Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Jie Yang | 9753 | 70.15% | 6 | 4.92% |
Xiong Huang | 1591 | 11.44% | 28 | 22.95% |
Gatis Peisenieks | 1542 | 11.09% | 11 | 9.02% |
Luis R. Rodriguez | 149 | 1.07% | 2 | 1.64% |
Jiri Pirko | 119 | 0.86% | 6 | 4.92% |
Sieng Piaw Liew | 92 | 0.66% | 5 | 4.10% |
Joe Perches | 72 | 0.52% | 2 | 1.64% |
Jarod Wilson | 68 | 0.49% | 1 | 0.82% |
Michał Mirosław | 53 | 0.38% | 3 | 2.46% |
Ron Angeles | 50 | 0.36% | 1 | 0.82% |
Christophe Jaillet | 49 | 0.35% | 1 | 0.82% |
Rafael J. Wysocki | 45 | 0.32% | 1 | 0.82% |
Cloud Ren | 44 | 0.32% | 1 | 0.82% |
Eric Dumazet | 35 | 0.25% | 7 | 5.74% |
Tim Gardner | 29 | 0.21% | 1 | 0.82% |
Sabrina Dubroca | 29 | 0.21% | 1 | 0.82% |
Ben Hutchings | 15 | 0.11% | 1 | 0.82% |
Kees Cook | 14 | 0.10% | 1 | 0.82% |
Stephen Hemminger | 13 | 0.09% | 4 | 3.28% |
Patrick McHardy | 12 | 0.09% | 2 | 1.64% |
Jay Cliburn | 12 | 0.09% | 2 | 1.64% |
François Romieu | 11 | 0.08% | 1 | 0.82% |
Gong Yuanjun | 11 | 0.08% | 1 | 0.82% |
Dean Nelson | 9 | 0.06% | 1 | 0.82% |
Zhang Changzhong | 7 | 0.05% | 1 | 0.82% |
Betty Dall | 6 | 0.04% | 1 | 0.82% |
Ian Campbell | 6 | 0.04% | 2 | 1.64% |
Pavel Machek | 6 | 0.04% | 1 | 0.82% |
Benoit Taine | 6 | 0.04% | 1 | 0.82% |
David S. Miller | 5 | 0.04% | 1 | 0.82% |
caihuoqing | 5 | 0.04% | 2 | 1.64% |
Chuck Ebbert | 4 | 0.03% | 1 | 0.82% |
Chuhong Yuan | 4 | 0.03% | 1 | 0.82% |
Danny Kukawka | 4 | 0.03% | 1 | 0.82% |
Michael S. Tsirkin | 4 | 0.03% | 1 | 0.82% |
Yang Hongyang | 4 | 0.03% | 1 | 0.82% |
Matthew Wilcox | 3 | 0.02% | 1 | 0.82% |
Yang Shen | 3 | 0.02% | 1 | 0.82% |
Jesse Brandeburg | 2 | 0.01% | 1 | 0.82% |
Peter Hüwe | 2 | 0.01% | 1 | 0.82% |
Thomas Gleixner | 2 | 0.01% | 1 | 0.82% |
Jakub Kiciński | 2 | 0.01% | 1 | 0.82% |
Eric W. Biedermann | 1 | 0.01% | 1 | 0.82% |
André Goddard Rosa | 1 | 0.01% | 1 | 0.82% |
Jilin Yuan | 1 | 0.01% | 1 | 0.82% |
Heiner Kallweit | 1 | 0.01% | 1 | 0.82% |
Jiang Liu | 1 | 0.01% | 1 | 0.82% |
Arnd Bergmann | 1 | 0.01% | 1 | 0.82% |
Roel Kluin | 1 | 0.01% | 1 | 0.82% |
Johannes Berg | 1 | 0.01% | 1 | 0.82% |
H Hartley Sweeten | 1 | 0.01% | 1 | 0.82% |
Dan Carpenter | 1 | 0.01% | 1 | 0.82% |
Colin Ian King | 1 | 0.01% | 1 | 0.82% |
Masanari Iida | 1 | 0.01% | 1 | 0.82% |
Total | 13904 | 122 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * Copyright(c) 2008 - 2009 Atheros Corporation. All rights reserved. * * Derived from Intel e1000 driver * Copyright(c) 1999 - 2005 Intel Corporation. All rights reserved. */ #include "atl1c.h" char atl1c_driver_name[] = "atl1c"; /* * atl1c_pci_tbl - PCI Device ID Table * * Wildcard entries (PCI_ANY_ID) should come last * Last entry must be all 0s * * { Vendor ID, Device ID, SubVendor ID, SubDevice ID, * Class, Class Mask, private data (not used) } */ static const struct pci_device_id atl1c_pci_tbl[] = { {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L1C)}, {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATTANSIC_L2C)}, {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATHEROS_L2C_B)}, {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATHEROS_L2C_B2)}, {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATHEROS_L1D)}, {PCI_DEVICE(PCI_VENDOR_ID_ATTANSIC, PCI_DEVICE_ID_ATHEROS_L1D_2_0)}, /* required last entry */ { 0 } }; MODULE_DEVICE_TABLE(pci, atl1c_pci_tbl); MODULE_AUTHOR("Jie Yang"); MODULE_AUTHOR("Qualcomm Atheros Inc."); MODULE_DESCRIPTION("Qualcomm Atheros 100/1000M Ethernet Network Driver"); MODULE_LICENSE("GPL"); struct atl1c_qregs { u16 tpd_addr_lo; u16 tpd_prod; u16 tpd_cons; u16 rfd_addr_lo; u16 rrd_addr_lo; u16 rfd_prod; u32 tx_isr; u32 rx_isr; }; static struct atl1c_qregs atl1c_qregs[AT_MAX_TRANSMIT_QUEUE] = { { REG_TPD_PRI0_ADDR_LO, REG_TPD_PRI0_PIDX, REG_TPD_PRI0_CIDX, REG_RFD0_HEAD_ADDR_LO, REG_RRD0_HEAD_ADDR_LO, REG_MB_RFD0_PROD_IDX, ISR_TX_PKT_0, ISR_RX_PKT_0 }, { REG_TPD_PRI1_ADDR_LO, REG_TPD_PRI1_PIDX, REG_TPD_PRI1_CIDX, REG_RFD1_HEAD_ADDR_LO, REG_RRD1_HEAD_ADDR_LO, REG_MB_RFD1_PROD_IDX, ISR_TX_PKT_1, ISR_RX_PKT_1 }, { REG_TPD_PRI2_ADDR_LO, REG_TPD_PRI2_PIDX, REG_TPD_PRI2_CIDX, REG_RFD2_HEAD_ADDR_LO, REG_RRD2_HEAD_ADDR_LO, REG_MB_RFD2_PROD_IDX, ISR_TX_PKT_2, ISR_RX_PKT_2 }, { REG_TPD_PRI3_ADDR_LO, REG_TPD_PRI3_PIDX, REG_TPD_PRI3_CIDX, REG_RFD3_HEAD_ADDR_LO, REG_RRD3_HEAD_ADDR_LO, REG_MB_RFD3_PROD_IDX, ISR_TX_PKT_3, ISR_RX_PKT_3 }, }; static int atl1c_stop_mac(struct atl1c_hw *hw); static void atl1c_disable_l0s_l1(struct atl1c_hw *hw); static void atl1c_set_aspm(struct atl1c_hw *hw, u16 link_speed); static void atl1c_start_mac(struct atl1c_adapter *adapter); static int atl1c_up(struct atl1c_adapter *adapter); static void atl1c_down(struct atl1c_adapter *adapter); static int atl1c_reset_mac(struct atl1c_hw *hw); static void atl1c_reset_dma_ring(struct atl1c_adapter *adapter); static int atl1c_configure(struct atl1c_adapter *adapter); static int atl1c_alloc_rx_buffer(struct atl1c_adapter *adapter, u32 queue, bool napi_mode); static const u32 atl1c_default_msg = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK | NETIF_MSG_TIMER | NETIF_MSG_IFDOWN | NETIF_MSG_IFUP; static void atl1c_pcie_patch(struct atl1c_hw *hw) { u32 mst_data, data; /* pclk sel could switch to 25M */ AT_READ_REG(hw, REG_MASTER_CTRL, &mst_data); mst_data &= ~MASTER_CTRL_CLK_SEL_DIS; AT_WRITE_REG(hw, REG_MASTER_CTRL, mst_data); /* WoL/PCIE related settings */ if (hw->nic_type == athr_l1c || hw->nic_type == athr_l2c) { AT_READ_REG(hw, REG_PCIE_PHYMISC, &data); data |= PCIE_PHYMISC_FORCE_RCV_DET; AT_WRITE_REG(hw, REG_PCIE_PHYMISC, data); } else { /* new dev set bit5 of MASTER */ if (!(mst_data & MASTER_CTRL_WAKEN_25M)) AT_WRITE_REG(hw, REG_MASTER_CTRL, mst_data | MASTER_CTRL_WAKEN_25M); } /* aspm/PCIE setting only for l2cb 1.0 */ if (hw->nic_type == athr_l2c_b && hw->revision_id == L2CB_V10) { AT_READ_REG(hw, REG_PCIE_PHYMISC2, &data); data = FIELD_SETX(data, PCIE_PHYMISC2_CDR_BW, L2CB1_PCIE_PHYMISC2_CDR_BW); data = FIELD_SETX(data, PCIE_PHYMISC2_L0S_TH, L2CB1_PCIE_PHYMISC2_L0S_TH); AT_WRITE_REG(hw, REG_PCIE_PHYMISC2, data); /* extend L1 sync timer */ AT_READ_REG(hw, REG_LINK_CTRL, &data); data |= LINK_CTRL_EXT_SYNC; AT_WRITE_REG(hw, REG_LINK_CTRL, data); } /* l2cb 1.x & l1d 1.x */ if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l1d) { AT_READ_REG(hw, REG_PM_CTRL, &data); data |= PM_CTRL_L0S_BUFSRX_EN; AT_WRITE_REG(hw, REG_PM_CTRL, data); /* clear vendor msg */ AT_READ_REG(hw, REG_DMA_DBG, &data); AT_WRITE_REG(hw, REG_DMA_DBG, data & ~DMA_DBG_VENDOR_MSG); } } /* FIXME: no need any more ? */ /* * atl1c_init_pcie - init PCIE module */ static void atl1c_reset_pcie(struct atl1c_hw *hw, u32 flag) { u32 data; u32 pci_cmd; struct pci_dev *pdev = hw->adapter->pdev; int pos; AT_READ_REG(hw, PCI_COMMAND, &pci_cmd); pci_cmd &= ~PCI_COMMAND_INTX_DISABLE; pci_cmd |= (PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER | PCI_COMMAND_IO); AT_WRITE_REG(hw, PCI_COMMAND, pci_cmd); /* * Clear any PowerSaveing Settings */ pci_enable_wake(pdev, PCI_D3hot, 0); pci_enable_wake(pdev, PCI_D3cold, 0); /* wol sts read-clear */ AT_READ_REG(hw, REG_WOL_CTRL, &data); AT_WRITE_REG(hw, REG_WOL_CTRL, 0); /* * Mask some pcie error bits */ pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ERR); if (pos) { pci_read_config_dword(pdev, pos + PCI_ERR_UNCOR_SEVER, &data); data &= ~(PCI_ERR_UNC_DLP | PCI_ERR_UNC_FCP); pci_write_config_dword(pdev, pos + PCI_ERR_UNCOR_SEVER, data); } /* clear error status */ pcie_capability_write_word(pdev, PCI_EXP_DEVSTA, PCI_EXP_DEVSTA_NFED | PCI_EXP_DEVSTA_FED | PCI_EXP_DEVSTA_CED | PCI_EXP_DEVSTA_URD); AT_READ_REG(hw, REG_LTSSM_ID_CTRL, &data); data &= ~LTSSM_ID_EN_WRO; AT_WRITE_REG(hw, REG_LTSSM_ID_CTRL, data); atl1c_pcie_patch(hw); if (flag & ATL1C_PCIE_L0S_L1_DISABLE) atl1c_disable_l0s_l1(hw); msleep(5); } /** * atl1c_irq_enable - Enable default interrupt generation settings * @adapter: board private structure */ static inline void atl1c_irq_enable(struct atl1c_adapter *adapter) { if (likely(atomic_dec_and_test(&adapter->irq_sem))) { AT_WRITE_REG(&adapter->hw, REG_ISR, 0x7FFFFFFF); AT_WRITE_REG(&adapter->hw, REG_IMR, adapter->hw.intr_mask); AT_WRITE_FLUSH(&adapter->hw); } } /** * atl1c_irq_disable - Mask off interrupt generation on the NIC * @adapter: board private structure */ static inline void atl1c_irq_disable(struct atl1c_adapter *adapter) { atomic_inc(&adapter->irq_sem); AT_WRITE_REG(&adapter->hw, REG_IMR, 0); AT_WRITE_REG(&adapter->hw, REG_ISR, ISR_DIS_INT); AT_WRITE_FLUSH(&adapter->hw); synchronize_irq(adapter->pdev->irq); } /* * atl1c_wait_until_idle - wait up to AT_HW_MAX_IDLE_DELAY reads * of the idle status register until the device is actually idle */ static u32 atl1c_wait_until_idle(struct atl1c_hw *hw, u32 modu_ctrl) { int timeout; u32 data; for (timeout = 0; timeout < AT_HW_MAX_IDLE_DELAY; timeout++) { AT_READ_REG(hw, REG_IDLE_STATUS, &data); if ((data & modu_ctrl) == 0) return 0; msleep(1); } return data; } /** * atl1c_phy_config - Timer Call-back * @t: timer list containing pointer to netdev cast into an unsigned long */ static void atl1c_phy_config(struct timer_list *t) { struct atl1c_adapter *adapter = from_timer(adapter, t, phy_config_timer); struct atl1c_hw *hw = &adapter->hw; unsigned long flags; spin_lock_irqsave(&adapter->mdio_lock, flags); atl1c_restart_autoneg(hw); spin_unlock_irqrestore(&adapter->mdio_lock, flags); } void atl1c_reinit_locked(struct atl1c_adapter *adapter) { atl1c_down(adapter); atl1c_up(adapter); clear_bit(__AT_RESETTING, &adapter->flags); } static void atl1c_check_link_status(struct atl1c_adapter *adapter) { struct atl1c_hw *hw = &adapter->hw; struct net_device *netdev = adapter->netdev; struct pci_dev *pdev = adapter->pdev; int err; unsigned long flags; u16 speed, duplex; bool link; spin_lock_irqsave(&adapter->mdio_lock, flags); link = atl1c_get_link_status(hw); spin_unlock_irqrestore(&adapter->mdio_lock, flags); if (!link) { /* link down */ netif_carrier_off(netdev); hw->hibernate = true; if (atl1c_reset_mac(hw) != 0) if (netif_msg_hw(adapter)) dev_warn(&pdev->dev, "reset mac failed\n"); atl1c_set_aspm(hw, SPEED_0); atl1c_post_phy_linkchg(hw, SPEED_0); atl1c_reset_dma_ring(adapter); atl1c_configure(adapter); } else { /* Link Up */ hw->hibernate = false; spin_lock_irqsave(&adapter->mdio_lock, flags); err = atl1c_get_speed_and_duplex(hw, &speed, &duplex); spin_unlock_irqrestore(&adapter->mdio_lock, flags); if (unlikely(err)) return; /* link result is our setting */ if (adapter->link_speed != speed || adapter->link_duplex != duplex) { adapter->link_speed = speed; adapter->link_duplex = duplex; atl1c_set_aspm(hw, speed); atl1c_post_phy_linkchg(hw, speed); atl1c_start_mac(adapter); if (netif_msg_link(adapter)) dev_info(&pdev->dev, "%s: %s NIC Link is Up<%d Mbps %s>\n", atl1c_driver_name, netdev->name, adapter->link_speed, adapter->link_duplex == FULL_DUPLEX ? "Full Duplex" : "Half Duplex"); } if (!netif_carrier_ok(netdev)) netif_carrier_on(netdev); } } static void atl1c_link_chg_event(struct atl1c_adapter *adapter) { struct net_device *netdev = adapter->netdev; struct pci_dev *pdev = adapter->pdev; bool link; spin_lock(&adapter->mdio_lock); link = atl1c_get_link_status(&adapter->hw); spin_unlock(&adapter->mdio_lock); /* notify upper layer link down ASAP */ if (!link) { if (netif_carrier_ok(netdev)) { /* old link state: Up */ netif_carrier_off(netdev); if (netif_msg_link(adapter)) dev_info(&pdev->dev, "%s: %s NIC Link is Down\n", atl1c_driver_name, netdev->name); adapter->link_speed = SPEED_0; } } set_bit(ATL1C_WORK_EVENT_LINK_CHANGE, &adapter->work_event); schedule_work(&adapter->common_task); } static void atl1c_common_task(struct work_struct *work) { struct atl1c_adapter *adapter; struct net_device *netdev; adapter = container_of(work, struct atl1c_adapter, common_task); netdev = adapter->netdev; if (test_bit(__AT_DOWN, &adapter->flags)) return; if (test_and_clear_bit(ATL1C_WORK_EVENT_RESET, &adapter->work_event)) { netif_device_detach(netdev); atl1c_down(adapter); atl1c_up(adapter); netif_device_attach(netdev); } if (test_and_clear_bit(ATL1C_WORK_EVENT_LINK_CHANGE, &adapter->work_event)) { atl1c_irq_disable(adapter); atl1c_check_link_status(adapter); atl1c_irq_enable(adapter); } } static void atl1c_del_timer(struct atl1c_adapter *adapter) { del_timer_sync(&adapter->phy_config_timer); } /** * atl1c_tx_timeout - Respond to a Tx Hang * @netdev: network interface device structure * @txqueue: index of hanging tx queue */ static void atl1c_tx_timeout(struct net_device *netdev, unsigned int txqueue) { struct atl1c_adapter *adapter = netdev_priv(netdev); /* Do the reset outside of interrupt context */ set_bit(ATL1C_WORK_EVENT_RESET, &adapter->work_event); schedule_work(&adapter->common_task); } /** * atl1c_set_multi - Multicast and Promiscuous mode set * @netdev: network interface device structure * * The set_multi entry point is called whenever the multicast address * list or the network interface flags are updated. This routine is * responsible for configuring the hardware for proper multicast, * promiscuous mode, and all-multi behavior. */ static void atl1c_set_multi(struct net_device *netdev) { struct atl1c_adapter *adapter = netdev_priv(netdev); struct atl1c_hw *hw = &adapter->hw; struct netdev_hw_addr *ha; u32 mac_ctrl_data; u32 hash_value; /* Check for Promiscuous and All Multicast modes */ AT_READ_REG(hw, REG_MAC_CTRL, &mac_ctrl_data); if (netdev->flags & IFF_PROMISC) { mac_ctrl_data |= MAC_CTRL_PROMIS_EN; } else if (netdev->flags & IFF_ALLMULTI) { mac_ctrl_data |= MAC_CTRL_MC_ALL_EN; mac_ctrl_data &= ~MAC_CTRL_PROMIS_EN; } else { mac_ctrl_data &= ~(MAC_CTRL_PROMIS_EN | MAC_CTRL_MC_ALL_EN); } AT_WRITE_REG(hw, REG_MAC_CTRL, mac_ctrl_data); /* clear the old settings from the multicast hash table */ AT_WRITE_REG(hw, REG_RX_HASH_TABLE, 0); AT_WRITE_REG_ARRAY(hw, REG_RX_HASH_TABLE, 1, 0); /* comoute mc addresses' hash value ,and put it into hash table */ netdev_for_each_mc_addr(ha, netdev) { hash_value = atl1c_hash_mc_addr(hw, ha->addr); atl1c_hash_set(hw, hash_value); } } static void __atl1c_vlan_mode(netdev_features_t features, u32 *mac_ctrl_data) { if (features & NETIF_F_HW_VLAN_CTAG_RX) { /* enable VLAN tag insert/strip */ *mac_ctrl_data |= MAC_CTRL_RMV_VLAN; } else { /* disable VLAN tag insert/strip */ *mac_ctrl_data &= ~MAC_CTRL_RMV_VLAN; } } static void atl1c_vlan_mode(struct net_device *netdev, netdev_features_t features) { struct atl1c_adapter *adapter = netdev_priv(netdev); struct pci_dev *pdev = adapter->pdev; u32 mac_ctrl_data = 0; if (netif_msg_pktdata(adapter)) dev_dbg(&pdev->dev, "atl1c_vlan_mode\n"); atl1c_irq_disable(adapter); AT_READ_REG(&adapter->hw, REG_MAC_CTRL, &mac_ctrl_data); __atl1c_vlan_mode(features, &mac_ctrl_data); AT_WRITE_REG(&adapter->hw, REG_MAC_CTRL, mac_ctrl_data); atl1c_irq_enable(adapter); } static void atl1c_restore_vlan(struct atl1c_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; if (netif_msg_pktdata(adapter)) dev_dbg(&pdev->dev, "atl1c_restore_vlan\n"); atl1c_vlan_mode(adapter->netdev, adapter->netdev->features); } /** * atl1c_set_mac_addr - Change the Ethernet Address of the NIC * @netdev: network interface device structure * @p: pointer to an address structure * * Returns 0 on success, negative on failure */ static int atl1c_set_mac_addr(struct net_device *netdev, void *p) { struct atl1c_adapter *adapter = netdev_priv(netdev); struct sockaddr *addr = p; if (!is_valid_ether_addr(addr->sa_data)) return -EADDRNOTAVAIL; if (netif_running(netdev)) return -EBUSY; eth_hw_addr_set(netdev, addr->sa_data); memcpy(adapter->hw.mac_addr, addr->sa_data, netdev->addr_len); atl1c_hw_set_mac_addr(&adapter->hw, adapter->hw.mac_addr); return 0; } static void atl1c_set_rxbufsize(struct atl1c_adapter *adapter, struct net_device *dev) { int mtu = dev->mtu; adapter->rx_buffer_len = mtu > AT_RX_BUF_SIZE ? roundup(mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN, 8) : AT_RX_BUF_SIZE; } static netdev_features_t atl1c_fix_features(struct net_device *netdev, netdev_features_t features) { struct atl1c_adapter *adapter = netdev_priv(netdev); struct atl1c_hw *hw = &adapter->hw; /* * Since there is no support for separate rx/tx vlan accel * enable/disable make sure tx flag is always in same state as rx. */ if (features & NETIF_F_HW_VLAN_CTAG_RX) features |= NETIF_F_HW_VLAN_CTAG_TX; else features &= ~NETIF_F_HW_VLAN_CTAG_TX; if (hw->nic_type != athr_mt) { if (netdev->mtu > MAX_TSO_FRAME_SIZE) features &= ~(NETIF_F_TSO | NETIF_F_TSO6); } return features; } static int atl1c_set_features(struct net_device *netdev, netdev_features_t features) { netdev_features_t changed = netdev->features ^ features; if (changed & NETIF_F_HW_VLAN_CTAG_RX) atl1c_vlan_mode(netdev, features); return 0; } static void atl1c_set_max_mtu(struct net_device *netdev) { struct atl1c_adapter *adapter = netdev_priv(netdev); struct atl1c_hw *hw = &adapter->hw; switch (hw->nic_type) { /* These (GbE) devices support jumbo packets, max_mtu 6122 */ case athr_l1c: case athr_l1d: case athr_l1d_2: netdev->max_mtu = MAX_JUMBO_FRAME_SIZE - (ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN); break; case athr_mt: netdev->max_mtu = 9500; break; /* The 10/100 devices don't support jumbo packets, max_mtu 1500 */ default: netdev->max_mtu = ETH_DATA_LEN; break; } } /** * atl1c_change_mtu - Change the Maximum Transfer Unit * @netdev: network interface device structure * @new_mtu: new value for maximum frame size * * Returns 0 on success, negative on failure */ static int atl1c_change_mtu(struct net_device *netdev, int new_mtu) { struct atl1c_adapter *adapter = netdev_priv(netdev); /* set MTU */ if (netif_running(netdev)) { while (test_and_set_bit(__AT_RESETTING, &adapter->flags)) msleep(1); WRITE_ONCE(netdev->mtu, new_mtu); adapter->hw.max_frame_size = new_mtu; atl1c_set_rxbufsize(adapter, netdev); atl1c_down(adapter); netdev_update_features(netdev); atl1c_up(adapter); clear_bit(__AT_RESETTING, &adapter->flags); } return 0; } /* * caller should hold mdio_lock */ static int atl1c_mdio_read(struct net_device *netdev, int phy_id, int reg_num) { struct atl1c_adapter *adapter = netdev_priv(netdev); u16 result; atl1c_read_phy_reg(&adapter->hw, reg_num, &result); return result; } static void atl1c_mdio_write(struct net_device *netdev, int phy_id, int reg_num, int val) { struct atl1c_adapter *adapter = netdev_priv(netdev); atl1c_write_phy_reg(&adapter->hw, reg_num, val); } static int atl1c_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { struct atl1c_adapter *adapter = netdev_priv(netdev); struct pci_dev *pdev = adapter->pdev; struct mii_ioctl_data *data = if_mii(ifr); unsigned long flags; int retval = 0; if (!netif_running(netdev)) return -EINVAL; spin_lock_irqsave(&adapter->mdio_lock, flags); switch (cmd) { case SIOCGMIIPHY: data->phy_id = 0; break; case SIOCGMIIREG: if (atl1c_read_phy_reg(&adapter->hw, data->reg_num & 0x1F, &data->val_out)) { retval = -EIO; goto out; } break; case SIOCSMIIREG: if (data->reg_num & ~(0x1F)) { retval = -EFAULT; goto out; } dev_dbg(&pdev->dev, "<atl1c_mii_ioctl> write %x %x", data->reg_num, data->val_in); if (atl1c_write_phy_reg(&adapter->hw, data->reg_num, data->val_in)) { retval = -EIO; goto out; } break; default: retval = -EOPNOTSUPP; break; } out: spin_unlock_irqrestore(&adapter->mdio_lock, flags); return retval; } static int atl1c_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd) { switch (cmd) { case SIOCGMIIPHY: case SIOCGMIIREG: case SIOCSMIIREG: return atl1c_mii_ioctl(netdev, ifr, cmd); default: return -EOPNOTSUPP; } } /** * atl1c_alloc_queues - Allocate memory for all rings * @adapter: board private structure to initialize * */ static int atl1c_alloc_queues(struct atl1c_adapter *adapter) { return 0; } static enum atl1c_nic_type atl1c_get_mac_type(struct pci_dev *pdev, u8 __iomem *hw_addr) { switch (pdev->device) { case PCI_DEVICE_ID_ATTANSIC_L2C: return