Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Michael Walle | 1711 | 58.34% | 7 | 17.07% |
Pratyush Yadav | 388 | 13.23% | 3 | 7.32% |
Boris Brezillon | 367 | 12.51% | 3 | 7.32% |
Tudor-Dan Ambarus | 308 | 10.50% | 16 | 39.02% |
Fabio Estevam | 50 | 1.70% | 1 | 2.44% |
Mamta Shukla | 40 | 1.36% | 1 | 2.44% |
Graham Moore | 17 | 0.58% | 1 | 2.44% |
Cyrille Pitchen | 15 | 0.51% | 2 | 4.88% |
Mika Westerberg | 10 | 0.34% | 1 | 2.44% |
Takahiro Kuwano | 7 | 0.24% | 1 | 2.44% |
Huang Shijie | 7 | 0.24% | 1 | 2.44% |
Hou Zhiqiang | 6 | 0.20% | 1 | 2.44% |
Bean Huo | 5 | 0.17% | 1 | 2.44% |
Sergei Shtylyov | 1 | 0.03% | 1 | 2.44% |
Eliav Farber | 1 | 0.03% | 1 | 2.44% |
Total | 2933 | 41 |
// SPDX-License-Identifier: GPL-2.0 /* * Copyright (C) 2005, Intec Automation Inc. * Copyright (C) 2014, Freescale Semiconductor, Inc. */ #include <linux/mtd/spi-nor.h> #include "core.h" /* flash_info mfr_flag. Used to read proprietary FSR register. */ #define USE_FSR BIT(0) #define SPINOR_OP_MT_DIE_ERASE 0xc4 /* Chip (die) erase opcode */ #define SPINOR_OP_RDFSR 0x70 /* Read flag status register */ #define SPINOR_OP_CLFSR 0x50 /* Clear flag status register */ #define SPINOR_OP_MT_DTR_RD 0xfd /* Fast Read opcode in DTR mode */ #define SPINOR_OP_MT_RD_ANY_REG 0x85 /* Read volatile register */ #define SPINOR_OP_MT_WR_ANY_REG 0x81 /* Write volatile register */ #define SPINOR_REG_MT_CFR0V 0x00 /* For setting octal DTR mode */ #define SPINOR_REG_MT_CFR1V 0x01 /* For setting dummy cycles */ #define SPINOR_REG_MT_CFR1V_DEF 0x1f /* Default dummy cycles */ #define SPINOR_MT_OCT_DTR 0xe7 /* Enable Octal DTR. */ #define SPINOR_MT_EXSPI 0xff /* Enable Extended SPI (default) */ /* Flag Status Register bits */ #define FSR_READY BIT(7) /* Device status, 0 = Busy, 1 = Ready */ #define FSR_E_ERR BIT(5) /* Erase operation status */ #define FSR_P_ERR BIT(4) /* Program operation status */ #define FSR_PT_ERR BIT(1) /* Protection error bit */ /* Micron ST SPI NOR flash operations. */ #define MICRON_ST_NOR_WR_ANY_REG_OP(naddr, addr, ndata, buf) \ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_MT_WR_ANY_REG, 0), \ SPI_MEM_OP_ADDR(naddr, addr, 0), \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_DATA_OUT(ndata, buf, 0)) #define MICRON_ST_RDFSR_OP(buf) \ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_RDFSR, 0), \ SPI_MEM_OP_NO_ADDR, \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_DATA_IN(1, buf, 0)) #define MICRON_ST_CLFSR_OP \ SPI_MEM_OP(SPI_MEM_OP_CMD(SPINOR_OP_CLFSR, 0), \ SPI_MEM_OP_NO_ADDR, \ SPI_MEM_OP_NO_DUMMY, \ SPI_MEM_OP_NO_DATA) static int micron_st_nor_octal_dtr_en(struct spi_nor *nor) { struct spi_mem_op op; u8 *buf = nor->bouncebuf; int ret; u8 addr_mode_nbytes = nor->params->addr_mode_nbytes; /* Use 20 dummy cycles for memory array reads. */ *buf = 20; op = (struct spi_mem_op) MICRON_ST_NOR_WR_ANY_REG_OP(addr_mode_nbytes, SPINOR_REG_MT_CFR1V, 1, buf); ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto); if (ret) return ret; buf[0] = SPINOR_MT_OCT_DTR; op = (struct spi_mem_op) MICRON_ST_NOR_WR_ANY_REG_OP(addr_mode_nbytes, SPINOR_REG_MT_CFR0V, 1, buf); ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto); if (ret) return ret; /* Read flash ID to make sure the switch was successful. */ ret = spi_nor_read_id(nor, 0, 8, buf, SNOR_PROTO_8_8_8_DTR); if (ret) { dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret); return ret; } if (memcmp(buf, nor->info->id->bytes, nor->info->id->len)) return -EINVAL; return 