Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Iwo Mergler | 1510 | 94.85% | 2 | 16.67% |
Vikram Narayanan | 40 | 2.51% | 1 | 8.33% |
Akinobu Mita | 17 | 1.07% | 2 | 16.67% |
Richard Weinberger | 10 | 0.63% | 1 | 8.33% |
Huang Shijie | 4 | 0.25% | 1 | 8.33% |
Sascha Hauer | 3 | 0.19% | 1 | 8.33% |
Brian Norris | 3 | 0.19% | 1 | 8.33% |
Thomas Gleixner | 2 | 0.13% | 1 | 8.33% |
Michał Kępień | 2 | 0.13% | 1 | 8.33% |
Boris Brezillon | 1 | 0.06% | 1 | 8.33% |
Total | 1592 | 12 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright © 2012 NetCommWireless * Iwo Mergler <Iwo.Mergler@netcommwireless.com.au> * * Test for multi-bit error recovery on a NAND page This mostly tests the * ECC controller / driver. * * There are two test modes: * * 0 - artificially inserting bit errors until the ECC fails * This is the default method and fairly quick. It should * be independent of the quality of the FLASH. * * 1 - re-writing the same pattern repeatedly until the ECC fails. * This method relies on the physics of NAND FLASH to eventually * generate '0' bits if '1' has been written sufficient times. * Depending on the NAND, the first bit errors will appear after * 1000 or more writes and then will usually snowball, reaching the * limits of the ECC quickly. * * The test stops after 10000 cycles, should your FLASH be * exceptionally good and not generate bit errors before that. Try * a different page in that case. * * Please note that neither of these tests will significantly 'use up' any * FLASH endurance. Only a maximum of two erase operations will be performed. */ #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt #include <linux/init.h> #include <linux/module.h> #include <linux/moduleparam.h> #include <linux/mtd/mtd.h> #include <linux/err.h> #include <linux/mtd/rawnand.h> #include <linux/slab.h> #include "mtd_test.h" static int dev; module_param(dev, int, S_IRUGO); MODULE_PARM_DESC(dev, "MTD device number to use"); static unsigned page_offset; module_param(page_offset, uint, S_IRUGO); MODULE_PARM_DESC(page_offset, "Page number relative to dev start"); static unsigned seed; module_param(seed, uint, S_IRUGO); MODULE_PARM_DESC(seed, "Random seed"); static int mode; module_param(mode, int, S_IRUGO); MODULE_PARM_DESC(mode, "0=incremental errors, 1=overwrite test"); static unsigned max_overwrite = 10000; static loff_t offset; /* Offset of the page we're using. */ static unsigned eraseblock; /* Eraseblock number for our page. */ /* We assume that the ECC can correct up to a certain number * of biterrors per subpage. */ static unsigned subsize; /* Size of subpages */ static unsigned subcount; /* Number of subpages per page */ static struct mtd_info *mtd; /* MTD device */ static uint8_t *wbuffer; /* One page write / compare buffer */ static uint8_t *rbuffer; /* One page read buffer */ /* 'random' bytes from known offsets */ static uint8_t hash(unsigned offset) { unsigned v = offset; unsigned char c; v ^= 0x7f7edfd3; v = v ^ (v >> 3); v = v ^ (v >> 5); v = v ^ (v >> 13); c = v & 0xFF; /* Reverse bits of result. */ c = (c & 0x0F) << 4 | (c & 0xF0) >> 4; c = (c & 0x33) << 2 | (c & 0xCC) >> 2; c = (c & 0x55) << 1 | (c & 0xAA) >> 1; return c; } /* Writes wbuffer to page */ static int write_page(int log) { if (log) pr_info("write_page\n"); return mtdtest_write(mtd, offset, mtd->writesize, wbuffer); } /* Re-writes the data area while leaving the OOB alone. */ static int rewrite_page(int log) { int err = 0; struct mtd_oob_ops ops = { }; if (log) pr_info("rewrite page\n"); ops.mode = MTD_OPS_RAW; /* No ECC */ ops.len = mtd->writesize; ops.retlen = 0; ops.ooblen = 0; ops.oobretlen = 0; ops.ooboffs = 0; ops.datbuf = wbuffer; ops.oobbuf = NULL; err = mtd_write_oob(mtd, offset, &ops); if (err || ops.retlen != mtd->writesize) { pr_err("error: write_oob failed (%d)\n", err); if (!err) err = -EIO; } return err; } /* Reads page into rbuffer. Returns number of corrected bit errors (>=0) * or error (<0) */ static int read_page(int log) { int err = 0; size_t read; struct mtd_ecc_stats oldstats; if (log) pr_info("read_page\n"); /* Saving last mtd stats */ memcpy(&oldstats, &mtd->ecc_stats, sizeof(oldstats)); err = mtd_read(mtd, offset, mtd->writesize, &read, rbuffer); if (!err || err == -EUCLEAN) err = mtd->ecc_stats.corrected - oldstats.corrected; if (err < 0 || read != mtd->writesize) { pr_err("error: read failed at %#llx\n", (long long)offset); if (err >= 0) err = -EIO; } return err; } /* Verifies rbuffer against random sequence */ static int verify_page(int log) { unsigned i, errs = 0; if (log) pr_info("verify_page\n"); for (i = 0; i < mtd->writesize; i++) { if (rbuffer[i] != hash(i+seed)) { pr_err("Error: page offset %u, expected %02x, got %02x\n", i, hash(i+seed), rbuffer[i]); errs++; } } if (errs) return -EIO; else return 0; } #define CBIT(v, n) ((v) & (1 << (n))) #define BCLR(v, n) ((v) = (v) & ~(1 << (n))) /* Finds the