Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Dimitris Michailidis | 4136 | 99.95% | 2 | 66.67% |
Lin Yun Sheng | 2 | 0.05% | 1 | 33.33% |
Total | 4138 | 3 |
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-3-Clause) #include <linux/bpf_trace.h> #include <linux/dma-mapping.h> #include <linux/etherdevice.h> #include <linux/filter.h> #include <linux/irq.h> #include <linux/pci.h> #include <linux/skbuff.h> #include "funeth_txrx.h" #include "funeth.h" #include "fun_queue.h" #define CREATE_TRACE_POINTS #include "funeth_trace.h" /* Given the device's max supported MTU and pages of at least 4KB a packet can * be scattered into at most 4 buffers. */ #define RX_MAX_FRAGS 4 /* Per packet headroom in non-XDP mode. Present only for 1-frag packets. */ #define FUN_RX_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN) /* We try to reuse pages for our buffers. To avoid frequent page ref writes we * take EXTRA_PAGE_REFS references at once and then hand them out one per packet * occupying the buffer. */ #define EXTRA_PAGE_REFS 1000000 #define MIN_PAGE_REFS 1000 enum { FUN_XDP_FLUSH_REDIR = 1, FUN_XDP_FLUSH_TX = 2, }; /* See if a page is running low on refs we are holding and if so take more. */ static void refresh_refs(struct funeth_rxbuf *buf) { if (unlikely(buf->pg_refs < MIN_PAGE_REFS)) { buf->pg_refs += EXTRA_PAGE_REFS; page_ref_add(buf->page, EXTRA_PAGE_REFS); } } /* Offer a buffer to the Rx buffer cache. The cache will hold the buffer if its * page is worth retaining and there's room for it. Otherwise the page is * unmapped and our references released. */ static void cache_offer(struct funeth_rxq *q, const struct funeth_rxbuf *buf) { struct funeth_rx_cache *c = &q->cache; if (c->prod_cnt - c->cons_cnt <= c->mask && buf->node == numa_mem_id()) { c->bufs[c->prod_cnt & c->mask] = *buf; c->prod_cnt++; } else { dma_unmap_page_attrs(q->dma_dev, buf->dma_addr, PAGE_SIZE, DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); __page_frag_cache_drain(buf->page, buf->pg_refs); } } /* Get a page from the Rx buffer cache. We only consider the next available * page and return it if we own all its references. */ static bool cache_get(struct funeth_rxq *q, struct funeth_rxbuf *rb) { struct funeth_rx_cache *c = &q->cache; struct funeth_rxbuf *buf; if (c->prod_cnt == c->cons_cnt) return false; /* empty cache */ buf = &c->bufs[c->cons_cnt & c->mask]; if (page_ref_count(buf->page) == buf->pg_refs) { dma_sync_single_for_device(q->dma_dev, buf->dma_addr, PAGE_SIZE, DMA_FROM_DEVICE); *rb = *buf; buf->page = NULL; refresh_refs(rb); c->cons_cnt++; return true; } /* Page can't be reused. If the cache is full drop this page. */ if (c->prod_cnt - c->cons_cnt > c->mask) { dma_unmap_page_attrs(q->dma_dev, buf->dma_addr, PAGE_SIZE, DMA_FROM_DEVICE, DMA_ATTR_SKIP_CPU_SYNC); __page_frag_cache_drain(buf->page, buf->pg_refs); buf->page = NULL; c->cons_cnt++; } return false; } /* Allocate and DMA-map a page for receive. */ static int funeth_alloc_page(struct funeth_rxq *q, struct funeth_rxbuf *rb, int node, gfp_t gfp) { struct page *p; if (cache_get(q, rb)) return 0; p = __alloc_pages_node(node, gfp | __GFP_NOWARN, 0); if (unlikely(!p)) return -ENOMEM; rb->dma_addr = dma_map_page(q->dma_dev, p, 0, PAGE_SIZE, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(q->dma_dev, rb->dma_addr))) { FUN_QSTAT_INC(q, rx_map_err); __free_page(p); return -ENOMEM; } FUN_QSTAT_INC(q, rx_page_alloc); rb->page = p; rb->pg_refs = 1; refresh_refs(rb); rb->node = page_is_pfmemalloc(p) ? -1 : page_to_nid(p); return 0; } static void funeth_free_page(struct funeth_rxq *q, struct funeth_rxbuf *rb) { if (rb->page) { dma_unmap_page(q->dma_dev, rb->dma_addr, PAGE_SIZE, DMA_FROM_DEVICE); __page_frag_cache_drain(rb->page, rb->pg_refs); rb->page = NULL; } } /* Run the XDP program assigned to an Rx queue. * Return %NULL if the buffer is consumed, or the virtual address of the packet * to turn into an skb. */ static void *fun_run_xdp(struct funeth_rxq *q, skb_frag_t *frags, void *buf_va, int ref_ok, struct funeth_txq *xdp_q) { struct bpf_prog *xdp_prog; struct xdp_frame *xdpf; struct xdp_buff xdp; u32 act; /* VA includes the headroom, frag size includes headroom + tailroom */ xdp_init_buff(&xdp, ALIGN(skb_frag_size(frags), FUN_EPRQ_PKT_ALIGN), &q->xdp_rxq); xdp_prepare_buff(&xdp, buf_va, FUN_XDP_HEADROOM, skb_frag_size(frags) - (FUN_RX_TAILROOM + FUN_XDP_HEADROOM), false); xdp_prog = READ_ONCE(q->xdp_prog); act = bpf_prog_run_xdp(xdp_prog, &xdp); switch (act) { case XDP_PASS: /* remove headroom, which may not be FUN_XDP_HEADROOM now */ skb_frag_size_set(frags, xdp.data_end - xdp.data); skb_frag_off_add(frags, xdp.data - xdp.data_hard_start); goto pass; case XDP_TX: if (unlikely(!ref_ok)) goto pass; xdpf = xdp_convert_buff_to_frame(&xdp); if (!xdpf || !fun_xdp_tx(xdp_q, xdpf)) goto xdp_error; FUN_QSTAT_INC(q, xdp_tx); q->xdp_flush |= FUN_XDP_FLUSH_TX; break; case XDP_REDIRECT: if (unlikely(!ref_ok)) goto pass; if (unlikely(xdp_do_redirect(q->netdev, &xdp, xdp_prog))) goto xdp_error; FUN_QSTAT_INC(q, xdp_redir); q->xdp_flush |= FUN_XDP_FLUSH_REDIR; break; default: bpf_warn_invalid_xdp_action(q->netdev, xdp_prog, act); fallthrough; case XDP_ABORTED: trace_xdp_exception(q->netdev, xdp_prog, act); xdp_error: q->cur_buf->pg_refs++; /* return frags' page reference */ FUN_QSTAT_INC(q, xdp_err); break; case XDP_DROP: q->cur_buf->pg_refs++; FUN_QSTAT_INC(q, xdp_drops); break; } return NULL; pass: return xdp.data; } /* A CQE contains a fixed completion structure along with optional metadata and * even packet data. Given the start address of a CQE return the start of the * contained fixed structure, which lies at the end. */ static const void *cqe_to_info(const void *cqe) { return cqe + FUNETH_CQE_INFO_OFFSET; } /* The inverse of cqe_to_info(). */ static const void *info_to_cqe(const void *cqe_info) { return cqe_info - FUNETH_CQE_INFO_OFFSET; } /* Return the type of hash provided by the device based on the L3 and L4 * protocols it parsed for the packet. */ static enum pkt_hash_types cqe_to_pkt_hash_type(u16 pkt_parse) { static const enum pkt_hash_types htype_map[] = { PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L3, PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L4, PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L3, PKT_HASH_TYPE_NONE, PKT_HASH_TYPE_L3 }; u16 key; /* Build the key from the TCP/UDP and IP/IPv6 bits */ key = ((pkt_parse >> FUN_ETH_RX_CV_OL4_PROT_S) & 6) | ((pkt_parse >> (FUN_ETH_RX_CV_OL3_PROT_S + 1)) & 1); return htype_map[key]; } /* Each received packet can be scattered across several Rx buffers or can * share a buffer with previously received packets depending on the buffer * and packet sizes and the room available in the most recently used buffer. * * The rules are: * - If the buffer at the head of an RQ has not been used it gets (part of) the * next incoming packet. * - Otherwise, if the packet fully fits in the buffer's remaining space the * packet is written there. * - Otherwise, the packet goes into the next Rx buffer. * * This function returns the Rx buffer for a packet or fragment thereof of the * given length. If it isn't @buf it either recycles or frees that buffer * before advancing the queue to the next buffer. * * If called repeatedly with the remaining length of a packet it will walk * through all the buffers containing the packet. */ static struct funeth_rxbuf * get_buf(struct funeth_rxq *q, struct funeth_rxbuf *buf, unsigned int len) { if (q->buf_offset + len <= PAGE_SIZE || !q->buf_offset) return buf; /* @buf holds (part of) the packet */ /* The packet occupies part of the next buffer. Move there after * replenishing the current buffer slot either with the spare page or * by reusing the slot's existing page. Note that if a spare page isn't * available and the current packet occupies @buf it is a multi-frag * packet that will be dropped leaving @buf available for reuse. */ if ((page_ref_count(buf->page) == buf->pg_refs && buf->node == numa_mem_id()) || !q->spare_buf.page) { dma_sync_single_for_device(q->dma_dev, buf->dma_addr, PAGE_SIZE, DMA_FROM_DEVICE); refresh_refs(buf); } else { cache_offer(q, buf); *buf = q->spare_buf; q->spare_buf.page = NULL; q->rqes[q->rq_cons & q->rq_mask] = FUN_EPRQ_RQBUF_INIT(buf->dma_addr); } q->buf_offset = 0; q->rq_cons++; return &q->bufs[q->rq_cons & q->rq_mask]; } /* Gather the page fragments making up the first Rx packet on @q. Its total * length @tot_len includes optional head- and tail-rooms. * * Return 0 if the device retains ownership of at least some of the pages. * In this case the caller may only copy the packet. * * A non-zero return value gives the caller permission to use references to the * pages, e.g., attach them to skbs. Additionally, if the value is <0 at least * one of the pages is PF_MEMALLOC. * * Regardless of outcome the caller is granted a reference to each of the pages. */ static int fun_gather_pkt(struct funeth_rxq *q, unsigned int tot_len, skb_frag_t *frags) { struct funeth_rxbuf *buf = q->cur_buf; unsigned int frag_len; int ref_ok = 1; for (;;) { buf = get_buf(q, buf, tot_len); /* We always keep the RQ full of buffers so before we can give * one of our pages to the stack we require that we can obtain * a replacement page. If we can't the packet will either be * copied or dropped so we can retain ownership of the page and * reuse it. */ if (!q->spare_buf.page && funeth_alloc_page(q, &q->spare_buf, numa_mem_id(), GFP_ATOMIC | __GFP_MEMALLOC)) ref_ok = 0; frag_len = min_t(unsigned int, tot_len, PAGE_SIZE - q->buf_offset); dma_sync_single_for_cpu(q->dma_dev, buf->dma_addr + q->buf_offset, frag_len, DMA_FROM_DEVICE); buf->pg_refs--; if (ref_ok) ref_ok |= buf->node; skb_frag_fill_page_desc(frags++, buf->page, q->buf_offset, frag_len); tot_len -= frag_len; if (!tot_len) break; q->buf_offset = PAGE_SIZE; } q->buf_offset = ALIGN(q->buf_offset + frag_len, FUN_EPRQ_PKT_ALIGN); q->cur_buf = buf; return ref_ok; } static bool rx_hwtstamp_enabled(const struct net_device *dev) { const struct funeth_priv *d = netdev_priv(dev); return d->hwtstamp_cfg.rx_filter == HWTSTAMP_FILTER_ALL; } /* Advance the CQ pointers and phase tag to the next CQE. */ static void advance_cq(struct funeth_rxq *q) { if (unlikely(q->cq_head == q->cq_mask)) { q->cq_head = 0; q->phase ^= 1; q->next_cqe_info = cqe_to_info(q->cqes); } else { q->cq_head++; q->next_cqe_info += FUNETH_CQE_SIZE; } prefetch(q->next_cqe_info); } /* Process the packet represented by the head CQE of @q. Gather the packet's * fragments, run it through the optional XDP program, and if needed construct * an skb and pass it to the stack. */ static void fun_handle_cqe_pkt(struct funeth_rxq *q, struct funeth_txq *xdp_q) { const struct fun_eth_cqe *rxreq = info_to_cqe(q->next_cqe_info); unsigned int i, tot_len, pkt_len = be32_to_cpu(rxreq->pkt_len); struct net_device *ndev = q->netdev; skb_frag_t frags[RX_MAX_FRAGS]; struct skb_shared_info *si; unsigned int headroom; gro_result_t gro_res; struct sk_buff *skb; int ref_ok; void *va; u16 cv; u64_stats_update_begin(&q->syncp); q->stats.rx_pkts++; q->stats.rx_bytes += pkt_len; u64_stats_update_end(&q->syncp); advance_cq(q); /* account for head- and tail-room, present only for 1-buffer packets */ tot_len = pkt_len; headroom = be16_to_cpu(rxreq->headroom); if (likely(headroom)) tot_len += FUN_RX_TAILROOM + headroom; ref_ok = fun_gather_pkt(q, tot_len, frags); va = skb_frag_address(frags); if (xdp_q && headroom == FUN_XDP_HEADROOM) { va = fun_run_xdp(q, frags, va, ref_ok, xdp_q); if (!va) return; headroom = 0; /* XDP_PASS trims it */ } if (unlikely(!ref_ok)) goto no_mem; if (likely(headroom)) { /* headroom is either FUN_RX_HEADROOM or FUN_XDP_HEADROOM */ prefetch(va + headroom); skb = napi_build_skb(va, ALIGN(tot_len, FUN_EPRQ_PKT_ALIGN)); if (unlikely(!skb)) goto no_mem; skb_reserve(skb, headroom); __skb_put(skb, pkt_len); skb->protocol = eth_type_trans(skb, ndev); } else { prefetch(va); skb = napi_get_frags(q->napi); if (unlikely(!skb)) goto no_mem; if (ref_ok < 0) skb->pfmemalloc = 1; si = skb_shinfo(skb); si->nr_frags = rxreq->nsgl; for (i = 0; i < si->nr_frags; i++) si->frags[i] = frags[i]; skb->len = pkt_len; skb->data_len = pkt_len; skb->truesize += round_up(pkt_len, FUN_EPRQ_PKT_ALIGN); } skb_record_rx_queue(skb, q->qidx); cv = be16_to_cpu(rxreq->pkt_cv); if (likely((q->netdev->features & NETIF_F_RXHASH) && rxreq->hash)) skb_set_hash(skb, be32_to_cpu(rxreq->hash), cqe_to_pkt_hash_type(cv)); if (likely((q->netdev->features & NETIF_F_RXCSUM) && rxreq->csum)) { FUN_QSTAT_INC(q, rx_cso); skb->ip_summed = CHECKSUM_UNNECESSARY; skb->csum_level = be16_to_cpu(rxreq->csum) - 