Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Tristram Ha | 3471 | 42.94% | 7 | 7.69% |
Oleksij Rempel | 2354 | 29.12% | 33 | 36.26% |
Michael Grzeschik | 661 | 8.18% | 13 | 14.29% |
Arun Ramadoss | 580 | 7.18% | 17 | 18.68% |
Woojung Huh | 539 | 6.67% | 1 | 1.10% |
Ben Hutchings | 245 | 3.03% | 6 | 6.59% |
Ante Knezic | 66 | 0.82% | 1 | 1.10% |
Russell King | 53 | 0.66% | 2 | 2.20% |
Vladimir Oltean | 37 | 0.46% | 4 | 4.40% |
Helmut Grohne | 33 | 0.41% | 1 | 1.10% |
Marek Vašut | 16 | 0.20% | 2 | 2.20% |
Andrew Lunn | 15 | 0.19% | 1 | 1.10% |
Codrin Ciubotariu | 6 | 0.07% | 1 | 1.10% |
Tobias Jakobi (Compleo) | 6 | 0.07% | 1 | 1.10% |
Christophe Jaillet | 1 | 0.01% | 1 | 1.10% |
Total | 8083 | 91 |
// SPDX-License-Identifier: GPL-2.0 /* * Microchip KSZ8795 switch driver * * Copyright (C) 2017 Microchip Technology Inc. * Tristram Ha <Tristram.Ha@microchip.com> */ #include <linux/bitfield.h> #include <linux/delay.h> #include <linux/export.h> #include <linux/gpio.h> #include <linux/if_vlan.h> #include <linux/kernel.h> #include <linux/module.h> #include <linux/platform_data/microchip-ksz.h> #include <linux/phy.h> #include <linux/etherdevice.h> #include <linux/if_bridge.h> #include <linux/micrel_phy.h> #include <net/dsa.h> #include <net/switchdev.h> #include <linux/phylink.h> #include "ksz_common.h" #include "ksz8795_reg.h" #include "ksz8.h" static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set) { regmap_update_bits(ksz_regmap_8(dev), addr, bits, set ? bits : 0); } static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits, bool set) { regmap_update_bits(ksz_regmap_8(dev), PORT_CTRL_ADDR(port, offset), bits, set ? bits : 0); } static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data) { const u16 *regs; u16 ctrl_addr; int ret = 0; regs = dev->info->regs; mutex_lock(&dev->alu_mutex); ctrl_addr = IND_ACC_TABLE(table) | addr; ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr); if (!ret) ret = ksz_write8(dev, regs[REG_IND_BYTE], data); mutex_unlock(&dev->alu_mutex); return ret; } int ksz8_reset_switch(struct ksz_device *dev) { if (ksz_is_ksz88x3(dev)) { /* reset switch */ ksz_cfg(dev, KSZ8863_REG_SW_RESET, KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true); ksz_cfg(dev, KSZ8863_REG_SW_RESET, KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false); } else { /* reset switch */ ksz_write8(dev, REG_POWER_MANAGEMENT_1, SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S); ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0); } return 0; } static int ksz8863_change_mtu(struct ksz_device *dev, int frame_size) { u8 ctrl2 = 0; if (frame_size <= KSZ8_LEGAL_PACKET_SIZE) ctrl2 |= KSZ8863_LEGAL_PACKET_ENABLE; else if (frame_size > KSZ8863_NORMAL_PACKET_SIZE) ctrl2 |= KSZ8863_HUGE_PACKET_ENABLE; return ksz_rmw8(dev, REG_SW_CTRL_2, KSZ8863_LEGAL_PACKET_ENABLE | KSZ8863_HUGE_PACKET_ENABLE, ctrl2); } static int ksz8795_change_mtu(struct ksz_device *dev, int frame_size) { u8 ctrl1 = 0, ctrl2 = 0; int ret; if (frame_size > KSZ8_LEGAL_PACKET_SIZE) ctrl2 |= SW_LEGAL_PACKET_DISABLE; if (frame_size > KSZ8863_NORMAL_PACKET_SIZE) ctrl1 |= SW_HUGE_PACKET; ret = ksz_rmw8(dev, REG_SW_CTRL_1, SW_HUGE_PACKET, ctrl1); if (ret) return ret; return ksz_rmw8(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, ctrl2); } int ksz8_change_mtu(struct ksz_device *dev, int port, int mtu) { u16 frame_size; if (!dsa_is_cpu_port(dev->ds, port)) return 0; frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN; switch (dev->chip_id) { case KSZ8795_CHIP_ID: case KSZ8794_CHIP_ID: case KSZ8765_CHIP_ID: return ksz8795_change_mtu(dev, frame_size); case KSZ8830_CHIP_ID: return ksz8863_change_mtu(dev, frame_size); } return -EOPNOTSUPP; } static int ksz8_port_queue_split(struct ksz_device *dev, int port, int queues) { u8 mask_4q, mask_2q; u8 reg_4q, reg_2q; u8 data_4q = 0; u8 data_2q = 0; int ret; if (ksz_is_ksz88x3(dev)) { mask_4q = KSZ8873_PORT_4QUEUE_SPLIT_EN; mask_2q = KSZ8873_PORT_2QUEUE_SPLIT_EN; reg_4q = REG_PORT_CTRL_0; reg_2q = REG_PORT_CTRL_2; /* KSZ8795 family switches have Weighted Fair Queueing (WFQ) * enabled by default. Enable it for KSZ8873 family switches * too. Default value for KSZ8873 family is strict priority, * which should be enabled by using TC_SETUP_QDISC_ETS, not * by default. */ ret = ksz_rmw8(dev, REG_SW_CTRL_3, WEIGHTED_FAIR_QUEUE_ENABLE, WEIGHTED_FAIR_QUEUE_ENABLE); if (ret) return ret; } else { mask_4q = KSZ8795_PORT_4QUEUE_SPLIT_EN; mask_2q = KSZ8795_PORT_2QUEUE_SPLIT_EN; reg_4q = REG_PORT_CTRL_13; reg_2q = REG_PORT_CTRL_0; /* TODO: this is legacy from initial KSZ8795 driver, should be * moved to appropriate place in the future. */ ret = ksz_rmw8(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED, SW_OUT_RATE_LIMIT_QUEUE_BASED); if (ret) return ret; } if (queues == 4) data_4q = mask_4q; else if (queues == 2) data_2q = mask_2q; ret = ksz_prmw8(dev, port, reg_4q, mask_4q, data_4q); if (ret) return ret; return ksz_prmw8(dev, port, reg_2q, mask_2q, data_2q); } int ksz8_all_queues_split(struct ksz_device *dev, int queues) { struct dsa_switch *ds = dev->ds; const struct dsa_port *dp; dsa_switch_for_each_port(dp, ds) { int ret = ksz8_port_queue_split(dev, dp->index, queues); if (ret) return ret; } return 0; } void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt) { const u32 *masks; const u16 *regs; u16 ctrl_addr; u32 data; u8 check; int loop; masks = dev->info->masks; regs = dev->info->regs; ctrl_addr = addr + dev->info->reg_mib_cnt * port; ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ); mutex_lock(&dev->alu_mutex); ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr); /* It is almost guaranteed to always read the valid bit because of * slow SPI speed. */ for (loop = 2; loop > 0; loop--) { ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check); if (check & masks[MIB_COUNTER_VALID]) { ksz_read32(dev, regs[REG_IND_DATA_LO], &data); if (check & masks[MIB_COUNTER_OVERFLOW]) *cnt += MIB_COUNTER_VALUE + 1; *cnt += data & MIB_COUNTER_VALUE; break; } } mutex_unlock(&dev->alu_mutex); } static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr, u64 *dropped, u64 *cnt) { const u32 *masks; const u16 *regs; u16 ctrl_addr; u32 data; u8 check; int loop; masks = dev->info->masks; regs = dev->info->regs; addr -= dev->info->reg_mib_cnt; ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port; ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0; ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ); mutex_lock(&dev->alu_mutex); ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr); /* It is almost guaranteed to always read the valid bit because of * slow SPI speed. */ for (loop = 2; loop > 0; loop--) { ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check); if (check & masks[MIB_COUNTER_VALID]) { ksz_read32(dev, regs[REG_IND_DATA_LO], &data); if (addr < 2) { u64 total; total = check & MIB_TOTAL_BYTES_H; total <<= 32; *cnt += total; *cnt += data; if (check & masks[MIB_COUNTER_OVERFLOW]) { total = MIB_TOTAL_BYTES_H + 1; total <<= 32; *cnt += total; } } else { if (check & masks[MIB_COUNTER_OVERFLOW]) *cnt += MIB_PACKET_DROPPED + 1; *cnt += data & MIB_PACKET_DROPPED; } break; } } mutex_unlock(&dev->alu_mutex); } static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr, u64 *dropped, u64 *cnt) { u32 *last = (u32 *)dropped; const u16 *regs; u16 ctrl_addr; u32 data; u32 cur; regs = dev->info->regs; addr -= dev->info->reg_mib_cnt; ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 : KSZ8863_MIB_PACKET_DROPPED_RX_0; ctrl_addr += port; ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ); mutex_lock(&dev->alu_mutex); ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr); ksz_read32(dev, regs[REG_IND_DATA_LO], &data); mutex_unlock(&dev->alu_mutex); data &= MIB_PACKET_DROPPED; cur = last[addr]; if (data != cur) { last[addr] = data; if (data < cur) data += MIB_PACKET_DROPPED + 1; data -= cur; *cnt += data; } } void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr, u64 *dropped, u64 *cnt) { if (ksz_is_ksz88x3(dev)) ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt); else ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt); } void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze) { if (ksz_is_ksz88x3(dev)) return; /* enable the port for flush/freeze function */ if (freeze) ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true); ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze); /* disable the port after freeze is done */ if (!freeze) ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false); } void ksz8_port_init_cnt(struct ksz_device *dev, int port) { struct ksz_port_mib *mib = &dev->ports[port].mib; u64 *dropped; if (!ksz_is_ksz88x3(dev)) { /* flush all enabled port MIB counters */ ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true); ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true); ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false); } mib->cnt_ptr = 0; /* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */ while (mib->cnt_ptr < dev->info->reg_mib_cnt) { dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr, &mib->counters[mib->cnt_ptr]); ++mib->cnt_ptr; } /* last one in storage */ dropped = &mib->counters[dev->info->mib_cnt]; /* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */ while (mib->cnt_ptr < dev->info->mib_cnt) { dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr, dropped, &mib->counters[mib->cnt_ptr]); ++mib->cnt_ptr; } } static int ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data) { const u16 *regs; u16 ctrl_addr; int ret; regs = dev->info->regs; ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr; mutex_lock(&dev->alu_mutex); ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr); if (ret) goto unlock_alu; ret = ksz_read64(dev, regs[REG_IND_DATA_HI], data); unlock_alu: mutex_unlock(&dev->alu_mutex); return ret; } static int ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data) { const u16 *regs; u16 ctrl_addr; int ret; regs = dev->info->regs; ctrl_addr = IND_ACC_TABLE(table) | addr; mutex_lock(&dev->alu_mutex); ret = ksz_write64(dev, regs[REG_IND_DATA_HI], data); if (ret) goto unlock_alu; ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr); unlock_alu: mutex_unlock(&dev->alu_mutex); return ret; } static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data) { int timeout = 100; const u32 *masks; const u16 *regs; int ret; masks = dev->info->masks; regs = dev->info->regs; do { ret = ksz_read8(dev, regs[REG_IND_DATA_CHECK], data); if (ret) return ret; timeout--; } while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout); /* Entry is not ready for accessing. */ if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) return -ETIMEDOUT; /* Entry is ready for accessing. */ return ksz_read8(dev, regs[REG_IND_DATA_8], data); } static int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, u8 *mac_addr, u8 *fid, u8 *src_port, u16 *entries) { u32 data_hi, data_lo; const u8 *shifts; const u32 *masks; const u16 *regs; u16 ctrl_addr; u64 buf = 0; u8 data; int cnt; int ret; shifts = dev->info->shifts; masks = dev->info->masks; regs = dev->info->regs; ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr; mutex_lock(&dev->alu_mutex); ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr); if (ret) goto unlock_alu; ret = ksz8_valid_dyn_entry(dev, &data); if (ret) goto unlock_alu; if (data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY]) { *entries = 0; goto unlock_alu; } ret = ksz_read64(dev, regs[REG_IND_DATA_HI], &buf); if (ret) goto unlock_alu; data_hi = (u32)(buf >> 32); data_lo = (u32)buf; /* Check out how many valid entry in the table. */ cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H]; cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H]; cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >> shifts[DYNAMIC_MAC_ENTRIES]; *entries = cnt + 1; *fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >> shifts[DYNAMIC_MAC_FID]; *src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >> shifts[DYNAMIC_MAC_SRC_PORT]; mac_addr[5] = (u8)data_lo; mac_addr[4] = (u8)(data_lo >> 8); mac_addr[3] = (u8)(data_lo >> 16); mac_addr[2] = (u8)(data_lo >> 24); mac_addr[1] = (u8)data_hi; mac_addr[0] = (u8)(data_hi >> 8); unlock_alu: mutex_unlock(&dev->alu_mutex); return ret; } static int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr, struct alu_struct *alu, bool *valid) { u32 data_hi, data_lo; const u8 *shifts; const u32 *masks; u64 data; int ret; shifts = dev->info->shifts; masks = dev->info->masks; ret = ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data); if (ret) return ret; data_hi = data >> 32; data_lo = (u32)data; if (!(data_hi & (masks[STATIC_MAC_TABLE_VALID] | masks[STATIC_MAC_TABLE_OVERRIDE]))) { *valid = false; return 0; } alu->mac[5] = (u8)data_lo; alu->mac[4] = (u8)(data_lo >> 8); alu->mac[3] = (u8)(data_lo >> 16); alu->mac[2] = (u8)(data_lo >> 24); alu->mac[1] = (u8)data_hi; alu->mac[0] = (u8)(data_hi >> 8); alu->port_forward = (data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >> shifts[STATIC_MAC_FWD_PORTS]; alu->is_override = (data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0; /* KSZ8795 family switches have STATIC_MAC_TABLE_USE_FID and * STATIC_MAC_TABLE_FID definitions off by 1 when doing read on the * static MAC table compared to doing write. */ if (ksz_is_ksz87xx(dev)) data_hi >>= 1; alu->is_static = true; alu->is_use_fid = (data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0; alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >> shifts[STATIC_MAC_FID]; *valid = true; return 0; } static int ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr, struct alu_struct *alu) { u32 data_hi, data_lo; const u8 *shifts; const u32 *masks; u64 data; shifts = dev->info->shifts; masks = dev->info->masks; data_lo = ((u32)alu->mac[2] << 24) | ((u32)alu->mac[3] << 16) | ((u32)alu->mac[4] << 8) | alu->mac[5]; data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1]; data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS]; if (alu->is_override) data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE]; if (alu->is_use_fid) { data_hi |= masks[STATIC_MAC_TABLE_USE_FID]; data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID]; } if (alu->is_static) data_hi |= masks[STATIC_MAC_TABLE_VALID]; else data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE]; data = (u64)data_hi << 32 | data_lo; return ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data); } static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid, u8 *member, u8 *valid) { const u8 *shifts; const u32 *masks; shifts = dev->info->shifts; masks = dev->info->masks; *fid = vlan & masks[VLAN_TABLE_FID]; *member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >> shifts[VLAN_TABLE_MEMBERSHIP_S]; *valid = !!(vlan & masks[VLAN_TABLE_VALID]); } static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid, u16 *vlan) { const u8 *shifts; const u32 *masks; shifts = dev->info->shifts; masks = dev->info->masks; *vlan = fid; *vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S]; if (valid) *vlan |= masks[VLAN_TABLE_VALID]; } static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr) { const u8 *shifts; u64 data; int i; shifts = dev->info->shifts; ksz8_r_table(dev, TABLE_VLAN, addr, &data); addr *= 4; for (i = 0; i < 4; i++) { dev->vlan_cache[addr + i].table[0] = (u16)data; data >>= shifts[VLAN_TABLE]; } } static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan) { int index; u16 *data; u16 addr; u64 buf; data = (u16 *)&buf; addr = vid / 4; index = vid & 3; ksz8_r_table(dev, TABLE_VLAN, addr, &buf); *vlan = data[index]; } static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan) { int index; u16 *data; u16 addr; u64 buf; data = (u16 *)&buf; addr = vid / 4; index = vid & 3; ksz8_r_table(dev, TABLE_VLAN, addr, &buf); data[index] = vlan; dev->vlan_cache[vid].table[0] = vlan; ksz8_w_table(dev, TABLE_VLAN, addr, buf); } /** * ksz879x_get_loopback - KSZ879x specific function to get loopback * configuration status for a specific port * @dev: Pointer to the device structure * @port: Port number to query * @val: Pointer to store the result * * This function reads the SMI registers to determine whether loopback mode * is enabled for a specific port. * * Return: 0 on success, error code on failure. */ static int ksz879x_get_loopback(struct ksz_device *dev, u16 port, u16 *val) { u8 stat3; int ret; ret = ksz_pread8(dev, port, REG_PORT_STATUS_3, &stat3); if (ret) return ret; if (stat3 & PORT_PHY_LOOPBACK) *val |= BMCR_LOOPBACK; return 0; } /** * ksz879x_set_loopback - KSZ879x specific function to set loopback mode for * a specific port * @dev: Pointer to the device structure. * @port: Port number to modify. * @val: Value indicating whether to enable or disable loopback mode. * * This function translates loopback bit of the BMCR register into the * corresponding hardware register bit value and writes it to the SMI interface. * * Return: 0 on success, error code on failure. */ static int ksz879x_set_loopback(struct ksz_device *dev, u16 port, u16 val) { u8 stat3 = 0; if (val & BMCR_LOOPBACK) stat3 |= PORT_PHY_LOOPBACK; return ksz_prmw8(dev, port, REG_PORT_STATUS_3, PORT_PHY_LOOPBACK, stat3); } /** * ksz8_r_phy_ctrl - Translates and reads from the SMI interface to a MIIM PHY * Control register (Reg. 31). * @dev: The KSZ device instance. * @port: The port number to be read. * @val: The value read from the SMI interface. * * This function reads the SMI interface and translates the hardware register * bit values into their corresponding control settings for a MIIM PHY Control * register. * * Return: 0 on success, error code on failure. */ static int ksz8_r_phy_ctrl(struct ksz_device *dev, int port, u16 *val) { const u16 *regs = dev->info->regs; u8 reg_val; int ret; *val = 0; ret = ksz_pread8(dev, port, regs[P_LINK_STATUS], ®_val); if (ret < 0) return ret; if (reg_val & PORT_MDIX_STATUS) *val |= KSZ886X_CTRL_MDIX_STAT; ret = ksz_pread8(dev, port, REG_PORT_LINK_MD_CTRL, ®_val); if (ret < 0) return ret; if (reg_val & PORT_FORCE_LINK) *val |= KSZ886X_CTRL_FORCE_LINK; if (reg_val & PORT_POWER_SAVING) *val |= KSZ886X_CTRL_PWRSAVE; if (reg_val & PORT_PHY_REMOTE_LOOPBACK) *val |= KSZ886X_CTRL_REMOTE_LOOPBACK; return 0; } /** * ksz8_r_phy_bmcr - Translates and reads from the SMI interface to a MIIM PHY * Basic mode control register (Reg. 0). * @dev: The KSZ device instance. * @port: The port number to be read. * @val: The value read from the SMI interface. * * This function reads the SMI interface and translates the hardware register * bit values into their corresponding control settings for a MIIM PHY Basic * mode control register. * * MIIM Bit Mapping Comparison between KSZ8794 and KSZ8873 * ------------------------------------------------------------------- * MIIM Bit | KSZ8794 Reg/Bit | KSZ8873 Reg/Bit * ----------------------------+-----------------------------+---------------- * Bit 15 - Soft Reset | 0xF/4 | Not supported * Bit 14 - Loopback | 0xD/0 (MAC), 0xF/7 (PHY) ~ 0xD/0 (PHY) * Bit 13 - Force 100 | 0xC/6 = 0xC/6 * Bit 12 - AN Enable | 0xC/7 (reverse logic) ~ 0xC/7 * Bit 11 - Power Down | 0xD/3 = 0xD/3 * Bit 10 - PHY Isolate | 0xF/5 | Not supported * Bit 9 - Restart AN | 0xD/5 = 0xD/5 * Bit 8 - Force Full-Duplex | 0xC/5 = 0xC/5 * Bit 7 - Collision Test/Res. | Not supported | Not supported * Bit 6 - Reserved | Not supported | Not supported * Bit 5 - Hp_mdix | 0x9/7 ~ 0xF/7 * Bit 4 - Force MDI | 0xD/1 = 0xD/1 * Bit 3 - Disable MDIX | 0xD/2 = 0xD/2 * Bit 2 - Disable Far-End F. | ???? | 0xD/4 * Bit 1 - Disable Transmit | 0xD/6 = 0xD/6 * Bit 0 - Disable LED | 0xD/7 = 0xD/7 * ------------------------------------------------------------------- * * Return: 0 on success, error code on failure. */ static int ksz8_r_phy_bmcr(struct ksz_device *dev, u16 port, u16 *val) { const u16 *regs = dev->info->regs; u8 restart, speed, ctrl; int ret; *val = 0; ret = ksz_pread8(dev, port, regs[P_NEG_RESTART_CTRL], &restart); if (ret) return ret; ret = ksz_pread8(dev, port, regs[P_SPEED_STATUS], &speed); if (ret) return ret; ret = ksz_pread8(dev, port, regs[P_FORCE_CTRL], &ctrl); if (ret) return ret; if (ctrl & PORT_FORCE_100_MBIT) *val |= BMCR_SPEED100; if (ksz_is_ksz88x3(dev)) { if (restart & KSZ8873_PORT_PHY_LOOPBACK) *val |= BMCR_LOOPBACK; if ((ctrl & PORT_AUTO_NEG_ENABLE)) *val |= BMCR_ANENABLE; } else { ret = ksz879x_get_loopback(dev, port, val); if (ret) return ret; if (!(ctrl & PORT_AUTO_NEG_DISABLE)) *val |= BMCR_ANENABLE; } if (restart & PORT_POWER_DOWN) *val |= BMCR_PDOWN; if (restart & PORT_AUTO_NEG_RESTART) *val |= BMCR_ANRESTART; if (ctrl & PORT_FORCE_FULL_DUPLEX) *val |= BMCR_FULLDPLX; if (speed & PORT_HP_MDIX) *val |= KSZ886X_BMCR_HP_MDIX; if (restart & PORT_FORCE_MDIX) *val |= KSZ886X_BMCR_FORCE_MDI; if (restart & PORT_AUTO_MDIX_DISABLE) *val |= KSZ886X_BMCR_DISABLE_AUTO_MDIX; if (restart & PORT_TX_DISABLE) *val |= KSZ886X_BMCR_DISABLE_TRANSMIT; if (restart & PORT_LED_OFF) *val |= KSZ886X_BMCR_DISABLE_LED; return 0; } int ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val) { u8 ctrl, link, val1, val2; int processed = true; const u16 *regs; u16 data = 0; u16 p = phy; int ret; regs = dev->info->regs; switch (reg) { case MII_BMCR: ret = ksz8_r_phy_bmcr(dev, p, &data); if (ret) return ret; break; case MII_BMSR: ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link); if (ret) return ret; data = BMSR_100FULL | BMSR_100HALF | BMSR_10FULL | BMSR_10HALF | BMSR_ANEGCAPABLE; if (link & PORT_AUTO_NEG_COMPLETE) data |= BMSR_ANEGCOMPLETE; if (link & PORT_STAT_LINK_GOOD) data |= BMSR_LSTATUS; break; case MII_PHYSID1: data = KSZ8795_ID_HI; break; case MII_PHYSID2: if (ksz_is_ksz88x3(dev)) data = KSZ8863_ID_LO; else data = KSZ8795_ID_LO; break; case MII_ADVERTISE: ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl); if (ret) return ret; data = ADVERTISE_CSMA; if (ctrl & PORT_AUTO_NEG_SYM_PAUSE) data |= ADVERTISE_PAUSE_CAP; if (ctrl & PORT_AUTO_NEG_100BTX_FD) data |= ADVERTISE_100FULL; if (ctrl & PORT_AUTO_NEG_100BTX) data |= ADVERTISE_100HALF; if (ctrl & PORT_AUTO_NEG_10BT_FD) data |= ADVERTISE_10FULL; if (ctrl & PORT_AUTO_NEG_10BT) data |= ADVERTISE_10HALF; break; case MII_LPA: ret = ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link); if (ret) return ret; data = LPA_SLCT; if (link & PORT_REMOTE_SYM_PAUSE) data |= LPA_PAUSE_CAP; if (link & PORT_REMOTE_100BTX_FD) data |= LPA_100FULL; if (link & PORT_REMOTE_100BTX) data |= LPA_100HALF; if (link & PORT_REMOTE_10BT_FD) data |= LPA_10FULL; if (link & PORT_REMOTE_10BT) data |= LPA_10HALF; if (data & ~LPA_SLCT) data |= LPA_LPACK; break; case PHY_REG_LINK_MD: ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1); if (ret) return ret; ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2); if (ret) return ret; if (val1 & PORT_START_CABLE_DIAG) data |= PHY_START_CABLE_DIAG; if (val1 & PORT_CABLE_10M_SHORT) data |= PHY_CABLE_10M_SHORT; data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M, FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1)); data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M, (FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) | FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2)); break; case