nand_controller_ops brcmnand_controller_ops = { .attach_chip = brcmnand_attach_chip, .exec_op = brcmnand_exec_op, }; static int brcmnand_init_cs(struct brcmnand_host *host, const char * const *part_probe_types) { struct brcmnand_controller *ctrl = host->ctrl; struct device *dev = ctrl->dev; struct mtd_info *mtd; struct nand_chip *chip; int ret; u16 cfg_offs; mtd = nand_to_mtd(&host->chip); chip = &host->chip; nand_set_controller_data(chip, host); mtd->name = devm_kasprintf(dev, GFP_KERNEL, "brcmnand.%d", host->cs); if (!mtd->name) return -ENOMEM; mtd->owner = THIS_MODULE; mtd->dev.parent = dev; chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST; chip->ecc.read_page = brcmnand_read_page; chip->ecc.write_page = brcmnand_write_page; chip->ecc.read_page_raw = brcmnand_read_page_raw; chip->ecc.write_page_raw = brcmnand_write_page_raw; chip->ecc.write_oob_raw = brcmnand_write_oob_raw; chip->ecc.read_oob_raw = brcmnand_read_oob_raw; chip->ecc.read_oob = brcmnand_read_oob; chip->ecc.write_oob = brcmnand_write_oob; chip->controller = &ctrl->controller; ctrl->controller.controller_wp = 1; /* * The bootloader might have configured 16bit mode but * NAND READID command only works in 8bit mode. We force * 8bit mode here to ensure that NAND READID commands works. */ cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG); nand_writereg(ctrl, cfg_offs, nand_readreg(ctrl, cfg_offs) & ~CFG_BUS_WIDTH); ret = nand_scan(chip, 1); if (ret) return ret; ret = mtd_device_parse_register(mtd, part_probe_types, NULL, NULL, 0); if (ret) nand_cleanup(chip); return ret; } static void brcmnand_save_restore_cs_config(struct brcmnand_host *host, int restore) { struct brcmnand_controller *ctrl = host->ctrl; u16 cfg_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG); u16 cfg_ext_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_CFG_EXT); u16 acc_control_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_ACC_CONTROL); u16 t1_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING1); u16 t2_offs = brcmnand_cs_offset(ctrl, host->cs, BRCMNAND_CS_TIMING2); if (restore) { nand_writereg(ctrl, cfg_offs, host->hwcfg.config); if (cfg_offs != cfg_ext_offs) nand_writereg(ctrl, cfg_ext_offs, host->hwcfg.config_ext); nand_writereg(ctrl, acc_control_offs, host->hwcfg.acc_control); nand_writereg(ctrl, t1_offs, host->hwcfg.timing_1); nand_writereg(ctrl, t2_offs, host->hwcfg.timing_2); } else { host->hwcfg.config = nand_readreg(ctrl, cfg_offs); if (cfg_offs != cfg_ext_offs) host->hwcfg.config_ext = nand_readreg(ctrl, cfg_ext_offs); host->hwcfg.acc_control = nand_readreg(ctrl, acc_control_offs); host->hwcfg.timing_1 = nand_readreg(ctrl, t1_offs); host->hwcfg.timing_2 = nand_readreg(ctrl, t2_offs); } } static int brcmnand_suspend(struct device *dev) { struct brcmnand_controller *ctrl = dev_get_drvdata(dev); struct brcmnand_host *host; list_for_each_entry(host, &ctrl->host_list, node) brcmnand_save_restore_cs_config(host, 0); ctrl->nand_cs_nand_select = brcmnand_read_reg(ctrl, BRCMNAND_CS_SELECT); ctrl->nand_cs_nand_xor = brcmnand_read_reg(ctrl, BRCMNAND_CS_XOR); ctrl->corr_stat_threshold = brcmnand_read_reg(ctrl, BRCMNAND_CORR_THRESHOLD); if (has_flash_dma(ctrl)) ctrl->flash_dma_mode = flash_dma_readl(ctrl, FLASH_DMA_MODE); else if (has_edu(ctrl)) ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG); return 0; } static int brcmnand_resume(struct device *dev) { struct brcmnand_controller *ctrl = dev_get_drvdata(dev); struct brcmnand_host *host; if (has_flash_dma(ctrl)) { flash_dma_writel(ctrl, FLASH_DMA_MODE, ctrl->flash_dma_mode); flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0); } if (has_edu(ctrl)) { ctrl->edu_config = edu_readl(ctrl, EDU_CONFIG); edu_writel(ctrl, EDU_CONFIG, ctrl->edu_config); edu_readl(ctrl, EDU_CONFIG); brcmnand_edu_init(ctrl); } brcmnand_write_reg(ctrl, BRCMNAND_CS_SELECT, ctrl->nand_cs_nand_select); brcmnand_write_reg(ctrl, BRCMNAND_CS_XOR, ctrl->nand_cs_nand_xor); brcmnand_write_reg(ctrl, BRCMNAND_CORR_THRESHOLD, ctrl->corr_stat_threshold); if (ctrl->soc) { /* Clear/re-enable interrupt */ ctrl->soc->ctlrdy_ack(ctrl->soc); ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true); } list_for_each_entry(host, &ctrl->host_list, node) { struct nand_chip *chip = &host->chip; brcmnand_save_restore_cs_config(host, 1); /* Reset the chip, required by some chips after power-up */ nand_reset_op(chip); } return 0; } const struct dev_pm_ops brcmnand_pm_ops = { .suspend = brcmnand_suspend, .resume = brcmnand_resume, }; EXPORT_SYMBOL_GPL(brcmnand_pm_ops); static const struct of_device_id __maybe_unused brcmnand_of_match[] = { { .compatible = "brcm,brcmnand-v2.1" }, { .compatible = "brcm,brcmnand-v2.2" }, { .compatible = "brcm,brcmnand-v4.0" }, { .compatible = "brcm,brcmnand-v5.0" }, { .compatible = "brcm,brcmnand-v6.0" }, { .compatible = "brcm,brcmnand-v6.1" }, { .compatible = "brcm,brcmnand-v6.2" }, { .compatible = "brcm,brcmnand-v7.0" }, { .compatible = "brcm,brcmnand-v7.1" }, { .compatible = "brcm,brcmnand-v7.2" }, { .compatible = "brcm,brcmnand-v7.3" }, {}, }; MODULE_DEVICE_TABLE(of, brcmnand_of_match); /*********************************************************************** * Platform driver setup (per controller) ***********************************************************************/ static int brcmnand_edu_setup(struct platform_device *pdev) { struct device *dev = &pdev->dev; struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev); struct resource *res; int ret; res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-edu"); if (res) { ctrl->edu_base = devm_ioremap_resource(dev, res); if (IS_ERR(ctrl->edu_base)) return PTR_ERR(ctrl->edu_base); ctrl->edu_offsets = edu_regs; edu_writel(ctrl, EDU_CONFIG, EDU_CONFIG_MODE_NAND | EDU_CONFIG_SWAP_CFG); edu_readl(ctrl, EDU_CONFIG); /* initialize edu */ brcmnand_edu_init(ctrl); ctrl->edu_irq = platform_get_irq_optional(pdev, 1); if (ctrl->edu_irq < 0) { dev_warn(dev, "FLASH EDU enabled, using ctlrdy irq\n"); } else { ret = devm_request_irq(dev, ctrl->edu_irq, brcmnand_edu_irq, 0, "brcmnand-edu", ctrl); if (ret < 0) { dev_err(ctrl->dev, "can't allocate IRQ %d: error %d\n", ctrl->edu_irq, ret); return ret; } dev_info(dev, "FLASH EDU enabled using irq %u\n", ctrl->edu_irq); } } return 0; } int brcmnand_probe(struct platform_device *pdev, struct brcmnand_soc *soc) { struct brcmnand_platform_data *pd = dev_get_platdata(&pdev->dev); struct device *dev = &pdev->dev; struct device_node *dn = dev->of_node, *child; struct brcmnand_controller *ctrl; struct brcmnand_host *host; struct resource *res; int ret; if (dn && !of_match_node(brcmnand_of_match, dn)) return -ENODEV; ctrl = devm_kzalloc(dev, sizeof(*ctrl), GFP_KERNEL); if (!ctrl) return -ENOMEM; dev_set_drvdata(dev, ctrl); ctrl->dev = dev; ctrl->soc = soc; /* Enable the static key if the soc provides I/O operations indicating * that a non-memory mapped IO access path must be used */ if (brcmnand_soc_has_ops(ctrl->soc)) static_branch_enable(&brcmnand_soc_has_ops_key); init_completion(&ctrl->done); init_completion(&ctrl->dma_done); init_completion(&ctrl->edu_done); nand_controller_init(&ctrl->controller); ctrl->controller.ops = &brcmnand_controller_ops; INIT_LIST_HEAD(&ctrl->host_list); /* NAND register range */ res = platform_get_resource(pdev, IORESOURCE_MEM, 0); ctrl->nand_base = devm_ioremap_resource(dev, res); if (IS_ERR(ctrl->nand_base) && !brcmnand_soc_has_ops(soc)) return PTR_ERR(ctrl->nand_base); /* Enable clock before using NAND registers */ ctrl->clk = devm_clk_get(dev, "nand"); if (!IS_ERR(ctrl->clk)) { ret = clk_prepare_enable(ctrl->clk); if (ret) return ret; } else { ret = PTR_ERR(ctrl->clk); if (ret == -EPROBE_DEFER) return ret; ctrl->clk = NULL; } /* Initialize NAND revision */ ret = brcmnand_revision_init(ctrl); if (ret) goto err; /* * Most chips have this cache at a fixed offset within 'nand' block. * Some must specify this region separately. */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "nand-cache"); if (res) { ctrl->nand_fc = devm_ioremap_resource(dev, res); if (IS_ERR(ctrl->nand_fc)) { ret = PTR_ERR(ctrl->nand_fc); goto err; } } else { ctrl->nand_fc = ctrl->nand_base + ctrl->reg_offsets[BRCMNAND_FC_BASE]; } /* FLASH_DMA */ res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "flash-dma"); if (res) { ctrl->flash_dma_base = devm_ioremap_resource(dev, res); if (IS_ERR(ctrl->flash_dma_base)) { ret = PTR_ERR(ctrl->flash_dma_base); goto err; } /* initialize the dma version */ brcmnand_flash_dma_revision_init(ctrl); ret = -EIO; if (ctrl->nand_version >= 0x0700) ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(40)); if (ret) ret = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (ret) goto err; /* linked-list and stop on error */ flash_dma_writel(ctrl, FLASH_DMA_MODE, FLASH_DMA_MODE_MASK); flash_dma_writel(ctrl, FLASH_DMA_ERROR_STATUS, 0); /* Allocate descriptor(s) */ ctrl->dma_desc = dmam_alloc_coherent(dev, sizeof(*ctrl->dma_desc), &ctrl->dma_pa, GFP_KERNEL); if (!ctrl->dma_desc) { ret = -ENOMEM; goto err; } ctrl->dma_irq = platform_get_irq(pdev, 1); if ((int)ctrl->dma_irq < 0) { dev_err(dev, "missing FLASH_DMA IRQ\n"); ret = -ENODEV; goto err; } ret = devm_request_irq(dev, ctrl->dma_irq, brcmnand_dma_irq, 0, DRV_NAME, ctrl); if (ret < 0) { dev_err(dev, "can't allocate IRQ %d: error %d\n", ctrl->dma_irq, ret); goto err; } dev_info(dev, "enabling FLASH_DMA\n"); /* set flash dma transfer function to call */ ctrl->dma_trans = brcmnand_dma_trans; } else { ret = brcmnand_edu_setup(pdev); if (ret < 0) goto err; if (has_edu(ctrl)) /* set edu transfer function