1; } if (unlikely(rx_hwtstamp_enabled(q->netdev))) skb_hwtstamps(skb)->hwtstamp = be64_to_cpu(rxreq->timestamp); trace_funeth_rx(q, rxreq->nsgl, pkt_len, skb->hash, cv); gro_res = skb->data_len ? napi_gro_frags(q->napi) : napi_gro_receive(q->napi, skb); if (gro_res == GRO_MERGED || gro_res == GRO_MERGED_FREE) FUN_QSTAT_INC(q, gro_merged); else if (gro_res == GRO_HELD) FUN_QSTAT_INC(q, gro_pkts); return; no_mem: FUN_QSTAT_INC(q, rx_mem_drops); /* Release the references we've been granted for the frag pages. * We return the ref of the last frag and free the rest. */ q->cur_buf->pg_refs++; for (i = 0; i < rxreq->nsgl - 1; i++) __free_page(skb_frag_page(frags + i)); } /* Return 0 if the phase tag of the CQE at the CQ's head matches expectations * indicating the CQE is new. */ static u16 cqe_phase_mismatch(const struct fun_cqe_info *ci, u16 phase) { u16 sf_p = be16_to_cpu(ci->sf_p); return (sf_p & 1) ^ phase; } /* Walk through a CQ identifying and processing fresh CQEs up to the given * budget. Return the remaining budget. */ static int fun_process_cqes(struct funeth_rxq *q, int budget) { struct funeth_priv *fp = netdev_priv(q->netdev); struct funeth_txq **xdpqs, *xdp_q = NULL; xdpqs = rcu_dereference_bh(fp->xdpqs); if (xdpqs) xdp_q = xdpqs[smp_processor_id()]; while (budget && !cqe_phase_mismatch(q->next_cqe_info, q->phase)) { /* access other descriptor fields after the phase check */ dma_rmb(); fun_handle_cqe_pkt(q, xdp_q); budget--; } if (unlikely(q->xdp_flush)) { if (q->xdp_flush & FUN_XDP_FLUSH_TX) fun_txq_wr_db(xdp_q); if (q->xdp_flush & FUN_XDP_FLUSH_REDIR) xdp_do_flush(); q->xdp_flush = 0; } return budget; } /* NAPI handler for Rx queues. Calls the CQE processing loop and writes RQ/CQ * doorbells as needed. */ int fun_rxq_napi_poll(struct napi_struct *napi, int budget) { struct fun_irq *irq = container_of(napi, struct fun_irq, napi); struct funeth_rxq *q = irq->rxq; int work_done = budget - fun_process_cqes(q, budget); u32 cq_db_val = q->cq_head; if (unlikely(work_done >= budget)) FUN_QSTAT_INC(q, rx_budget); else if (napi_complete_done(napi, work_done)) cq_db_val |= q->irq_db_val; /* check whether to post new Rx buffers */ if (q->rq_cons - q->rq_cons_db >= q->rq_db_thres) { u64_stats_update_begin(&q->syncp); q->stats.rx_bufs += q->rq_cons - q->rq_cons_db; u64_stats_update_end(&q->syncp); q->rq_cons_db = q->rq_cons; writel((q->rq_cons - 1) & q->rq_mask, q->rq_db); } writel(cq_db_val, q->cq_db); return work_done; } /* Free the Rx buffers of an Rx queue. */ static void fun_rxq_free_bufs(struct funeth_rxq *q) { struct funeth_rxbuf *b = q->bufs; unsigned int i; for (i = 0; i <= q->rq_mask; i++, b++) funeth_free_page(q, b); funeth_free_page(q, &q->spare_buf); q->cur_buf = NULL; } /* Initially provision an Rx queue with Rx buffers. */ static int fun_rxq_alloc_bufs(struct funeth_rxq *q, int node) { struct funeth_rxbuf *b = q->bufs; unsigned int i; for (i = 0; i <= q->rq_mask; i++, b++) { if (funeth_alloc_page(q, b, node, GFP_KERNEL)) { fun_rxq_free_bufs(q); return -ENOMEM; } q->rqes[i] = FUN_EPRQ_RQBUF_INIT(b->dma_addr); } q->cur_buf = q->bufs; return 0; } /* Initialize a used-buffer cache of the given depth. */ static int fun_rxq_init_cache(struct funeth_rx_cache *c, unsigned int depth, int node) { c->mask = depth - 1; c->bufs = kvzalloc_node(depth * sizeof(*c->bufs), GFP_KERNEL, node); return c->bufs ? 