athr_l2c; case PCI_DEVICE_ID_ATTANSIC_L1C: return athr_l1c; case PCI_DEVICE_ID_ATHEROS_L2C_B: return athr_l2c_b; case PCI_DEVICE_ID_ATHEROS_L2C_B2: return athr_l2c_b2; case PCI_DEVICE_ID_ATHEROS_L1D: return athr_l1d; case PCI_DEVICE_ID_ATHEROS_L1D_2_0: if (readl(hw_addr + REG_MT_MAGIC) == MT_MAGIC) return athr_mt; return athr_l1d_2; default: return athr_l1c; } } static int atl1c_setup_mac_funcs(struct atl1c_hw *hw) { u32 link_ctrl_data; AT_READ_REG(hw, REG_LINK_CTRL, &link_ctrl_data); hw->ctrl_flags = ATL1C_INTR_MODRT_ENABLE | ATL1C_TXQ_MODE_ENHANCE; hw->ctrl_flags |= ATL1C_ASPM_L0S_SUPPORT | ATL1C_ASPM_L1_SUPPORT; hw->ctrl_flags |= ATL1C_ASPM_CTRL_MON; if (hw->nic_type == athr_l1c || hw->nic_type == athr_l1d || hw->nic_type == athr_l1d_2) hw->link_cap_flags |= ATL1C_LINK_CAP_1000M; return 0; } struct atl1c_platform_patch { u16 pci_did; u8 pci_revid; u16 subsystem_vid; u16 subsystem_did; u32 patch_flag; #define ATL1C_LINK_PATCH 0x1 }; static const struct atl1c_platform_patch plats[] = { {0x2060, 0xC1, 0x1019, 0x8152, 0x1}, {0x2060, 0xC1, 0x1019, 0x2060, 0x1}, {0x2060, 0xC1, 0x1019, 0xE000, 0x1}, {0x2062, 0xC0, 0x1019, 0x8152, 0x1}, {0x2062, 0xC0, 0x1019, 0x2062, 0x1}, {0x2062, 0xC0, 0x1458, 0xE000, 0x1}, {0x2062, 0xC1, 0x1019, 0x8152, 0x1}, {0x2062, 0xC1, 0x1019, 0x2062, 0x1}, {0x2062, 0xC1, 0x1458, 0xE000, 0x1}, {0x2062, 0xC1, 0x1565, 0x2802, 0x1}, {0x2062, 0xC1, 0x1565, 0x2801, 0x1}, {0x1073, 0xC0, 0x1019, 0x8151, 0x1}, {0x1073, 0xC0, 0x1019, 0x1073, 0x1}, {0x1073, 0xC0, 0x1458, 0xE000, 0x1}, {0x1083, 0xC0, 0x1458, 0xE000, 0x1}, {0x1083, 0xC0, 0x1019, 0x8151, 0x1}, {0x1083, 0xC0, 0x1019, 0x1083, 0x1}, {0x1083, 0xC0, 0x1462, 0x7680, 0x1}, {0x1083, 0xC0, 0x1565, 0x2803, 0x1}, {0}, }; static void atl1c_patch_assign(struct atl1c_hw *hw) { struct pci_dev *pdev = hw->adapter->pdev; u32 misc_ctrl; int i = 0; hw->msi_lnkpatch = false; while (plats[i].pci_did != 0) { if (plats[i].pci_did == hw->device_id && plats[i].pci_revid == hw->revision_id && plats[i].subsystem_vid == hw->subsystem_vendor_id && plats[i].subsystem_did == hw->subsystem_id) { if (plats[i].patch_flag & ATL1C_LINK_PATCH) hw->msi_lnkpatch = true; } i++; } if (hw->device_id == PCI_DEVICE_ID_ATHEROS_L2C_B2 && hw->revision_id == L2CB_V21) { /* config access mode */ pci_write_config_dword(pdev, REG_PCIE_IND_ACC_ADDR, REG_PCIE_DEV_MISC_CTRL); pci_read_config_dword(pdev, REG_PCIE_IND_ACC_DATA, &misc_ctrl); misc_ctrl &= ~0x100; pci_write_config_dword(pdev, REG_PCIE_IND_ACC_ADDR, REG_PCIE_DEV_MISC_CTRL); pci_write_config_dword(pdev, REG_PCIE_IND_ACC_DATA, misc_ctrl); } } /** * atl1c_sw_init - Initialize general software structures (struct atl1c_adapter) * @adapter: board private structure to initialize * * atl1c_sw_init initializes the Adapter private data structure. * Fields are initialized based on PCI device information and * OS network device settings (MTU size). */ static int atl1c_sw_init(struct atl1c_adapter *adapter) { struct atl1c_hw *hw = &adapter->hw; struct pci_dev *pdev = adapter->pdev; u32 revision; int i; adapter->wol = 0; device_set_wakeup_enable(&pdev->dev, false); adapter->link_speed = SPEED_0; adapter->link_duplex = FULL_DUPLEX; adapter->tpd_ring[0].count = 1024; adapter->rfd_ring[0].count = 512; hw->vendor_id = pdev->vendor; hw->device_id = pdev->device; hw->subsystem_vendor_id = pdev->subsystem_vendor; hw->subsystem_id = pdev->subsystem_device; pci_read_config_dword(pdev, PCI_CLASS_REVISION, &revision); hw->revision_id = revision & 0xFF; /* before link up, we assume hibernate is true */ hw->hibernate = true; hw->media_type = MEDIA_TYPE_AUTO_SENSOR; if (atl1c_setup_mac_funcs(hw) != 0) { dev_err(&pdev->dev, "set mac function pointers failed\n"); return -1; } atl1c_patch_assign(hw); hw->intr_mask = IMR_NORMAL_MASK; for (i = 0; i < adapter->tx_queue_count; ++i) hw->intr_mask |= atl1c_qregs[i].tx_isr; for (i = 0; i < adapter->rx_queue_count; ++i) hw->intr_mask |= atl1c_qregs[i].rx_isr; hw->phy_configured = false; hw->preamble_len = 7; hw->max_frame_size = adapter->netdev->mtu; hw->autoneg_advertised = ADVERTISED_Autoneg; hw->indirect_tab = 0xE4E4E4E4; hw->base_cpu = 0; hw->ict = 50000; /* 100ms */ hw->smb_timer = 200000; /* 400ms */ hw->rx_imt = 200; hw->tx_imt = 1000; hw->tpd_burst = 5; hw->rfd_burst = 8; hw->dma_order = atl1c_dma_ord_out; hw->dmar_block = atl1c_dma_req_1024; if (atl1c_alloc_queues(adapter)) { dev_err(&pdev->dev, "Unable to allocate memory for queues\n"); return -ENOMEM; } /* TODO */ atl1c_set_rxbufsize(adapter, adapter->netdev); atomic_set(&adapter->irq_sem, 1); spin_lock_init(&adapter->mdio_lock); spin_lock_init(&adapter->hw.intr_mask_lock); set_bit(__AT_DOWN, &adapter->flags); return 0; } static inline void atl1c_clean_buffer(struct pci_dev *pdev, struct atl1c_buffer *buffer_info, int budget) { u16 pci_driection; if (buffer_info->flags & ATL1C_BUFFER_FREE) return; if (buffer_info->dma) { if (buffer_info->flags & ATL1C_PCIMAP_FROMDEVICE) pci_driection = DMA_FROM_DEVICE; else pci_driection = DMA_TO_DEVICE; if (buffer_info->flags & ATL1C_PCIMAP_SINGLE) dma_unmap_single(&pdev->dev, buffer_info->dma, buffer_info->length, pci_driection); else if (buffer_info->flags & ATL1C_PCIMAP_PAGE) dma_unmap_page(&pdev->dev, buffer_info->dma, buffer_info->length, pci_driection); } if (buffer_info->skb) napi_consume_skb(buffer_info->skb, budget); buffer_info->dma = 0; buffer_info->skb = NULL; ATL1C_SET_BUFFER_STATE(buffer_info, ATL1C_BUFFER_FREE); } /** * atl1c_clean_tx_ring - Free Tx-skb * @adapter: board private structure * @queue: idx of transmit queue */ static void atl1c_clean_tx_ring(struct atl1c_adapter *adapter, u32 queue) { struct atl1c_tpd_ring *tpd_ring = &adapter->tpd_ring[queue]; struct atl1c_buffer *buffer_info; struct pci_dev *pdev = adapter->pdev; u16 index, ring_count; ring_count = tpd_ring->count; for (index = 0; index < ring_count; index++) { buffer_info = &tpd_ring->buffer_info[index]; atl1c_clean_buffer(pdev, buffer_info, 0); } netdev_tx_reset_queue(netdev_get_tx_queue(adapter->netdev, queue)); /* Zero out Tx-buffers */ memset(tpd_ring->desc, 0, sizeof(struct atl1c_tpd_desc) * ring_count); atomic_set(&tpd_ring->next_to_clean, 0); tpd_ring->next_to_use = 0; } /** * atl1c_clean_rx_ring - Free rx-reservation skbs * @adapter: board private structure * @queue: idx of transmit queue */ static void atl1c_clean_rx_ring(struct atl1c_adapter *adapter, u32 queue) { struct atl1c_rfd_ring *rfd_ring = &adapter->rfd_ring[queue]; struct atl1c_rrd_ring *rrd_ring = &adapter->rrd_ring[queue]; struct atl1c_buffer *buffer_info; struct pci_dev *pdev = adapter->pdev; int j; for (j = 0; j < rfd_ring->count; j++) { buffer_info = &rfd_ring->buffer_info[j]; atl1c_clean_buffer(pdev, buffer_info, 0); } /* zero out the descriptor ring */ memset(rfd_ring->desc, 0, rfd_ring->size); rfd_ring->next_to_clean = 0; rfd_ring->next_to_use = 0; rrd_ring->next_to_use = 0; rrd_ring->next_to_clean = 0; } /* * Read / Write Ptr Initialize: */ static void atl1c_init_ring_ptrs(struct atl1c_adapter *adapter) { struct atl1c_tpd_ring *tpd_ring = adapter->tpd_ring; struct atl1c_rfd_ring *rfd_ring = adapter->rfd_ring; struct atl1c_rrd_ring *rrd_ring = adapter->rrd_ring; struct atl1c_buffer *buffer_info; int i, j; for (i = 0; i < adapter->tx_queue_count; i++) { tpd_ring[i].next_to_use = 0; atomic_set(&tpd_ring[i].next_to_clean, 0); buffer_info = tpd_ring[i].buffer_info; for (j = 0; j < tpd_ring->count; j++) ATL1C_SET_BUFFER_STATE(&buffer_info[i], ATL1C_BUFFER_FREE); } for (i = 0; i < adapter->rx_queue_count; i++) { rfd_ring[i].next_to_use = 0; rfd_ring[i].next_to_clean = 0; rrd_ring[i].next_to_use = 0; rrd_ring[i].next_to_clean = 0; for (j = 0; j < rfd_ring[i].count; j++) { buffer_info = &rfd_ring[i].buffer_info[j]; ATL1C_SET_BUFFER_STATE(buffer_info, ATL1C_BUFFER_FREE); } } } /** * atl1c_free_ring_resources - Free Tx / RX descriptor Resources * @adapter: board private structure * * Free all transmit software resources */ static void atl1c_free_ring_resources(struct atl1c_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; dma_free_coherent(&pdev->dev, adapter->ring_header.size, adapter->ring_header.desc, adapter->ring_header.dma); adapter->ring_header.desc = NULL; /* Note: just free tdp_ring.buffer_info, * it contain rfd_ring.buffer_info, do not double free */ if (adapter->tpd_ring[0].buffer_info) { kfree(adapter->tpd_ring[0].buffer_info); adapter->tpd_ring[0].buffer_info = NULL; } } /** * atl1c_setup_ring_resources - allocate Tx / RX descriptor resources * @adapter: board private structure * * Return 0 on success, negative on failure */ static int atl1c_setup_ring_resources(struct atl1c_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; struct atl1c_tpd_ring *tpd_ring = adapter->tpd_ring; struct atl1c_rfd_ring *rfd_ring = adapter->rfd_ring; struct atl1c_rrd_ring *rrd_ring = adapter->rrd_ring; struct atl1c_ring_header *ring_header = &adapter->ring_header; int tqc = adapter->tx_queue_count; int rqc = adapter->rx_queue_count; int size; int i; int count = 0; u32 offset = 0; /* Even though only one tpd queue is actually used, the "high" * priority tpd queue also gets initialized */ if (tqc == 1) tqc = 2; for (i = 1; i < tqc; i++) tpd_ring[i].count = tpd_ring[0].count; size = sizeof(struct atl1c_buffer) * (tpd_ring->count * tqc + rfd_ring->count * rqc); tpd_ring->buffer_info = kzalloc(size, GFP_KERNEL); if (unlikely(!tpd_ring->buffer_info)) goto err_nomem; for (i = 0; i < tqc; i++) { tpd_ring[i].adapter = adapter; tpd_ring[i].num = i; tpd_ring[i].buffer_info = (tpd_ring->buffer_info + count); count += tpd_ring[i].count; } for (i = 0; i < rqc; i++) { rrd_ring[i].adapter = adapter; rrd_ring[i].num = i; rrd_ring[i].count = rfd_ring[0].count; rfd_ring[i].count = rfd_ring[0].count; rfd_ring[i].buffer_info = (tpd_ring->buffer_info + count); count += rfd_ring->count; } /* * real ring DMA buffer * each ring/block may need up to 8 bytes for alignment, hence the * additional bytes tacked onto