Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Lennert Buytenhek | 3539 | 83.06% | 3 | 6.98% |
H Hartley Sweeten | 305 | 7.16% | 2 | 4.65% |
Mika Westerberg | 118 | 2.77% | 3 | 6.98% |
Stephen Hemminger | 97 | 2.28% | 2 | 4.65% |
Alexander Beregalov | 41 | 0.96% | 1 | 2.33% |
Florian Fainelli | 27 | 0.63% | 2 | 4.65% |
Eric Dumazet | 18 | 0.42% | 1 | 2.33% |
Philippe Reynes | 15 | 0.35% | 1 | 2.33% |
Tobias Klauser | 15 | 0.35% | 1 | 2.33% |
Chuhong Yuan | 10 | 0.23% | 1 | 2.33% |
David S. Miller | 9 | 0.21% | 2 | 4.65% |
Kay Sievers | 9 | 0.21% | 2 | 4.65% |
John W. Linville | 7 | 0.16% | 1 | 2.33% |
Yan Burman | 6 | 0.14% | 1 | 2.33% |
Breno Leitão | 5 | 0.12% | 1 | 2.33% |
Matt Mackall | 5 | 0.12% | 1 | 2.33% |
Jingoo Han | 4 | 0.09% | 1 | 2.33% |
FUJITA Tomonori | 4 | 0.09% | 2 | 4.65% |
Yuval Shaia | 3 | 0.07% | 1 | 2.33% |
Pradeep A. Dalvi | 3 | 0.07% | 1 | 2.33% |
Alexey Dobriyan | 3 | 0.07% | 1 | 2.33% |
Uwe Kleine-König | 3 | 0.07% | 1 | 2.33% |
Arnd Bergmann | 2 | 0.05% | 2 | 4.65% |
Thomas Gleixner | 2 | 0.05% | 1 | 2.33% |
Ben Hutchings | 2 | 0.05% | 1 | 2.33% |
Sachin Kamat | 2 | 0.05% | 1 | 2.33% |
Linus Torvalds (pre-git) | 2 | 0.05% | 1 | 2.33% |
Danny Kukawka | 1 | 0.02% | 1 | 2.33% |
Linus Torvalds | 1 | 0.02% | 1 | 2.33% |
Jakub Kiciński | 1 | 0.02% | 1 | 2.33% |
Yue haibing | 1 | 0.02% | 1 | 2.33% |
Wolfram Sang | 1 | 0.02% | 1 | 2.33% |
Total | 4261 | 43 |
// SPDX-License-Identifier: GPL-2.0-or-later /* * EP93xx ethernet network device driver * Copyright (C) 2006 Lennert Buytenhek <buytenh@wantstofly.org> * Dedicated to Marija Kulikova. */ #define pr_fmt(fmt) KBUILD_MODNAME ":%s: " fmt, __func__ #include <linux/dma-mapping.h> #include <linux/module.h> #include <linux/kernel.h> #include <linux/netdevice.h> #include <linux/mii.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/interrupt.h> #include <linux/moduleparam.h> #include <linux/platform_device.h> #include <linux/delay.h> #include <linux/io.h> #include <linux/slab.h> #include <linux/platform_data/eth-ep93xx.h> #define DRV_MODULE_NAME "ep93xx-eth" #define RX_QUEUE_ENTRIES 64 #define TX_QUEUE_ENTRIES 8 #define MAX_PKT_SIZE 2044 #define PKT_BUF_SIZE 2048 #define REG_RXCTL 0x0000 #define REG_RXCTL_DEFAULT 0x00073800 #define REG_TXCTL 0x0004 #define REG_TXCTL_ENABLE 0x00000001 #define REG_MIICMD 0x0010 #define REG_MIICMD_READ 0x00008000 #define REG_MIICMD_WRITE 0x00004000 #define REG_MIIDATA 0x0014 #define REG_MIISTS 0x0018 #define REG_MIISTS_BUSY 0x00000001 #define REG_SELFCTL 0x0020 #define REG_SELFCTL_RESET 0x00000001 #define REG_INTEN 0x0024 #define REG_INTEN_TX 0x00000008 #define REG_INTEN_RX 0x00000007 #define REG_INTSTSP 0x0028 #define REG_INTSTS_TX 0x00000008 #define REG_INTSTS_RX 0x00000004 #define REG_INTSTSC 0x002c #define REG_AFP 0x004c #define REG_INDAD0 0x0050 #define REG_INDAD1 0x0051 #define REG_INDAD2 0x0052 #define REG_INDAD3 0x0053 #define REG_INDAD4 0x0054 #define REG_INDAD5 0x0055 #define REG_GIINTMSK 