0; } static int micron_st_nor_octal_dtr_dis(struct spi_nor *nor) { struct spi_mem_op op; u8 *buf = nor->bouncebuf; int ret; /* * The register is 1-byte wide, but 1-byte transactions are not allowed * in 8D-8D-8D mode. The next register is the dummy cycle configuration * register. Since the transaction needs to be at least 2 bytes wide, * set the next register to its default value. This also makes sense * because the value was changed when enabling 8D-8D-8D mode, it should * be reset when disabling. */ buf[0] = SPINOR_MT_EXSPI; buf[1] = SPINOR_REG_MT_CFR1V_DEF; op = (struct spi_mem_op) MICRON_ST_NOR_WR_ANY_REG_OP(nor->addr_nbytes, SPINOR_REG_MT_CFR0V, 2, buf); ret = spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR); if (ret) return ret; /* Read flash ID to make sure the switch was successful. */ ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1); if (ret) { dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret); return ret; } if (memcmp(buf, nor->info->id->bytes, nor->info->id->len)) return -EINVAL; return 0; } static int micron_st_nor_set_octal_dtr(struct spi_nor *nor, bool enable) { return enable ? micron_st_nor_octal_dtr_en(nor) : micron_st_nor_octal_dtr_dis(nor); } static void mt35xu512aba_default_init(struct spi_nor *nor) { nor->params->set_octal_dtr = micron_st_nor_set_octal_dtr; } static int mt35xu512aba_post_sfdp_fixup(struct spi_nor *nor) { /* Set the Fast Read settings. */ nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR; spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR], 0, 20, SPINOR_OP_MT_DTR_RD, SNOR_PROTO_8_8_8_DTR); nor->cmd_ext_type = SPI_NOR_EXT_REPEAT; nor->params->rdsr_dummy = 8; nor->params->rdsr_addr_nbytes = 0; /* * The BFPT quad enable field is set to a reserved value so the quad * enable function is ignored by spi_nor_parse_bfpt(). Make sure we * disable it. */ nor->params->quad_enable = NULL; return 0; } static const struct spi_nor_fixups mt35xu512aba_fixups = { .default_init = mt35xu512aba_default_init, .post_sfdp = mt35xu512aba_post_sfdp_fixup, }; static const struct flash_info micron_nor_parts[] = { { .id = SNOR_ID(0x2c, 0x5b, 0x1a), .name = "mt35xu512aba", .sector_size = SZ_128K, .size = SZ_64M, .no_sfdp_flags = SECT_4K | SPI_NOR_OCTAL_READ | SPI_NOR_OCTAL_DTR_READ | SPI_NOR_OCTAL_DTR_PP, .mfr_flags = USE_FSR, .fixup_flags = SPI_NOR_4B_OPCODES | SPI_NOR_IO_MODE_EN_VOLATILE, .fixups = &mt35xu512aba_fixups, }, { .id = SNOR_ID(0x2c, 0x5b, 0x1c), .name = "mt35xu02g", .sector_size = SZ_128K, .size = SZ_256M, .no_sfdp_flags = SECT_4K | SPI_NOR_OCTAL_READ, .mfr_flags = USE_FSR, .fixup_flags = SPI_NOR_4B_OPCODES, }, }; static int mt25qu512a_post_bfpt_fixup(struct spi_nor *nor, const struct sfdp_parameter_header *bfpt_header, const struct sfdp_bfpt *bfpt) { nor->flags &= ~SNOR_F_HAS_16BIT_SR; return 0; } static struct spi_nor_fixups mt25qu512a_fixups = { .post_bfpt = mt25qu512a_post_bfpt_fixup, }; static int st_nor_four_die_late_init(struct spi_nor *nor) { struct spi_nor_flash_parameter *params = nor->params; params->die_erase_opcode = SPINOR_OP_MT_DIE_ERASE; params->n_dice = 4; /* * Unfortunately the die erase opcode does not have a 4-byte opcode * correspondent for these flashes. The SFDP 4BAIT table fails to * consider the die erase too. We're forced to enter in the 4 byte * address mode in order to benefit of the die erase. */ return spi_nor_set_4byte_addr_mode(nor, true); } static int st_nor_two_die_late_init(struct spi_nor *nor) { struct spi_nor_flash_parameter *params = nor->params; params->die_erase_opcode = SPINOR_OP_MT_DIE_ERASE; params->n_dice = 2; /* * Unfortunately the die erase opcode does not have a 4-byte opcode * correspondent for these flashes. The SFDP 4BAIT table fails to * consider the die erase too. We're forced to enter in the 4 byte * address mode in order to benefit of the die erase. */ return spi_nor_set_4byte_addr_mode(nor, true); } static struct spi_nor_fixups n25q00_fixups = { .late_init = st_nor_four_die_late_init, }; static struct spi_nor_fixups mt25q01_fixups = { .late_init = st_nor_two_die_late_init, }; static struct spi_nor_fixups mt25q02_fixups = { .late_init = st_nor_four_die_late_init, }; static const struct flash_info st_nor_parts[] = { { .name = "m25p05-nonjedec", .sector_size = SZ_32K, .size = SZ_64K, }, { .name = "m25p10-nonjedec", .sector_size = SZ_32K, .size = SZ_128K, }, { .name = "m25p20-nonjedec", .size = SZ_256K, }, { .name = "m25p40-nonjedec", .size = SZ_512K, }, { .name = "m25p80-nonjedec", .size = SZ_1M, }, { .name = "m25p16-nonjedec", .size = SZ_2M, }, { .name = "m25p32-nonjedec", .size = SZ_4M, }, { .name = "m25p64-nonjedec", .size = SZ_8M, }, { .name = "m25p128-nonjedec", .sector_size = SZ_256K, .size = SZ_16M, }, { .id = SNOR_ID(0x20, 0x20, 0x10), .name = "m25p05", .sector_size = SZ_32K, .size = SZ_64K, }, { .id = SNOR_ID(0x20, 0x20, 0x11), .name = "m25p10", .sector_size = SZ_32K, .size = SZ_128K, }, { .id = SNOR_ID(0x20, 0x20, 0x12), .name = "m25p20", .size = SZ_256K, }, { .id = SNOR_ID(0x20, 0x20, 0x13), .name = "m25p40", .size = SZ_512K, }, { .id = SNOR_ID(0x20, 0x20, 0x14), .name = "m25p80", .size = SZ_1M, }, { .id = SNOR_ID(0x20, 0x20, 0x15), .name = "m25p16", .size = SZ_2M, }, { .id = SNOR_ID(0x20, 0x20, 0x16), .name = "m25p32", .size = SZ_4M, }, { .id = SNOR_ID(0x20, 0x20, 0x17), .name = "m25p64", .size = SZ_8M, }, { .id = SNOR_ID(0x20, 0x20, 0x18), .name = "m25p128", .sector_size = SZ_256K, .size = SZ_16M, }, { .id = SNOR_ID(0x20, 0x40, 0x11), .name = "m45pe10", .size = SZ_128K, }, { .id = SNOR_ID(0x20, 0x40, 0x14), .name = "m45pe80", .size = SZ_1M, }, { .id = SNOR_ID(0x20, 0x40, 0x15), .name = "m45pe16", .size = SZ_2M, }, { .id = SNOR_ID(0x20, 0x63, 0x16), .name = "m25px32-s1", .size = SZ_4M, .no_sfdp_flags = SECT_4K, }, { .id = SNOR_ID(0x20, 0x71, 0x14), .name = "m25px80", .size = SZ_1M, }, { .id = SNOR_ID(0x20, 0x71, 0x15), .name = "m25px16", .size = SZ_2M, .no_sfdp_flags = SECT_4K, }, { .id = SNOR_ID(0x20, 0x71, 0x16), .name = "m25px32", .size = SZ_4M, .no_sfdp_flags = SECT_4K, }, { .id = SNOR_ID(0x20, 0x71, 0x17), .name = "m25px64", .size = SZ_8M, }, { .id = SNOR_ID(0x20, 0x73, 0x16), .name = "m25px32-s0", .size = SZ_4M, .no_sfdp_flags = SECT_4K, }, { .id = SNOR_ID(0x20, 0x80, 0x12), .name = "m25pe20", .size = SZ_256K, }, { .id = SNOR_ID(0x20, 0x80, 0x14), .name = "m25pe80", .size = SZ_1M, }, { .id = SNOR_ID(0x20, 0x80, 0x15), .name = "m25pe16", .size = SZ_2M, .no_sfdp_flags = SECT_4K, }, { .id = SNOR_ID(0x20, 0xba, 0x16), .name = "n25q032", .size = SZ_4M, .no_sfdp_flags = SPI_NOR_QUAD_READ, }, { .id = SNOR_ID(0x20, 0xba, 0x17), .name = "n25q064", .size = SZ_8M, .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ, }, { .id = SNOR_ID(0x20, 0xba, 0x18), .name = "n25q128a13", .size = SZ_16M, .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP | SPI_NOR_BP3_SR_BIT6, .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ, .mfr_flags = USE_FSR, }, { .id = SNOR_ID(0x20, 0xba, 0x19, 0x10, 0x44, 0x00), .name = "mt25ql256a", .size = SZ_32M, .