first '1' bit in wbuffer starting at offset 'byte' * and sets it to '0'. */ static int insert_biterror(unsigned byte) { int bit; while (byte < mtd->writesize) { for (bit = 7; bit >= 0; bit--) { if (CBIT(wbuffer[byte], bit)) { BCLR(wbuffer[byte], bit); pr_info("Inserted biterror @ %u/%u\n", byte, bit); return 0; } } byte++; } pr_err("biterror: Failed to find a '1' bit\n"); return -EIO; } /* Writes 'random' data to page and then introduces deliberate bit * errors into the page, while verifying each step. */ static int incremental_errors_test(void) { int err = 0; unsigned i; unsigned errs_per_subpage = 0; pr_info("incremental biterrors test\n"); for (i = 0; i < mtd->writesize; i++) wbuffer[i] = hash(i+seed); err = write_page(1); if (err) goto exit; while (1) { err = rewrite_page(1); if (err) goto exit; err = read_page(1); if (err > 0) pr_info("Read reported %d corrected bit errors\n", err); if (err < 0) { pr_err("After %d biterrors per subpage, read reported error %d\n", errs_per_subpage, err); err = 0; goto exit; } err = verify_page(1); if (err) { pr_err("ECC failure, read data is incorrect despite read success\n"); goto exit; } pr_info("Successfully corrected %d bit errors per subpage\n", errs_per_subpage); for (i = 0; i < subcount; i++) { err = insert_biterror(i * subsize); if (err < 0) goto exit; } errs_per_subpage++; } exit: return err; } /* Writes 'random' data to page and then re-writes that same data repeatedly. This eventually develops bit errors (bits written as '1' will slowly become '0'), which are corrected as far as the ECC is capable of. */ static int overwrite_test(void) { int err = 0; unsigned i; unsigned max_corrected = 0; unsigned opno = 0; /* We don't expect more than this many correctable bit errors per * page. */ #define MAXBITS 512 static unsigned bitstats[MAXBITS]; /* bit error histogram. */ memset(bitstats, 0, sizeof(bitstats)); pr_info("overwrite biterrors test\n"); for (i = 0; i < mtd->writesize; i++) wbuffer[i] = hash(i+seed); err = write_page(1); if (err) goto exit; while (opno < max_overwrite) { err = write_page(0); if (err) break; err = read_page(0); if (err >= 0) { if (err >= MAXBITS) { pr_info("Implausible number of bit errors corrected\n"); err = -EIO; break; } bitstats[err]++; if (err > max_corrected) { max_corrected = err; pr_info("Read reported %d corrected bit errors\n", err); } } else { /* err < 0 */ pr_info("Read reported error %d\n", err); err = 0; break; } err = verify_page(0); if (err) { bitstats[max_corrected] = opno; pr_info("ECC failure, read data is incorrect despite read success\n"); break; } err = mtdtest_relax(); if (err) break; opno++; } /* At this point bitstats[0] contains the number of ops with no bit * errors, bitstats[1] the number of ops with 1 bit error, etc. */ pr_info("Bit error histogram (%d operations total):\n", opno); for (i = 0; i < max_corrected; i++) pr_info("Page reads with %3d corrected bit errors: %d\n", i, bitstats[i]); exit: return err; } static int __init mtd_nandbiterrs_init(void) { int err = 0; printk("\n"); printk(KERN_INFO "==================================================\n"); pr_info("MTD device: %d\n", dev); mtd = get_mtd_device(NULL, dev); if (IS_ERR(mtd)) { err = PTR_ERR(mtd); pr_err("error: cannot get MTD device\n"); goto exit_mtddev; } if (!mtd_type_is_nand(mtd)) { pr_info("this test requires NAND flash\n"); err = -ENODEV; goto exit_nand; } pr_info("MTD device size %llu, eraseblock=%u, page=%u, oob=%u\n", (unsigned long long)mtd->size, mtd->erasesize, mtd->writesize, mtd->oobsize); subsize = mtd->writesize >> mtd->subpage_sft; subcount = mtd->writesize / subsize; pr_info("Device uses %d subpages of %d bytes\n", subcount, subsize); offset = (loff_t)page_offset * mtd->writesize; eraseblock = mtd_div_by_eb(offset, mtd); pr_info("Using page=%u, offset=%llu, eraseblock=%u\n", page_offset, offset, eraseblock); wbuffer = kmalloc(mtd->writesize, GFP_KERNEL); if (!wbuffer) { err = -ENOMEM; goto exit_wbuffer; } rbuffer = kmalloc(mtd->writesize, GFP_KERNEL); if (!rbuffer) { err = -ENOMEM; goto exit_rbuffer; } err = mtdtest_erase_eraseblock(mtd, eraseblock); if (err) goto exit_error; if (mode == 0) err = incremental_errors_test(); else err = overwrite_test(); if (err) goto exit_error; /* We leave the block un-erased in case of test failure. */ err = mtdtest_erase_eraseblock(mtd, eraseblock); if (err) goto exit_error; err = -EIO; pr_info("finished successfully.\n"); printk(KERN_INFO "==================================================\n"); exit_error: kfree(rbuffer); exit_rbuffer: kfree(wbuffer); exit_wbuffer: /* Nothing */ exit_nand: put_mtd_device(mtd); exit_mtddev: return err; } static void __exit mtd_nandbiterrs_exit(void) { return; } module_init(mtd_nandbiterrs_init); module_exit(mtd_nandbiterrs_exit); MODULE_DESCRIPTION("NAND bit error recovery test"); MODULE_AUTHOR("Iwo Mergler"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1