0x0064 #define REG_GIINTMSK_ENABLE 0x00008000 #define REG_BMCTL 0x0080 #define REG_BMCTL_ENABLE_TX 0x00000100 #define REG_BMCTL_ENABLE_RX 0x00000001 #define REG_BMSTS 0x0084 #define REG_BMSTS_RX_ACTIVE 0x00000008 #define REG_RXDQBADD 0x0090 #define REG_RXDQBLEN 0x0094 #define REG_RXDCURADD 0x0098 #define REG_RXDENQ 0x009c #define REG_RXSTSQBADD 0x00a0 #define REG_RXSTSQBLEN 0x00a4 #define REG_RXSTSQCURADD 0x00a8 #define REG_RXSTSENQ 0x00ac #define REG_TXDQBADD 0x00b0 #define REG_TXDQBLEN 0x00b4 #define REG_TXDQCURADD 0x00b8 #define REG_TXDENQ 0x00bc #define REG_TXSTSQBADD 0x00c0 #define REG_TXSTSQBLEN 0x00c4 #define REG_TXSTSQCURADD 0x00c8 #define REG_MAXFRMLEN 0x00e8 struct ep93xx_rdesc { u32 buf_addr; u32 rdesc1; }; #define RDESC1_NSOF 0x80000000 #define RDESC1_BUFFER_INDEX 0x7fff0000 #define RDESC1_BUFFER_LENGTH 0x0000ffff struct ep93xx_rstat { u32 rstat0; u32 rstat1; }; #define RSTAT0_RFP 0x80000000 #define RSTAT0_RWE 0x40000000 #define RSTAT0_EOF 0x20000000 #define RSTAT0_EOB 0x10000000 #define RSTAT0_AM 0x00c00000 #define RSTAT0_RX_ERR 0x00200000 #define RSTAT0_OE 0x00100000 #define RSTAT0_FE 0x00080000 #define RSTAT0_RUNT 0x00040000 #define RSTAT0_EDATA 0x00020000 #define RSTAT0_CRCE 0x00010000 #define RSTAT0_CRCI 0x00008000 #define RSTAT0_HTI 0x00003f00 #define RSTAT1_RFP 0x80000000 #define RSTAT1_BUFFER_INDEX 0x7fff0000 #define RSTAT1_FRAME_LENGTH 0x0000ffff struct ep93xx_tdesc { u32 buf_addr; u32 tdesc1; }; #define TDESC1_EOF 0x80000000 #define TDESC1_BUFFER_INDEX 0x7fff0000 #define TDESC1_BUFFER_ABORT 0x00008000 #define TDESC1_BUFFER_LENGTH 0x00000fff struct ep93xx_tstat { u32 tstat0; }; #define TSTAT0_TXFP 0x80000000 #define TSTAT0_TXWE 0x40000000 #define TSTAT0_FA 0x20000000 #define TSTAT0_LCRS 0x10000000 #define TSTAT0_OW 0x04000000 #define TSTAT0_TXU 0x02000000 #define TSTAT0_ECOLL 0x01000000 #define TSTAT0_NCOLL 0x001f0000 #define TSTAT0_BUFFER_INDEX 0x00007fff struct ep93xx_descs { struct ep93xx_rdesc rdesc[RX_QUEUE_ENTRIES]; struct ep93xx_tdesc tdesc[TX_QUEUE_ENTRIES]; struct ep93xx_rstat rstat[RX_QUEUE_ENTRIES]; struct ep93xx_tstat tstat[TX_QUEUE_ENTRIES]; }; struct ep93xx_priv { struct resource *res; void __iomem *base_addr; int irq; struct ep93xx_descs *descs; dma_addr_t descs_dma_addr; void *rx_buf[RX_QUEUE_ENTRIES]; void *tx_buf[TX_QUEUE_ENTRIES]; spinlock_t rx_lock; unsigned int rx_pointer; unsigned int tx_clean_pointer; unsigned int tx_pointer; spinlock_t tx_pending_lock; unsigned int tx_pending; struct net_device *dev; struct napi_struct napi; struct mii_if_info mii; u8 mdc_divisor; }; #define rdb(ep, off) __raw_readb((ep)->base_addr + (off)) #define rdw(ep, off) __raw_readw((ep)->base_addr + (off)) #define rdl(ep, off) __raw_readl((ep)->base_addr + (off)) #define wrb(ep, off, val) __raw_writeb((val), (ep)->base_addr + (off)) #define wrw(ep, off, val) __raw_writew((val), (ep)->base_addr + (off)) #define wrl(ep, off, val) __raw_writel((val), (ep)->base_addr + (off)) static int