0 : -ENOMEM; } /* Deallocate an Rx queue's used-buffer cache and its contents. */ static void fun_rxq_free_cache(struct funeth_rxq *q) { struct funeth_rxbuf *b = q->cache.bufs; unsigned int i; for (i = 0; i <= q->cache.mask; i++, b++) funeth_free_page(q, b); kvfree(q->cache.bufs); q->cache.bufs = NULL; } int fun_rxq_set_bpf(struct funeth_rxq *q, struct bpf_prog *prog) { struct funeth_priv *fp = netdev_priv(q->netdev); struct fun_admin_epcq_req cmd; u16 headroom; int err; headroom = prog ? FUN_XDP_HEADROOM : FUN_RX_HEADROOM; if (headroom != q->headroom) { cmd.common = FUN_ADMIN_REQ_COMMON_INIT2(FUN_ADMIN_OP_EPCQ, sizeof(cmd)); cmd.u.modify = FUN_ADMIN_EPCQ_MODIFY_REQ_INIT(FUN_ADMIN_SUBOP_MODIFY, 0, q->hw_cqid, headroom); err = fun_submit_admin_sync_cmd(fp->fdev, &cmd.common, NULL, 0, 0); if (err) return err; q->headroom = headroom; } WRITE_ONCE(q->xdp_prog, prog); return 0; } /* Create an Rx queue, allocating the host memory it needs. */ static struct funeth_rxq *fun_rxq_create_sw(struct net_device *dev, unsigned int qidx, unsigned int ncqe, unsigned int nrqe, struct fun_irq *irq) { struct funeth_priv *fp = netdev_priv(dev); struct funeth_rxq *q; int err = -ENOMEM; int numa_node; numa_node = fun_irq_node(irq); q = kzalloc_node(sizeof(*q), GFP_KERNEL, numa_node); if (!q) goto err; q->qidx = qidx; q->netdev = dev; q->cq_mask = ncqe - 1; q->rq_mask = nrqe - 1; q->numa_node = numa_node; q->rq_db_thres = nrqe / 4; u64_stats_init(&q->syncp); q->dma_dev = &fp->pdev->dev; q->rqes = fun_alloc_ring_mem(q->dma_dev, nrqe, sizeof(*q->rqes), sizeof(*q->bufs), false, numa_node, &q->rq_dma_addr, (void **)&q->bufs, NULL); if (!q->rqes) goto free_q; q->cqes = fun_alloc_ring_mem(q->dma_dev, ncqe, FUNETH_CQE_SIZE, 0, false, numa_node, &q->cq_dma_addr, NULL, NULL); if (!q->cqes) goto free_rqes; err = fun_rxq_init_cache(&q->cache, nrqe, numa_node); if (err) goto free_cqes; err = fun_rxq_alloc_bufs(q, numa_node); if (err) goto free_cache; q->stats.rx_bufs = q->rq_mask; q->init_state = FUN_QSTATE_INIT_SW; return q; free_cache: fun_rxq_free_cache(q); free_cqes: dma_free_coherent(q->dma_dev, ncqe * FUNETH_CQE_SIZE, q->cqes, q->cq_dma_addr); free_rqes: fun_free_ring_mem(q->dma_dev, nrqe, sizeof(*q->rqes), false, q->rqes, q->rq_dma_addr, q->bufs); free_q: kfree(q); err: netdev_err(dev, "Unable to allocate memory for Rx queue %u\n", qidx); return ERR_PTR(err); } static void fun_rxq_free_sw(struct funeth_rxq *q) { struct funeth_priv *fp = netdev_priv(q->netdev); fun_rxq_free_cache(q); fun_rxq_free_bufs(q); fun_free_ring_mem(q->dma_dev, q->rq_mask + 1, sizeof(*q->rqes), false, q->rqes, q->rq_dma_addr, q->bufs); dma_free_coherent(q->dma_dev, (q->cq_mask + 1) * FUNETH_CQE_SIZE, q->cqes, q->cq_dma_addr); /* Before freeing the queue transfer key counters to the device. */ fp->rx_packets += q->stats.rx_pkts; fp->rx_bytes += q->stats.rx_bytes; fp->rx_dropped += q->stats.rx_map_err + q->stats.rx_mem_drops; kfree(q); } /* Create an Rx