Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Lorenzo Bianconi | 12987 | 45.74% | 50 | 20.92% |
John Crispin | 5611 | 19.76% | 21 | 8.79% |
Felix Fietkau | 2238 | 7.88% | 25 | 10.46% |
Sean Wang | 1785 | 6.29% | 38 | 15.90% |
Daniel Golle | 1438 | 5.06% | 18 | 7.53% |
Stefan Roese | 895 | 3.15% | 3 | 1.26% |
Nelson Chang | 831 | 2.93% | 5 | 2.09% |
René van Dorst | 732 | 2.58% | 6 | 2.51% |
Russell King | 478 | 1.68% | 14 | 5.86% |
Frank Wunderlich | 368 | 1.30% | 2 | 0.84% |
Elad Yifee | 293 | 1.03% | 1 | 0.42% |
Andrew Lunn | 169 | 0.60% | 3 | 1.26% |
Björn Mork | 125 | 0.44% | 1 | 0.42% |
DENG Qingfang | 75 | 0.26% | 1 | 0.42% |
Chen Lin | 67 | 0.24% | 1 | 0.42% |
MarkLee | 37 | 0.13% | 3 | 1.26% |
Yang Yingliang | 36 | 0.13% | 2 | 0.84% |
Breno Leitão | 30 | 0.11% | 2 | 0.84% |
Marek Majtyka | 24 | 0.08% | 1 | 0.42% |
Yan Cangang | 20 | 0.07% | 1 | 0.42% |
Dan Carpenter | 17 | 0.06% | 1 | 0.42% |
Landen Chao | 13 | 0.05% | 1 | 0.42% |
Hangyu Hua | 12 | 0.04% | 1 | 0.42% |
Ilya Lipnitskiy | 12 | 0.04% | 2 | 0.84% |
Vladimir Zapolskiy | 9 | 0.03% | 1 | 0.42% |
Ansuel Smith | 8 | 0.03% | 1 | 0.42% |
Nishka Dasgupta | 8 | 0.03% | 1 | 0.42% |
Ziyang Xuan | 7 | 0.02% | 1 | 0.42% |
Thomas Gleixner | 6 | 0.02% | 2 | 0.84% |
Sujuan Chen | 6 | 0.02% | 1 | 0.42% |
Johan Hovold | 5 | 0.02% | 1 | 0.42% |
Eric Dumazet | 4 | 0.01% | 1 | 0.42% |
Ryder Lee | 4 | 0.01% | 1 | 0.42% |
Lin Yun Sheng | 3 | 0.01% | 1 | 0.42% |
Mark Brown | 3 | 0.01% | 1 | 0.42% |
Matthew Wilcox | 3 | 0.01% | 1 | 0.42% |
Thierry Reding | 3 | 0.01% | 1 | 0.42% |
Elena Reshetova | 3 | 0.01% | 1 | 0.42% |
Tony Prisk | 3 | 0.01% | 1 | 0.42% |
Arnd Bergmann | 2 | 0.01% | 2 | 0.84% |
Tom Rix | 2 | 0.01% | 1 | 0.42% |
Uwe Kleine-König | 2 | 0.01% | 1 | 0.42% |
Yue haibing | 2 | 0.01% | 1 | 0.42% |
Tariq Toukan | 2 | 0.01% | 1 | 0.42% |
Baoyou Xie | 2 | 0.01% | 1 | 0.42% |
Rob Herring | 2 | 0.01% | 2 | 0.84% |
Wolfram Sang | 2 | 0.01% | 1 | 0.42% |
Wei Yongjun | 2 | 0.01% | 1 | 0.42% |
LiuJian | 2 | 0.01% | 1 | 0.42% |
Sebastian Andrzej Siewior | 1 | 0.00% | 1 | 0.42% |
Alexander Couzens | 1 | 0.00% | 1 | 0.42% |
Julia Lawall | 1 | 0.00% | 1 | 0.42% |
Stephen Hemminger | 1 | 0.00% | 1 | 0.42% |
Arınç ÜNAL | 1 | 0.00% | 1 | 0.42% |
Vladimir Oltean | 1 | 0.00% | 1 | 0.42% |
Luis R. Rodriguez | 1 | 0.00% | 1 | 0.42% |
Florian Fainelli | 1 | 0.00% | 1 | 0.42% |
Total | 28396 | 239 |
// SPDX-License-Identifier: GPL-2.0-only /* * * Copyright (C) 2009-2016 John Crispin <blogic@openwrt.org> * Copyright (C) 2009-2016 Felix Fietkau <nbd@openwrt.org> * Copyright (C) 2013-2016 Michael Lee <igvtee@gmail.com> */ #include <linux/of.h> #include <linux/of_mdio.h> #include <linux/of_net.h> #include <linux/of_address.h> #include <linux/mfd/syscon.h> #include <linux/platform_device.h> #include <linux/regmap.h> #include <linux/clk.h> #include <linux/pm_runtime.h> #include <linux/if_vlan.h> #include <linux/reset.h> #include <linux/tcp.h> #include <linux/interrupt.h> #include <linux/pinctrl/devinfo.h> #include <linux/phylink.h> #include <linux/pcs/pcs-mtk-lynxi.h> #include <linux/jhash.h> #include <linux/bitfield.h> #include <net/dsa.h> #include <net/dst_metadata.h> #include <net/page_pool/helpers.h> #include "mtk_eth_soc.h" #include "mtk_wed.h" static int mtk_msg_level = -1; module_param_named(msg_level, mtk_msg_level, int, 0); MODULE_PARM_DESC(msg_level, "Message level (-1=defaults,0=none,...,16=all)"); #define MTK_ETHTOOL_STAT(x) { #x, \ offsetof(struct mtk_hw_stats, x) / sizeof(u64) } #define MTK_ETHTOOL_XDP_STAT(x) { #x, \ offsetof(struct mtk_hw_stats, xdp_stats.x) / \ sizeof(u64) } static const struct mtk_reg_map mtk_reg_map = { .tx_irq_mask = 0x1a1c, .tx_irq_status = 0x1a18, .pdma = { .rx_ptr = 0x0900, .rx_cnt_cfg = 0x0904, .pcrx_ptr = 0x0908, .glo_cfg = 0x0a04, .rst_idx = 0x0a08, .delay_irq = 0x0a0c, .irq_status = 0x0a20, .irq_mask = 0x0a28, .adma_rx_dbg0 = 0x0a38, .int_grp = 0x0a50, }, .qdma = { .qtx_cfg = 0x1800, .qtx_sch = 0x1804, .rx_ptr = 0x1900, .rx_cnt_cfg = 0x1904, .qcrx_ptr = 0x1908, .glo_cfg = 0x1a04, .rst_idx = 0x1a08, .delay_irq = 0x1a0c, .fc_th = 0x1a10, .tx_sch_rate = 0x1a14, .int_grp = 0x1a20, .hred = 0x1a44, .ctx_ptr = 0x1b00, .dtx_ptr = 0x1b04, .crx_ptr = 0x1b10, .drx_ptr = 0x1b14, .fq_head = 0x1b20, .fq_tail = 0x1b24, .fq_count = 0x1b28, .fq_blen = 0x1b2c, }, .gdm1_cnt = 0x2400, .gdma_to_ppe = { [0] = 0x4444, }, .ppe_base = 0x0c00, .wdma_base = { [0] = 0x2800, [1] = 0x2c00, }, .pse_iq_sta = 0x0110, .pse_oq_sta = 0x0118, }; static const struct mtk_reg_map mt7628_reg_map = { .tx_irq_mask = 0x0a28, .tx_irq_status = 0x0a20, .pdma = { .rx_ptr = 0x0900, .rx_cnt_cfg = 0x0904, .pcrx_ptr = 0x0908, .glo_cfg = 0x0a04, .rst_idx = 0x0a08, .delay_irq = 0x0a0c, .irq_status = 0x0a20, .irq_mask = 0x0a28, .int_grp = 0x0a50, }, }; static const struct mtk_reg_map mt7986_reg_map = { .tx_irq_mask = 0x461c, .tx_irq_status = 0x4618, .pdma = { .rx_ptr = 0x4100, .rx_cnt_cfg = 0x4104, .pcrx_ptr = 0x4108, .glo_cfg = 0x4204, .rst_idx = 0x4208, .delay_irq = 0x420c, .irq_status = 0x4220, .irq_mask = 0x4228, .adma_rx_dbg0 = 0x4238, .int_grp = 0x4250, }, .qdma = { .qtx_cfg = 0x4400, .qtx_sch = 0x4404, .rx_ptr = 0x4500, .rx_cnt_cfg = 0x4504, .qcrx_ptr = 0x4508, .glo_cfg = 0x4604, .rst_idx = 0x4608, .delay_irq = 0x460c, .fc_th = 0x4610, .int_grp = 0x4620, .hred = 0x4644, .ctx_ptr = 0x4700, .dtx_ptr = 0x4704, .crx_ptr = 0x4710, .drx_ptr = 0x4714, .fq_head = 0x4720, .fq_tail = 0x4724, .fq_count = 0x4728, .fq_blen = 0x472c, .tx_sch_rate = 0x4798, }, .gdm1_cnt = 0x1c00, .gdma_to_ppe = { [0] = 0x3333, [1] = 0x4444, }, .ppe_base = 0x2000, .wdma_base = { [0] = 0x4800, [1] = 0x4c00, }, .pse_iq_sta = 0x0180, .pse_oq_sta = 0x01a0, }; static const struct mtk_reg_map mt7988_reg_map = { .tx_irq_mask = 0x461c, .tx_irq_status = 0x4618, .pdma = { .rx_ptr = 0x6900, .rx_cnt_cfg = 0x6904, .pcrx_ptr = 0x6908, .glo_cfg = 0x6a04, .rst_idx = 0x6a08, .delay_irq = 0x6a0c, .irq_status = 0x6a20, .irq_mask = 0x6a28, .adma_rx_dbg0 = 0x6a38, .int_grp = 0x6a50, }, .qdma = { .qtx_cfg = 0x4400, .qtx_sch = 0x4404, .rx_ptr = 0x4500, .rx_cnt_cfg = 0x4504, .qcrx_ptr = 0x4508, .glo_cfg = 0x4604, .rst_idx = 0x4608, .delay_irq = 0x460c, .fc_th = 0x4610, .int_grp = 0x4620, .hred = 0x4644, .ctx_ptr = 0x4700, .dtx_ptr = 0x4704, .crx_ptr = 0x4710, .drx_ptr = 0x4714, .fq_head = 0x4720, .fq_tail = 0x4724, .fq_count = 0x4728, .fq_blen = 0x472c, .tx_sch_rate = 0x4798, }, .gdm1_cnt = 0x1c00, .gdma_to_ppe = { [0] = 0x3333, [1] = 0x4444, [2] = 0xcccc, }, .ppe_base = 0x2000, .wdma_base = { [0] = 0x4800, [1] = 0x4c00, [2] = 0x5000, }, .pse_iq_sta = 0x0180, .pse_oq_sta = 0x01a0, }; /* strings used by ethtool */ static const struct mtk_ethtool_stats { char str[ETH_GSTRING_LEN]; u32 offset; } mtk_ethtool_stats[] = { MTK_ETHTOOL_STAT(tx_bytes), MTK_ETHTOOL_STAT(tx_packets), MTK_ETHTOOL_STAT(tx_skip), MTK_ETHTOOL_STAT(tx_collisions), MTK_ETHTOOL_STAT(rx_bytes), MTK_ETHTOOL_STAT(rx_packets), MTK_ETHTOOL_STAT(rx_overflow), MTK_ETHTOOL_STAT(rx_fcs_errors), MTK_ETHTOOL_STAT(rx_short_errors), MTK_ETHTOOL_STAT(rx_long_errors), MTK_ETHTOOL_STAT(rx_checksum_errors), MTK_ETHTOOL_STAT(rx_flow_control_packets), MTK_ETHTOOL_XDP_STAT(rx_xdp_redirect), MTK_ETHTOOL_XDP_STAT(rx_xdp_pass), MTK_ETHTOOL_XDP_STAT(rx_xdp_drop), MTK_ETHTOOL_XDP_STAT(rx_xdp_tx), MTK_ETHTOOL_XDP_STAT(rx_xdp_tx_errors), MTK_ETHTOOL_XDP_STAT(tx_xdp_xmit), MTK_ETHTOOL_XDP_STAT(tx_xdp_xmit_errors), }; static const char * const mtk_clks_source_name[] = { "ethif", "sgmiitop", "esw", "gp0", "gp1", "gp2", "gp3", "xgp1", "xgp2", "xgp3", "crypto", "fe", "trgpll", "sgmii_tx250m", "sgmii_rx250m", "sgmii_cdr_ref", "sgmii_cdr_fb", "sgmii2_tx250m", "sgmii2_rx250m", "sgmii2_cdr_ref", "sgmii2_cdr_fb", "sgmii_ck", "eth2pll", "wocpu0", "wocpu1", "netsys0", "netsys1", "ethwarp_wocpu2", "ethwarp_wocpu1", "ethwarp_wocpu0", "top_usxgmii0_sel", "top_usxgmii1_sel", "top_sgm0_sel", "top_sgm1_sel", "top_xfi_phy0_xtal_sel", "top_xfi_phy1_xtal_sel", "top_eth_gmii_sel", "top_eth_refck_50m_sel", "top_eth_sys_200m_sel", "top_eth_sys_sel", "top_eth_xgmii_sel", "top_eth_mii_sel", "top_netsys_sel", "top_netsys_500m_sel", "top_netsys_pao_2x_sel", "top_netsys_sync_250m_sel", "top_netsys_ppefb_250m_sel", "top_netsys_warp_sel", }; void mtk_w32(struct mtk_eth *eth, u32 val, unsigned reg) { __raw_writel(val, eth->base + reg); } u32 mtk_r32(struct mtk_eth *eth, unsigned reg) { return __raw_readl(eth->base + reg); } u32 mtk_m32(struct mtk_eth *eth, u32 mask, u32 set, unsigned int reg) { u32 val; val = mtk_r32(eth, reg); val &= ~mask; val |= set; mtk_w32(eth, val, reg); return reg; } static int mtk_mdio_busy_wait(struct mtk_eth *eth) { unsigned long t_start = jiffies; while (1) { if (!