PHY_REG_PHY_CTRL: ret = ksz8_r_phy_ctrl(dev, p, &data); if (ret) return ret; break; default: processed = false; break; } if (processed) *val = data; return 0; } /** * ksz8_w_phy_ctrl - Translates and writes to the SMI interface from a MIIM PHY * Control register (Reg. 31). * @dev: The KSZ device instance. * @port: The port number to be configured. * @val: The register value to be written. * * This function translates control settings from a MIIM PHY Control register * into their corresponding hardware register bit values for the SMI * interface. * * Return: 0 on success, error code on failure. */ static int ksz8_w_phy_ctrl(struct ksz_device *dev, int port, u16 val) { u8 reg_val = 0; int ret; if (val & KSZ886X_CTRL_FORCE_LINK) reg_val |= PORT_FORCE_LINK; if (val & KSZ886X_CTRL_PWRSAVE) reg_val |= PORT_POWER_SAVING; if (val & KSZ886X_CTRL_REMOTE_LOOPBACK) reg_val |= PORT_PHY_REMOTE_LOOPBACK; ret = ksz_prmw8(dev, port, REG_PORT_LINK_MD_CTRL, PORT_FORCE_LINK | PORT_POWER_SAVING | PORT_PHY_REMOTE_LOOPBACK, reg_val); return ret; } /** * ksz8_w_phy_bmcr - Translates and writes to the SMI interface from a MIIM PHY * Basic mode control register (Reg. 0). * @dev: The KSZ device instance. * @port: The port number to be configured. * @val: The register value to be written. * * This function translates control settings from a MIIM PHY Basic mode control * register into their corresponding hardware register bit values for the SMI * interface. * * MIIM Bit Mapping Comparison between KSZ8794 and KSZ8873 * ------------------------------------------------------------------- * MIIM Bit | KSZ8794 Reg/Bit | KSZ8873 Reg/Bit * ----------------------------+-----------------------------+---------------- * Bit 15 - Soft Reset | 0xF/4 | Not supported * Bit 14 - Loopback | 0xD/0 (MAC), 0xF/7 (PHY) ~ 0xD/0 (PHY) * Bit 13 - Force 100 | 0xC/6 = 0xC/6 * Bit 12 - AN Enable | 0xC/7 (reverse logic) ~ 0xC/7 * Bit 11 - Power Down | 0xD/3 = 0xD/3 * Bit 10 - PHY Isolate | 0xF/5 | Not supported * Bit 9 - Restart AN | 0xD/5 = 0xD/5 * Bit 8 - Force Full-Duplex | 0xC/5 = 0xC/5 * Bit 7 - Collision Test/Res. | Not supported | Not supported * Bit 6 - Reserved | Not supported | Not supported * Bit 5 - Hp_mdix | 0x9/7 ~ 0xF/7 * Bit 4 - Force MDI | 0xD/1 = 0xD/1 * Bit 3 - Disable MDIX | 0xD/2 = 0xD/2 * Bit 2 - Disable Far-End F. | ???? | 0xD/4 * Bit 1 - Disable Transmit | 0xD/6 = 0xD/6 * Bit 0 - Disable LED | 0xD/7 = 0xD/7 * ------------------------------------------------------------------- * * Return: 0 on success, error code on failure. */ static int ksz8_w_phy_bmcr(struct ksz_device *dev, u16 port, u16 val) { u8 restart, speed, ctrl, restart_mask; const u16 *regs = dev->info->regs; int ret; /* Do not support PHY reset function. */ if (val & BMCR_RESET) return 0; speed = 0; if (val & KSZ886X_BMCR_HP_MDIX) speed |= PORT_HP_MDIX; ret = ksz_prmw8(dev, port, regs[P_SPEED_STATUS], PORT_HP_MDIX, speed); if (ret) return ret; ctrl = 0; if (ksz_is_ksz88x3(dev)) { if ((val & BMCR_ANENABLE)) ctrl |= PORT_AUTO_NEG_ENABLE; } else { if (!(val & BMCR_ANENABLE)) ctrl |= PORT_AUTO_NEG_DISABLE; /* Fiber port does not support auto-negotiation. */ if (dev->ports[port].fiber) ctrl |= PORT_AUTO_NEG_DISABLE; } if (val & BMCR_SPEED100) ctrl |= PORT_FORCE_100_MBIT; if (val & BMCR_FULLDPLX) ctrl |= PORT_FORCE_FULL_DUPLEX; ret = ksz_prmw8(dev, port, regs[P_FORCE_CTRL], PORT_FORCE_100_MBIT | /* PORT_AUTO_NEG_ENABLE and PORT_AUTO_NEG_DISABLE are the same * bits */ PORT_FORCE_FULL_DUPLEX | PORT_AUTO_NEG_ENABLE, ctrl); if (ret) return ret; restart = 0; restart_mask = PORT_LED_OFF | PORT_TX_DISABLE | PORT_AUTO_NEG_RESTART | PORT_POWER_DOWN | PORT_AUTO_MDIX_DISABLE | PORT_FORCE_MDIX; if (val & KSZ886X_BMCR_DISABLE_LED) restart |= PORT_LED_OFF; if (val & KSZ886X_BMCR_DISABLE_TRANSMIT) restart |= PORT_TX_DISABLE; if (val & BMCR_ANRESTART) restart |= PORT_AUTO_NEG_RESTART; if (val & BMCR_PDOWN) restart |= PORT_POWER_DOWN; if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX) restart |= PORT_AUTO_MDIX_DISABLE; if (val & KSZ886X_BMCR_FORCE_MDI) restart |= PORT_FORCE_MDIX; if (ksz_is_ksz88x3(dev)) { restart_mask |= KSZ8873_PORT_PHY_LOOPBACK; if (val & BMCR_LOOPBACK) restart |= KSZ8873_PORT_PHY_LOOPBACK; } else { ret = ksz879x_set_loopback(dev, port, val); if (ret) return ret; } return ksz_prmw8(dev, port, regs[P_NEG_RESTART_CTRL], restart_mask, restart); } int ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val) { const u16 *regs; u8 ctrl, data; u16 p = phy; int ret; regs = dev->info->regs; switch (reg) { case MII_BMCR: ret = ksz8_w_phy_bmcr(dev, p, val); if (ret) return ret; break; case MII_ADVERTISE: ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl); if (ret) return ret; data = ctrl; data &= ~(PORT_AUTO_NEG_SYM_PAUSE | PORT_AUTO_NEG_100BTX_FD | PORT_AUTO_NEG_100BTX | PORT_AUTO_NEG_10BT_FD | PORT_AUTO_NEG_10BT); if (val & ADVERTISE_PAUSE_CAP) data |= PORT_AUTO_NEG_SYM_PAUSE; if (val & ADVERTISE_100FULL) data |= PORT_AUTO_NEG_100BTX_FD; if (val & ADVERTISE_100HALF) data |= PORT_AUTO_NEG_100BTX; if (val & ADVERTISE_10FULL) data |= PORT_AUTO_NEG_10BT_FD; if (val & ADVERTISE_10HALF) data |= PORT_AUTO_NEG_10BT; if (data != ctrl) { ret = ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data); if (ret) return ret; } break; case PHY_REG_LINK_MD: if (val & PHY_START_CABLE_DIAG) ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true); break; case PHY_REG_PHY_CTRL: ret = ksz8_w_phy_ctrl(dev, p, val); if (ret) return ret; break; default: break; } return 0; } void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member) { u8 data; ksz_pread8(dev, port, P_MIRROR_CTRL, &data); data &= ~PORT_VLAN_MEMBERSHIP; data |= (member & dev->port_mask); ksz_pwrite8(dev, port, P_MIRROR_CTRL, data); } void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port) { u8 learn[DSA_MAX_PORTS]; int first, index, cnt; const u16 *regs; regs = dev->info->regs; if ((uint)port < dev->info->port_cnt) { first = port; cnt = port + 1; } else { /* Flush all ports. */ first = 0; cnt = dev->info->port_cnt; } for (index = first; index < cnt; index++) { ksz_pread8(dev, index, regs[P_STP_CTRL], &learn[index]); if (!