ep93xx_mdio_read(struct net_device *dev, int phy_id, int reg) { struct ep93xx_priv *ep = netdev_priv(dev); int data; int i; wrl(ep, REG_MIICMD, REG_MIICMD_READ | (phy_id << 5) | reg); for (i = 0; i < 10; i++) { if ((rdl(ep, REG_MIISTS) & REG_MIISTS_BUSY) == 0) break; msleep(1); } if (i == 10) { pr_info("mdio read timed out\n"); data = 0xffff; } else { data = rdl(ep, REG_MIIDATA); } return data; } static void ep93xx_mdio_write(struct net_device *dev, int phy_id, int reg, int data) { struct ep93xx_priv *ep = netdev_priv(dev); int i; wrl(ep, REG_MIIDATA, data); wrl(ep, REG_MIICMD, REG_MIICMD_WRITE | (phy_id << 5) | reg); for (i = 0; i < 10; i++) { if ((rdl(ep, REG_MIISTS) & REG_MIISTS_BUSY) == 0) break; msleep(1); } if (i == 10) pr_info("mdio write timed out\n"); } static int ep93xx_rx(struct net_device *dev, int budget) { struct ep93xx_priv *ep = netdev_priv(dev); int processed = 0; while (processed < budget) { int entry; struct ep93xx_rstat *rstat; u32 rstat0; u32 rstat1; int length; struct sk_buff *skb; entry = ep->rx_pointer; rstat = ep->descs->rstat + entry; rstat0 = rstat->rstat0; rstat1 = rstat->rstat1; if (!(rstat0 & RSTAT0_RFP) || !(rstat1 & RSTAT1_RFP)) break; rstat->rstat0 = 0; rstat->rstat1 = 0; if (!(rstat0 & RSTAT0_EOF)) pr_crit("not end-of-frame %.8x %.8x\n", rstat0, rstat1); if (!(rstat0 & RSTAT0_EOB)) pr_crit("not end-of-buffer %.8x %.8x\n", rstat0, rstat1); if ((rstat1 & RSTAT1_BUFFER_INDEX) >> 16 != entry) pr_crit("entry mismatch %.8x %.8x\n", rstat0, rstat1); if (!(rstat0 & RSTAT0_RWE)) { dev->stats.rx_errors++; if (rstat0 & RSTAT0_OE) dev->stats.rx_fifo_errors++; if (rstat0 & RSTAT0_FE) dev->stats.rx_frame_errors++; if (rstat0 & (RSTAT0_RUNT | RSTAT0_EDATA)) dev->stats.rx_length_errors++; if (rstat0 & RSTAT0_CRCE) dev->stats.rx_crc_errors++; goto err; } length = rstat1 & RSTAT1_FRAME_LENGTH; if (length > MAX_PKT_SIZE) { pr_notice("invalid length %.8x %.8x\n", rstat0, rstat1); goto err; } /* Strip FCS. */ if (rstat0 & RSTAT0_CRCI) length -= 4; skb = netdev_alloc_skb(dev, length + 2); if (likely(skb != NULL)) { struct ep93xx_rdesc *rxd = &ep->descs->rdesc[entry]; skb_reserve(skb, 2); dma_sync_single_for_cpu(dev->dev.parent, rxd->buf_addr, length, DMA_FROM_DEVICE); skb_copy_to_linear_data(skb, ep->rx_buf[entry], length); dma_sync_single_for_device(dev->dev.parent, rxd->buf_addr, length, DMA_FROM_DEVICE); skb_put(skb, length); skb->protocol = eth_type_trans(skb, dev); napi_gro_receive(&ep->napi, skb); dev->stats.rx_packets++; dev->stats.rx_bytes += length; } else { dev->stats.rx_dropped++; } err: ep->rx_pointer = (entry + 1) & (RX_QUEUE_ENTRIES - 1); processed++; } return processed; } static int ep93xx_poll(struct napi_struct *napi, int budget) { struct ep93xx_priv *ep = container_of(napi, struct ep93xx_priv, napi); struct net_device *dev = ep->dev; int rx; rx = ep93xx_rx(dev, budget); if (rx < budget && napi_complete_done(napi, rx)) { spin_lock_irq(&ep->rx_lock); wrl(ep, REG_INTEN, REG_INTEN_TX | REG_INTEN_RX); spin_unlock_irq(&ep->rx_lock); } if (rx) { wrw(ep, REG_RXDENQ, rx); wrw(ep, REG_RXSTSENQ, rx); } return rx; } static netdev_tx_t ep93xx_xmit(struct sk_buff *skb, struct net_device *dev) { struct ep93xx_priv *ep = netdev_priv(dev); struct ep93xx_tdesc *txd; int entry; if (unlikely(skb->len > MAX_PKT_SIZE)) { dev->stats.tx_dropped++; dev_kfree_skb(skb); return NETDEV_TX_OK; } entry = ep->tx_pointer; ep->tx_pointer = (ep->tx_pointer + 1) & (TX_QUEUE_ENTRIES - 1); txd = &ep->descs->tdesc[entry]; txd->tdesc1 = TDESC1_EOF | (entry << 16) | (skb->len & 0xfff); dma_sync_single_for_cpu(dev->dev.parent, txd->buf_addr, skb->len, DMA_TO_DEVICE); skb_copy_and_csum_dev(skb, ep->tx_buf[entry]); dma_sync_single_for_device(dev->dev.parent, txd->buf_addr, skb->len, DMA_TO_DEVICE); dev_kfree_skb(skb); spin_lock_irq(&ep->tx_pending_lock); ep->tx_pending++; if (ep->tx_pending == TX_QUEUE_ENTRIES) netif_stop_queue(dev); spin_unlock_irq(&ep->tx_pending_lock); wrl(ep, REG_TXDENQ, 1); return NETDEV_TX_OK; } static void ep93xx_tx_complete(struct net_device *dev) { struct ep93xx_priv *ep = netdev_priv(dev); int wake; wake = 0; spin_lock(&ep->tx_pending_lock); while (1) { int entry; struct ep93xx_tstat *tstat; u32 tstat0; entry = ep->tx_clean_pointer; tstat = ep->descs->tstat + entry; tstat0 = tstat->tstat0; if (!(tstat0 & TSTAT0_TXFP)) break; tstat->tstat0 = 0; if (tstat0 & TSTAT0_FA) pr_crit("frame aborted %.8x\n", tstat0); if ((tstat0 & TSTAT0_BUFFER_INDEX) != entry) pr_crit("entry mismatch %.8x\n", tstat0); if (tstat0 & TSTAT0_TXWE) { int length = ep->descs->tdesc[entry].tdesc1 & 0xfff; dev->stats.tx_packets++; dev->stats.tx_bytes += length; } else { dev->stats.tx_errors++; } if (tstat0 & TSTAT0_OW) dev->stats.tx_window_errors++; if (tstat0 & TSTAT0_TXU) dev->stats.tx_fifo_errors++; dev->stats.collisions += (tstat0 >> 16) & 0x1f; ep->tx_clean_pointer = (entry + 1) & (TX_QUEUE_ENTRIES - 1); if (ep->tx_pending == TX_QUEUE_ENTRIES) wake = 1; ep->tx_pending--; } spin_unlock(&ep->tx_pending_lock); if (wake) netif_wake_queue(dev); } static irqreturn_t ep93xx_irq(int irq, void *dev_id) { struct net_device *dev = dev_id; struct ep93xx_priv *ep = netdev_priv(dev); u32 status; status = rdl(ep, REG_INTSTSC); if (status == 0) return IRQ_NONE; if (status & REG_INTSTS_RX) { spin_lock(&ep->rx_lock); if (likely(napi_schedule_prep(&ep->napi))) { wrl(ep, REG_INTEN, REG_INTEN_TX); __napi_schedule(&ep->napi); } spin_unlock(&ep->rx_lock); } if (status & REG_INTSTS_TX) ep93xx_tx_complete(dev); return IRQ_HANDLED; } static void ep93xx_free_buffers(struct ep93xx_priv *ep) { struct device *dev = ep->dev->dev.parent; int i; if (!ep->descs) return; for (i = 0; i < RX_QUEUE_ENTRIES; i++) { dma_addr_t d; d = ep->descs->rdesc[i].buf_addr; if (d) dma_unmap_single(dev, d, PKT_BUF_SIZE, DMA_FROM_DEVICE); kfree(ep->rx_buf[i]); } for (i = 0; i < TX_QUEUE_ENTRIES; i++) { dma_addr_t d; d = ep->descs->tdesc[i].buf_addr; if (d) dma_unmap_single(dev, d, PKT_BUF_SIZE, DMA_TO_DEVICE); kfree(ep->tx_buf[i]); } dma_free_coherent(dev, sizeof(struct ep93xx_descs), ep->descs, ep->descs_dma_addr); ep->descs = NULL; } static int ep93xx_alloc_buffers(struct ep93xx_priv *ep) { struct device *dev = ep->dev->dev.parent; int i; ep->descs = dma_alloc_coherent(dev, sizeof(struct ep93xx_descs), &ep->descs_dma_addr, GFP_KERNEL); if (ep->descs == NULL) return 1; for (i = 0; i < RX_QUEUE_ENTRIES; i++) { void *buf; dma_addr_t d; buf = kmalloc(PKT_BUF_SIZE, GFP_KERNEL); if (buf == NULL) goto err; d = dma_map_single(dev, buf, PKT_BUF_SIZE, DMA_FROM_DEVICE); if (dma_mapping_error(dev, d)) { kfree(buf); goto err; } ep->rx_buf[i] = buf; ep->descs->rdesc[i].buf_addr = d; ep->descs->rdesc[i].rdesc1 = (i << 16) | PKT_BUF_SIZE; } for (i = 0; i < TX_QUEUE_ENTRIES; i++) { void *buf; dma_addr_t d; buf = kmalloc(PKT_BUF_SIZE, GFP_KERNEL); if (buf == NULL) goto err; d = dma_map_single(dev, buf, PKT_BUF_SIZE, DMA_TO_DEVICE); if (dma_mapping_error(dev, d)) { kfree(buf); goto err; } ep->tx_buf[i] = buf; ep->descs->tdesc[i].buf_addr = d; } return 0; err: ep93xx_free_buffers(ep); return 1; } static int ep93xx_start_hw(struct net_device *dev) { struct ep93xx_priv *ep = netdev_priv(dev); unsigned long addr; int i; wrl(ep, REG_SELFCTL, REG_SELFCTL_RESET); for (i = 0; i < 10; i++) { if ((rdl(ep, REG_SELFCTL) & REG_SELFCTL_RESET) == 0) break; msleep(1); } if (i == 10) { pr_crit("hw failed to reset\n"); return 1; } wrl(ep, REG_SELFCTL, ((ep->mdc_divisor - 1) << 9)); /* Does the PHY support preamble suppress? */ if ((ep93xx_mdio_read(dev, ep->mii.phy_id, MII_BMSR) & 0x0040) != 0) wrl(ep, REG_SELFCTL, ((ep->mdc_divisor - 1) << 9) | (1 << 8)); /* Receive descriptor ring. */ addr = ep->descs_dma_addr + offsetof(struct ep93xx_descs, rdesc); wrl(ep, REG_RXDQBADD, addr); wrl(ep, REG_RXDCURADD, addr); wrw(ep, REG_RXDQBLEN, RX_QUEUE_ENTRIES * sizeof(struct ep93xx_rdesc)); /* Receive status ring. */ addr = ep->descs_dma_addr + offsetof(struct ep93xx_descs, rstat); wrl(ep, REG_RXSTSQBADD, addr); wrl(ep, REG_RXSTSQCURADD, addr); wrw(ep, REG_RXSTSQBLEN, RX_QUEUE_ENTRIES * sizeof(struct ep93xx_rstat)); /* Transmit descriptor ring. */ addr = ep->descs_dma_addr + offsetof(struct ep93xx_descs, tdesc); wrl(ep, REG_TXDQBADD, addr); wrl(ep, REG_TXDQCURADD, addr); wrw(ep, REG_TXDQBLEN, TX_QUEUE_ENTRIES * sizeof(struct ep93xx_tdesc)); /* Transmit status ring. */ addr = ep->descs_dma_addr + offsetof(struct ep93xx_descs, tstat); wrl(ep, REG_TXSTSQBADD, addr); wrl(ep, REG_TXSTSQCURADD, addr); wrw(ep, REG_TXSTSQBLEN, TX_QUEUE_ENTRIES * sizeof(struct ep93xx_tstat)); wrl(ep, REG_BMCTL, REG_BMCTL_ENABLE_TX | REG_BMCTL_ENABLE_RX); wrl(ep, REG_INTEN, REG_INTEN_TX | REG_INTEN_RX); wrl(ep, REG_GIINTMSK, 0); for (i = 0; i < 10; i++) { if ((rdl(ep, REG_BMSTS) & REG_BMSTS_RX_ACTIVE) != 0) break; msleep(1); } if (i == 10) { pr_crit("hw failed to start\n"); return 