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .fixup_flags = SPI_NOR_4B_OPCODES, .mfr_flags = USE_FSR, }, { .id = SNOR_ID(0x20, 0xba, 0x19), .name = "n25q256a", .size = SZ_32M, .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .mfr_flags = USE_FSR, }, { .id = SNOR_ID(0x20, 0xba, 0x20, 0x10, 0x44, 0x00), .name = "mt25ql512a", .size = SZ_64M, .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .fixup_flags = SPI_NOR_4B_OPCODES, .mfr_flags = USE_FSR, }, { .id = SNOR_ID(0x20, 0xba, 0x20), .name = "n25q512ax3", .size = SZ_64M, .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP | SPI_NOR_BP3_SR_BIT6, .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ, .mfr_flags = USE_FSR, }, { .id = SNOR_ID(0x20, 0xba, 0x21), .name = "n25q00", .size = SZ_128M, .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP | SPI_NOR_BP3_SR_BIT6, .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ, .mfr_flags = USE_FSR, .fixups = &n25q00_fixups, }, { .id = SNOR_ID(0x20, 0xba, 0x22), .name = "mt25ql02g", .size = SZ_256M, .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ, .mfr_flags = USE_FSR, .fixups = &mt25q02_fixups, }, { .id = SNOR_ID(0x20, 0xbb, 0x15), .name = "n25q016a", .size = SZ_2M, .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ, }, { .id = SNOR_ID(0x20, 0xbb, 0x16), .name = "n25q032a", .size = SZ_4M, .no_sfdp_flags = SPI_NOR_QUAD_READ, }, { .id = SNOR_ID(0x20, 0xbb, 0x17), .name = "n25q064a", .size = SZ_8M, .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ, }, { .id = SNOR_ID(0x20, 0xbb, 0x18), .name = "n25q128a11", .size = SZ_16M, .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP | SPI_NOR_BP3_SR_BIT6, .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ, .mfr_flags = USE_FSR, }, { .id = SNOR_ID(0x20, 0xbb, 0x19, 0x10, 0x44, 0x00), .name = "mt25qu256a", .size = SZ_32M, .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP | SPI_NOR_BP3_SR_BIT6, .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .fixup_flags = SPI_NOR_4B_OPCODES, .mfr_flags = USE_FSR, }, { .id = SNOR_ID(0x20, 0xbb, 0x19), .name = "n25q256ax1", .size = SZ_32M, .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ, .mfr_flags = USE_FSR, }, { .id = SNOR_ID(0x20, 0xbb, 0x20, 0x10, 0x44, 0x00), .name = "mt25qu512a", .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP | SPI_NOR_BP3_SR_BIT6, .mfr_flags = USE_FSR, .fixups = &mt25qu512a_fixups, }, { .id = SNOR_ID(0x20, 0xbb, 0x20), .name = "n25q512a", .size = SZ_64M, .flags = SPI_NOR_HAS_LOCK | SPI_NOR_HAS_TB | SPI_NOR_4BIT_BP | SPI_NOR_BP3_SR_BIT6, .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ, .mfr_flags = USE_FSR, }, { .id = SNOR_ID(0x20, 0xbb, 0x21, 0x10, 0x44, 0x00), .name = "mt25qu01g", .mfr_flags = USE_FSR, .fixups = &mt25q01_fixups, }, { .id = SNOR_ID(0x20, 0xbb, 0x21), .name = "n25q00a", .size = SZ_128M, .no_sfdp_flags = SECT_4K | SPI_NOR_QUAD_READ, .mfr_flags = USE_FSR, .fixups = &n25q00_fixups, }, { .id = SNOR_ID(0x20, 0xbb, 0x22), .name = "mt25qu02g", .size = SZ_256M, .no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ, .mfr_flags = USE_FSR, .fixups = &mt25q02_fixups, } }; /** * micron_st_nor_read_fsr() - Read the Flag Status Register. * @nor: pointer to 'struct spi_nor' * @fsr: pointer to a DMA-able buffer where the value of the * Flag Status Register will be written. Should be at least 2 * bytes. * * Return: 0 on success, -errno otherwise. */ static int micron_st_nor_read_fsr(struct spi_nor *nor, u8 *fsr) { int ret; if (nor->spimem) { struct