(learn[index] & PORT_LEARN_DISABLE)) ksz_pwrite8(dev, index, regs[P_STP_CTRL], learn[index] | PORT_LEARN_DISABLE); } ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true); for (index = first; index < cnt; index++) { if (!(learn[index] & PORT_LEARN_DISABLE)) ksz_pwrite8(dev, index, regs[P_STP_CTRL], learn[index]); } } int ksz8_fdb_dump(struct ksz_device *dev, int port, dsa_fdb_dump_cb_t *cb, void *data) { u8 mac[ETH_ALEN]; u8 src_port, fid; u16 entries = 0; int ret, i; for (i = 0; i < KSZ8_DYN_MAC_ENTRIES; i++) { ret = ksz8_r_dyn_mac_table(dev, i, mac, &fid, &src_port, &entries); if (ret) return ret; if (i >= entries) return 0; if (port == src_port) { ret = cb(mac, fid, false, data); if (ret) return ret; } } return 0; } static int ksz8_add_sta_mac(struct ksz_device *dev, int port, const unsigned char *addr, u16 vid) { struct alu_struct alu; int index, ret; int empty = 0; alu.port_forward = 0; for (index = 0; index < dev->info->num_statics; index++) { bool valid; ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid); if (ret) return ret; if (!valid) { /* Remember the first empty entry. */ if (!empty) empty = index + 1; continue; } if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid) break; } /* no available entry */ if (index == dev->info->num_statics && !empty) return -ENOSPC; /* add entry */ if (index == dev->info->num_statics) { index = empty - 1; memset(&alu, 0, sizeof(alu)); memcpy(alu.mac, addr, ETH_ALEN); alu.is_static = true; } alu.port_forward |= BIT(port); if (vid) { alu.is_use_fid = true; /* Need a way to map VID to FID. */ alu.fid = vid; } return ksz8_w_sta_mac_table(dev, index, &alu); } static int ksz8_del_sta_mac(struct ksz_device *dev, int port, const unsigned char *addr, u16 vid) { struct alu_struct alu; int index, ret; for (index = 0; index < dev->info->num_statics; index++) { bool valid; ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid); if (ret) return ret; if (!valid) continue; if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid) break; } /* no available entry */ if (index == dev->info->num_statics) return 0; /* clear port */ alu.port_forward &= ~BIT(port); if (!alu.port_forward) alu.is_static = false; return ksz8_w_sta_mac_table(dev, index, &alu); } int ksz8_mdb_add(struct ksz_device *dev, int port, const struct switchdev_obj_port_mdb *mdb, struct dsa_db db) { return ksz8_add_sta_mac(dev, port, mdb->addr, mdb->vid); } int ksz8_mdb_del(struct ksz_device *dev, int port, const struct switchdev_obj_port_mdb *mdb, struct dsa_db db) { return ksz8_del_sta_mac(dev, port, mdb->addr, mdb->vid); } int ksz8_fdb_add(struct ksz_device *dev, int port, const unsigned char *addr, u16 vid, struct dsa_db db) { return ksz8_add_sta_mac(dev, port, addr, vid); } int ksz8_fdb_del(struct ksz_device *dev, int port, const unsigned char *addr, u16 vid, struct dsa_db db) { return ksz8_del_sta_mac(dev, port, addr, vid); } int ksz8_port_vlan_filtering(struct ksz_device *dev, int port, bool flag, struct netlink_ext_ack *extack) { if (ksz_is_ksz88x3(dev)) return -ENOTSUPP; /* Discard packets with VID not enabled on the switch */ ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag); /* Discard packets with VID not enabled on the ingress port */ for (port = 0; port < dev->phy_port_cnt; ++port) ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER, flag); return 0; } static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state) { if (ksz_is_ksz88x3(dev)) { ksz_cfg(dev, REG_SW_INSERT_SRC_PVID, 0x03 << (4 - 2 * port), state); } else { ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00); } } int ksz8_port_vlan_add(struct ksz_device *dev, int port, const struct switchdev_obj_port_vlan *vlan, struct netlink_ext_ack *extack) { bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; struct ksz_port *p = &dev->ports[port]; u16 data, new_pvid = 0; u8 fid, member, valid; if (ksz_is_ksz88x3(dev)) return -ENOTSUPP; /* If a VLAN is added with untagged flag different from the * port's Remove Tag flag, we need to change the latter. * Ignore VID 0, which is always untagged. * Ignore CPU port, which will always be tagged. */ if (untagged != p->remove_tag && vlan->vid != 0 && port != dev->cpu_port) { unsigned int vid; /* Reject attempts to add a VLAN that requires the * Remove Tag flag to be changed, unless there are no * other VLANs currently configured. */ for (vid = 1; vid < dev->info->num_vlans; ++vid) { /* Skip the VID we are going to add or reconfigure */ if (vid == vlan->vid) continue; ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0], &fid, &member, &valid); if (valid && (member & BIT(port))) return -EINVAL; } ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged); p->remove_tag = untagged; } ksz8_r_vlan_table(dev, vlan->vid, &data); ksz8_from_vlan(dev, data, &fid, &member, &valid); /* First time to setup the VLAN entry. */ if (!valid) { /* Need to find a way to map VID to FID. */ fid = 1; valid = 1; } member |= BIT(port); ksz8_to_vlan(dev, fid, member, valid, &data); ksz8_w_vlan_table(dev, vlan->vid, data); /* change PVID */ if (vlan->flags & BRIDGE_VLAN_INFO_PVID) new_pvid = vlan->vid; if (new_pvid) { u16 vid; ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid); vid &= ~VLAN_VID_MASK; vid |= new_pvid; ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid); ksz8_port_enable_pvid(dev, port, true); } return 0; } int ksz8_port_vlan_del(struct