queue's resources on the device. */ int fun_rxq_create_dev(struct funeth_rxq *q, struct fun_irq *irq) { struct funeth_priv *fp = netdev_priv(q->netdev); unsigned int ncqe = q->cq_mask + 1; unsigned int nrqe = q->rq_mask + 1; int err; err = xdp_rxq_info_reg(&q->xdp_rxq, q->netdev, q->qidx, irq->napi.napi_id); if (err) goto out; err = xdp_rxq_info_reg_mem_model(&q->xdp_rxq, MEM_TYPE_PAGE_SHARED, NULL); if (err) goto xdp_unreg; q->phase = 1; q->irq_cnt = 0; q->cq_head = 0; q->rq_cons = 0; q->rq_cons_db = 0; q->buf_offset = 0; q->napi = &irq->napi; q->irq_db_val = fp->cq_irq_db; q->next_cqe_info = cqe_to_info(q->cqes); q->xdp_prog = fp->xdp_prog; q->headroom = fp->xdp_prog ? FUN_XDP_HEADROOM : FUN_RX_HEADROOM; err = fun_sq_create(fp->fdev, FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR | FUN_ADMIN_EPSQ_CREATE_FLAG_RQ, 0, FUN_HCI_ID_INVALID, 0, nrqe, q->rq_dma_addr, 0, 0, 0, 0, fp->fdev->kern_end_qid, PAGE_SHIFT, &q->hw_sqid, &q->rq_db); if (err) goto xdp_unreg; err = fun_cq_create(fp->fdev, FUN_ADMIN_RES_CREATE_FLAG_ALLOCATOR | FUN_ADMIN_EPCQ_CREATE_FLAG_RQ, 0, q->hw_sqid, ilog2(FUNETH_CQE_SIZE), ncqe, q->cq_dma_addr, q->headroom, FUN_RX_TAILROOM, 0, 0, irq->irq_idx, 0, fp->fdev->kern_end_qid, &q->hw_cqid, &q->cq_db); if (err) goto free_rq; irq->rxq = q; writel(q->rq_mask, q->rq_db); q->init_state = FUN_QSTATE_INIT_FULL; netif_info(fp, ifup, q->netdev, "Rx queue %u, depth %u/%u, HW qid %u/%u, IRQ idx %u, node %d, headroom %u\n", q->qidx, ncqe, nrqe, q->hw_cqid, q->hw_sqid, irq->irq_idx, q->numa_node, q->headroom); return 0; free_rq: fun_destroy_sq(fp->fdev, q->hw_sqid); xdp_unreg: xdp_rxq_info_unreg(&q->xdp_rxq); out: netdev_err(q->netdev, "Failed to create Rx queue %u on device, error %d\n", q->qidx, err); return err; } static void fun_rxq_free_dev(struct funeth_rxq *q) { struct funeth_priv *fp = netdev_priv(q->netdev); struct fun_irq *irq; if (q->init_state < FUN_QSTATE_INIT_FULL) return; irq = container_of(q->napi, struct fun_irq, napi); netif_info(fp, ifdown, q->netdev, "Freeing Rx queue %u (id %u/%u), IRQ %u\n", q->qidx, q->hw_cqid, q->hw_sqid, irq->irq_idx); irq->rxq = NULL; xdp_rxq_info_unreg(&q->xdp_rxq); fun_destroy_sq(fp->fdev, q->hw_sqid); fun_destroy_cq(fp->fdev, q->hw_cqid); q->init_state = FUN_QSTATE_INIT_SW; } /* Create or advance an Rx queue, allocating all the host and device resources * needed to reach the target state. */ int funeth_rxq_create(struct net_device *dev, unsigned int qidx, unsigned int ncqe, unsigned int nrqe, struct fun_irq *irq, int state, struct funeth_rxq **qp) { struct funeth_rxq *q = *qp; int err; if (!q) { q = fun_rxq_create_sw(dev, qidx, ncqe, nrqe, irq); if (IS_ERR(q)) return PTR_ERR(q); } if (q->init_state >= state) goto out; err = fun_rxq_create_dev(q, irq); if (err) { if (!*qp) fun_rxq_free_sw(q); return err; } out: *qp = q; return 0; } /* Free Rx queue resources until it reaches the target state. */ struct funeth_rxq *funeth_rxq_free(struct funeth_rxq *q, int state) { if (state < FUN_QSTATE_INIT_FULL) fun_rxq_free_dev(q); if (state == FUN_QSTATE_DESTROYED) { fun_rxq_free_sw(q); q = NULL; } return q; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1