(mtk_r32(eth, MTK_PHY_IAC) & PHY_IAC_ACCESS)) return 0; if (time_after(jiffies, t_start + PHY_IAC_TIMEOUT)) break; cond_resched(); } dev_err(eth->dev, "mdio: MDIO timeout\n"); return -ETIMEDOUT; } static int _mtk_mdio_write_c22(struct mtk_eth *eth, u32 phy_addr, u32 phy_reg, u32 write_data) { int ret; ret = mtk_mdio_busy_wait(eth); if (ret < 0) return ret; mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START_C22 | PHY_IAC_CMD_WRITE | PHY_IAC_REG(phy_reg) | PHY_IAC_ADDR(phy_addr) | PHY_IAC_DATA(write_data), MTK_PHY_IAC); ret = mtk_mdio_busy_wait(eth); if (ret < 0) return ret; return 0; } static int _mtk_mdio_write_c45(struct mtk_eth *eth, u32 phy_addr, u32 devad, u32 phy_reg, u32 write_data) { int ret; ret = mtk_mdio_busy_wait(eth); if (ret < 0) return ret; mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START_C45 | PHY_IAC_CMD_C45_ADDR | PHY_IAC_REG(devad) | PHY_IAC_ADDR(phy_addr) | PHY_IAC_DATA(phy_reg), MTK_PHY_IAC); ret = mtk_mdio_busy_wait(eth); if (ret < 0) return ret; mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START_C45 | PHY_IAC_CMD_WRITE | PHY_IAC_REG(devad) | PHY_IAC_ADDR(phy_addr) | PHY_IAC_DATA(write_data), MTK_PHY_IAC); ret = mtk_mdio_busy_wait(eth); if (ret < 0) return ret; return 0; } static int _mtk_mdio_read_c22(struct mtk_eth *eth, u32 phy_addr, u32 phy_reg) { int ret; ret = mtk_mdio_busy_wait(eth); if (ret < 0) return ret; mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START_C22 | PHY_IAC_CMD_C22_READ | PHY_IAC_REG(phy_reg) | PHY_IAC_ADDR(phy_addr), MTK_PHY_IAC); ret = mtk_mdio_busy_wait(eth); if (ret < 0) return ret; return mtk_r32(eth, MTK_PHY_IAC) & PHY_IAC_DATA_MASK; } static int _mtk_mdio_read_c45(struct mtk_eth *eth, u32 phy_addr, u32 devad, u32 phy_reg) { int ret; ret = mtk_mdio_busy_wait(eth); if (ret < 0) return ret; mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START_C45 | PHY_IAC_CMD_C45_ADDR | PHY_IAC_REG(devad) | PHY_IAC_ADDR(phy_addr) | PHY_IAC_DATA(phy_reg), MTK_PHY_IAC); ret = mtk_mdio_busy_wait(eth); if (ret < 0) return ret; mtk_w32(eth, PHY_IAC_ACCESS | PHY_IAC_START_C45 | PHY_IAC_CMD_C45_READ | PHY_IAC_REG(devad) | PHY_IAC_ADDR(phy_addr), MTK_PHY_IAC); ret = mtk_mdio_busy_wait(eth); if (ret < 0) return ret; return mtk_r32(eth, MTK_PHY_IAC) & PHY_IAC_DATA_MASK; } static int mtk_mdio_write_c22(struct mii_bus *bus, int phy_addr, int phy_reg, u16 val) { struct mtk_eth *eth = bus->priv; return _mtk_mdio_write_c22(eth, phy_addr, phy_reg, val); } static int mtk_mdio_write_c45(struct mii_bus *bus, int phy_addr, int devad, int phy_reg, u16 val) { struct mtk_eth *eth = bus->priv; return _mtk_mdio_write_c45(eth, phy_addr, devad, phy_reg, val); } static int mtk_mdio_read_c22(struct mii_bus *bus, int phy_addr, int phy_reg) { struct mtk_eth *eth = bus->priv; return _mtk_mdio_read_c22(eth, phy_addr, phy_reg); } static int mtk_mdio_read_c45(struct mii_bus *bus, int phy_addr, int devad, int phy_reg) { struct mtk_eth *eth = bus->priv; return _mtk_mdio_read_c45(eth, phy_addr, devad, phy_reg); } static int mt7621_gmac0_rgmii_adjust(struct mtk_eth *eth, phy_interface_t interface) { u32 val; val = (interface == PHY_INTERFACE_MODE_TRGMII) ? ETHSYS_TRGMII_MT7621_DDR_PLL : 0; regmap_update_bits(eth->ethsys, ETHSYS_CLKCFG0, ETHSYS_TRGMII_MT7621_MASK, val); return 