Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jeff Garzik | 4250 | 48.73% | 4 | 4.40% |
Reeja John | 3028 | 34.72% | 2 | 2.20% |
Al Viro | 209 | 2.40% | 6 | 6.59% |
Benjamin Herrenschmidt | 182 | 2.09% | 1 | 1.10% |
Varka Bhadram | 176 | 2.02% | 5 | 5.49% |
Stephen Hemminger | 113 | 1.30% | 5 | 5.49% |
Khawar Chaudhry | 112 | 1.28% | 1 | 1.10% |
François Romieu | 90 | 1.03% | 2 | 2.20% |
Randy Dunlap | 87 | 1.00% | 2 | 2.20% |
Christophe Jaillet | 81 | 0.93% | 1 | 1.10% |
Eric Dumazet | 34 | 0.39% | 3 | 3.30% |
Andi Kleen | 29 | 0.33% | 1 | 1.10% |
Jiri Pirko | 28 | 0.32% | 6 | 6.59% |
Andrew Morton | 28 | 0.32% | 2 | 2.20% |
Liu Tao | 27 | 0.31% | 1 | 1.10% |
Vaibhav Gupta | 26 | 0.30% | 1 | 1.10% |
Rick Jones | 22 | 0.25% | 1 | 1.10% |
Pradeep A. Dalvi | 21 | 0.24% | 1 | 1.10% |
Philippe Reynes | 21 | 0.24% | 1 | 1.10% |
Jakub Kiciński | 16 | 0.18% | 3 | 3.30% |
Panagiotis Issaris | 15 | 0.17% | 1 | 1.10% |
Kees Cook | 12 | 0.14% | 1 | 1.10% |
Jarod Wilson | 12 | 0.14% | 1 | 1.10% |
Dave Jones | 11 | 0.13% | 1 | 1.10% |
Peter Senna Tschudin | 10 | 0.11% | 1 | 1.10% |
Patrick McHardy | 8 | 0.09% | 3 | 3.30% |
Joe Perches | 8 | 0.09% | 5 | 5.49% |
Chunbo Luo | 7 | 0.08% | 1 | 1.10% |
Tobias Klauser | 5 | 0.06% | 1 | 1.10% |
Yang Hongyang | 4 | 0.05% | 1 | 1.10% |
Michael S. Tsirkin | 4 | 0.05% | 1 | 1.10% |
Guofeng Yue | 4 | 0.05% | 2 | 2.20% |
Linus Torvalds | 4 | 0.05% | 2 | 2.20% |
Allen Pais | 3 | 0.03% | 1 | 1.10% |
Yijing Wang | 3 | 0.03% | 1 | 1.10% |
Alexey Dobriyan | 3 | 0.03% | 1 | 1.10% |
Wilfried Klaebe | 3 | 0.03% | 1 | 1.10% |
Chris Friesen | 3 | 0.03% | 1 | 1.10% |
Yoann Padioleau | 3 | 0.03% | 1 | 1.10% |
Nathan Chancellor | 2 | 0.02% | 1 | 1.10% |
Wolfram Sang | 2 | 0.02% | 1 | 1.10% |
Ben Hutchings | 2 | 0.02% | 1 | 1.10% |
Thomas Gleixner | 2 | 0.02% | 2 | 2.20% |
Peter Hüwe | 2 | 0.02% | 1 | 1.10% |
Gustavo A. R. Silva | 2 | 0.02% | 1 | 1.10% |
Leon Romanovsky | 1 | 0.01% | 1 | 1.10% |
Wei Yang | 1 | 0.01% | 1 | 1.10% |
Yixing Liu | 1 | 0.01% | 1 | 1.10% |
Adrian Bunk | 1 | 0.01% | 1 | 1.10% |
Javier Martinez Canillas | 1 | 0.01% | 1 | 1.10% |
Lucas De Marchi | 1 | 0.01% | 1 | 1.10% |
Arnd Bergmann | 1 | 0.01% | 1 | 1.10% |
Jiri Kosina | 1 | 0.01% | 1 | 1.10% |
Total | 8722 | 91 |
// SPDX-License-Identifier: GPL-2.0-or-later /* Advanced Micro Devices Inc. AMD8111E Linux Network Driver * Copyright (C) 2004 Advanced Micro Devices * * Copyright 2001,2002 Jeff Garzik <jgarzik@mandrakesoft.com> [ 8139cp.c,tg3.c ] * Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com)[ tg3.c] * Copyright 1996-1999 Thomas Bogendoerfer [ pcnet32.c ] * Derived from the lance driver written 1993,1994,1995 by Donald Becker. * Copyright 1993 United States Government as represented by the * Director, National Security Agency.[ pcnet32.c ] * Carsten Langgaard, carstenl@mips.com [ pcnet32.c ] * Copyright (C) 2000 MIPS Technologies, Inc. All rights reserved. * Module Name: amd8111e.c Abstract: AMD8111 based 10/100 Ethernet Controller Driver. Environment: Kernel Mode Revision History: 3.0.0 Initial Revision. 3.0.1 1. Dynamic interrupt coalescing. 2. Removed prev_stats. 3. MII support. 4. Dynamic IPG support 3.0.2 05/29/2003 1. Bug fix: Fixed failure to send jumbo packets larger than 4k. 2. Bug fix: Fixed VLAN support failure. 3. Bug fix: Fixed receive interrupt coalescing bug. 4. Dynamic IPG support is disabled by default. 3.0.3 06/05/2003 1. Bug fix: Fixed failure to close the interface if SMP is enabled. 3.0.4 12/09/2003 1. Added set_mac_address routine for bonding driver support. 2. Tested the driver for bonding support 3. Bug fix: Fixed mismach in actual receive buffer length and length indicated to the h/w. 4. Modified amd8111e_rx() routine to receive all the received packets in the first interrupt. 5. Bug fix: Corrected rx_errors reported in get_stats() function. 3.0.5 03/22/2004 1. Added NAPI support */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/compiler.h> #include <linux/delay.h> #include <linux/interrupt.h> #include <linux/ioport.h> #include <linux/pci.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/skbuff.h> #include <linux/ethtool.h> #include <linux/mii.h> #include <linux/if_vlan.h> #include <linux/ctype.h> #include <linux/crc32.h> #include <linux/dma-mapping.h> #include <asm/io.h> #include <asm/byteorder.h> #include <linux/uaccess.h> #if IS_ENABLED(CONFIG_VLAN_8021Q) #define AMD8111E_VLAN_TAG_USED 1 #else #define AMD8111E_VLAN_TAG_USED 0 #endif #include "amd8111e.h" #define MODULE_NAME "amd8111e" MODULE_AUTHOR("Advanced Micro Devices, Inc."); MODULE_DESCRIPTION("AMD8111 based 10/100 Ethernet Controller."); MODULE_LICENSE("GPL"); module_param_array(speed_duplex, int, NULL, 0); MODULE_PARM_DESC(speed_duplex, "Set device speed and duplex modes, 0: Auto Negotiate, 1: 10Mbps Half Duplex, 2: 10Mbps Full Duplex, 3: 100Mbps Half Duplex, 4: 100Mbps Full Duplex"); module_param_array(coalesce, bool, NULL, 0); MODULE_PARM_DESC(coalesce, "Enable or Disable interrupt coalescing, 1: Enable, 0: Disable"); module_param_array(dynamic_ipg, bool, NULL, 0); MODULE_PARM_DESC(dynamic_ipg, "Enable or Disable dynamic IPG, 1: Enable, 0: Disable"); /* This function will read the PHY registers. */ static int amd8111e_read_phy(struct amd8111e_priv *lp, int phy_id, int reg, u32 *val) { void __iomem *mmio = lp->mmio; unsigned int reg_val; unsigned int repeat = REPEAT_CNT; reg_val = readl(mmio + PHY_ACCESS); while (reg_val & PHY_CMD_ACTIVE) reg_val = readl(mmio + PHY_ACCESS); writel(PHY_RD_CMD | ((phy_id & 0x1f) << 21) | ((reg & 0x1f) << 16), mmio + PHY_ACCESS); do { reg_val = readl(mmio + PHY_ACCESS); udelay(30); /* It takes 30 us to read/write data */ } while (--repeat && (reg_val & PHY_CMD_ACTIVE)); if (reg_val & PHY_RD_ERR) goto err_phy_read; *val = reg_val & 0xffff; return 0; err_phy_read: *val = 0; return -EINVAL; } /* This function will write into PHY registers. */ static int amd8111e_write_phy(struct amd8111e_priv *lp, int phy_id, int reg, u32 val) { unsigned int repeat = REPEAT_CNT; void __iomem *mmio = lp->mmio; unsigned int reg_val; reg_val = readl(mmio + PHY_ACCESS); while (reg_val & PHY_CMD_ACTIVE) reg_val = readl(mmio + PHY_ACCESS); writel(PHY_WR_CMD | ((phy_id & 0x1f) << 21) | ((reg & 0x1f) << 16)|val, mmio + PHY_ACCESS); do { reg_val = readl(mmio + PHY_ACCESS); udelay(30); /* It takes 30 us to read/write the data */ } while (--repeat && (reg_val & PHY_CMD_ACTIVE)); if (reg_val & PHY_RD_ERR) goto err_phy_write; return 0; err_phy_write: return -EINVAL; } /* This is the mii register read function provided to the mii interface. */ static int amd8111e_mdio_read(struct net_device *dev, int phy_id, int reg_num) { struct amd8111e_priv *lp = netdev_priv(dev); unsigned int reg_val; amd8111e_read_phy(lp, phy_id, reg_num, ®_val); return reg_val; } /* This is the mii register write function provided to the mii interface. */ static void amd8111e_mdio_write(struct net_device *dev, int phy_id, int reg_num, int val) { struct amd8111e_priv *lp = netdev_priv(dev); amd8111e_write_phy(lp, phy_id, reg_num, val); } /* This function will set PHY speed. During initialization sets * the original speed to 100 full */ static void amd8111e_set_ext_phy(struct net_device *dev) { struct amd8111e_priv *lp = netdev_priv(dev); u32 bmcr, advert, tmp; /* Determine mii register values to set the speed */ advert = amd8111e_mdio_read(dev, lp->ext_phy_addr, MII_ADVERTISE); tmp = advert & ~(ADVERTISE_ALL | ADVERTISE_100BASE4); switch (lp->ext_phy_option) { default: case SPEED_AUTONEG: /* advertise all values */ tmp |= (ADVERTISE_10HALF | ADVERTISE_10FULL | ADVERTISE_100HALF | ADVERTISE_100FULL); break; case SPEED10_HALF: tmp |= ADVERTISE_10HALF; break; case SPEED10_FULL: tmp |= ADVERTISE_10FULL; break; case SPEED100_HALF: tmp |= ADVERTISE_100HALF; break; case SPEED100_FULL: tmp |= ADVERTISE_100FULL; break; } if(advert != tmp) amd8111e_mdio_write(dev, lp->ext_phy_addr, MII_ADVERTISE, tmp); /* Restart auto negotiation */ bmcr = amd8111e_mdio_read(dev, lp->ext_phy_addr, MII_BMCR); bmcr |= (BMCR_ANENABLE | BMCR_ANRESTART); amd8111e_mdio_write(dev, lp->ext_phy_addr, MII_BMCR, bmcr); } /* This function will unmap skb->data space and will free * all transmit and receive skbuffs. */ static int amd8111e_free_skbs(struct net_device *dev) { struct amd8111e_priv *lp = netdev_priv(dev); struct sk_buff *rx_skbuff; int i; /* Freeing transmit skbs */ for (i = 0; i < NUM_TX_BUFFERS; i++) { if (lp->tx_skbuff[i]) { dma_unmap_single(&lp->pci_dev->dev, lp->tx_dma_addr[i], lp->tx_skbuff[i]->len, DMA_TO_DEVICE); dev_kfree_skb(lp->tx_skbuff[i]); lp->tx_skbuff[i] = NULL; lp->tx_dma_addr[i] = 0; } } /* Freeing previously allocated receive buffers */ for (i = 0; i < NUM_RX_BUFFERS; i++) { rx_skbuff = lp->rx_skbuff[i]; if (rx_skbuff) { dma_unmap_single(&lp->pci_dev->dev, lp->rx_dma_addr[i], lp->rx_buff_len - 2, DMA_FROM_DEVICE); dev_kfree_skb(lp->rx_skbuff[i]); lp->rx_skbuff[i] = NULL; lp->rx_dma_addr[i] = 0; } } return 0; } /* This will set the receive buffer length corresponding * to the mtu size of networkinterface. */ static inline void amd8111e_set_rx_buff_len(struct net_device *dev) { struct amd8111e_priv *lp = netdev_priv(dev); unsigned int mtu = dev->mtu; if (mtu > ETH_DATA_LEN) { /* MTU + ethernet header + FCS * + optional VLAN tag + skb reserve space 2 */ lp->rx_buff_len = mtu + ETH_HLEN + 10; lp->options |= OPTION_JUMBO_ENABLE; } else { lp->rx_buff_len = PKT_BUFF_SZ; lp->options &= ~OPTION_JUMBO_ENABLE; } } /* This function will free all the previously allocated buffers, * determine new receive buffer length and will allocate new receive buffers. * This function also allocates and initializes both the transmitter * and receive hardware descriptors. */ static int amd8111e_init_ring(struct net_device *dev) { struct amd8111e_priv *lp = netdev_priv(dev); int i; lp->rx_idx = lp->tx_idx = 0; lp->tx_complete_idx = 0; lp->tx_ring_idx = 0; if (lp->opened) /* Free previously allocated transmit and receive skbs */ amd8111e_free_skbs(dev); else { /* allocate the tx and rx descriptors */ lp->tx_ring = dma_alloc_coherent(&lp->pci_dev->dev, sizeof(struct amd8111e_tx_dr) * NUM_TX_RING_DR, &lp->tx_ring_dma_addr, GFP_ATOMIC); if (!lp->tx_ring) goto err_no_mem; lp->rx_ring = dma_alloc_coherent(&lp->pci_dev->dev, sizeof(struct amd8111e_rx_dr) * NUM_RX_RING_DR, &lp->rx_ring_dma_addr, GFP_ATOMIC); if (!lp->rx_ring) goto err_free_tx_ring; } /* Set new receive buff size */ amd8111e_set_rx_buff_len(dev); /* Allocating receive skbs */ for (i = 0; i < NUM_RX_BUFFERS; i++) { lp->rx_skbuff[i] = netdev_alloc_skb(dev, lp->rx_buff_len); if (!lp->rx_skbuff[i]) { /* Release previos allocated skbs */ for (--i; i >= 0; i--) dev_kfree_skb(lp->rx_skbuff[i]); goto err_free_rx_ring; } skb_reserve(lp->rx_skbuff[i], 2); } /* Initilaizing receive descriptors */ for (i = 0; i < NUM_RX_BUFFERS; i++) { lp->rx_dma_addr[i] = dma_map_single(&lp->pci_dev->dev, lp->rx_skbuff[i]->data, lp->rx_buff_len - 2, DMA_FROM_DEVICE); lp->rx_ring[i].buff_phy_addr = cpu_to_le32(lp->rx_dma_addr[i]); lp->rx_ring[i].buff_count = cpu_to_le16(lp->rx_buff_len-2); wmb(); lp->rx_ring[i].rx_flags = cpu_to_le16(OWN_BIT); } /* Initializing transmit descriptors */ for (i = 0; i < NUM_TX_RING_DR; i++) { lp->tx_ring[i].buff_phy_addr = 0; lp->tx_ring[i].tx_flags = 0; lp->tx_ring[i].buff_count = 0; } return 0; err_free_rx_ring: dma_free_coherent(&lp->pci_dev->dev, sizeof(struct amd8111e_rx_dr) * NUM_RX_RING_DR, lp->rx_ring, lp->rx_ring_dma_addr); err_free_tx_ring: dma_free_coherent(&lp->pci_dev->dev, sizeof(struct amd8111e_tx_dr) * NUM_TX_RING_DR, lp->tx_ring, lp->tx_ring_dma_addr); err_no_mem: return -ENOMEM; } /* This function will set the interrupt coalescing according * to the input arguments */ static int amd8111e_set_coalesce(struct net_device *dev, enum coal_mode cmod) { unsigned int timeout; unsigned int event_count; struct amd8111e_priv *lp = netdev_priv(dev); void __iomem *mmio = lp->mmio; struct amd8111e_coalesce_conf *coal_conf = &lp->coal_conf; switch(cmod) { case RX_INTR_COAL : timeout = coal_conf->rx_timeout; event_count = coal_conf->rx_event_count; if (timeout > MAX_TIMEOUT || event_count > MAX_EVENT_COUNT) return -EINVAL; timeout = timeout * DELAY_TIMER_CONV; writel(VAL0|STINTEN, mmio+INTEN0); writel((u32)DLY_INT_A_R0 | (event_count << 16) | timeout, mmio + DLY_INT_A); break; case TX_INTR_COAL: timeout = coal_conf->tx_timeout; event_count = coal_conf->tx_event_count; if (timeout > MAX_TIMEOUT || event_count > MAX_EVENT_COUNT) return -EINVAL; timeout = timeout * DELAY_TIMER_CONV; writel(VAL0 | STINTEN, mmio + INTEN0); writel((u32)DLY_INT_B_T0 | (event_count << 16) | timeout, mmio + DLY_INT_B); break; case DISABLE_COAL: writel(0, mmio + STVAL); writel(STINTEN, mmio + INTEN0); writel(0, mmio + DLY_INT_B); writel(0, mmio + DLY_INT_A); break; case ENABLE_COAL: /* Start the timer */ writel((u32)SOFT_TIMER_FREQ, mmio + STVAL); /* 0.5 sec */ writel(VAL0 | STINTEN, mmio + INTEN0); break; default: break; } return 0; } /* This function initializes the device registers and starts the device. */ static int amd8111e_restart(struct net_device *dev) { struct amd8111e_priv *lp = netdev_priv(dev); void __iomem *mmio = lp->mmio; int i, reg_val; /* stop the chip */ writel(RUN, mmio + CMD0); if (amd8111e_init_ring(dev)) return -ENOMEM; /* enable the port manager and set auto negotiation always */ writel((u32)VAL1 | EN_PMGR, mmio + CMD3); writel((u32)XPHYANE | XPHYRST, mmio + CTRL2); amd8111e_set_ext_phy(dev); /* set control registers */ reg_val = readl(mmio + CTRL1); reg_val &= ~XMTSP_MASK; writel(reg_val | XMTSP_128 | CACHE_ALIGN, mmio + CTRL1); /* enable interrupt */ writel(APINT5EN | APINT4EN | APINT3EN | APINT2EN | APINT1EN | APINT0EN | MIIPDTINTEN | MCCIINTEN | MCCINTEN | MREINTEN | SPNDINTEN | MPINTEN | SINTEN | STINTEN, mmio + INTEN0); writel(VAL3 | LCINTEN | VAL1 | TINTEN0 | VAL0 | RINTEN0, mmio + INTEN0); /* initialize tx and rx ring base addresses */ writel((u32)lp->tx_ring_dma_addr, mmio + XMT_RING_BASE_ADDR0); writel((u32)lp->rx_ring_dma_addr, mmio + RCV_RING_BASE_ADDR0); writew((u32)NUM_TX_RING_DR, mmio + XMT_RING_LEN0); writew((u16)NUM_RX_RING_DR, mmio + RCV_RING_LEN0); /* set default IPG to 96 */ writew((u32)DEFAULT_IPG, mmio + IPG); writew((u32)(DEFAULT_IPG-IFS1_DELTA), mmio + IFS1); if (lp->options & OPTION_JUMBO_ENABLE) { writel((u32)VAL2|JUMBO, mmio + CMD3); /* Reset REX_UFLO */ writel(REX_UFLO, mmio + CMD2); /* Should not set REX_UFLO for jumbo frames */ writel(VAL0 | APAD_XMT | REX_RTRY, mmio + CMD2); } else { writel(VAL0 | APAD_XMT | REX_RTRY | REX_UFLO, mmio + CMD2); writel((u32)JUMBO, mmio + CMD3); } #if AMD8111E_VLAN_TAG_USED writel((u32)VAL2 | VSIZE | VL_TAG_DEL, mmio + CMD3); #endif writel(VAL0 | APAD_XMT | REX_RTRY, mmio + CMD2); /* Setting the MAC address to the device */ for (i = 0; i < ETH_ALEN; i++) writeb(dev->dev_addr[i], mmio + PADR + i); /* Enable interrupt coalesce */ if (lp->options & OPTION_INTR_COAL_ENABLE) { netdev_info(dev, "Interrupt Coalescing Enabled.\n"); amd8111e_set_coalesce(dev, ENABLE_COAL); } /* set RUN bit to start the chip */ writel(VAL2 | RDMD0, mmio + CMD0); writel(VAL0 | INTREN | RUN, mmio + CMD0); /* To avoid PCI posting bug */ readl(mmio+CMD0); return 0; } /* This function clears necessary the device registers. */ static void amd8111e_init_hw_default(struct amd8111e_priv *lp) { unsigned int reg_val; unsigned int logic_filter[2] = {0,}; void __iomem *mmio = lp->mmio; /* stop the chip */ writel(RUN, mmio + CMD0); /* AUTOPOLL0 Register *//*TBD default value is 8100 in FPS */ writew( 0x8100 | lp->ext_phy_addr, mmio + AUTOPOLL0); /* Clear RCV_RING_BASE_ADDR */ writel(0, mmio + RCV_RING_BASE_ADDR0); /* Clear XMT_RING_BASE_ADDR */ writel(0, mmio + XMT_RING_BASE_ADDR0); writel(0, mmio + XMT_RING_BASE_ADDR1); writel(0, mmio + XMT_RING_BASE_ADDR2); writel(0, mmio + XMT_RING_BASE_ADDR3); /* Clear CMD0 */ writel(CMD0_CLEAR, mmio + CMD0); /* Clear CMD2 */ writel(CMD2_CLEAR, mmio + CMD2); /* Clear CMD7 */ writel(CMD7_CLEAR, mmio + CMD7); /* Clear DLY_INT_A and DLY_INT_B */ writel(0x0, mmio + DLY_INT_A); writel(0x0, mmio + DLY_INT_B); /* Clear FLOW_CONTROL */ writel(0x0, mmio + FLOW_CONTROL); /* Clear INT0 write 1 to clear register */ reg_val = readl(mmio + INT0); writel(reg_val, mmio + INT0); /* Clear STVAL */ writel(0x0, mmio + STVAL); /* Clear INTEN0 */ writel(INTEN0_CLEAR, mmio + INTEN0); /* Clear LADRF */ writel(0x0, mmio + LADRF); /* Set SRAM_SIZE & SRAM_BOUNDARY registers */ writel(0x80010, mmio + SRAM_SIZE); /* Clear RCV_RING0_LEN */ writel(0x0, mmio + RCV_RING_LEN0); /* Clear XMT_RING0/1/2/3_LEN */ writel(0x0, mmio + XMT_RING_LEN0); writel(0x0, mmio + XMT_RING_LEN1); writel(0x0, mmio + XMT_RING_LEN2); writel(0x0, mmio + XMT_RING_LEN3); /* Clear XMT_RING_LIMIT */ writel(0x0, mmio + XMT_RING_LIMIT); /* Clear MIB */ writew(MIB_CLEAR, mmio + MIB_ADDR); /* Clear LARF */ amd8111e_writeq(*(u64 *)logic_filter, mmio + LADRF); /* SRAM_SIZE register */ reg_val = readl(mmio + SRAM_SIZE); if (lp->options & OPTION_JUMBO_ENABLE) writel(VAL2 | JUMBO, mmio + CMD3); #if AMD8111E_VLAN_TAG_USED writel(VAL2 | VSIZE | VL_TAG_DEL, mmio + CMD3); #endif /* Set default value to CTRL1 Register */ writel(CTRL1_DEFAULT, mmio + CTRL1); /* To avoid PCI posting bug */ readl(mmio + CMD2); } /* This function disables the interrupt and clears all the pending * interrupts in INT0 */ static void amd8111e_disable_interrupt(struct amd8111e_priv *lp) { u32 intr0; /* Disable interrupt */ writel(INTREN, lp->mmio + CMD0); /* Clear INT0 */ intr0 = readl(lp->mmio + INT0); writel(intr0, lp->mmio + INT0); /* To avoid PCI posting bug */ readl(lp->mmio + INT0); } /* This function stops the chip. */ static void amd8111e_stop_chip(struct amd8111e_priv *lp) { writel(RUN, lp->mmio + CMD0); /* To avoid PCI posting bug */ readl(lp->mmio + CMD0); } /* This function frees the transmiter and receiver descriptor rings. */ static void amd8111e_free_ring(struct amd8111e_priv *lp) { /* Free transmit and receive descriptor rings */ if (lp->rx_ring) { dma_free_coherent(&lp->pci_dev->dev, sizeof(struct amd8111e_rx_dr) * NUM_RX_RING_DR, lp->rx_ring, lp->rx_ring_dma_addr); lp->rx_ring = NULL; } if (lp->tx_ring) { dma_free_coherent(&lp->pci_dev->dev, sizeof(struct amd8111e_tx_dr) * NUM_TX_RING_DR, lp->tx_ring, lp->tx_ring_dma_addr); lp->tx_ring = NULL; } } /* This function will free all the transmit skbs that are actually * transmitted by the device. It will check the ownership of the * skb before freeing the skb. */ static int amd8111e_tx(struct net_device *dev) { struct amd8111e_priv *lp = netdev_priv(dev); int tx_index; int status; /* Complete all the transmit packet */ while (lp->tx_complete_idx != lp->tx_idx) { tx_index = lp->tx_complete_idx & TX_RING_DR_MOD_MASK; status = le16_to_cpu(lp->tx_ring[tx_index].tx_flags); if (status & OWN_BIT) break; /* It still hasn't been