to call */ ctrl->dma_trans = brcmnand_edu_trans; } /* Disable automatic device ID config, direct addressing */ brcmnand_rmw_reg(ctrl, BRCMNAND_CS_SELECT, CS_SELECT_AUTO_DEVICE_ID_CFG | 0xff, 0, 0); /* Disable XOR addressing */ brcmnand_rmw_reg(ctrl, BRCMNAND_CS_XOR, 0xff, 0, 0); /* Check if the board connects the WP pin */ if (of_property_read_bool(dn, "brcm,wp-not-connected")) wp_on = 0; if (ctrl->features & BRCMNAND_HAS_WP) { /* Permanently disable write protection */ if (wp_on == 2) brcmnand_set_wp(ctrl, false); } else { wp_on = 0; } /* IRQ */ ctrl->irq = platform_get_irq_optional(pdev, 0); if (ctrl->irq > 0) { /* * Some SoCs integrate this controller (e.g., its interrupt bits) in * interesting ways */ if (soc) { ret = devm_request_irq(dev, ctrl->irq, brcmnand_irq, 0, DRV_NAME, ctrl); /* Enable interrupt */ ctrl->soc->ctlrdy_ack(ctrl->soc); ctrl->soc->ctlrdy_set_enabled(ctrl->soc, true); } else { /* Use standard interrupt infrastructure */ ret = devm_request_irq(dev, ctrl->irq, brcmnand_ctlrdy_irq, 0, DRV_NAME, ctrl); } if (ret < 0) { dev_err(dev, "can't allocate IRQ %d: error %d\n", ctrl->irq, ret); goto err; } } for_each_available_child_of_node(dn, child) { if (of_device_is_compatible(child, "brcm,nandcs")) { host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); if (!host) { of_node_put(child); ret = -ENOMEM; goto err; } host->pdev = pdev; host->ctrl = ctrl; ret = of_property_read_u32(child, "reg", &host->cs); if (ret) { dev_err(dev, "can't get chip-select\n"); devm_kfree(dev, host); continue; } nand_set_flash_node(&host->chip, child); ret = brcmnand_init_cs(host, NULL); if (ret) { if (ret == -EPROBE_DEFER) { of_node_put(child); goto err; } devm_kfree(dev, host); continue; /* Try all chip-selects */ } list_add_tail(&host->node, &ctrl->host_list); } } if (!list_empty(&ctrl->host_list)) return 0; if (!pd) { ret = -ENODEV; goto err; } /* If we got there we must have been probing via platform data */ host = devm_kzalloc(dev, sizeof(*host), GFP_KERNEL); if (!host) { ret = -ENOMEM; goto err; } host->pdev = pdev; host->ctrl = ctrl; host->cs = pd->chip_select; host->chip.ecc.size = pd->ecc_stepsize; host->chip.ecc.strength = pd->ecc_strength; ret = brcmnand_init_cs(host, pd->part_probe_types); if (ret) goto err; list_add_tail(&host->node, &ctrl->host_list); /* No chip-selects could initialize properly */ if (list_empty(&ctrl->host_list)) { ret = -ENODEV; goto err; } return 0; err: clk_disable_unprepare(ctrl->clk); return ret; } EXPORT_SYMBOL_GPL(brcmnand_probe); void brcmnand_remove(struct platform_device *pdev) { struct brcmnand_controller *ctrl = dev_get_drvdata(&pdev->dev); struct brcmnand_host *host; struct nand_chip *chip; int ret; list_for_each_entry(host, &ctrl->host_list, node) { chip = &host->chip; ret = mtd_device_unregister(nand_to_mtd(chip)); WARN_ON(ret); nand_cleanup(chip); } clk_disable_unprepare(ctrl->clk); dev_set_drvdata(&pdev->dev, NULL); } EXPORT_SYMBOL_GPL(brcmnand_remove); MODULE_LICENSE("GPL v2"); MODULE_AUTHOR("Kevin Cernekee"); MODULE_AUTHOR("Brian Norris"); MODULE_DESCRIPTION("NAND driver for Broadcom chips"); MODULE_ALIAS("platform:brcmnand");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1