the end. */ ring_header->size = sizeof(struct atl1c_tpd_desc) * tpd_ring->count * tqc + sizeof(struct atl1c_rx_free_desc) * rfd_ring->count * rqc + sizeof(struct atl1c_recv_ret_status) * rfd_ring->count * rqc + 8 * 4; ring_header->desc = dma_alloc_coherent(&pdev->dev, ring_header->size, &ring_header->dma, GFP_KERNEL); if (unlikely(!ring_header->desc)) { dev_err(&pdev->dev, "could not get memory for DMA buffer\n"); goto err_nomem; } /* init TPD ring */ tpd_ring[0].dma = roundup(ring_header->dma, 8); offset = tpd_ring[0].dma - ring_header->dma; for (i = 0; i < tqc; i++) { tpd_ring[i].dma = ring_header->dma + offset; tpd_ring[i].desc = (u8 *)ring_header->desc + offset; tpd_ring[i].size = sizeof(struct atl1c_tpd_desc) * tpd_ring[i].count; offset += roundup(tpd_ring[i].size, 8); } for (i = 0; i < rqc; i++) { /* init RFD ring */ rfd_ring[i].dma = ring_header->dma + offset; rfd_ring[i].desc = (u8 *)ring_header->desc + offset; rfd_ring[i].size = sizeof(struct atl1c_rx_free_desc) * rfd_ring[i].count; offset += roundup(rfd_ring[i].size, 8); /* init RRD ring */ rrd_ring[i].dma = ring_header->dma + offset; rrd_ring[i].desc = (u8 *)ring_header->desc + offset; rrd_ring[i].size = sizeof(struct atl1c_recv_ret_status) * rrd_ring[i].count; offset += roundup(rrd_ring[i].size, 8); } return 0; err_nomem: kfree(tpd_ring->buffer_info); return -ENOMEM; } static void atl1c_configure_des_ring(struct atl1c_adapter *adapter) { struct atl1c_hw *hw = &adapter->hw; struct atl1c_rfd_ring *rfd_ring = adapter->rfd_ring; struct atl1c_rrd_ring *rrd_ring = adapter->rrd_ring; struct atl1c_tpd_ring *tpd_ring = adapter->tpd_ring; int i; int tx_queue_count = adapter->tx_queue_count; if (tx_queue_count == 1) tx_queue_count = 2; /* TPD */ AT_WRITE_REG(hw, REG_TX_BASE_ADDR_HI, (u32)((tpd_ring[0].dma & AT_DMA_HI_ADDR_MASK) >> 32)); /* just enable normal priority TX queue */ for (i = 0; i < tx_queue_count; i++) { AT_WRITE_REG(hw, atl1c_qregs[i].tpd_addr_lo, (u32)(tpd_ring[i].dma & AT_DMA_LO_ADDR_MASK)); } AT_WRITE_REG(hw, REG_TPD_RING_SIZE, (u32)(tpd_ring[0].count & TPD_RING_SIZE_MASK)); /* RFD */ AT_WRITE_REG(hw, REG_RX_BASE_ADDR_HI, (u32)((rfd_ring->dma & AT_DMA_HI_ADDR_MASK) >> 32)); for (i = 0; i < adapter->rx_queue_count; i++) { AT_WRITE_REG(hw, atl1c_qregs[i].rfd_addr_lo, (u32)(rfd_ring[i].dma & AT_DMA_LO_ADDR_MASK)); } AT_WRITE_REG(hw, REG_RFD_RING_SIZE, rfd_ring->count & RFD_RING_SIZE_MASK); AT_WRITE_REG(hw, REG_RX_BUF_SIZE, adapter->rx_buffer_len & RX_BUF_SIZE_MASK); /* RRD */ for (i = 0; i < adapter->rx_queue_count; i++) { AT_WRITE_REG(hw, atl1c_qregs[i].rrd_addr_lo, (u32)(rrd_ring[i].dma & AT_DMA_LO_ADDR_MASK)); } AT_WRITE_REG(hw, REG_RRD_RING_SIZE, (rrd_ring->count & RRD_RING_SIZE_MASK)); if (hw->nic_type == athr_l2c_b) { AT_WRITE_REG(hw, REG_SRAM_RXF_LEN, 0x02a0L); AT_WRITE_REG(hw, REG_SRAM_TXF_LEN, 0x0100L); AT_WRITE_REG(hw, REG_SRAM_RXF_ADDR, 0x029f0000L); AT_WRITE_REG(hw, REG_SRAM_RFD0_INFO, 0x02bf02a0L); AT_WRITE_REG(hw, REG_SRAM_TXF_ADDR, 0x03bf02c0L); AT_WRITE_REG(hw, REG_SRAM_TRD_ADDR, 0x03df03c0L); AT_WRITE_REG(hw, REG_TXF_WATER_MARK, 0); /* TX watermark, to enter l1 state.*/ AT_WRITE_REG(hw, REG_RXD_DMA_CTRL, 0); /* RXD threshold.*/ } /* Load all of base address above */ AT_WRITE_REG(hw, REG_LOAD_PTR, 1); } static void atl1c_configure_tx(struct atl1c_adapter *adapter) { struct atl1c_hw *hw = &adapter->hw; int max_pay_load; u16 tx_offload_thresh; u32 txq_ctrl_data; tx_offload_thresh = MAX_TSO_FRAME_SIZE; AT_WRITE_REG(hw, REG_TX_TSO_OFFLOAD_THRESH, (tx_offload_thresh >> 3) & TX_TSO_OFFLOAD_THRESH_MASK); max_pay_load = pcie_get_readrq(adapter->pdev) >> 8; hw->dmar_block = min_t(u32, max_pay_load, hw->dmar_block); /* * if BIOS had changed the dam-read-max-length to an invalid value, * restore it to default value */ if (hw->dmar_block < DEVICE_CTRL_MAXRRS_MIN) { pcie_set_readrq(adapter->pdev, 128 << DEVICE_CTRL_MAXRRS_MIN); hw->dmar_block = DEVICE_CTRL_MAXRRS_MIN; } txq_ctrl_data = hw->nic_type == athr_l2c_b || hw->nic_type == athr_l2c_b2 ? L2CB_TXQ_CFGV : L1C_TXQ_CFGV; AT_WRITE_REG(hw, REG_TXQ_CTRL, txq_ctrl_data); } static void atl1c_configure_rx(struct atl1c_adapter *adapter) { struct atl1c_hw *hw = &adapter->hw; u32 rxq_ctrl_data; rxq_ctrl_data = (hw->rfd_burst & RXQ_RFD_BURST_NUM_MASK) << RXQ_RFD_BURST_NUM_SHIFT; if (hw->ctrl_flags & ATL1C_RX_IPV6_CHKSUM) rxq_ctrl_data |= IPV6_CHKSUM_CTRL_EN; /* aspm for gigabit */ if (hw->nic_type != athr_l1d_2 && (hw->device_id & 1) != 0) rxq_ctrl_data = FIELD_SETX(rxq_ctrl_data, ASPM_THRUPUT_LIMIT, ASPM_THRUPUT_LIMIT_100M); AT_WRITE_REG(hw, REG_RXQ_CTRL, rxq_ctrl_data); } static void atl1c_configure_dma(struct atl1c_adapter *adapter) { struct atl1c_hw *hw = &adapter->hw; u32 dma_ctrl_data; dma_ctrl_data = FIELDX(DMA_CTRL_RORDER_MODE, DMA_CTRL_RORDER_MODE_OUT) | DMA_CTRL_RREQ_PRI_DATA | FIELDX(DMA_CTRL_RREQ_BLEN, hw->dmar_block) | FIELDX(DMA_CTRL_WDLY_CNT, DMA_CTRL_WDLY_CNT_DEF) | FIELDX(DMA_CTRL_RDLY_CNT, DMA_CTRL_RDLY_CNT_DEF); AT_WRITE_REG(hw, REG_DMA_CTRL, dma_ctrl_data); } /* * Stop the mac, transmit and receive units * hw - Struct containing variables accessed by shared code * return : 0 or idle status (if error) */ static int atl1c_stop_mac(struct atl1c_hw *hw) { u32 data; AT_READ_REG(hw, REG_RXQ_CTRL, &data); data &= ~RXQ_CTRL_EN; AT_WRITE_REG(hw, REG_RXQ_CTRL, data); AT_READ_REG(hw, REG_TXQ_CTRL, &data); data &= ~TXQ_CTRL_EN; AT_WRITE_REG(hw, REG_TXQ_CTRL, data); atl1c_wait_until_idle(hw, IDLE_STATUS_RXQ_BUSY | IDLE_STATUS_TXQ_BUSY); AT_READ_REG(hw, REG_MAC_CTRL, &data); data &= ~(MAC_CTRL_TX_EN | MAC_CTRL_RX_EN); AT_WRITE_REG(hw, REG_MAC_CTRL, data); return (int)atl1c_wait_until_idle(hw, IDLE_STATUS_TXMAC_BUSY | IDLE_STATUS_RXMAC_BUSY); } static void atl1c_start_mac(struct atl1c_adapter *adapter) { struct atl1c_hw *hw = &adapter->hw; u32 mac, txq, rxq; hw->mac_duplex = adapter->link_duplex == FULL_DUPLEX; hw->mac_speed = adapter->link_speed == SPEED_1000 ? atl1c_mac_speed_1000 : atl1c_mac_speed_10_100; AT_READ_REG(hw, REG_TXQ_CTRL, &txq); AT_READ_REG(hw, REG_RXQ_CTRL, &rxq); AT_READ_REG(hw, REG_MAC_CTRL, &mac); txq |= TXQ_CTRL_EN; rxq |= RXQ_CTRL_EN; mac |= MAC_CTRL_TX_EN | MAC_CTRL_TX_FLOW | MAC_CTRL_RX_EN | MAC_CTRL_RX_FLOW | MAC_CTRL_ADD_CRC | MAC_CTRL_PAD | MAC_CTRL_BC_EN | MAC_CTRL_SINGLE_PAUSE_EN | MAC_CTRL_HASH_ALG_CRC32; if (hw->mac_duplex) mac |= MAC_CTRL_DUPLX; else mac &= ~MAC_CTRL_DUPLX; mac = FIELD_SETX(mac, MAC_CTRL_SPEED, hw->mac_speed); mac = FIELD_SETX(mac, MAC_CTRL_PRMLEN, hw->preamble_len); AT_WRITE_REG(hw, REG_TXQ_CTRL, txq); AT_WRITE_REG(hw, REG_RXQ_CTRL, rxq); AT_WRITE_REG(hw, REG_MAC_CTRL, mac); } /* * Reset the transmit and receive units; mask and clear all interrupts. * hw - Struct containing variables accessed by shared code * return : 0 or idle status (if error) */ static int atl1c_reset_mac(struct atl1c_hw *hw) { struct atl1c_adapter *adapter = hw->adapter; struct pci_dev *pdev = adapter->pdev; u32 ctrl_data = 0; atl1c_stop_mac(hw); /* * Issue Soft Reset to the MAC. This will reset the chip's * transmit, receive, DMA. It will not effect * the current PCI configuration. The global reset bit is self- * clearing, and should clear within a microsecond. */ AT_READ_REG(hw, REG_MASTER_CTRL, &ctrl_data); ctrl_data |= MASTER_CTRL_OOB_DIS; AT_WRITE_REG(hw, REG_MASTER_CTRL, ctrl_data | MASTER_CTRL_SOFT_RST); AT_WRITE_FLUSH(hw); msleep(10); /* Wait at least 10ms for All module to be Idle */ if (atl1c_wait_until_idle(hw, IDLE_STATUS_MASK)) { dev_err(&pdev->dev, "MAC state machine can't be idle since" " disabled for 10ms second\n"); return -1; } AT_WRITE_REG(hw, REG_MASTER_CTRL, ctrl_data); /* driver control speed/duplex */ AT_READ_REG(hw, REG_MAC_CTRL, &ctrl_data); AT_WRITE_REG(hw, REG_MAC_CTRL, ctrl_data | MAC_CTRL_SPEED_MODE_SW); /* clk switch setting */ AT_READ_REG(hw, REG_SERDES, &ctrl_data); switch (hw->nic_type) { case athr_l2c_b: ctrl_data &= ~(SERDES_PHY_CLK_SLOWDOWN | SERDES_MAC_CLK_SLOWDOWN); AT_WRITE_REG(hw, REG_SERDES, ctrl_data); break; case athr_l2c_b2: case athr_l1d_2: ctrl_data |= SERDES_PHY_CLK_SLOWDOWN | SERDES_MAC_CLK_SLOWDOWN; AT_WRITE_REG(hw, REG_SERDES, ctrl_data); break; default: break; } return 0; } static void atl1c_disable_l0s_l1(struct atl1c_hw *hw) { u16 ctrl_flags = hw->ctrl_flags; hw->ctrl_flags &= ~(ATL1C_ASPM_L0S_SUPPORT | ATL1C_ASPM_L1_SUPPORT); atl1c_set_aspm(hw, SPEED_0); hw->ctrl_flags = ctrl_flags; } /* * Set ASPM state. * Enable/disable L0s/L1 depend on link state. */ static void atl1c_set_aspm(struct atl1c_hw *hw, u16 link_speed) { u32 pm_ctrl_data; u32 link_l1_timer; AT_READ_REG(hw, REG_PM_CTRL, &pm_ctrl_data); pm_ctrl_data &= ~(PM_CTRL_ASPM_L1_EN | PM_CTRL_ASPM_L0S_EN | PM_CTRL_MAC_ASPM_CHK); /* L1 timer */ if (hw->nic_type == athr_l2c_b2 || hw->nic_type == athr_l1d_2) { pm_ctrl_data &= ~PMCTRL_TXL1_AFTER_L0S; link_l1_timer = link_speed == SPEED_1000 || link_speed == SPEED_100 ? L1D_PMCTRL_L1_ENTRY_TM_16US : 1; pm_ctrl_data = FIELD_SETX(pm_ctrl_data, L1D_PMCTRL_L1_ENTRY_TM, link_l1_timer); } else { link_l1_timer = hw->nic_type == athr_l2c_b ? L2CB1_PM_CTRL_L1_ENTRY_TM : L1C_PM_CTRL_L1_ENTRY_TM; if (link_speed != SPEED_1000 && link_speed != SPEED_100) link_l1_timer = 1; pm_ctrl_data = FIELD_SETX(pm_ctrl_data, PM_CTRL_L1_ENTRY_TIMER, link_l1_timer); } /* L0S/L1 enable */ if ((hw->ctrl_flags & ATL1C_ASPM_L0S_SUPPORT) && link_speed != SPEED_0) pm_ctrl_data |= PM_CTRL_ASPM_L0S_EN | PM_CTRL_MAC_ASPM_CHK; if (hw->ctrl_flags & ATL1C_ASPM_L1_SUPPORT) pm_ctrl_data |= PM_CTRL_ASPM_L1_EN | PM_CTRL_MAC_ASPM_CHK; /* l2cb & l1d & l2cb2 & l1d2 */ if (hw->nic_type == athr_l2c_b || hw->nic_type == athr_l1d || hw->nic_type == athr_l2c_b2 || hw->nic_type == athr_l1d_2) { pm_ctrl_data = FIELD_SETX(pm_ctrl_data, PM_CTRL_PM_REQ_TIMER, PM_CTRL_PM_REQ_TO_DEF); pm_ctrl_data |= PM_CTRL_RCVR_WT_TIMER | PM_CTRL_SERDES_PD_EX_L1 | PM_CTRL_CLK_SWH_L1; pm_ctrl_data &= ~(PM_CTRL_SERDES_L1_EN | PM_CTRL_SERDES_PLL_L1_EN | PM_CTRL_SERDES_BUFS_RX_L1_EN | PM_CTRL_SA_DLY_EN | PM_CTRL_HOTRST); /* disable l0s if link down or l2cb */ if (link_speed == SPEED_0 || hw->nic_type == athr_l2c_b) pm_ctrl_data &= ~PM_CTRL_ASPM_L0S_EN; } else { /* l1c */ pm_ctrl_data = FIELD_SETX(pm_ctrl_data, PM_CTRL_L1_ENTRY_TIMER, 0); if (link_speed != SPEED_0) { pm_ctrl_data |= PM_CTRL_SERDES_L1_EN | PM_CTRL_SERDES_PLL_L1_EN | PM_CTRL_SERDES_BUFS_RX_L1_EN; pm_ctrl_data &= ~(PM_CTRL_SERDES_PD_EX_L1 | PM_CTRL_CLK_SWH_L1 | PM_CTRL_ASPM_L0S_EN | PM_CTRL_ASPM_L1_EN); } else { /* link down */ pm_ctrl_data |= PM_CTRL_CLK_SWH_L1; pm_ctrl_data &= ~(PM_CTRL_SERDES_L1_EN | PM_CTRL_SERDES_PLL_L1_EN | PM_CTRL_SERDES_BUFS_RX_L1_EN | PM_CTRL_ASPM_L0S_EN); } } AT_WRITE_REG(hw, REG_PM_CTRL, pm_ctrl_data); return; } /** * atl1c_configure_mac - Configure Transmit&Receive Unit after Reset * @adapter: board private structure * * Configure the Tx /Rx unit of the MAC after a reset. */ static int atl1c_configure_mac(struct atl1c_adapter *adapter) { struct atl1c_hw *hw = &adapter->hw; u32 master_ctrl_data = 0; u32 intr_modrt_data; u32 data; AT_READ_REG(hw, REG_MASTER_CTRL, &master_ctrl_data); master_ctrl_data &= ~(MASTER_CTRL_TX_ITIMER_EN | MASTER_CTRL_RX_ITIMER_EN | MASTER_CTRL_INT_RDCLR); /* clear interrupt status */ AT_WRITE_REG(hw, REG_ISR, 0xFFFFFFFF); /* Clear any WOL status */ AT_WRITE_REG(hw, REG_WOL_CTRL, 0); /* set Interrupt Clear Timer * HW will enable self to assert interrupt event to system after * waiting x-time for software to notify it accept interrupt. */ data = CLK_GATING_EN_ALL; if (hw->ctrl_flags & ATL1C_CLK_GATING_EN) { if (hw->nic_type == athr_l2c_b) data &= ~CLK_GATING_RXMAC_EN; } else data = 0; AT_WRITE_REG(hw, REG_CLK_GATING_CTRL, data); AT_WRITE_REG(hw, REG_INT_RETRIG_TIMER, hw->ict & INT_RETRIG_TIMER_MASK); atl1c_configure_des_ring(adapter); if (hw->ctrl_flags & ATL1C_INTR_MODRT_ENABLE) { intr_modrt_data = (hw->tx_imt & IRQ_MODRT_TIMER_MASK) << IRQ_MODRT_TX_TIMER_SHIFT; intr_modrt_data |= (hw->rx_imt & IRQ_MODRT_TIMER_MASK) << IRQ_MODRT_RX_TIMER_SHIFT; AT_WRITE_REG(hw, REG_IRQ_MODRT_TIMER_INIT, intr_modrt_data); master_ctrl_data |= MASTER_CTRL_TX_ITIMER_EN | MASTER_CTRL_RX_ITIMER_EN; } if (hw->ctrl_flags & ATL1C_INTR_CLEAR_ON_READ) master_ctrl_data |= MASTER_CTRL_INT_RDCLR; master_ctrl_data |= MASTER_CTRL_SA_TIMER_EN; AT_WRITE_REG(hw, REG_MASTER_CTRL, master_ctrl_data); AT_WRITE_REG(hw, REG_SMB_STAT_TIMER, hw->smb_timer & SMB_STAT_TIMER_MASK); /* set MTU */ AT_WRITE_REG(hw, REG_MTU, hw->max_frame_size + ETH_HLEN + VLAN_HLEN + ETH_FCS_LEN); atl1c_configure_tx(adapter); atl1c_configure_rx(adapter); atl1c_configure_dma(adapter); return 0; } static int atl1c_configure(struct atl1c_adapter *adapter) { struct net_device *netdev = adapter->netdev; int num; int i; if (adapter->hw.nic_type == athr_mt) { u32 mode; AT_READ_REG(&adapter->hw, REG_MT_MODE, &mode); if (adapter->rx_queue_count == 4) mode |= MT_MODE_4Q; else mode &= ~MT_MODE_4Q; AT_WRITE_REG(&adapter->hw, REG_MT_MODE, mode); } atl1c_init_ring_ptrs(adapter); atl1c_set_multi(netdev); atl1c_restore_vlan(adapter); for (i = 0; i < adapter->rx_queue_count; ++i) { num = atl1c_alloc_rx_buffer(adapter, i, false); if (unlikely(num == 0)) return -ENOMEM; } if (atl1c_configure_mac(adapter)) return -EIO; return 0; } static void atl1c_update_hw_stats(struct atl1c_adapter *adapter) { u16 hw_reg_addr = 0; unsigned long *stats_item = NULL; u32 data; /* update rx status */ hw_reg_addr = REG_MAC_RX_STATUS_BIN; stats_item = &adapter->hw_stats.rx_ok; while (hw_reg_addr <= REG_MAC_RX_STATUS_END) { AT_READ_REG(&adapter->hw, hw_reg_addr, &data); *stats_item += data; stats_item++; hw_reg_addr += 4; } /* update tx status */ hw_reg_addr = REG_MAC_TX_STATUS_BIN; stats_item = &adapter->hw_stats.tx_ok; while (hw_reg_addr <= REG_MAC_TX_STATUS_END) { AT_READ_REG(&adapter->hw, hw_reg_addr, &data); *stats_item += data; stats_item++; hw_reg_addr += 4; } } /** * atl1c_get_stats - Get System Network Statistics * @netdev: network interface device structure * * Returns the address of the device statistics structure. * The statistics are actually updated from the timer callback. */ static struct net_device_stats *atl1c_get_stats(struct net_device *netdev) { struct atl1c_adapter *adapter = netdev_priv(netdev); struct atl1c_hw_stats *hw_stats = &adapter->hw_stats; struct net_device_stats *net_stats = &netdev->stats; atl1c_update_hw_stats(adapter); net_stats->rx_bytes = hw_stats->rx_byte_cnt; net_stats->tx_bytes = hw_stats->tx_byte_cnt; net_stats->multicast = hw_stats->rx_mcast; net_stats->collisions = hw_stats->tx_1_col + hw_stats->tx_2_col + hw_stats->tx_late_col + hw_stats->tx_abort_col; net_stats->rx_errors = hw_stats->rx_frag + hw_stats->rx_fcs_err + hw_stats->rx_len_err + hw_stats->rx_sz_ov + hw_stats->rx_rrd_ov + hw_stats->rx_align_err + hw_stats->rx_rxf_ov; net_stats->rx_fifo_errors = hw_stats->rx_rxf_ov; net_stats->rx_length_errors = hw_stats->rx_len_err; net_stats->rx_crc_errors = hw_stats->rx_fcs_err; net_stats->rx_frame_errors = hw_stats->rx_align_err; net_stats->rx_dropped = hw_stats->rx_rrd_ov; net_stats->tx_errors = hw_stats->tx_late_col + hw_stats->tx_abort_col + hw_stats->tx_underrun + hw_stats->tx_trunc; net_stats->tx_fifo_errors = hw_stats->tx_underrun; net_stats->tx_aborted_errors = hw_stats->tx_abort_col; net_stats->tx_window_errors = hw_stats->tx_late_col; net_stats->rx_packets = hw_stats->rx_ok + net_stats->rx_errors; net_stats->tx_packets = hw_stats->tx_ok + net_stats->tx_errors; return net_stats; } static inline void atl1c_clear_phy_int(struct atl1c_adapter *adapter) { u16 phy_data; spin_lock(&adapter->mdio_lock); atl1c_read_phy_reg(&adapter->hw, MII_ISR, &phy_data); spin_unlock(&adapter->mdio_lock); } static int atl1c_clean_tx(struct napi_struct *napi, int budget) { struct atl1c_tpd_ring *tpd_ring = container_of(napi, struct atl1c_tpd_ring, napi); struct atl1c_adapter *adapter = tpd_ring->adapter; struct netdev_queue *txq = netdev_get_tx_queue(napi->dev, tpd_ring->num); struct atl1c_buffer *buffer_info; struct pci_dev *pdev = adapter->pdev; u16 next_to_clean = atomic_read(&tpd_ring->next_to_clean); u16 hw_next_to_clean; unsigned int total_bytes = 0, total_packets = 0; unsigned long flags; AT_READ_REGW(&adapter->hw, atl1c_qregs[tpd_ring->num].tpd_cons, &hw_next_to_clean); while (next_to_clean != hw_next_to_clean) { buffer_info = &tpd_ring->buffer_info[next_to_clean]; if (buffer_info->skb) { total_bytes += buffer_info->skb->len; total_packets++; } atl1c_clean_buffer(pdev, buffer_info, budget); if (++next_to_clean == tpd_ring->count) next_to_clean = 0; atomic_set(&tpd_ring->next_to_clean, next_to_clean); } netdev_tx_completed_queue(txq, total_packets, total_bytes); if (netif_tx_queue_stopped(txq) && netif_carrier_ok(adapter->netdev)) netif_tx_wake_queue(txq); if (total_packets < budget) { napi_complete_done(napi, total_packets); spin_lock_irqsave(&adapter->hw.intr_mask_lock, flags); adapter->hw.intr_mask |= atl1c_qregs[tpd_ring->num].tx_isr; AT_WRITE_REG(&adapter->hw, REG_IMR, adapter->hw.intr_mask); spin_unlock_irqrestore(&adapter->hw.intr_mask_lock, flags); return total_packets; } return budget; } static void atl1c_intr_rx_tx(struct atl1c_adapter *adapter, u32 status) { struct atl1c_hw *hw = &adapter->hw; u32 intr_mask; int i; spin_lock(&hw->intr_mask_lock); intr_mask = hw->intr_mask; for (i = 0; i < adapter->rx_queue_count; ++i) { if (!(status & atl1c_qregs[i].rx_isr)) continue; if (napi_schedule_prep(&adapter->rrd_ring[i].napi)) { intr_mask &= ~atl1c_qregs[i].rx_isr; __napi_schedule(&adapter->rrd_ring[i].napi); } } for (i = 0; i < adapter->tx_queue_count; ++i) { if (!(status & atl1c_qregs[i].tx_isr)) continue; if (napi_schedule_prep(&adapter->tpd_ring[i].napi)) { intr_mask &= ~atl1c_qregs[i].tx_isr; __napi_schedule(&adapter->tpd_ring[i].napi); } } if (hw->intr_mask != intr_mask) { hw->intr_mask = intr_mask; AT_WRITE_REG(hw, REG_IMR, hw->intr_mask); } spin_unlock(&hw->intr_mask_lock); } /** * atl1c_intr - Interrupt Handler * @irq: interrupt number * @data: pointer to a network interface device structure */ static irqreturn_t atl1c_intr(int irq, void *data) { struct net_device *netdev = data; struct atl1c_adapter *adapter = netdev_priv(netdev); struct pci_dev *pdev = adapter->pdev; struct atl1c_hw *hw = &adapter->hw; int max_ints = AT_MAX_INT_WORK; int handled = IRQ_NONE; u32 status; u32 reg_data; do { AT_READ_REG(hw, REG_ISR, ®_data); status = reg_data & hw->intr_mask; if (status == 0 || (status & ISR_DIS_INT) != 0) { if (max_ints != AT_MAX_INT_WORK) handled = IRQ_HANDLED; break; } /* link event */ if (status & ISR_GPHY) atl1c_clear_phy_int(adapter); /* Ack ISR */ AT_WRITE_REG(hw, REG_ISR, status | ISR_DIS_INT); if (status & (ISR_RX_PKT | ISR_TX_PKT)) atl1c_intr_rx_tx(adapter, status); handled = IRQ_HANDLED; /* check if PCIE PHY Link down */ if (status & ISR_ERROR) { if (netif_msg_hw(adapter)) dev_err(&pdev->dev, "atl1c hardware error (status = 0x%x)\n", status & ISR_ERROR); /* reset MAC */ set_bit(ATL1C_WORK_EVENT_RESET, &adapter->work_event); schedule_work(&adapter->common_task); return IRQ_HANDLED; } if (status & ISR_OVER) if (netif_msg_intr(adapter)) dev_warn(&pdev->dev, "TX/RX overflow (status = 0x%x)\n", status & ISR_OVER); /* link event */ if (status & (ISR_GPHY | ISR_MANUAL)) { netdev->stats.tx_carrier_errors++; atl1c_link_chg_event(adapter); break; } } while (--max_ints > 0); /* re-enable Interrupt*/ AT_WRITE_REG(&adapter->hw, REG_ISR, 0); return handled; } static inline void atl1c_rx_checksum(struct atl1c_adapter *adapter, struct sk_buff *skb, struct atl1c_recv_ret_status *prrs) { if (adapter->hw.nic_type == athr_mt) { if (prrs->word3 & RRS_MT_PROT_ID_TCPUDP) skb->ip_summed = CHECKSUM_UNNECESSARY; return; } /* * The pid field in RRS in not correct sometimes, so we * cannot figure out if the packet is fragmented or not, * so we tell the KERNEL CHECKSUM_NONE */ skb_checksum_none_assert(skb); } static int atl1c_alloc_rx_buffer(struct atl1c_adapter *adapter, u32 queue, bool