1; } wrl(ep, REG_RXDENQ, RX_QUEUE_ENTRIES); wrl(ep, REG_RXSTSENQ, RX_QUEUE_ENTRIES); wrb(ep, REG_INDAD0, dev->dev_addr[0]); wrb(ep, REG_INDAD1, dev->dev_addr[1]); wrb(ep, REG_INDAD2, dev->dev_addr[2]); wrb(ep, REG_INDAD3, dev->dev_addr[3]); wrb(ep, REG_INDAD4, dev->dev_addr[4]); wrb(ep, REG_INDAD5, dev->dev_addr[5]); wrl(ep, REG_AFP, 0); wrl(ep, REG_MAXFRMLEN, (MAX_PKT_SIZE << 16) | MAX_PKT_SIZE); wrl(ep, REG_RXCTL, REG_RXCTL_DEFAULT); wrl(ep, REG_TXCTL, REG_TXCTL_ENABLE); return 0; } static void ep93xx_stop_hw(struct net_device *dev) { struct ep93xx_priv *ep = netdev_priv(dev); int i; wrl(ep, REG_SELFCTL, REG_SELFCTL_RESET); for (i = 0; i < 10; i++) { if ((rdl(ep, REG_SELFCTL) & REG_SELFCTL_RESET) == 0) break; msleep(1); } if (i == 10) pr_crit("hw failed to reset\n"); } static int ep93xx_open(struct net_device *dev) { struct ep93xx_priv *ep = netdev_priv(dev); int err; if (ep93xx_alloc_buffers(ep)) return -ENOMEM; napi_enable(&ep->napi); if (ep93xx_start_hw(dev)) { napi_disable(&ep->napi); ep93xx_free_buffers(ep); return -EIO; } spin_lock_init(&ep->rx_lock); ep->rx_pointer = 0; ep->tx_clean_pointer = 0; ep->tx_pointer = 0; spin_lock_init(&ep->tx_pending_lock); ep->tx_pending = 0; err = request_irq(ep->irq, ep93xx_irq, IRQF_SHARED, dev->name, dev); if (err) { napi_disable(&ep->napi); ep93xx_stop_hw(dev); ep93xx_free_buffers(ep); return err; } wrl(ep, REG_GIINTMSK, REG_GIINTMSK_ENABLE); netif_start_queue(dev); return 0; } static int ep93xx_close(struct net_device *dev) { struct ep93xx_priv *ep = netdev_priv(dev); napi_disable(&ep->napi); netif_stop_queue(dev); wrl(ep, REG_GIINTMSK, 0); free_irq(ep->irq, dev); ep93xx_stop_hw(dev); ep93xx_free_buffers(ep); return 0; } static int ep93xx_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct ep93xx_priv *ep = netdev_priv(dev); struct mii_ioctl_data *data = if_mii(ifr); return generic_mii_ioctl(&ep->mii, data, cmd, NULL); } static void ep93xx_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strscpy(info->driver, DRV_MODULE_NAME, sizeof(info->driver)); } static int ep93xx_get_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { struct ep93xx_priv *ep = netdev_priv(dev); mii_ethtool_get_link_ksettings(&ep->mii, cmd); return 0; } static int ep93xx_set_link_ksettings(struct net_device *dev, const struct ethtool_link_ksettings *cmd) { struct ep93xx_priv *ep = netdev_priv(dev); return mii_ethtool_set_link_ksettings(&ep->mii, cmd); } static int ep93xx_nway_reset(struct net_device *dev) { struct ep93xx_priv *ep = netdev_priv(dev); return mii_nway_restart(&ep->mii); } static u32 ep93xx_get_link(struct net_device *dev) { struct ep93xx_priv *ep = netdev_priv(dev); return mii_link_ok(&ep->mii); } static const struct ethtool_ops ep93xx_ethtool_ops = { .get_drvinfo = ep93xx_get_drvinfo, .nway_reset = ep93xx_nway_reset, .get_link = ep93xx_get_link, .get_link_ksettings = ep93xx_get_link_ksettings, .set_link_ksettings = ep93xx_set_link_ksettings, }; static const struct net_device_ops ep93xx_netdev_ops = { .ndo_open = ep93xx_open, .ndo_stop = ep93xx_close, .ndo_start_xmit = ep93xx_xmit, .ndo_eth_ioctl = ep93xx_ioctl, .ndo_validate_addr = eth_validate_addr, .ndo_set_mac_address = eth_mac_addr, }; static struct net_device *ep93xx_dev_alloc(struct ep93xx_eth_data *data) { struct net_device *dev; dev = alloc_etherdev(sizeof(struct ep93xx_priv)); if (dev == NULL) return NULL; eth_hw_addr_set(dev, data->dev_addr); dev->ethtool_ops = &ep93xx_ethtool_ops; dev->netdev_ops = &ep93xx_netdev_ops; dev->features |= NETIF_F_SG | NETIF_F_HW_CSUM; return dev; } static void ep93xx_eth_remove(struct platform_device *pdev) { struct net_device *dev; struct ep93xx_priv *ep; struct resource *mem; dev = platform_get_drvdata(pdev); if (dev == NULL) return; ep = netdev_priv(dev); /* @@@ Force down. */ unregister_netdev(dev); ep93xx_free_buffers(ep); if (ep->base_addr != NULL) iounmap(ep->base_addr); if (ep->res != NULL) { mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); release_mem_region(mem->start, resource_size(mem)); } free_netdev(dev); } static int ep93xx_eth_probe(struct platform_device *pdev) { struct ep93xx_eth_data *data; struct net_device *dev; struct ep93xx_priv *ep; struct resource *mem; int irq; int err; if (pdev == NULL) return -ENODEV; data = dev_get_platdata(&pdev->dev); mem = platform_get_resource(pdev, IORESOURCE_MEM, 0); irq = platform_get_irq(pdev, 0); if (!mem || irq < 0) return -ENXIO; dev = ep93xx_dev_alloc(data); if (dev == NULL) { err = -ENOMEM; goto err_out; } ep = netdev_priv(dev); ep->dev = dev; SET_NETDEV_DEV(dev, &pdev->dev); netif_napi_add(dev, &ep->napi, ep93xx_poll); platform_set_drvdata(pdev, dev); ep->res = request_mem_region(mem->start, resource_size(mem), dev_name(&pdev->dev)); if (ep->res == NULL) { dev_err(&pdev->dev, "Could not reserve memory region\n"); err = -ENOMEM; goto err_out; } ep->base_addr = ioremap(mem->start, resource_size(mem)); if (ep->base_addr == NULL) { dev_err(&pdev->dev, "Failed to ioremap ethernet registers\n"); err = -EIO; goto err_out; } ep->irq = irq; ep->mii.phy_id = data->phy_id; ep->mii.phy_id_mask = 0x1f; ep->mii.reg_num_mask = 0x1f; ep->mii.dev = dev; ep->mii.mdio_read = ep93xx_mdio_read; ep->mii.mdio_write = ep93xx_mdio_write; ep->mdc_divisor = 40; /* Max HCLK 100 MHz, min MDIO clk 2.5 MHz. */ if (is_zero_ether_addr(dev->dev_addr)) eth_hw_addr_random(dev); err = register_netdev(dev); if (err) { dev_err(&pdev->dev, "Failed to register netdev\n"); goto err_out; } printk(KERN_INFO "%s: ep93xx on-chip ethernet, IRQ %d, %pM\n", dev->name, ep->irq, dev->dev_addr); return 0; err_out: ep93xx_eth_remove(pdev); return err; } static struct platform_driver ep93xx_eth_driver = { .probe = ep93xx_eth_probe, .remove_new = ep93xx_eth_remove, .driver = { .name = "ep93xx-eth", }, }; module_platform_driver(ep93xx_eth_driver); MODULE_DESCRIPTION("Cirrus EP93xx Ethernet driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:ep93xx-eth");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1