0; } static void mtk_gmac0_rgmii_adjust(struct mtk_eth *eth, phy_interface_t interface) { int ret; if (interface == PHY_INTERFACE_MODE_TRGMII) { mtk_w32(eth, TRGMII_MODE, INTF_MODE); ret = clk_set_rate(eth->clks[MTK_CLK_TRGPLL], 500000000); if (ret) dev_err(eth->dev, "Failed to set trgmii pll: %d\n", ret); return; } dev_err(eth->dev, "Missing PLL configuration, ethernet may not work\n"); } static void mtk_setup_bridge_switch(struct mtk_eth *eth) { /* Force Port1 XGMAC Link Up */ mtk_m32(eth, 0, MTK_XGMAC_FORCE_LINK(MTK_GMAC1_ID), MTK_XGMAC_STS(MTK_GMAC1_ID)); /* Adjust GSW bridge IPG to 11 */ mtk_m32(eth, GSWTX_IPG_MASK | GSWRX_IPG_MASK, (GSW_IPG_11 << GSWTX_IPG_SHIFT) | (GSW_IPG_11 << GSWRX_IPG_SHIFT), MTK_GSW_CFG); } static struct phylink_pcs *mtk_mac_select_pcs(struct phylink_config *config, phy_interface_t interface) { struct mtk_mac *mac = container_of(config, struct mtk_mac, phylink_config); struct mtk_eth *eth = mac->hw; unsigned int sid; if (interface == PHY_INTERFACE_MODE_SGMII || phy_interface_mode_is_8023z(interface)) { sid = (MTK_HAS_CAPS(eth->soc->caps, MTK_SHARED_SGMII)) ? 0 : mac->id; return eth->sgmii_pcs[sid]; } return NULL; } static void mtk_mac_config(struct phylink_config *config, unsigned int mode, const struct phylink_link_state *state) { struct mtk_mac *mac = container_of(config, struct mtk_mac, phylink_config); struct mtk_eth *eth = mac->hw; int val, ge_mode, err = 0; u32 i; /* MT76x8 has no hardware settings between for the MAC */ if (!MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628) && mac->interface != state->interface) { /* Setup soc pin functions */ switch (state->interface) { case PHY_INTERFACE_MODE_TRGMII: case PHY_INTERFACE_MODE_RGMII_TXID: case PHY_INTERFACE_MODE_RGMII_RXID: case PHY_INTERFACE_MODE_RGMII_ID: case PHY_INTERFACE_MODE_RGMII: case PHY_INTERFACE_MODE_MII: if (MTK_HAS_CAPS(eth->soc->caps, MTK_RGMII)) { err = mtk_gmac_rgmii_path_setup(eth, mac->id); if (err) goto init_err; } break; case PHY_INTERFACE_MODE_1000BASEX: case PHY_INTERFACE_MODE_2500BASEX: case PHY_INTERFACE_MODE_SGMII: err = mtk_gmac_sgmii_path_setup(eth, mac->id); if (err) goto init_err; break; case PHY_INTERFACE_MODE_GMII: if (MTK_HAS_CAPS(eth->soc->caps, MTK_GEPHY)) { err = mtk_gmac_gephy_path_setup(eth, mac->id); if (err) goto init_err; } break; case PHY_INTERFACE_MODE_INTERNAL: break; default: goto err_phy; } /* Setup clock for 1st gmac */ if (!mac->id && state->interface != PHY_INTERFACE_MODE_SGMII && !phy_interface_mode_is_8023z(state->interface) && MTK_HAS_CAPS(mac->hw->soc->caps, MTK_GMAC1_TRGMII)) { if (MTK_HAS_CAPS(mac->hw->soc->caps, MTK_TRGMII_MT7621_CLK)) { if (mt7621_gmac0_rgmii_adjust(mac->hw, state->interface)) goto err_phy; } else { mtk_gmac0_rgmii_adjust(mac->hw, state->interface); /* mt7623_pad_clk_setup */ for (i = 0 ; i < NUM_TRGMII_CTRL; i++) mtk_w32(mac->hw, TD_DM_DRVP(8) | TD_DM_DRVN(8), TRGMII_TD_ODT(i)); /* Assert/release MT7623 RXC reset */ mtk_m32(mac->hw, 0, RXC_RST | RXC_DQSISEL, TRGMII_RCK_CTRL); mtk_m32(mac->hw, RXC_RST, 0, TRGMII_RCK_CTRL); } } switch (state->interface) { case PHY_INTERFACE_MODE_MII: case PHY_INTERFACE_MODE_GMII: ge_mode = 1; break; default: ge_mode = 0; break; } /* put the gmac into the right mode */ regmap_read(eth->ethsys, ETHSYS_SYSCFG0, &val); val &= ~SYSCFG0_GE_MODE(SYSCFG0_GE_MASK, mac->id); val |= SYSCFG0_GE_MODE(ge_mode, mac->id); regmap_write(eth->ethsys, ETHSYS_SYSCFG0, val); mac->interface = state->interface; } /* SGMII */ if (state->interface == PHY_INTERFACE_MODE_SGMII || phy_interface_mode_is_8023z(state->interface)) { /* The path GMAC to SGMII will be enabled once the SGMIISYS is * being setup done. */ regmap_read(eth->ethsys, ETHSYS_SYSCFG0, &val); regmap_update_bits(eth->ethsys, ETHSYS_SYSCFG0, SYSCFG0_SGMII_MASK, ~(u32)SYSCFG0_SGMII_MASK); /* Save the syscfg0 value for mac_finish */ mac->syscfg0 = val; } else if (phylink_autoneg_inband(mode)) { dev_err(eth->dev, "In-band mode not supported in non SGMII mode!\n"); return; } /* Setup gmac */ if (mtk_is_netsys_v3_or_greater(eth) && mac->interface == PHY_INTERFACE_MODE_INTERNAL) { mtk_w32(mac->hw, MTK_GDMA_XGDM_SEL, MTK_GDMA_EG_CTRL(mac->id)); mtk_w32(mac->hw, MAC_MCR_FORCE_LINK_DOWN, MTK_MAC_MCR(mac->id)); mtk_setup_bridge_switch(eth); } return; err_phy: dev_err(eth->dev, "%s: GMAC%d mode %s not supported!\n", __func__, mac->id, phy_modes(state->interface)); return; init_err: dev_err(eth->dev, "%s: GMAC%d mode %s err: %d!\n", __func__, mac->id, phy_modes(state->interface), err); } static int mtk_mac_finish(struct phylink_config *config, unsigned int mode, phy_interface_t interface) { struct mtk_mac *mac = container_of(config, struct mtk_mac, phylink_config); struct mtk_eth *eth = mac->hw; u32 mcr_cur, mcr_new; /* Enable SGMII */ if (interface == PHY_INTERFACE_MODE_SGMII || phy_interface_mode_is_8023z(interface)) regmap_update_bits(eth->ethsys, ETHSYS_SYSCFG0, SYSCFG0_SGMII_MASK, mac->syscfg0); /* Setup gmac */ mcr_cur = mtk_r32(mac->hw, MTK_MAC_MCR(mac->id)); mcr_new = mcr_cur; mcr_new |= MAC_MCR_IPG_CFG | MAC_MCR_FORCE_MODE | MAC_MCR_BACKOFF_EN | MAC_MCR_BACKPR_EN | MAC_MCR_RX_FIFO_CLR_DIS; /* Only update control register when needed! */ if (mcr_new != mcr_cur) mtk_w32(mac->hw, mcr_new, MTK_MAC_MCR(mac->id)); return 0; } static void mtk_mac_link_down(struct phylink_config *config, unsigned int mode, phy_interface_t interface) { struct mtk_mac *mac = container_of(config, struct mtk_mac, phylink_config); u32 mcr = mtk_r32(mac->hw, MTK_MAC_MCR(mac->id)); mcr &= ~(MAC_MCR_TX_EN | MAC_MCR_RX_EN | MAC_MCR_FORCE_LINK); mtk_w32(mac->hw, mcr, MTK_MAC_MCR(mac->id)); } static void mtk_set_queue_speed(struct mtk_eth *eth, unsigned int idx, int speed) { const struct mtk_soc_data *soc = eth->soc; u32 ofs, val; if (!MTK_HAS_CAPS(soc->caps, MTK_QDMA)) return; val = MTK_QTX_SCH_MIN_RATE_EN | /* minimum: 10 Mbps */ FIELD_PREP(MTK_QTX_SCH_MIN_RATE_MAN, 1) | FIELD_PREP(MTK_QTX_SCH_MIN_RATE_EXP, 