napi_mode) { struct atl1c_rfd_ring *rfd_ring = &adapter->rfd_ring[queue]; struct atl1c_rrd_ring *rrd_ring = &adapter->rrd_ring[queue]; struct pci_dev *pdev = adapter->pdev; struct atl1c_buffer *buffer_info, *next_info; struct sk_buff *skb; void *vir_addr = NULL; u16 num_alloc = 0; u16 rfd_next_to_use, next_next; struct atl1c_rx_free_desc *rfd_desc; dma_addr_t mapping; next_next = rfd_next_to_use = rfd_ring->next_to_use; if (++next_next == rfd_ring->count) next_next = 0; buffer_info = &rfd_ring->buffer_info[rfd_next_to_use]; next_info = &rfd_ring->buffer_info[next_next]; while (next_info->flags & ATL1C_BUFFER_FREE) { rfd_desc = ATL1C_RFD_DESC(rfd_ring, rfd_next_to_use); /* When DMA RX address is set to something like * 0x....fc0, it will be very likely to cause DMA * RFD overflow issue. * * To work around it, we apply rx skb with 64 bytes * longer space, and offset the address whenever * 0x....fc0 is detected. */ if (likely(napi_mode)) skb = napi_alloc_skb(&rrd_ring->napi, adapter->rx_buffer_len + 64); else skb = netdev_alloc_skb(adapter->netdev, adapter->rx_buffer_len + 64); if (unlikely(!skb)) { if (netif_msg_rx_err(adapter)) dev_warn(&pdev->dev, "alloc rx buffer failed\n"); break; } if (((unsigned long)skb->data & 0xfff) == 0xfc0) skb_reserve(skb, 64); /* * Make buffer alignment 2 beyond a 16 byte boundary * this will result in a 16 byte aligned IP header after * the 14 byte MAC header is removed */ vir_addr = skb->data; ATL1C_SET_BUFFER_STATE(buffer_info, ATL1C_BUFFER_BUSY); buffer_info->skb = skb; buffer_info->length = adapter->rx_buffer_len; mapping = dma_map_single(&pdev->dev, vir_addr, buffer_info->length, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(&pdev->dev, mapping))) { dev_kfree_skb(skb); buffer_info->skb = NULL; buffer_info->length = 0; ATL1C_SET_BUFFER_STATE(buffer_info, ATL1C_BUFFER_FREE); netif_warn(adapter, rx_err, adapter->netdev, "RX dma_map_single failed"); break; } buffer_info->dma = mapping; ATL1C_SET_PCIMAP_TYPE(buffer_info, ATL1C_PCIMAP_SINGLE, ATL1C_PCIMAP_FROMDEVICE); rfd_desc->buffer_addr = cpu_to_le64(buffer_info->dma); rfd_next_to_use = next_next; if (++next_next == rfd_ring->count) next_next = 0; buffer_info = &rfd_ring->buffer_info[rfd_next_to_use]; next_info = &rfd_ring->buffer_info[next_next]; num_alloc++; } if (num_alloc) { /* TODO: update mailbox here */ wmb(); rfd_ring->next_to_use = rfd_next_to_use; AT_WRITE_REG(&adapter->hw, atl1c_qregs[queue].rfd_prod, rfd_ring->next_to_use & MB_RFDX_PROD_IDX_MASK); } return num_alloc; } static void atl1c_clean_rrd(struct atl1c_rrd_ring *rrd_ring, struct atl1c_recv_ret_status *rrs, u16 num) { u16 i; /* the relationship between rrd and rfd is one map one */ for (i = 0; i < num; i++, rrs = ATL1C_RRD_DESC(rrd_ring, rrd_ring->next_to_clean)) { rrs->word3 &= ~RRS_RXD_UPDATED; if (++rrd_ring->next_to_clean == rrd_ring->count) rrd_ring->next_to_clean = 0; } } static void atl1c_clean_rfd(struct atl1c_rfd_ring *rfd_ring, struct atl1c_recv_ret_status *rrs, u16 num) { u16 i; u16 rfd_index; struct atl1c_buffer *buffer_info = rfd_ring->buffer_info; rfd_index = (rrs->word0 >> RRS_RX_RFD_INDEX_SHIFT) & RRS_RX_RFD_INDEX_MASK; for (i = 0; i < num; i++) { buffer_info[rfd_index].skb = NULL; ATL1C_SET_BUFFER_STATE(&buffer_info[rfd_index], ATL1C_BUFFER_FREE); if (++rfd_index == rfd_ring->count) rfd_index = 0; } rfd_ring->next_to_clean = rfd_index; } /** * atl1c_clean_rx - NAPI Rx polling callback * @napi: napi info * @budget: limit of packets to clean */ static int atl1c_clean_rx(struct napi_struct *napi, int budget) { struct atl1c_rrd_ring *rrd_ring = container_of(napi, struct atl1c_rrd_ring, napi); struct atl1c_adapter *adapter = rrd_ring->adapter; u16 rfd_num, rfd_index; u16 length; struct pci_dev *pdev = adapter->pdev; struct net_device *netdev = adapter->netdev; struct atl1c_rfd_ring *rfd_ring = &adapter->rfd_ring[rrd_ring->num]; struct sk_buff *skb; struct atl1c_recv_ret_status *rrs; struct atl1c_buffer *buffer_info; int work_done = 0; unsigned long flags; /* Keep link state information with original netdev */ if (!netif_carrier_ok(adapter->netdev)) goto quit_polling; while (1) { if (work_done >= budget) break; rrs = ATL1C_RRD_DESC(rrd_ring, rrd_ring->next_to_clean); if (likely(RRS_RXD_IS_VALID(rrs->word3))) { rfd_num = (rrs->word0 >> RRS_RX_RFD_CNT_SHIFT) & RRS_RX_RFD_CNT_MASK; if (unlikely(rfd_num != 1)) /* TODO support mul rfd*/ if (netif_msg_rx_err(adapter)) dev_warn(&pdev->dev, "Multi rfd not support yet!\n"); goto rrs_checked; } else { break; } rrs_checked: atl1c_clean_rrd(rrd_ring, rrs, rfd_num); if (rrs->word3 & (RRS_RX_ERR_SUM | RRS_802_3_LEN_ERR)) { atl1c_clean_rfd(rfd_ring, rrs, rfd_num); if (netif_msg_rx_err(adapter)) dev_warn(&pdev->dev, "wrong packet! rrs word3 is %x\n", rrs->word3); continue; } length = le16_to_cpu((rrs->word3 >> RRS_PKT_SIZE_SHIFT) & RRS_PKT_SIZE_MASK); /* Good Receive */ if (likely(rfd_num == 1)) { rfd_index = (rrs->word0 >> RRS_RX_RFD_INDEX_SHIFT) & RRS_RX_RFD_INDEX_MASK; buffer_info = &rfd_ring->buffer_info[rfd_index]; dma_unmap_single(&pdev->dev, buffer_info->dma, buffer_info->length, DMA_FROM_DEVICE); skb = buffer_info->skb; } else { /* TODO */ if (netif_msg_rx_err(adapter)) dev_warn(&pdev->dev, "Multi rfd not support yet!\n"); break; } atl1c_clean_rfd(rfd_ring, rrs, rfd_num); skb_put(skb, length - ETH_FCS_LEN); skb->protocol = eth_type_trans(skb, netdev); atl1c_rx_checksum(adapter, skb, rrs); if (rrs->word3 & RRS_VLAN_INS) { u16 vlan; AT_TAG_TO_VLAN(rrs->vlan_tag, vlan); vlan = le16_to_cpu(vlan); __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlan); } napi_gro_receive(napi, skb); work_done++; } if (work_done) atl1c_alloc_rx_buffer(adapter, rrd_ring->num, true); if (work_done < budget) { quit_polling: napi_complete_done(napi, work_done); spin_lock_irqsave(&adapter->hw.intr_mask_lock, flags); adapter->hw.intr_mask |= atl1c_qregs[rrd_ring->num].rx_isr; AT_WRITE_REG(&adapter->hw, REG_IMR, adapter->hw.intr_mask); spin_unlock_irqrestore(&adapter->hw.intr_mask_lock, flags); } return work_done; } #ifdef CONFIG_NET_POLL_CONTROLLER /* * Polling 'interrupt' - used by things like netconsole to send skbs * without having to re-enable interrupts. It's not called while * the interrupt routine is executing. */ static void atl1c_netpoll(struct net_device *netdev) { struct atl1c_adapter *adapter = netdev_priv(netdev); disable_irq(adapter->pdev->irq); atl1c_intr(adapter->pdev->irq, netdev); enable_irq(adapter->pdev->irq); } #endif static inline u16 atl1c_tpd_avail(struct atl1c_adapter *adapter, u32 queue) { struct atl1c_tpd_ring *tpd_ring = &adapter->tpd_ring[queue]; u16 next_to_use = 0; u16 next_to_clean = 0; next_to_clean = atomic_read(&tpd_ring->next_to_clean); next_to_use = tpd_ring->next_to_use; return (u16)(next_to_clean > next_to_use) ? (next_to_clean - next_to_use - 1) : (tpd_ring->count + next_to_clean - next_to_use - 1); } /* * get next usable tpd * Note: should call atl1c_tdp_avail to make sure * there is enough tpd to use */ static struct atl1c_tpd_desc *atl1c_get_tpd(struct atl1c_adapter *adapter, u32 queue) { struct atl1c_tpd_ring *tpd_ring = &adapter->tpd_ring[queue]; struct atl1c_tpd_desc *tpd_desc; u16 next_to_use = 0; next_to_use = tpd_ring->next_to_use; if (++tpd_ring->next_to_use == tpd_ring->count) tpd_ring->next_to_use = 0; tpd_desc = ATL1C_TPD_DESC(tpd_ring, next_to_use); memset(tpd_desc, 0, sizeof(struct atl1c_tpd_desc)); return tpd_desc; } static struct atl1c_buffer * atl1c_get_tx_buffer(struct atl1c_adapter *adapter, struct atl1c_tpd_desc *tpd) { struct atl1c_tpd_ring *tpd_ring = adapter->tpd_ring; return &tpd_ring->buffer_info[tpd - (struct atl1c_tpd_desc *)tpd_ring->desc]; } /* Calculate the transmit packet descript needed*/ static u16 atl1c_cal_tpd_req(const struct sk_buff *skb) { u16 tpd_req; u16 proto_hdr_len = 0; tpd_req = skb_shinfo(skb)->nr_frags + 1; if (skb_is_gso(skb)) { proto_hdr_len = skb_tcp_all_headers(skb); if (proto_hdr_len < skb_headlen(skb)) tpd_req++; if (skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6) tpd_req++; } return tpd_req; } static int atl1c_tso_csum(struct atl1c_adapter *adapter, struct sk_buff *skb, struct atl1c_tpd_desc **tpd, u32 queue) { struct pci_dev *pdev = adapter->pdev; unsigned short offload_type; u8 hdr_len; u32 real_len; if (skb_is_gso(skb)) { int err; err = skb_cow_head(skb, 0); if (err < 0) return err; offload_type = skb_shinfo(skb)->gso_type; if (offload_type & SKB_GSO_TCPV4) { real_len = (((unsigned char *)ip_hdr(skb) - skb->data) + ntohs(ip_hdr(skb)->tot_len)); if (real_len < skb->len) { err = pskb_trim(skb, real_len); if (err) return err; } hdr_len = skb_tcp_all_headers(skb); if (unlikely(skb->len == hdr_len)) { /* only xsum need */ if (netif_msg_tx_queued(adapter)) dev_warn(&pdev->dev, "IPV4 tso with zero data??\n"); goto check_sum; } else { ip_hdr(skb)->check = 0; tcp_hdr(skb)->check = ~csum_tcpudp_magic( ip_hdr(skb)->saddr, ip_hdr(skb)->daddr, 0, IPPROTO_TCP, 0); (*tpd)->word1 |= 1 << TPD_IPV4_PACKET_SHIFT; } } if (offload_type & SKB_GSO_TCPV6) { struct atl1c_tpd_ext_desc *etpd = *(struct atl1c_tpd_ext_desc **)(tpd); memset(etpd, 0, sizeof(struct atl1c_tpd_ext_desc)); *tpd = atl1c_get_tpd(adapter, queue); ipv6_hdr(skb)->payload_len = 0; /* check payload == 0 byte ? */ hdr_len = skb_tcp_all_headers(skb); if (unlikely(skb->len == hdr_len)) { /* only xsum need */ if (netif_msg_tx_queued(adapter)) dev_warn(&pdev->dev, "IPV6 tso with zero data??