Txed */ lp->tx_ring[tx_index].buff_phy_addr = 0; /* We must free the original skb */ if (lp->tx_skbuff[tx_index]) { dma_unmap_single(&lp->pci_dev->dev, lp->tx_dma_addr[tx_index], lp->tx_skbuff[tx_index]->len, DMA_TO_DEVICE); dev_consume_skb_irq(lp->tx_skbuff[tx_index]); lp->tx_skbuff[tx_index] = NULL; lp->tx_dma_addr[tx_index] = 0; } lp->tx_complete_idx++; /*COAL update tx coalescing parameters */ lp->coal_conf.tx_packets++; lp->coal_conf.tx_bytes += le16_to_cpu(lp->tx_ring[tx_index].buff_count); if (netif_queue_stopped(dev) && lp->tx_complete_idx > lp->tx_idx - NUM_TX_BUFFERS + 2) { /* The ring is no longer full, clear tbusy. */ /* lp->tx_full = 0; */ netif_wake_queue(dev); } } return 0; } /* This function handles the driver receive operation in polling mode */ static int amd8111e_rx_poll(struct napi_struct *napi, int budget) { struct amd8111e_priv *lp = container_of(napi, struct amd8111e_priv, napi); struct net_device *dev = lp->amd8111e_net_dev; int rx_index = lp->rx_idx & RX_RING_DR_MOD_MASK; void __iomem *mmio = lp->mmio; struct sk_buff *skb, *new_skb; int min_pkt_len, status; int num_rx_pkt = 0; short pkt_len; #if AMD8111E_VLAN_TAG_USED short vtag; #endif while (num_rx_pkt < budget) { status = le16_to_cpu(lp->rx_ring[rx_index].rx_flags); if (status & OWN_BIT) break; /* There is a tricky error noted by John Murphy, * <murf@perftech.com> to Russ Nelson: Even with * full-sized * buffers it's possible for a * jabber packet to use two buffers, with only * the last correctly noting the error. */ if (status & ERR_BIT) { /* resetting flags */ lp->rx_ring[rx_index].rx_flags &= RESET_RX_FLAGS; goto err_next_pkt; } /* check for STP and ENP */ if (!((status & STP_BIT) && (status & ENP_BIT))) { /* resetting flags */ lp->rx_ring[rx_index].rx_flags &= RESET_RX_FLAGS; goto err_next_pkt; } pkt_len = le16_to_cpu(lp->rx_ring[rx_index].msg_count) - 4; #if AMD8111E_VLAN_TAG_USED vtag = status & TT_MASK; /* MAC will strip vlan tag */ if (vtag != 0) min_pkt_len = MIN_PKT_LEN - 4; else #endif min_pkt_len = MIN_PKT_LEN; if (pkt_len < min_pkt_len) { lp->rx_ring[rx_index].rx_flags &= RESET_RX_FLAGS; lp->drv_rx_errors++; goto err_next_pkt; } new_skb = netdev_alloc_skb(dev, lp->rx_buff_len); if (!new_skb) { /* if allocation fail, * ignore that pkt and go to next one */ lp->rx_ring[rx_index].rx_flags &= RESET_RX_FLAGS; lp->drv_rx_errors++; goto err_next_pkt; } skb_reserve(new_skb, 2); skb = lp->rx_skbuff[rx_index]; dma_unmap_single(&lp->pci_dev->dev, lp->rx_dma_addr[rx_index], lp->rx_buff_len - 2, DMA_FROM_DEVICE); skb_put(skb, pkt_len); lp->rx_skbuff[rx_index] = new_skb; lp->rx_dma_addr[rx_index] = dma_map_single(&lp->pci_dev->dev, new_skb->data, lp->rx_buff_len - 2, DMA_FROM_DEVICE); skb->protocol = eth_type_trans(skb, dev); #if AMD8111E_VLAN_TAG_USED if (vtag == TT_VLAN_TAGGED) { u16 vlan_tag = le16_to_cpu(lp->rx_ring[rx_index].tag_ctrl_info); __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan_tag); } #endif napi_gro_receive(napi, skb); /* COAL update rx coalescing parameters */ lp->coal_conf.rx_packets++; lp->coal_conf.rx_bytes += pkt_len; num_rx_pkt++; err_next_pkt: lp->rx_ring[rx_index].buff_phy_addr = cpu_to_le32(lp->rx_dma_addr[rx_index]); lp->rx_ring[rx_index].buff_count = cpu_to_le16(lp->rx_buff_len-2); wmb(); lp->rx_ring[rx_index].rx_flags |= cpu_to_le16(OWN_BIT); rx_index = (++lp->rx_idx) & RX_RING_DR_MOD_MASK; } if (num_rx_pkt < budget && napi_complete_done(napi, num_rx_pkt)) { unsigned long flags; /* Receive descriptor is empty now */ spin_lock_irqsave(&lp->lock, flags); writel(VAL0|RINTEN0, mmio + INTEN0); writel(VAL2 | RDMD0, mmio + CMD0); spin_unlock_irqrestore(&lp->lock, flags); } return num_rx_pkt; } /* This function will indicate the link status to the kernel. */ static int amd8111e_link_change(struct net_device *dev) { struct amd8111e_priv *lp = netdev_priv(dev); int status0, speed; /* read the link change */ status0 = readl(lp->mmio + STAT0); if (status0 & LINK_STATS) { if (status0 & AUTONEG_COMPLETE) lp->link_config.autoneg = AUTONEG_ENABLE; else lp->link_config.autoneg = AUTONEG_DISABLE; if (status0 & FULL_DPLX) lp->link_config.duplex = DUPLEX_FULL; else lp->link_config.duplex = DUPLEX_HALF; speed = (status0 & SPEED_MASK) >> 7; if (speed == PHY_SPEED_10) lp->link_config.speed = SPEED_10; else if (speed == PHY_SPEED_100) lp->link_config.speed = SPEED_100; netdev_info(dev, "Link is Up. Speed is %s Mbps %s Duplex\n", (lp->link_config.speed == SPEED_100) ? "100" : "10", (lp->link_config.duplex == DUPLEX_FULL) ? "Full" : "Half"); netif_carrier_on(dev); } else { lp->link_config.speed = SPEED_INVALID; lp->link_config.duplex = DUPLEX_INVALID; lp->link_config.autoneg = AUTONEG_INVALID; netdev_info(dev, "Link is Down.\n"); netif_carrier_off(dev); } return 0; } /* This function reads the mib counters. */ static int amd8111e_read_mib(void __iomem *mmio, u8 MIB_COUNTER) { unsigned int status; unsigned int data; unsigned int repeat = REPEAT_CNT; writew(MIB_RD_CMD | MIB_COUNTER, mmio + MIB_ADDR); do { status = readw(mmio + MIB_ADDR); udelay(2); /* controller takes MAX 2 us to get mib data */ } while (--repeat && (status & MIB_CMD_ACTIVE)); data = readl(mmio + MIB_DATA); return data; } /* This function reads the mib registers and returns the hardware statistics. * It updates previous internal driver statistics with new values. */ static struct net_device_stats *amd8111e_get_stats(struct net_device *dev) { struct amd8111e_priv *lp = netdev_priv(dev); void __iomem *mmio = lp->mmio; unsigned long flags; struct net_device_stats *new_stats = &dev->stats; if (!lp->opened) return new_stats; spin_lock_irqsave(&lp->lock, flags); /* stats.rx_packets */ new_stats->rx_packets = amd8111e_read_mib(mmio, rcv_broadcast_pkts)+ amd8111e_read_mib(mmio, rcv_multicast_pkts)+ amd8111e_read_mib(mmio, rcv_unicast_pkts); /* stats.tx_packets */ new_stats->tx_packets = amd8111e_read_mib(mmio, xmt_packets); /*stats.rx_bytes */ new_stats->rx_bytes = amd8111e_read_mib(mmio, rcv_octets); /* stats.tx_bytes */ new_stats->tx_bytes = amd8111e_read_mib(mmio, xmt_octets); /* stats.rx_errors */ /* hw errors + errors driver reported */ new_stats->rx_errors = amd8111e_read_mib(mmio, rcv_undersize_pkts)+ amd8111e_read_mib(mmio, rcv_fragments)+ amd8111e_read_mib(mmio, rcv_jabbers)+ amd8111e_read_mib(mmio, rcv_alignment_errors)+ amd8111e_read_mib(mmio, rcv_fcs_errors)+ amd8111e_read_mib(mmio, rcv_miss_pkts)+ lp->drv_rx_errors; /* stats.tx_errors */ new_stats->tx_errors = amd8111e_read_mib(mmio, xmt_underrun_pkts); /* stats.rx_dropped*/ new_stats->rx_dropped = amd8111e_read_mib(mmio, rcv_miss_pkts); /* stats.tx_dropped*/ new_stats->tx_dropped = amd8111e_read_mib(mmio, xmt_underrun_pkts); /* stats.multicast*/ new_stats->multicast = amd8111e_read_mib(mmio, rcv_multicast_pkts); /* stats.collisions*/ new_stats->collisions = amd8111e_read_mib(mmio, xmt_collisions); /* stats.rx_length_errors*/ new_stats->rx_length_errors = amd8111e_read_mib(mmio, rcv_undersize_pkts)+ amd8111e_read_mib(mmio, rcv_oversize_pkts); /* stats.rx_over_errors*/ new_stats->rx_over_errors = amd8111e_read_mib(mmio, rcv_miss_pkts); /* stats.rx_crc_errors*/ new_stats->rx_crc_errors = amd8111e_read_mib(mmio, rcv_fcs_errors); /* stats.rx_frame_errors*/ new_stats->rx_frame_errors = amd8111e_read_mib(mmio, rcv_alignment_errors); /* stats.rx_fifo_errors */ new_stats->rx_fifo_errors = amd8111e_read_mib(mmio, rcv_miss_pkts); /* stats.rx_missed_errors */ new_stats->rx_missed_errors = amd8111e_read_mib(mmio, rcv_miss_pkts); /* stats.tx_aborted_errors*/ new_stats->tx_aborted_errors = amd8111e_read_mib(mmio, xmt_excessive_collision); /* stats.tx_carrier_errors*/ new_stats->tx_carrier_errors = amd8111e_read_mib(mmio, xmt_loss_carrier); /* stats.tx_fifo_errors*/ new_stats->tx_fifo_errors = amd8111e_read_mib(mmio, xmt_underrun_pkts); /* stats.tx_window_errors*/ new_stats->tx_window_errors = amd8111e_read_mib(mmio, xmt_late_collision); /* Reset the mibs for collecting new statistics */ /* writew(MIB_CLEAR, mmio + MIB_ADDR);*/ spin_unlock_irqrestore(&lp->lock, flags); return new_stats; } /* This function recalculate the interrupt coalescing mode on every interrupt * according to the datarate and the packet rate. */ static int amd8111e_calc_coalesce(struct net_device *dev) { struct amd8111e_priv *lp = netdev_priv(dev); struct amd8111e_coalesce_conf *coal_conf = &lp->coal_conf; int tx_pkt_rate; int rx_pkt_rate; int tx_data_rate; int rx_data_rate; int rx_pkt_size; int tx_pkt_size; tx_pkt_rate = coal_conf->tx_packets - coal_conf->tx_prev_packets; coal_conf->tx_prev_packets = coal_conf->tx_packets; tx_data_rate = coal_conf->tx_bytes - coal_conf->tx_prev_bytes; coal_conf->tx_prev_bytes = coal_conf->tx_bytes; rx_pkt_rate = coal_conf->rx_packets - coal_conf->rx_prev_packets; coal_conf->rx_prev_packets = coal_conf->rx_packets; rx_data_rate = coal_conf->rx_bytes - coal_conf->rx_prev_bytes; coal_conf->rx_prev_bytes = coal_conf->rx_bytes; if (rx_pkt_rate < 800) { if (coal_conf->rx_coal_type != NO_COALESCE) { coal_conf->rx_timeout = 0x0; coal_conf->rx_event_count = 0; amd8111e_set_coalesce(dev, RX_INTR_COAL); coal_conf->rx_coal_type = NO_COALESCE; } } else { rx_pkt_size = rx_data_rate/rx_pkt_rate; if (rx_pkt_size < 128) { if (coal_conf->rx_coal_type != NO_COALESCE) { coal_conf->rx_timeout = 0; coal_conf->rx_event_count = 0; amd8111e_set_coalesce(dev, RX_INTR_COAL); coal_conf->rx_coal_type = NO_COALESCE; } } else if ((rx_pkt_size >= 128) && (rx_pkt_size < 512)) { if (coal_conf->rx_coal_type != LOW_COALESCE) { coal_conf->rx_timeout = 1; coal_conf->rx_event_count = 4; amd8111e_set_coalesce(dev, RX_INTR_COAL); coal_conf->rx_coal_type = LOW_COALESCE; } } else if ((rx_pkt_size >= 512) && (rx_pkt_size < 1024)) { if (coal_conf->rx_coal_type != MEDIUM_COALESCE) { coal_conf->rx_timeout = 1; coal_conf->rx_event_count = 4; amd8111e_set_coalesce(dev, RX_INTR_COAL); coal_conf->rx_coal_type = MEDIUM_COALESCE; } } else if (rx_pkt_size >= 1024) { if (coal_conf->rx_coal_type != HIGH_COALESCE) { coal_conf->rx_timeout = 2; coal_conf->rx_event_count = 3; amd8111e_set_coalesce(dev, RX_INTR_COAL); coal_conf->rx_coal_type = HIGH_COALESCE; } } } /* NOW FOR TX INTR COALESC */ if (tx_pkt_rate < 800) { if (coal_conf->tx_coal_type != NO_COALESCE) { coal_conf->tx_timeout = 0x0; coal_conf->tx_event_count = 0; amd8111e_set_coalesce(dev, TX_INTR_COAL); coal_conf->tx_coal_type = NO_COALESCE; } } else { tx_pkt_size = tx_data_rate/tx_pkt_rate; if (tx_pkt_size < 128) { if (coal_conf->tx_coal_type != NO_COALESCE) { coal_conf->tx_timeout = 0; coal_conf->tx_event_count = 0; amd8111e_set_coalesce(dev, TX_INTR_COAL); coal_conf->tx_coal_type = NO_COALESCE; } } else if ((tx_pkt_size >= 128) && (tx_pkt_size < 512)) { if (coal_conf->tx_coal_type != LOW_COALESCE) { coal_conf->tx_timeout = 1; coal_conf->tx_event_count = 2; amd8111e_set_coalesce(dev, TX_INTR_COAL); coal_conf->tx_coal_type = LOW_COALESCE; } } else if ((tx_pkt_size >= 512) && (tx_pkt_size < 1024)) { if (coal_conf->tx_coal_type != MEDIUM_COALESCE) { coal_conf->tx_timeout = 2; coal_conf->tx_event_count = 5; amd8111e_set_coalesce(dev, TX_INTR_COAL); coal_conf->tx_coal_type = MEDIUM_COALESCE; } } else if (tx_pkt_size >= 1024) { if (coal_conf->tx_coal_type != HIGH_COALESCE) { coal_conf->tx_timeout = 4; coal_conf->tx_event_count = 8; amd8111e_set_coalesce(dev, TX_INTR_COAL); coal_conf->tx_coal_type = HIGH_COALESCE; } } } return 0; } /* This is device interrupt function. It handles transmit, * receive,link change and hardware timer interrupts. */ static irqreturn_t amd8111e_interrupt(int irq, void *dev_id) { struct net_device *dev = (struct net_device *)dev_id; struct amd8111e_priv *lp = netdev_priv(dev); void __iomem *mmio = lp->mmio; unsigned int intr0, intren0; unsigned int handled = 1; if (unlikely(!dev)) return IRQ_NONE; spin_lock(&lp->lock); /* disabling interrupt */ writel(INTREN, mmio + CMD0); /* Read interrupt status */ intr0 = readl(mmio + INT0); intren0 = readl(mmio + INTEN0); /* Process all the INT event until INTR bit is clear. */ if (!