ksz_device *dev, int port, const struct switchdev_obj_port_vlan *vlan) { u16 data, pvid; u8 fid, member, valid; if (ksz_is_ksz88x3(dev)) return -ENOTSUPP; ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid); pvid = pvid & 0xFFF; ksz8_r_vlan_table(dev, vlan->vid, &data); ksz8_from_vlan(dev, data, &fid, &member, &valid); member &= ~BIT(port); /* Invalidate the entry if no more member. */ if (!member) { fid = 0; valid = 0; } ksz8_to_vlan(dev, fid, member, valid, &data); ksz8_w_vlan_table(dev, vlan->vid, data); if (pvid == vlan->vid) ksz8_port_enable_pvid(dev, port, false); return 0; } int ksz8_port_mirror_add(struct ksz_device *dev, int port, struct dsa_mall_mirror_tc_entry *mirror, bool ingress, struct netlink_ext_ack *extack) { if (ingress) { ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true); dev->mirror_rx |= BIT(port); } else { ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true); dev->mirror_tx |= BIT(port); } ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false); /* configure mirror port */ if (dev->mirror_rx || dev->mirror_tx) ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, true); return 0; } void ksz8_port_mirror_del(struct ksz_device *dev, int port, struct dsa_mall_mirror_tc_entry *mirror) { u8 data; if (mirror->ingress) { ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false); dev->mirror_rx &= ~BIT(port); } else { ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false); dev->mirror_tx &= ~BIT(port); } ksz_pread8(dev, port, P_MIRROR_CTRL, &data); if (!dev->mirror_rx && !dev->mirror_tx) ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false); } static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port) { struct ksz_port *p = &dev->ports[port]; if (!ksz_is_ksz87xx(dev)) return; if (!p->interface && dev->compat_interface) { dev_warn(dev->dev, "Using legacy switch \"phy-mode\" property, because it is missing on port %d node. " "Please update your device tree.\n", port); p->interface = dev->compat_interface; } } void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port) { struct dsa_switch *ds = dev->ds; const u32 *masks; int queues; u8 member; masks = dev->info->masks; /* enable broadcast storm limit */ ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true); /* For KSZ88x3 enable only one queue by default, otherwise we won't * be able to get rid of PCP prios on Port 2. */ if (ksz_is_ksz88x3(dev)) queues = 1; else queues = dev->info->num_tx_queues; ksz8_port_queue_split(dev, port, queues); /* replace priority */ ksz_port_cfg(dev, port, P_802_1P_CTRL, masks[PORT_802_1P_REMAPPING], false); if (cpu_port) member = dsa_user_ports(ds); else member = BIT(dsa_upstream_port(ds, port)); ksz8_cfg_port_member(dev, port, member); } static void ksz88x3_config_rmii_clk(struct ksz_device *dev) { struct dsa_port *cpu_dp = dsa_to_port(dev->ds, dev->cpu_port); bool rmii_clk_internal; if (!ksz_is_ksz88x3(dev)) return; rmii_clk_internal = of_property_read_bool(cpu_dp->dn, "microchip,rmii-clk-internal"); ksz_cfg(dev, KSZ88X3_REG_FVID_AND_HOST_MODE, KSZ88X3_PORT3_RMII_CLK_INTERNAL, rmii_clk_internal); } void ksz8_config_cpu_port(struct dsa_switch *ds) { struct ksz_device *dev = ds->priv; struct ksz_port *p; const u32 *masks; const u16 *regs; u8 remote; int i; masks = dev->info->masks; regs = dev->info->regs; ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true); ksz8_port_setup(dev, dev->cpu_port, true); ksz8795_cpu_interface_select(dev, dev->cpu_port); ksz88x3_config_rmii_clk(dev); for (i = 0; i < dev->phy_port_cnt; i++) { ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED); } for (i = 0; i < dev->phy_port_cnt; i++) { p = &dev->ports[i]; if (!ksz_is_ksz88x3(dev)) { ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote); if (remote & KSZ8_PORT_FIBER_MODE) p->fiber = 1; } if (p->fiber) ksz_port_cfg(dev, i, regs[P_STP_CTRL], PORT_FORCE_FLOW_CTRL, true); else ksz_port_cfg(dev, i, regs[P_STP_CTRL], PORT_FORCE_FLOW_CTRL, false); } } /** * ksz8_phy_port_link_up - Configures ports with integrated PHYs * @dev: The KSZ device instance. * @port: The port number to configure. * @duplex: The desired duplex mode. * @tx_pause: If true, enables transmit pause. * @rx_pause: If true, enables receive pause. * * Description: * The function configures flow control settings for a given port based on the * desired settings and current duplex mode. * * According to the KSZ8873 datasheet, the PORT_FORCE_FLOW_CTRL bit in the * Port Control 2 register (0x1A for Port 1, 0x22 for Port 2, 0x32 for Port 3) * determines how flow control is handled on the port: * "1 = will always enable full-duplex flow control on the port, regardless * of AN result. * 0 = full-duplex flow control is enabled based on AN result." * * This means that the flow control behavior depends on the state of this bit: * - If PORT_FORCE_FLOW_CTRL is set to 1, the switch will ignore AN results and * force flow control on the port. * - If PORT_FORCE_FLOW_CTRL is set to 0, the switch will enable or disable * flow control based on the AN results. * * However, there is a potential limitation in this configuration. It is * currently not possible to force disable flow control on a port if we still * advertise pause support. While such a configuration is not currently * supported by Linux, and may not make practical sense, it's important to be * aware of this limitation when working with the KSZ8873 and similar devices. */ static void ksz8_phy_port_link_up(struct ksz_device *dev, int port, int duplex, bool tx_pause, bool rx_pause) { const u16 *regs = dev->info->regs; u8 sctrl = 0; /* The KSZ8795 switch differs from the KSZ8873 by supporting * asymmetric pause control. However, since a single bit is used to * control both RX and TX pause, we can't enforce asymmetric pause * control - both TX