\n"); goto check_sum; } else tcp_v6_gso_csum_prep(skb); etpd->word1 |= 1 << TPD_LSO_EN_SHIFT; etpd->word1 |= 1 << TPD_LSO_VER_SHIFT; etpd->pkt_len = cpu_to_le32(skb->len); (*tpd)->word1 |= 1 << TPD_LSO_VER_SHIFT; } (*tpd)->word1 |= 1 << TPD_LSO_EN_SHIFT; (*tpd)->word1 |= (skb_transport_offset(skb) & TPD_TCPHDR_OFFSET_MASK) << TPD_TCPHDR_OFFSET_SHIFT; (*tpd)->word1 |= (skb_shinfo(skb)->gso_size & TPD_MSS_MASK) << TPD_MSS_SHIFT; return 0; } check_sum: if (likely(skb->ip_summed == CHECKSUM_PARTIAL)) { u8 css, cso; cso = skb_checksum_start_offset(skb); if (unlikely(cso & 0x1)) { if (netif_msg_tx_err(adapter)) dev_err(&adapter->pdev->dev, "payload offset should not an event number\n"); return -1; } else { css = cso + skb->csum_offset; (*tpd)->word1 |= ((cso >> 1) & TPD_PLOADOFFSET_MASK) << TPD_PLOADOFFSET_SHIFT; (*tpd)->word1 |= ((css >> 1) & TPD_CCSUM_OFFSET_MASK) << TPD_CCSUM_OFFSET_SHIFT; (*tpd)->word1 |= 1 << TPD_CCSUM_EN_SHIFT; } } return 0; } static void atl1c_tx_rollback(struct atl1c_adapter *adpt, struct atl1c_tpd_desc *first_tpd, u32 queue) { struct atl1c_tpd_ring *tpd_ring = &adpt->tpd_ring[queue]; struct atl1c_buffer *buffer_info; struct atl1c_tpd_desc *tpd; u16 first_index, index; first_index = first_tpd - (struct atl1c_tpd_desc *)tpd_ring->desc; index = first_index; while (index != tpd_ring->next_to_use) { tpd = ATL1C_TPD_DESC(tpd_ring, index); buffer_info = &tpd_ring->buffer_info[index]; atl1c_clean_buffer(adpt->pdev, buffer_info, 0); memset(tpd, 0, sizeof(struct atl1c_tpd_desc)); if (++index == tpd_ring->count) index = 0; } tpd_ring->next_to_use = first_index; } static int atl1c_tx_map(struct atl1c_adapter *adapter, struct sk_buff *skb, struct atl1c_tpd_desc *tpd, u32 queue) { struct atl1c_tpd_desc *use_tpd = NULL; struct atl1c_buffer *buffer_info = NULL; u16 buf_len = skb_headlen(skb); u16 map_len = 0; u16 mapped_len = 0; u16 hdr_len = 0; u16 nr_frags; u16 f; int tso; nr_frags = skb_shinfo(skb)->nr_frags; tso = (tpd->word1 >> TPD_LSO_EN_SHIFT) & TPD_LSO_EN_MASK; if (tso) { /* TSO */ hdr_len = skb_tcp_all_headers(skb); map_len = hdr_len; use_tpd = tpd; buffer_info = atl1c_get_tx_buffer(adapter, use_tpd); buffer_info->length = map_len; buffer_info->dma = dma_map_single(&adapter->pdev->dev, skb->data, hdr_len, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(&adapter->pdev->dev, buffer_info->dma))) goto err_dma; ATL1C_SET_BUFFER_STATE(buffer_info, ATL1C_BUFFER_BUSY); ATL1C_SET_PCIMAP_TYPE(buffer_info, ATL1C_PCIMAP_SINGLE, ATL1C_PCIMAP_TODEVICE); mapped_len += map_len; use_tpd->buffer_addr = cpu_to_le64(buffer_info->dma); use_tpd->buffer_len = cpu_to_le16(buffer_info->length); } if (mapped_len < buf_len) { /* mapped_len == 0, means we should use the first tpd, which is given by caller */ if (mapped_len == 0) use_tpd = tpd; else { use_tpd = atl1c_get_tpd(adapter, queue); memcpy(use_tpd, tpd, sizeof(struct atl1c_tpd_desc)); } buffer_info = atl1c_get_tx_buffer(adapter, use_tpd); buffer_info->length = buf_len - mapped_len; buffer_info->dma = dma_map_single(&adapter->pdev->dev, skb->data + mapped_len, buffer_info->length, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(&adapter->pdev->dev, buffer_info->dma))) goto err_dma; ATL1C_SET_BUFFER_STATE(buffer_info, ATL1C_BUFFER_BUSY); ATL1C_SET_PCIMAP_TYPE(buffer_info, ATL1C_PCIMAP_SINGLE, ATL1C_PCIMAP_TODEVICE); use_tpd->buffer_addr = cpu_to_le64(buffer_info->dma); use_tpd->buffer_len = cpu_to_le16(buffer_info->length); } for (f = 0; f < nr_frags; f++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[f]; use_tpd = atl1c_get_tpd(adapter, queue); memcpy(use_tpd, tpd, sizeof(struct atl1c_tpd_desc)); buffer_info = atl1c_get_tx_buffer(adapter, use_tpd); buffer_info->length = skb_frag_size(frag); buffer_info->dma = skb_frag_dma_map(&adapter->pdev->dev, frag, 0, buffer_info->length, DMA_TO_DEVICE); if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) goto err_dma; ATL1C_SET_BUFFER_STATE(buffer_info, ATL1C_BUFFER_BUSY); ATL1C_SET_PCIMAP_TYPE(buffer_info, ATL1C_PCIMAP_PAGE, ATL1C_PCIMAP_TODEVICE); use_tpd->buffer_addr = cpu_to_le64(buffer_info->dma); use_tpd->buffer_len = cpu_to_le16(buffer_info->length); } /* The last tpd */ use_tpd->word1 |= 1 << TPD_EOP_SHIFT; /* The last buffer info contain the skb address, so it will be free after unmap */ buffer_info->skb = skb; return 0; err_dma: buffer_info->dma = 0; buffer_info->length = 0; return -1; } static void atl1c_tx_queue(struct atl1c_adapter *adapter, u32 queue) { struct atl1c_tpd_ring *tpd_ring = &adapter->tpd_ring[queue]; AT_WRITE_REGW(&adapter->hw, atl1c_qregs[queue].tpd_prod, tpd_ring->next_to_use); } static netdev_tx_t atl1c_xmit_frame(struct sk_buff *skb, struct net_device *netdev) { struct atl1c_adapter *adapter = netdev_priv(netdev); u32 queue = skb_get_queue_mapping(skb); struct netdev_queue *txq = netdev_get_tx_queue(netdev, queue); struct atl1c_tpd_desc *tpd; u16 tpd_req; if (test_bit(__AT_DOWN, &adapter->flags)) { dev_kfree_skb_any(skb); return NETDEV_TX_OK; } tpd_req = atl1c_cal_tpd_req(skb); if (atl1c_tpd_avail(adapter, queue) < tpd_req) { /* no enough descriptor, just stop queue */ atl1c_tx_queue(adapter, queue); netif_tx_stop_queue(txq); return NETDEV_TX_BUSY; } tpd = atl1c_get_tpd(adapter, queue); /* do TSO and check sum */ if (atl1c_tso_csum(adapter, skb, &tpd, queue) != 0) { atl1c_tx_queue(adapter, queue); dev_kfree_skb_any(skb); return NETDEV_TX_OK; } if (unlikely(skb_vlan_tag_present(skb))) { u16 vlan = skb_vlan_tag_get(skb); __le16 tag; vlan = cpu_to_le16(vlan); AT_VLAN_TO_TAG(vlan, tag); tpd->word1 |= 1 << TPD_INS_VTAG_SHIFT; tpd->vlan_tag = tag; } if (skb_network_offset(skb) != ETH_HLEN) tpd->word1 |= 1 << TPD_ETH_TYPE_SHIFT; /* Ethernet frame */ if (atl1c_tx_map(adapter, skb, tpd, queue) < 0) { netif_info(adapter, tx_done, adapter->netdev, "tx-skb dropped due to dma error\n"); /* roll back tpd/buffer */ atl1c_tx_rollback(adapter, tpd, queue); dev_kfree_skb_any(skb); } else { bool more = netdev_xmit_more(); if (__netdev_tx_sent_queue(txq, skb->len, more)) atl1c_tx_queue(adapter, queue); } return NETDEV_TX_OK; } static void atl1c_free_irq(struct atl1c_adapter *adapter) { struct net_device *netdev = adapter->netdev; free_irq(adapter->pdev->irq, netdev); if (adapter->have_msi) pci_disable_msi(adapter->pdev); } static int atl1c_request_irq(struct atl1c_adapter *adapter) { struct pci_dev *pdev = adapter->pdev; struct net_device *netdev = adapter->netdev; int flags = 0; int err = 0; adapter->have_msi = true; err = pci_enable_msi(adapter->pdev); if (err) { if (netif_msg_ifup(adapter)) dev_err(&pdev->dev, "Unable to allocate MSI interrupt Error: %d\n", err); adapter->have_msi = false; } if (!adapter->have_msi) flags |= IRQF_SHARED; err = request_irq(adapter->pdev->irq, atl1c_intr, flags, netdev->name, netdev); if (err) { if (netif_msg_ifup(adapter)) dev_err(&pdev->dev, "Unable to allocate interrupt Error: %d\n", err); if (adapter->have_msi) pci_disable_msi(adapter->pdev); return err; } if (netif_msg_ifup(adapter)) dev_dbg(&pdev->dev, "atl1c_request_irq OK\n"); return err; } static void atl1c_reset_dma_ring(struct atl1c_adapter *adapter) { int i; /* release tx-pending skbs and reset tx/rx ring index */ for (i = 0; i < adapter->tx_queue_count; ++i) atl1c_clean_tx_ring(adapter, i); for (i = 0; i < adapter->rx_queue_count; ++i) atl1c_clean_rx_ring(adapter, i); } static int atl1c_up(struct atl1c_adapter *adapter) { struct net_device *netdev = adapter->netdev; int err; int i; netif_carrier_off(netdev); err = atl1c_configure(adapter); if (unlikely(err)) goto err_up; err = atl1c_request_irq(adapter); if (unlikely(err)) goto err_up; atl1c_check_link_status(adapter); clear_bit(__AT_DOWN, &adapter->flags); for (i = 0; i < adapter->tx_queue_count; ++i) napi_enable(&adapter->tpd_ring[i].napi); for (i = 0; i < adapter->rx_queue_count; ++i) napi_enable(&adapter->rrd_ring[i].napi); atl1c_irq_enable(adapter); netif_start_queue(netdev); return err; err_up: for (i = 0; i < adapter->rx_queue_count; ++i) atl1c_clean_rx_ring(adapter, i); return err; } static void atl1c_down(struct atl1c_adapter *adapter) { struct net_device *netdev = adapter->netdev; int i; atl1c_del_timer(adapter); adapter->work_event = 0; /* clear all event */ /* signal that we're down so the interrupt handler does not * reschedule our watchdog timer */ set_bit(__AT_DOWN, &adapter->flags); netif_carrier_off(netdev); for (i = 0; i < adapter->tx_queue_count; ++i) napi_disable(&adapter->tpd_ring[i].napi); for (i = 0; i < adapter->rx_queue_count; ++i) napi_disable(&adapter->rrd_ring[i].napi); atl1c_irq_disable(adapter); atl1c_free_irq(adapter); /* disable ASPM if device inactive */ atl1c_disable_l0s_l1(&adapter->hw); /* reset MAC to disable all RX/TX */ atl1c_reset_mac(&adapter->hw); msleep(1); adapter->link_speed = SPEED_0; adapter->link_duplex = -1; atl1c_reset_dma_ring(adapter); } /** * atl1c_open - Called when a network interface is made active * @netdev: network interface device structure * * Returns 0 on success, negative value on failure * * The open entry point is called when a network interface is made * active by the system (IFF_UP). At this point all resources needed * for transmit and receive operations are allocated, the interrupt * handler is registered with the OS, the watchdog timer is started, * and the stack is notified that the interface is ready. */ static int atl1c_open(struct net_device *netdev) { struct atl1c_adapter *adapter = netdev_priv(netdev); int err; /* disallow open during test */ if (test_bit(__AT_TESTING, &adapter->flags)) return -EBUSY; /* allocate rx/tx dma buffer & descriptors */ err = atl1c_setup_ring_resources(adapter); if (unlikely(err)) return err; err = atl1c_up(adapter); if (unlikely(err)) goto err_up; return 0; err_up: atl1c_free_irq(adapter); atl1c_free_ring_resources(adapter); atl1c_reset_mac(&adapter->hw); return err; } /** * atl1c_close - Disables a network interface * @netdev: network interface device structure * * Returns 0, this is not allowed to fail * * The close entry point is called when an interface is de-activated * by the OS. The hardware is still under the drivers control, but * needs to be disabled. A global MAC reset is issued to stop the * hardware, and all transmit and receive resources are freed. */ static int atl1c_close(struct net_device *netdev) { struct atl1c_adapter *adapter = netdev_priv(netdev); WARN_ON(test_bit(__AT_RESETTING, &adapter->flags)); set_bit(__AT_DOWN, &adapter->flags); cancel_work_sync(&adapter->common_task); atl1c_down(adapter); atl1c_free_ring_resources(adapter); return 