(intr0 & INTR)) { handled = 0; goto err_no_interrupt; } /* Current driver processes 4 interrupts : RINT,TINT,LCINT,STINT */ writel(intr0, mmio + INT0); /* Check if Receive Interrupt has occurred. */ if (intr0 & RINT0) { if (napi_schedule_prep(&lp->napi)) { /* Disable receive interrupts */ writel(RINTEN0, mmio + INTEN0); /* Schedule a polling routine */ __napi_schedule(&lp->napi); } else if (intren0 & RINTEN0) { netdev_dbg(dev, "************Driver bug! interrupt while in poll\n"); /* Fix by disable receive interrupts */ writel(RINTEN0, mmio + INTEN0); } } /* Check if Transmit Interrupt has occurred. */ if (intr0 & TINT0) amd8111e_tx(dev); /* Check if Link Change Interrupt has occurred. */ if (intr0 & LCINT) amd8111e_link_change(dev); /* Check if Hardware Timer Interrupt has occurred. */ if (intr0 & STINT) amd8111e_calc_coalesce(dev); err_no_interrupt: writel(VAL0 | INTREN, mmio + CMD0); spin_unlock(&lp->lock); return IRQ_RETVAL(handled); } #ifdef CONFIG_NET_POLL_CONTROLLER static void amd8111e_poll(struct net_device *dev) { unsigned long flags; local_irq_save(flags); amd8111e_interrupt(0, dev); local_irq_restore(flags); } #endif /* This function closes the network interface and updates * the statistics so that most recent statistics will be * available after the interface is down. */ static int amd8111e_close(struct net_device *dev) { struct amd8111e_priv *lp = netdev_priv(dev); netif_stop_queue(dev); napi_disable(&lp->napi); spin_lock_irq(&lp->lock); amd8111e_disable_interrupt(lp); amd8111e_stop_chip(lp); /* Free transmit and receive skbs */ amd8111e_free_skbs(lp->amd8111e_net_dev); netif_carrier_off(lp->amd8111e_net_dev); /* Delete ipg timer */ if (lp->options & OPTION_DYN_IPG_ENABLE) del_timer_sync(&lp->ipg_data.ipg_timer); spin_unlock_irq(&lp->lock); free_irq(dev->irq, dev); amd8111e_free_ring(lp); /* Update the statistics before closing */ amd8111e_get_stats(dev); lp->opened = 0; return 0; } /* This function opens new interface.It requests irq for the device, * initializes the device,buffers and descriptors, and starts the device. */ static int amd8111e_open(struct net_device *dev) { struct amd8111e_priv *lp = netdev_priv(dev); if (dev->irq == 0 || request_irq(dev->irq, amd8111e_interrupt, IRQF_SHARED, dev->name, dev)) return -EAGAIN; napi_enable(&lp->napi); spin_lock_irq(&lp->lock); amd8111e_init_hw_default(lp); if (amd8111e_restart(dev)) { spin_unlock_irq(&lp->lock); napi_disable(&lp->napi); if (dev->irq) free_irq(dev->irq, dev); return -ENOMEM; } /* Start ipg timer */ if (lp->options & OPTION_DYN_IPG_ENABLE) { add_timer(&lp->ipg_data.ipg_timer); netdev_info(dev, "Dynamic IPG Enabled\n"); } lp->opened = 1; spin_unlock_irq(&lp->lock); netif_start_queue(dev); return 0; } /* This function checks if there is any transmit descriptors * available to queue more packet. */ static int amd8111e_tx_queue_avail(struct amd8111e_priv *lp) { int tx_index = lp->tx_idx & TX_BUFF_MOD_MASK; if (lp->tx_skbuff[tx_index]) return -1; else return 0; } /* This function will queue the transmit packets to the * descriptors and will trigger the send operation. It also * initializes the transmit descriptors with buffer physical address, * byte count, ownership to hardware etc. */ static netdev_tx_t amd8111e_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct amd8111e_priv *lp = netdev_priv(dev); int tx_index; unsigned long flags; spin_lock_irqsave(&lp->lock, flags); tx_index = lp->tx_idx & TX_RING_DR_MOD_MASK; lp->tx_ring[tx_index].buff_count = cpu_to_le16(skb->len); lp->tx_skbuff[tx_index] = skb; lp->tx_ring[tx_index].tx_flags = 0; #if AMD8111E_VLAN_TAG_USED if (skb_vlan_tag_present(skb)) { lp->tx_ring[tx_index].tag_ctrl_cmd |= cpu_to_le16(TCC_VLAN_INSERT); lp->tx_ring[tx_index].tag_ctrl_info = cpu_to_le16(skb_vlan_tag_get(skb)); } #endif lp->tx_dma_addr[tx_index] = dma_map_single(&lp->pci_dev->dev, skb->data, skb->len, DMA_TO_DEVICE); lp->tx_ring[tx_index].buff_phy_addr = cpu_to_le32(lp->tx_dma_addr[tx_index]); /* Set FCS and LTINT bits */ wmb(); lp->tx_ring[tx_index].tx_flags |= cpu_to_le16(OWN_BIT | STP_BIT | ENP_BIT|ADD_FCS_BIT|LTINT_BIT); lp->tx_idx++; /* Trigger an immediate send poll. */ writel(VAL1 | TDMD0, lp->mmio + CMD0); writel(VAL2 | RDMD0, lp->mmio + CMD0); if (amd8111e_tx_queue_avail(lp) < 0) { netif_stop_queue(dev); } spin_unlock_irqrestore(&lp->lock, flags); return NETDEV_TX_OK; } /* This function returns all the memory mapped registers of the device. */ static void amd8111e_read_regs(struct amd8111e_priv *lp, u32 *buf) { void __iomem *mmio = lp->mmio; /* Read only necessary registers */ buf[0] = readl(mmio + XMT_RING_BASE_ADDR0); buf[1] = readl(mmio + XMT_RING_LEN0); buf[2] = readl(mmio + RCV_RING_BASE_ADDR0); buf[3] = readl(mmio + RCV_RING_LEN0); buf[4] = readl(mmio + CMD0); buf[5] = readl(mmio + CMD2); buf[6] = readl(mmio + CMD3); buf[7] = readl(mmio + CMD7); buf[8] = readl(mmio + INT0); buf[9] = readl(mmio + INTEN0); buf[10] = readl(mmio + LADRF); buf[11] = readl(mmio + LADRF+4); buf[12] = readl(mmio + STAT0); } /* This function sets promiscuos mode, all-multi mode or the multicast address * list to the device. */ static void amd8111e_set_multicast_list(struct net_device *dev) { struct netdev_hw_addr *ha; struct amd8111e_priv *lp = netdev_priv(dev); u32 mc_filter[2]; int bit_num; if (dev->flags & IFF_PROMISC) { writel(VAL2 | PROM, lp->mmio + CMD2); return; } else writel(PROM, lp->mmio + CMD2); if (dev->flags & IFF_ALLMULTI || netdev_mc_count(dev) > MAX_FILTER_SIZE) { /* get all multicast packet */ mc_filter[1] = mc_filter[0] = 0xffffffff; lp->options |= OPTION_MULTICAST_ENABLE; amd8111e_writeq(*(u64 *)mc_filter, lp->mmio + LADRF); return; } if (netdev_mc_empty(dev)) { /* get only own packets */ mc_filter[1] = mc_filter[0] = 0; lp->options &= ~OPTION_MULTICAST_ENABLE; amd8111e_writeq(*(u64 *)mc_filter, lp->mmio + LADRF); /* disable promiscuous mode */ writel(PROM, lp->mmio + CMD2); return; } /* load all the multicast addresses in the logic filter */ lp->options |= OPTION_MULTICAST_ENABLE; mc_filter[1] = mc_filter[0] = 0; netdev_for_each_mc_addr(ha, dev) { bit_num = (ether_crc_le(ETH_ALEN, ha->addr) >> 26) & 0x3f; mc_filter[bit_num >> 5] |= 1 << (bit_num & 31); } amd8111e_writeq(*(u64 *)mc_filter, lp->mmio + LADRF); /* To eliminate PCI posting bug */ readl(lp->mmio + CMD2); } static void amd8111e_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct amd8111e_priv *lp = netdev_priv(dev); struct pci_dev *pci_dev = lp->pci_dev; strscpy(info->driver, MODULE_NAME, sizeof(info->driver)); snprintf(info->fw_version, sizeof(info->fw_version), "%u", chip_version); strscpy(info->bus_info, pci_name(pci_dev), sizeof(info->bus_info)); } static int amd8111e_get_regs_len(struct net_device *dev) { return AMD8111E_REG_DUMP_LEN; } static void amd8111e_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf) { struct