spi_mem_op op = MICRON_ST_RDFSR_OP(fsr); if (nor->reg_proto == SNOR_PROTO_8_8_8_DTR) { op.addr.nbytes = nor->params->rdsr_addr_nbytes; op.dummy.nbytes = nor->params->rdsr_dummy; /* * We don't want to read only one byte in DTR mode. So, * read 2 and then discard the second byte. */ op.data.nbytes = 2; } spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); ret = spi_mem_exec_op(nor->spimem, &op); } else { ret = spi_nor_controller_ops_read_reg(nor, SPINOR_OP_RDFSR, fsr, 1); } if (ret) dev_dbg(nor->dev, "error %d reading FSR\n", ret); return ret; } /** * micron_st_nor_clear_fsr() - Clear the Flag Status Register. * @nor: pointer to 'struct spi_nor'. */ static void micron_st_nor_clear_fsr(struct spi_nor *nor) { int ret; if (nor->spimem) { struct spi_mem_op op = MICRON_ST_CLFSR_OP; spi_nor_spimem_setup_op(nor, &op, nor->reg_proto); ret = spi_mem_exec_op(nor->spimem, &op); } else { ret = spi_nor_controller_ops_write_reg(nor, SPINOR_OP_CLFSR, NULL, 0); } if (ret) dev_dbg(nor->dev, "error %d clearing FSR\n", ret); } /** * micron_st_nor_ready() - Query the Status Register as well as the Flag Status * Register to see if the flash is ready for new commands. If there are any * errors in the FSR clear them. * @nor: pointer to 'struct spi_nor'. * * Return: 1 if ready, 0 if not ready, -errno on errors. */ static int micron_st_nor_ready(struct spi_nor *nor) { int sr_ready, ret; sr_ready = spi_nor_sr_ready(nor); if (sr_ready < 0) return sr_ready; ret = micron_st_nor_read_fsr(nor, nor->bouncebuf); if (ret) { /* * Some controllers, such as Intel SPI, do not support low * level operations such as reading the flag status * register. They only expose small amount of high level * operations to the software. If this is the case we use * only the status register value. */ return ret == -EOPNOTSUPP ? sr_ready : ret; } if (nor->bouncebuf[0] & (FSR_E_ERR | FSR_P_ERR)) { if (nor->bouncebuf[0] & FSR_E_ERR) dev_err(nor->dev, "Erase operation failed.\n"); else dev_err(nor->dev, "Program operation failed.\n"); if (nor->bouncebuf[0] & FSR_PT_ERR) dev_err(nor->dev, "Attempted to modify a protected sector.\n"); micron_st_nor_clear_fsr(nor); /* * WEL bit remains set to one when an erase or page program * error occurs. Issue a Write Disable command to protect * against inadvertent writes that can possibly corrupt the * contents of the memory. */ ret = spi_nor_write_disable(nor); if (ret) return ret; return -EIO; } return sr_ready && !!(nor->bouncebuf[0] & FSR_READY); } static void micron_st_nor_default_init(struct spi_nor *nor) { nor->flags |= SNOR_F_HAS_LOCK; nor->flags &= ~SNOR_F_HAS_16BIT_SR; nor->params->quad_enable = NULL; } static int micron_st_nor_late_init(struct spi_nor *nor) { struct spi_nor_flash_parameter *params = nor->params; if (nor->info->mfr_flags & USE_FSR) params->ready = micron_st_nor_ready; if (!params->set_4byte_addr_mode) params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_wren_en4b_ex4b; return 0; } static const struct spi_nor_fixups micron_st_nor_fixups = { .default_init = micron_st_nor_default_init, .late_init = micron_st_nor_late_init, }; const struct spi_nor_manufacturer spi_nor_micron = { .name = "micron", .parts = micron_nor_parts, .nparts = ARRAY_SIZE(micron_nor_parts), .fixups = µn_st_nor_fixups, }; const struct spi_nor_manufacturer spi_nor_st = { .name = "st", .parts = st_nor_parts, .nparts = ARRAY_SIZE(st_nor_parts), .fixups = µn_st_nor_fixups, };
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1