and RX pause will be either enabled or disabled * together. * * If auto-negotiation is enabled, we usually allow the flow control to * be determined by the auto-negotiation process based on the * capabilities of both link partners. However, for KSZ8873, the * PORT_FORCE_FLOW_CTRL bit may be set by the hardware bootstrap, * ignoring the auto-negotiation result. Thus, even in auto-negotiation * mode, we need to ensure that the PORT_FORCE_FLOW_CTRL bit is * properly cleared. * * In the absence of pause auto-negotiation, we will enforce symmetric * pause control for both variants of switches - KSZ8873 and KSZ8795. * * Autoneg Pause Autoneg rx,tx PORT_FORCE_FLOW_CTRL * 1 1 x 0 * 0 1 x 0 (flow control probably disabled) * x 0 1 1 (flow control force enabled) * 1 0 0 0 (flow control still depends on * aneg result due to hardware) * 0 0 0 0 (flow control probably disabled) */ if (dev->ports[port].manual_flow && tx_pause) sctrl |= PORT_FORCE_FLOW_CTRL; ksz_prmw8(dev, port, regs[P_STP_CTRL], PORT_FORCE_FLOW_CTRL, sctrl); } /** * ksz8_cpu_port_link_up - Configures the CPU port of the switch. * @dev: The KSZ device instance. * @speed: The desired link speed. * @duplex: The desired duplex mode. * @tx_pause: If true, enables transmit pause. * @rx_pause: If true, enables receive pause. * * Description: * The function configures flow control and speed settings for the CPU * port of the switch based on the desired settings, current duplex mode, and * speed. */ static void ksz8_cpu_port_link_up(struct ksz_device *dev, int speed, int duplex, bool tx_pause, bool rx_pause) { const u16 *regs = dev->info->regs; u8 ctrl = 0; /* SW_FLOW_CTRL, SW_HALF_DUPLEX, and SW_10_MBIT bits are bootstrappable * at least on KSZ8873. They can have different values depending on your * board setup. */ if (tx_pause || rx_pause) ctrl |= SW_FLOW_CTRL; if (duplex == DUPLEX_HALF) ctrl |= SW_HALF_DUPLEX; /* This hardware only supports SPEED_10 and SPEED_100. For SPEED_10 * we need to set the SW_10_MBIT bit. Otherwise, we can leave it 0. */ if (speed == SPEED_10) ctrl |= SW_10_MBIT; ksz_rmw8(dev, regs[S_BROADCAST_CTRL], SW_HALF_DUPLEX | SW_FLOW_CTRL | SW_10_MBIT, ctrl); } void ksz8_phylink_mac_link_up(struct phylink_config *config, struct phy_device *phydev, unsigned int mode, phy_interface_t interface, int speed, int duplex, bool tx_pause, bool rx_pause) { struct dsa_port *dp = dsa_phylink_to_port(config); struct ksz_device *dev = dp->ds->priv; int port = dp->index; /* If the port is the CPU port, apply special handling. Only the CPU * port is configured via global registers. */ if (dev->cpu_port == port) ksz8_cpu_port_link_up(dev, speed, duplex, tx_pause, rx_pause); else if (dev->info->internal_phy[port]) ksz8_phy_port_link_up(dev, port, duplex, tx_pause, rx_pause); } static int ksz8_handle_global_errata(struct dsa_switch *ds) { struct ksz_device *dev = ds->priv; int ret = 0; /* KSZ87xx Errata DS80000687C. * Module 2: Link drops with some EEE link partners. * An issue with the EEE next page exchange between the * KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in * the link dropping. */ if (dev->info->ksz87xx_eee_link_erratum) ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0); return ret; } int ksz8_enable_stp_addr(struct ksz_device *dev) { struct alu_struct alu; /* Setup STP address for STP operation. */ memset(&alu, 0, sizeof(alu)); ether_addr_copy(alu.mac, eth_stp_addr); alu.is_static = true; alu.is_override = true; alu.port_forward = dev->info->cpu_ports; return ksz8_w_sta_mac_table(dev, 0, &alu); } int ksz8_setup(struct dsa_switch *ds) { struct ksz_device *dev = ds->priv; int i; ds->mtu_enforcement_ingress = true; /* We rely on software untagging on the CPU port, so that we * can support both tagged and untagged VLANs */ ds->untag_bridge_pvid = true; /* VLAN filtering is partly controlled by the global VLAN * Enable flag */ ds->vlan_filtering_is_global = true; /* Enable automatic fast aging when link changed detected. */ ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true); /* Enable aggressive back off algorithm in half duplex mode. */ regmap_update_bits(ksz_regmap_8(dev), REG_SW_CTRL_1, SW_AGGR_BACKOFF, SW_AGGR_BACKOFF); /* * Make sure unicast VLAN boundary is set as default and * enable no excessive collision drop. */ regmap_update_bits(ksz_regmap_8(dev), REG_SW_CTRL_2, UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP, UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP); ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false); ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false); if (!ksz_is_ksz88x3(dev)) ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true); for (i = 0; i < (dev->info->num_vlans / 4); i++) ksz8_r_vlan_entries(dev, i); return ksz8_handle_global_errata(ds); } void ksz8_get_caps(struct ksz_device *dev, int port, struct phylink_config *config) { config->mac_capabilities = MAC_10 | MAC_100; /* Silicon Errata Sheet (DS80000830A): * "Port 1 does not respond to received flow control PAUSE frames" * So, disable Pause support on "Port 1" (port == 0) for all ksz88x3 * switches. */ if (!ksz_is_ksz88x3(dev) || port) config->mac_capabilities |= MAC_SYM_PAUSE; /* Asym pause is not supported on KSZ8863 and KSZ8873 */ if (!ksz_is_ksz88x3(dev)) config->mac_capabilities |= MAC_ASYM_PAUSE; } u32 ksz8_get_port_addr(int port, int offset) { return PORT_CTRL_ADDR(port, offset); } int ksz8_switch_init(struct ksz_device *dev) { dev->cpu_port = fls(dev->info->cpu_ports) - 1; dev->phy_port_cnt = dev->info->port_cnt - 1; dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports; return 0; } void ksz8_switch_exit(struct ksz_device *dev) { ksz8_reset_switch(dev); } MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>"); MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1