amd8111e_priv *lp = netdev_priv(dev); regs->version = 0; amd8111e_read_regs(lp, buf); } static int amd8111e_get_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { struct amd8111e_priv *lp = netdev_priv(dev); spin_lock_irq(&lp->lock); mii_ethtool_get_link_ksettings(&lp->mii_if, cmd); spin_unlock_irq(&lp->lock); return 0; } static int amd8111e_set_link_ksettings(struct net_device *dev, const struct ethtool_link_ksettings *cmd) { struct amd8111e_priv *lp = netdev_priv(dev); int res; spin_lock_irq(&lp->lock); res = mii_ethtool_set_link_ksettings(&lp->mii_if, cmd); spin_unlock_irq(&lp->lock); return res; } static int amd8111e_nway_reset(struct net_device *dev) { struct amd8111e_priv *lp = netdev_priv(dev); return mii_nway_restart(&lp->mii_if); } static u32 amd8111e_get_link(struct net_device *dev) { struct amd8111e_priv *lp = netdev_priv(dev); return mii_link_ok(&lp->mii_if); } static void amd8111e_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol_info) { struct amd8111e_priv *lp = netdev_priv(dev); wol_info->supported = WAKE_MAGIC|WAKE_PHY; if (lp->options & OPTION_WOL_ENABLE) wol_info->wolopts = WAKE_MAGIC; } static int amd8111e_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol_info) { struct amd8111e_priv *lp = netdev_priv(dev); if (wol_info->wolopts & ~(WAKE_MAGIC|WAKE_PHY)) return -EINVAL; spin_lock_irq(&lp->lock); if (wol_info->wolopts & WAKE_MAGIC) lp->options |= (OPTION_WOL_ENABLE | OPTION_WAKE_MAGIC_ENABLE); else if (wol_info->wolopts & WAKE_PHY) lp->options |= (OPTION_WOL_ENABLE | OPTION_WAKE_PHY_ENABLE); else lp->options &= ~OPTION_WOL_ENABLE; spin_unlock_irq(&lp->lock); return 0; } static const struct ethtool_ops ops = { .get_drvinfo = amd8111e_get_drvinfo, .get_regs_len = amd8111e_get_regs_len, .get_regs = amd8111e_get_regs, .nway_reset = amd8111e_nway_reset, .get_link = amd8111e_get_link, .get_wol = amd8111e_get_wol, .set_wol = amd8111e_set_wol, .get_link_ksettings = amd8111e_get_link_ksettings, .set_link_ksettings = amd8111e_set_link_ksettings, }; /* This function handles all the ethtool ioctls. It gives driver info, * gets/sets driver speed, gets memory mapped register values, forces * auto negotiation, sets/gets WOL options for ethtool application. */ static int amd8111e_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct mii_ioctl_data *data = if_mii(ifr); struct amd8111e_priv *lp = netdev_priv(dev); int err; u32 mii_regval; switch (cmd) { case SIOCGMIIPHY: data->phy_id = lp->ext_phy_addr; fallthrough; case SIOCGMIIREG: spin_lock_irq(&lp->lock); err = amd8111e_read_phy(lp, data->phy_id, data->reg_num & PHY_REG_ADDR_MASK, &mii_regval); spin_unlock_irq(&lp->lock); data->val_out = mii_regval; return err; case SIOCSMIIREG: spin_lock_irq(&lp->lock); err = amd8111e_write_phy(lp, data->phy_id, data->reg_num & PHY_REG_ADDR_MASK, data->val_in); spin_unlock_irq(&lp->lock); return err; default: /* do nothing */ break; } return -EOPNOTSUPP; } static int amd8111e_set_mac_address(struct net_device *dev, void *p) { struct amd8111e_priv *lp = netdev_priv(dev); int i; struct sockaddr *addr = p; eth_hw_addr_set(dev, addr->sa_data); spin_lock_irq(&lp->lock); /* Setting the MAC address to the device */ for (i = 0; i < ETH_ALEN; i++) writeb(dev->dev_addr[i], lp->mmio + PADR + i); spin_unlock_irq(&lp->lock); return 0; } /* This function changes the mtu of the device. It restarts the device to * initialize the descriptor with new receive buffers. */ static int amd8111e_change_mtu(struct net_device *dev, int new_mtu) { struct amd8111e_priv *lp = netdev_priv(dev); int err; if (!netif_running(dev)) { /* new_mtu will be used * when device starts next time */ WRITE_ONCE(dev->mtu, new_mtu); return 0; } spin_lock_irq(&lp->lock); /* stop the chip */ writel(RUN, lp->mmio + CMD0); WRITE_ONCE(dev->mtu, new_mtu); err = amd8111e_restart(dev); spin_unlock_irq(&lp->lock); if (!err) netif_start_queue(dev); return err; } static int amd8111e_enable_magicpkt(struct amd8111e_priv *lp) { writel(VAL1 | MPPLBA, lp->mmio + CMD3); writel(VAL0 | MPEN_SW, lp->mmio + CMD7); /* To eliminate PCI posting bug */ readl(lp->mmio + CMD7); return 0; } static int amd8111e_enable_link_change(struct amd8111e_priv *lp) { /* Adapter is already stopped/suspended/interrupt-disabled */ writel(VAL0 | LCMODE_SW, lp->mmio + CMD7); /* To eliminate PCI posting bug */ readl(lp->mmio + CMD7); return 0; } /* This function is called when a packet transmission fails to complete * within a reasonable period, on the assumption that an interrupt have * failed or the interface is locked up. This function will reinitialize * the hardware. */ static void amd8111e_tx_timeout(struct net_device *dev, unsigned int txqueue) { struct amd8111e_priv *lp = netdev_priv(dev); int err; netdev_err(dev, "transmit timed out, resetting\n"); spin_lock_irq(&lp->lock); err = amd8111e_restart(dev); spin_unlock_irq(&lp->lock); if (!err) netif_wake_queue(dev); } static int __maybe_unused amd8111e_suspend(struct device *dev_d) { struct net_device *dev = dev_get_drvdata(dev_d); struct amd8111e_priv *lp = netdev_priv(dev); if (!netif_running(dev)) return 0; /* disable the interrupt */ spin_lock_irq(&lp->lock); amd8111e_disable_interrupt(lp); spin_unlock_irq(&lp->lock); netif_device_detach(dev); /* stop chip */ spin_lock_irq(&lp->lock); if (lp->options & OPTION_DYN_IPG_ENABLE) del_timer_sync(&lp->ipg_data.ipg_timer); amd8111e_stop_chip(lp); spin_unlock_irq(&lp->lock); if (lp->options & OPTION_WOL_ENABLE) { /* enable wol */ if (lp->options & OPTION_WAKE_MAGIC_ENABLE) amd8111e_enable_magicpkt(lp); if (lp->options & OPTION_WAKE_PHY_ENABLE) amd8111e_enable_link_change(lp); device_set_wakeup_enable(dev_d, 1); } else { device_set_wakeup_enable(dev_d, 0); } return 0; } static int __maybe_unused amd8111e_resume(struct device *dev_d) { struct net_device *dev = dev_get_drvdata(dev_d); struct amd8111e_priv *lp = netdev_priv(dev); if (!netif_running(dev)) return 0; netif_device_attach(dev); spin_lock_irq(&lp->lock); amd8111e_restart(dev); /* Restart ipg timer */ if (lp->options & OPTION_DYN_IPG_ENABLE) mod_timer(&lp->ipg_data.ipg_timer, jiffies + IPG_CONVERGE_JIFFIES); spin_unlock_irq(&lp->lock); return 0; } static void amd8111e_config_ipg(struct timer_list *t) { struct amd8111e_priv *lp = from_timer(lp, t, ipg_data.ipg_timer); struct