0; } static int atl1c_suspend(struct device *dev) { struct net_device *netdev = dev_get_drvdata(dev); struct atl1c_adapter *adapter = netdev_priv(netdev); struct atl1c_hw *hw = &adapter->hw; u32 wufc = adapter->wol; atl1c_disable_l0s_l1(hw); if (netif_running(netdev)) { WARN_ON(test_bit(__AT_RESETTING, &adapter->flags)); atl1c_down(adapter); } netif_device_detach(netdev); if (wufc) if (atl1c_phy_to_ps_link(hw) != 0) dev_dbg(dev, "phy power saving failed"); atl1c_power_saving(hw, wufc); return 0; } #ifdef CONFIG_PM_SLEEP static int atl1c_resume(struct device *dev) { struct net_device *netdev = dev_get_drvdata(dev); struct atl1c_adapter *adapter = netdev_priv(netdev); AT_WRITE_REG(&adapter->hw, REG_WOL_CTRL, 0); atl1c_reset_pcie(&adapter->hw, ATL1C_PCIE_L0S_L1_DISABLE); atl1c_phy_reset(&adapter->hw); atl1c_reset_mac(&adapter->hw); atl1c_phy_init(&adapter->hw); netif_device_attach(netdev); if (netif_running(netdev)) atl1c_up(adapter); return 0; } #endif static void atl1c_shutdown(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct atl1c_adapter *adapter = netdev_priv(netdev); atl1c_suspend(&pdev->dev); pci_wake_from_d3(pdev, adapter->wol); pci_set_power_state(pdev, PCI_D3hot); } static const struct net_device_ops atl1c_netdev_ops = { .ndo_open = atl1c_open, .ndo_stop = atl1c_close, .ndo_validate_addr = eth_validate_addr, .ndo_start_xmit = atl1c_xmit_frame, .ndo_set_mac_address = atl1c_set_mac_addr, .ndo_set_rx_mode = atl1c_set_multi, .ndo_change_mtu = atl1c_change_mtu, .ndo_fix_features = atl1c_fix_features, .ndo_set_features = atl1c_set_features, .ndo_eth_ioctl = atl1c_ioctl, .ndo_tx_timeout = atl1c_tx_timeout, .ndo_get_stats = atl1c_get_stats, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = atl1c_netpoll, #endif }; static int atl1c_init_netdev(struct net_device *netdev, struct pci_dev *pdev) { SET_NETDEV_DEV(netdev, &pdev->dev); pci_set_drvdata(pdev, netdev); netdev->netdev_ops = &atl1c_netdev_ops; netdev->watchdog_timeo = AT_TX_WATCHDOG; netdev->min_mtu = ETH_ZLEN - (ETH_HLEN + VLAN_HLEN); atl1c_set_ethtool_ops(netdev); /* TODO: add when ready */ netdev->hw_features = NETIF_F_SG | NETIF_F_HW_CSUM | NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_TSO | NETIF_F_TSO6; netdev->features = netdev->hw_features | NETIF_F_HW_VLAN_CTAG_TX; return 0; } /** * atl1c_probe - Device Initialization Routine * @pdev: PCI device information struct * @ent: entry in atl1c_pci_tbl * * Returns 0 on success, negative on failure * * atl1c_probe initializes an adapter identified by a pci_dev structure. * The OS initialization, configuring of the adapter private structure, * and a hardware reset occur. */ static int atl1c_probe(struct pci_dev *pdev, const struct pci_device_id *ent) { struct net_device *netdev; struct atl1c_adapter *adapter; static int cards_found; u8 __iomem *hw_addr; enum atl1c_nic_type nic_type; u32 queue_count = 1; int err = 0; int i; /* enable device (incl. PCI PM wakeup and hotplug setup) */ err = pci_enable_device_mem(pdev); if (err) return dev_err_probe(&pdev->dev, err, "cannot enable PCI device\n"); /* * The atl1c chip can DMA to 64-bit addresses, but it uses a single * shared register for the high 32 bits, so only a single, aligned, * 4 GB physical address range can be used at a time. * * Supporting 64-bit DMA on this hardware is more trouble than it's * worth. It is far easier to limit to 32-bit DMA than update * various kernel subsystems to support the mechanics required by a * fixed-high-32-bit system. */ err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)); if (err) { dev_err(&pdev->dev, "No usable DMA configuration,aborting\n"); goto err_dma; } err = pci_request_regions(pdev, atl1c_driver_name); if (err) { dev_err(&pdev->dev, "cannot obtain PCI resources\n"); goto err_pci_reg; } pci_set_master(pdev); hw_addr = pci_ioremap_bar(pdev, 0); if (!hw_addr) { err = -EIO; dev_err(&pdev->dev, "cannot map device registers\n"); goto err_ioremap; } nic_type = atl1c_get_mac_type(pdev, hw_addr); if (nic_type == athr_mt) queue_count = 4; netdev = alloc_etherdev_mq(sizeof(struct atl1c_adapter), queue_count); if (netdev == NULL) { err = -ENOMEM; goto err_alloc_etherdev; } err = atl1c_init_netdev(netdev, pdev); if (err) { dev_err(&pdev->dev, "init netdevice failed\n"); goto err_init_netdev; } adapter = netdev_priv(netdev); adapter->bd_number = cards_found; adapter->netdev = netdev; adapter->pdev = pdev; adapter->hw.adapter = adapter; adapter->hw.nic_type = nic_type; adapter->msg_enable = netif_msg_init(-1, atl1c_default_msg); adapter->hw.hw_addr = hw_addr; adapter->tx_queue_count = queue_count; adapter->rx_queue_count = queue_count; /* init mii data */ adapter->mii.dev = netdev; adapter->mii.mdio_read = atl1c_mdio_read; adapter->mii.mdio_write = atl1c_mdio_write; adapter->mii.phy_id_mask = 0x1f; adapter->mii.reg_num_mask = MDIO_CTRL_REG_MASK; dev_set_threaded(netdev, true); for (i = 0; i < adapter->rx_queue_count; ++i) netif_napi_add(netdev, &adapter->rrd_ring[i].napi, atl1c_clean_rx); for (i = 0; i < adapter->tx_queue_count; ++i) netif_napi_add_tx(netdev, &adapter->tpd_ring[i].napi, atl1c_clean_tx); timer_setup(&adapter->phy_config_timer, atl1c_phy_config, 0); /* setup the private structure */ err = atl1c_sw_init(adapter); if (err) { dev_err(&pdev->dev, "net device private data init failed\n"); goto err_sw_init; } /* set max MTU */ atl1c_set_max_mtu(netdev); atl1c_reset_pcie(&adapter->hw, ATL1C_PCIE_L0S_L1_DISABLE); /* Init GPHY as early as possible due to power saving issue */ atl1c_phy_reset(&adapter->hw); err = atl1c_reset_mac(&adapter->hw); if (err) { err = -EIO; goto err_reset; } /* reset the controller to * put the device in a known good starting state */ err = atl1c_phy_init(&adapter->hw); if (err) { err = -EIO; goto err_reset; } if (atl1c_read_mac_addr(&adapter->hw)) { /* got a random MAC address, set NET_ADDR_RANDOM to netdev */ netdev->addr_assign_type = NET_ADDR_RANDOM; } eth_hw_addr_set(netdev, adapter->hw.mac_addr); if (netif_msg_probe(adapter)) dev_dbg(&pdev->dev, "mac address : %pM\n", adapter->hw.mac_addr); atl1c_hw_set_mac_addr(&adapter->hw, adapter->hw.mac_addr); INIT_WORK(&adapter->common_task, atl1c_common_task); adapter->work_event = 0; err = register_netdev(netdev); if (err) { dev_err(&pdev->dev, "register netdevice failed\n"); goto err_register; } cards_found++; return 0; err_reset: err_register: err_sw_init: err_init_netdev: free_netdev(netdev); err_alloc_etherdev: iounmap(hw_addr); err_ioremap: pci_release_regions(pdev); err_pci_reg: err_dma: pci_disable_device(pdev); return err; } /** * atl1c_remove - Device Removal Routine * @pdev: PCI device information struct * * atl1c_remove is called by the PCI subsystem to alert the driver * that it should release a PCI device. The could be caused by a * Hot-Plug event, or because the driver is going to be removed from * memory. */ static void atl1c_remove(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct atl1c_adapter *adapter = netdev_priv(netdev); unregister_netdev(netdev); /* restore permanent address */ atl1c_hw_set_mac_addr(&adapter->hw, adapter->hw.perm_mac_addr); atl1c_phy_disable(&adapter->hw); iounmap(adapter->hw.hw_addr); pci_release_regions(pdev); pci_disable_device(pdev); free_netdev(netdev); } /** * atl1c_io_error_detected - called when PCI error is detected * @pdev: Pointer to PCI device * @state: The current pci connection state * * This function is called after a PCI bus error affecting * this device has been detected. */ static pci_ers_result_t atl1c_io_error_detected(struct pci_dev *pdev, pci_channel_state_t state) { struct net_device *netdev = pci_get_drvdata(pdev); struct atl1c_adapter *adapter = netdev_priv(netdev); netif_device_detach(netdev); if (state == pci_channel_io_perm_failure) return PCI_ERS_RESULT_DISCONNECT; if (netif_running(netdev)) atl1c_down(adapter); pci_disable_device(pdev); /* Request a slot reset. */ return PCI_ERS_RESULT_NEED_RESET; } /** * atl1c_io_slot_reset - called after the pci bus has been reset. * @pdev: Pointer to PCI device * * Restart the card from scratch, as if from a cold-boot. Implementation * resembles the first-half of the e1000_resume routine. */ static pci_ers_result_t atl1c_io_slot_reset(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct atl1c_adapter *adapter = netdev_priv(netdev); if (pci_enable_device(pdev)) { if (netif_msg_hw(adapter)) dev_err(&pdev->dev, "Cannot re-enable PCI device after reset\n"); return PCI_ERS_RESULT_DISCONNECT; } pci_set_master(pdev); pci_enable_wake(pdev, PCI_D3hot, 0); pci_enable_wake(pdev, PCI_D3cold, 0); atl1c_reset_mac(&adapter->hw); return PCI_ERS_RESULT_RECOVERED; } /** * atl1c_io_resume - called when traffic can start flowing again. * @pdev: Pointer to PCI device * * This callback is called when the error recovery driver tells us that * its OK to resume normal operation. Implementation resembles the * second-half of the atl1c_resume routine. */ static void atl1c_io_resume(struct pci_dev *pdev) { struct net_device *netdev = pci_get_drvdata(pdev); struct atl1c_adapter *adapter = netdev_priv(netdev); if (netif_running(netdev)) { if (atl1c_up(adapter)) { if (netif_msg_hw(adapter)) dev_err(&pdev->dev, "Cannot bring device back up after reset\n"); return; } } netif_device_attach(netdev); } static const struct pci_error_handlers atl1c_err_handler = { .error_detected = atl1c_io_error_detected, .slot_reset = atl1c_io_slot_reset, .resume = atl1c_io_resume, }; static SIMPLE_DEV_PM_OPS(atl1c_pm_ops, atl1c_suspend, atl1c_resume); static struct pci_driver atl1c_driver = { .name = atl1c_driver_name, .id_table = atl1c_pci_tbl, .probe = atl1c_probe, .remove = atl1c_remove, .shutdown = atl1c_shutdown, .err_handler = &atl1c_err_handler, .driver.pm = &atl1c_pm_ops, }; module_pci_driver(atl1c_driver);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1