ipg_info *ipg_data = &lp->ipg_data; void __iomem *mmio = lp->mmio; unsigned int prev_col_cnt = ipg_data->col_cnt; unsigned int total_col_cnt; unsigned int tmp_ipg; if (lp->link_config.duplex == DUPLEX_FULL) { ipg_data->ipg = DEFAULT_IPG; return; } if (ipg_data->ipg_state == SSTATE) { if (ipg_data->timer_tick == IPG_STABLE_TIME) { ipg_data->timer_tick = 0; ipg_data->ipg = MIN_IPG - IPG_STEP; ipg_data->current_ipg = MIN_IPG; ipg_data->diff_col_cnt = 0xFFFFFFFF; ipg_data->ipg_state = CSTATE; } else ipg_data->timer_tick++; } if (ipg_data->ipg_state == CSTATE) { /* Get the current collision count */ total_col_cnt = ipg_data->col_cnt = amd8111e_read_mib(mmio, xmt_collisions); if ((total_col_cnt - prev_col_cnt) < (ipg_data->diff_col_cnt)) { ipg_data->diff_col_cnt = total_col_cnt - prev_col_cnt; ipg_data->ipg = ipg_data->current_ipg; } ipg_data->current_ipg += IPG_STEP; if (ipg_data->current_ipg <= MAX_IPG) tmp_ipg = ipg_data->current_ipg; else { tmp_ipg = ipg_data->ipg; ipg_data->ipg_state = SSTATE; } writew((u32)tmp_ipg, mmio + IPG); writew((u32)(tmp_ipg - IFS1_DELTA), mmio + IFS1); } mod_timer(&lp->ipg_data.ipg_timer, jiffies + IPG_CONVERGE_JIFFIES); return; } static void amd8111e_probe_ext_phy(struct net_device *dev) { struct amd8111e_priv *lp = netdev_priv(dev); int i; for (i = 0x1e; i >= 0; i--) { u32 id1, id2; if (amd8111e_read_phy(lp, i, MII_PHYSID1, &id1)) continue; if (amd8111e_read_phy(lp, i, MII_PHYSID2, &id2)) continue; lp->ext_phy_id = (id1 << 16) | id2; lp->ext_phy_addr = i; return; } lp->ext_phy_id = 0; lp->ext_phy_addr = 1; } static const struct net_device_ops amd8111e_netdev_ops = { .ndo_open = amd8111e_open, .ndo_stop = amd8111e_close, .ndo_start_xmit = amd8111e_start_xmit, .ndo_tx_timeout = amd8111e_tx_timeout, .ndo_get_stats = amd8111e_get_stats, .ndo_set_rx_mode = amd8111e_set_multicast_list, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = amd8111e_set_mac_address, .ndo_eth_ioctl = amd8111e_ioctl, .ndo_change_mtu = amd8111e_change_mtu, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = amd8111e_poll, #endif }; static int amd8111e_probe_one(struct pci_dev *pdev, const struct pci_device_id *ent) { int err, i; unsigned long reg_addr, reg_len; struct amd8111e_priv *lp; struct net_device *dev; u8 addr[ETH_ALEN]; err = pci_enable_device(pdev); if (err) { dev_err(&pdev->dev, "Cannot enable new PCI device\n"); return err; } if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { dev_err(&pdev->dev, "Cannot find PCI base address\n"); err = -ENODEV; goto err_disable_pdev; } err = pci_request_regions(pdev, MODULE_NAME); if (err) { dev_err(&pdev->dev, "Cannot obtain PCI resources\n"); goto err_disable_pdev; } pci_set_master(pdev); /* Find power-management capability. */ if (!pdev->pm_cap) { dev_err(&pdev->dev, "No Power Management capability\n"); err = -ENODEV; goto err_free_reg; } /* Initialize DMA */ if (dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)) < 0) { dev_err(&pdev->dev, "DMA not supported\n"); err = -ENODEV; goto err_free_reg; } reg_addr = pci_resource_start(pdev, 0); reg_len = pci_resource_len(pdev, 0); dev = alloc_etherdev(sizeof(struct amd8111e_priv)); if (!dev) { err = -ENOMEM; goto err_free_reg; } SET_NETDEV_DEV(dev, &pdev->dev); #if AMD8111E_VLAN_TAG_USED dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; #endif lp = netdev_priv(dev); lp->pci_dev = pdev; lp->amd8111e_net_dev = dev; spin_lock_init(&lp->lock); lp->mmio = devm_ioremap(&pdev->dev, reg_addr, reg_len); if (!lp->mmio) { dev_err(&pdev->dev, "Cannot map device registers\n"); err = -ENOMEM; goto err_free_dev; } /* Initializing MAC address */ for (i = 0; i < ETH_ALEN; i++) addr[i] = readb(lp->mmio + PADR + i); eth_hw_addr_set(dev, addr); /* Setting user defined parametrs */ lp->ext_phy_option = speed_duplex[card_idx]; if (coalesce[card_idx]) lp->options |= OPTION_INTR_COAL_ENABLE; if (dynamic_ipg[card_idx++]) lp->options |= OPTION_DYN_IPG_ENABLE; /* Initialize driver entry points */ dev->netdev_ops = &amd8111e_netdev_ops; dev->ethtool_ops = &ops; dev->irq = pdev->irq; dev->watchdog_timeo = AMD8111E_TX_TIMEOUT; dev->min_mtu = AMD8111E_MIN_MTU; dev->max_mtu = AMD8111E_MAX_MTU; netif_napi_add_weight(dev, &lp->napi, amd8111e_rx_poll, 32); /* Probe the external PHY */ amd8111e_probe_ext_phy(dev); /* setting mii default values */ lp->mii_if.dev = dev; lp->mii_if.mdio_read = amd8111e_mdio_read; lp->mii_if.mdio_write = amd8111e_mdio_write; lp->mii_if.phy_id = lp->ext_phy_addr; /* Set receive buffer length and set jumbo option*/ amd8111e_set_rx_buff_len(dev); err = register_netdev(dev); if (err) { dev_err(&pdev->dev, "Cannot register net device\n"); goto err_free_dev; } pci_set_drvdata(pdev, dev); /* Initialize software ipg timer */ if (lp->options & OPTION_DYN_IPG_ENABLE) { timer_setup(&lp->ipg_data.ipg_timer, amd8111e_config_ipg, 0); lp->ipg_data.ipg_timer.expires = jiffies + IPG_CONVERGE_JIFFIES; lp->ipg_data.ipg = DEFAULT_IPG; lp->ipg_data.ipg_state = CSTATE; } /* display driver and device information */ chip_version = (readl(lp->mmio + CHIPID) & 0xf0000000) >> 28; dev_info(&pdev->dev, "[ Rev %x ] PCI 10/100BaseT Ethernet %pM\n", chip_version, dev->dev_addr); if (lp->ext_phy_id) dev_info(&pdev->dev, "Found MII PHY ID 0x%08x at address 0x%02x\n", lp->ext_phy_id, lp->ext_phy_addr); else dev_info(&pdev->dev, "Couldn't detect MII PHY, assuming address 0x01\n"); return 0; err_free_dev: free_netdev(dev); err_free_reg: pci_release_regions(pdev); err_disable_pdev: pci_disable_device(pdev); return err; } static void amd8111e_remove_one(struct pci_dev *pdev) { struct net_device *dev = pci_get_drvdata(pdev); if (dev) { unregister_netdev(dev); free_netdev(dev); pci_release_regions(pdev); pci_disable_device(pdev); } } static const struct pci_device_id amd8111e_pci_tbl[] = { { .vendor = PCI_VENDOR_ID_AMD, .device = PCI_DEVICE_ID_AMD8111E_7462, }, { .vendor = 0, } }; MODULE_DEVICE_TABLE(pci, amd8111e_pci_tbl); static SIMPLE_DEV_PM_OPS(amd8111e_pm_ops, amd8111e_suspend, amd8111e_resume); static struct pci_driver amd8111e_driver = { .name = MODULE_NAME, .id_table = amd8111e_pci_tbl, .probe = amd8111e_probe_one, .remove = amd8111e_remove_one, .driver.pm = &amd8111e_pm_ops }; module_pci_driver(amd8111e_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1