4) | MTK_QTX_SCH_LEAKY_BUCKET_SIZE; if (mtk_is_netsys_v1(eth)) val |= MTK_QTX_SCH_LEAKY_BUCKET_EN; if (IS_ENABLED(CONFIG_SOC_MT7621)) { switch (speed) { case SPEED_10: val |= MTK_QTX_SCH_MAX_RATE_EN | FIELD_PREP(MTK_QTX_SCH_MAX_RATE_MAN, 103) | FIELD_PREP(MTK_QTX_SCH_MAX_RATE_EXP, 2) | FIELD_PREP(MTK_QTX_SCH_MAX_RATE_WEIGHT, 1); break; case SPEED_100: val |= MTK_QTX_SCH_MAX_RATE_EN | FIELD_PREP(MTK_QTX_SCH_MAX_RATE_MAN, 103) | FIELD_PREP(MTK_QTX_SCH_MAX_RATE_EXP, 3); FIELD_PREP(MTK_QTX_SCH_MAX_RATE_WEIGHT, 1); break; case SPEED_1000: val |= MTK_QTX_SCH_MAX_RATE_EN | FIELD_PREP(MTK_QTX_SCH_MAX_RATE_MAN, 105) | FIELD_PREP(MTK_QTX_SCH_MAX_RATE_EXP, 4) | FIELD_PREP(MTK_QTX_SCH_MAX_RATE_WEIGHT, 10); break; default: break; } } else { switch (speed) { case SPEED_10: val |= MTK_QTX_SCH_MAX_RATE_EN | FIELD_PREP(MTK_QTX_SCH_MAX_RATE_MAN, 1) | FIELD_PREP(MTK_QTX_SCH_MAX_RATE_EXP, 4) | FIELD_PREP(MTK_QTX_SCH_MAX_RATE_WEIGHT, 1); break; case SPEED_100: val |= MTK_QTX_SCH_MAX_RATE_EN | FIELD_PREP(MTK_QTX_SCH_MAX_RATE_MAN, 1) | FIELD_PREP(MTK_QTX_SCH_MAX_RATE_EXP, 5); FIELD_PREP(MTK_QTX_SCH_MAX_RATE_WEIGHT, 1); break; case SPEED_1000: val |= MTK_QTX_SCH_MAX_RATE_EN | FIELD_PREP(MTK_QTX_SCH_MAX_RATE_MAN, 10) | FIELD_PREP(MTK_QTX_SCH_MAX_RATE_EXP, 5) | FIELD_PREP(MTK_QTX_SCH_MAX_RATE_WEIGHT, 10); break; default: break; } } ofs = MTK_QTX_OFFSET * idx; mtk_w32(eth, val, soc->reg_map->qdma.qtx_sch + ofs); } static void mtk_mac_link_up(struct phylink_config *config, struct phy_device *phy, unsigned int mode, phy_interface_t interface, int speed, int duplex, bool tx_pause, bool rx_pause) { struct mtk_mac *mac = container_of(config, struct mtk_mac, phylink_config); u32 mcr; mcr = mtk_r32(mac->hw, MTK_MAC_MCR(mac->id)); mcr &= ~(MAC_MCR_SPEED_100 | MAC_MCR_SPEED_1000 | MAC_MCR_FORCE_DPX | MAC_MCR_FORCE_TX_FC | MAC_MCR_FORCE_RX_FC); /* Configure speed */ mac->speed = speed; switch (speed) { case SPEED_2500: case SPEED_1000: mcr |= MAC_MCR_SPEED_1000; break; case SPEED_100: mcr |= MAC_MCR_SPEED_100; break; } /* Configure duplex */ if (duplex == DUPLEX_FULL) mcr |= MAC_MCR_FORCE_DPX; /* Configure pause modes - phylink will avoid these for half duplex */ if (tx_pause) mcr |= MAC_MCR_FORCE_TX_FC; if (rx_pause) mcr |= MAC_MCR_FORCE_RX_FC; mcr |= MAC_MCR_TX_EN | MAC_MCR_RX_EN | MAC_MCR_FORCE_LINK; mtk_w32(mac->hw, mcr, MTK_MAC_MCR(mac->id)); } static const struct phylink_mac_ops mtk_phylink_ops = { .mac_select_pcs = mtk_mac_select_pcs, .mac_config = mtk_mac_config, .mac_finish = mtk_mac_finish, .mac_link_down = mtk_mac_link_down, .mac_link_up = mtk_mac_link_up, }; static int mtk_mdio_init(struct mtk_eth *eth) { unsigned int max_clk = 2500000, divider; struct device_node *mii_np; int ret; u32 val; mii_np = of_get_child_by_name(eth->dev->of_node, "mdio-bus"); if (!mii_np) { dev_err(eth->dev, "no %s child node found", "mdio-bus"); return -ENODEV; } if (!of_device_is_available(mii_np)) { ret = -ENODEV; goto err_put_node; } eth->mii_bus = devm_mdiobus_alloc(eth->dev); if (!eth->mii_bus) { ret = -ENOMEM; goto err_put_node; } eth->mii_bus->name = "mdio"; eth->mii_bus->read = mtk_mdio_read_c22; eth->mii_bus->write = mtk_mdio_write_c22; eth->mii_bus->read_c45 = mtk_mdio_read_c45; eth->mii_bus->write_c45 = mtk_mdio_write_c45; eth->mii_bus->priv = eth; eth->mii_bus->parent = eth->dev; snprintf(eth->mii_bus->id, MII_BUS_ID_SIZE, "%pOFn", mii_np); if (!of_property_read_u32(mii_np, "clock-frequency", &val)) { if (val > MDC_MAX_FREQ || val < MDC_MAX_FREQ / MDC_MAX_DIVIDER) { dev_err(eth->dev, "MDIO clock frequency out of range"); ret = -EINVAL; goto err_put_node; } max_clk = val; } divider = min_t(unsigned int, DIV_ROUND_UP(MDC_MAX_FREQ, max_clk), 63); /* Configure MDC Turbo Mode */ if (mtk_is_netsys_v3_or_greater(eth)) mtk_m32(eth, 0, MISC_MDC_TURBO, MTK_MAC_MISC_V3); /* Configure MDC Divider */ val = FIELD_PREP(PPSC_MDC_CFG, divider); if (!mtk_is_netsys_v3_or_greater(eth)) val |= PPSC_MDC_TURBO; mtk_m32(eth, PPSC_MDC_CFG, val, MTK_PPSC); dev_dbg(eth->dev, "MDC is running on %d Hz\n", MDC_MAX_FREQ / divider); ret = of_mdiobus_register(eth->mii_bus, mii_np); err_put_node: of_node_put(mii_np); return ret; } static void mtk_mdio_cleanup(struct mtk_eth *eth) { if (!eth->mii_bus) return; mdiobus_unregister(eth->mii_bus); } static inline void mtk_tx_irq_disable(struct mtk_eth *eth, u32 mask) { unsigned long flags; u32 val; spin_lock_irqsave(ð->tx_irq_lock, flags); val = mtk_r32(eth, eth->soc->reg_map->tx_irq_mask); mtk_w32(eth, val & ~mask, eth->soc->reg_map->tx_irq_mask); spin_unlock_irqrestore(ð->tx_irq_lock, flags); } static inline void mtk_tx_irq_enable(struct mtk_eth *eth, u32 mask) { unsigned long flags; u32 val; spin_lock_irqsave(ð->tx_irq_lock, flags); val = mtk_r32(eth, eth->soc->reg_map->tx_irq_mask); mtk_w32(eth, val | mask, eth->soc->reg_map->tx_irq_mask); spin_unlock_irqrestore(ð->tx_irq_lock, flags); } static inline void mtk_rx_irq_disable(struct mtk_eth *eth, u32 mask) { unsigned long flags; u32 val; spin_lock_irqsave(ð->rx_irq_lock, flags); val = mtk_r32(eth, eth->soc->reg_map->pdma.irq_mask); mtk_w32(eth, val & ~mask, eth->soc->reg_map->pdma.irq_mask); spin_unlock_irqrestore(ð->rx_irq_lock, flags); } static inline void mtk_rx_irq_enable(struct mtk_eth *eth, u32 mask) { unsigned long flags; u32 val; spin_lock_irqsave(ð->rx_irq_lock, flags); val = mtk_r32(eth, eth->soc->reg_map->pdma.irq_mask); mtk_w32(eth, val | mask, eth->soc->reg_map->pdma.irq_mask); spin_unlock_irqrestore(ð->rx_irq_lock, flags); } static int mtk_set_mac_address(struct net_device *dev, void *p) { int ret = eth_mac_addr(dev, p); struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; const char *macaddr = dev->dev_addr; if (ret) return ret; if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state))) return -EBUSY; spin_lock_bh(&mac->hw->page_lock); if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) { mtk_w32(mac->hw, (macaddr[0] << 8) | macaddr[1], MT7628_SDM_MAC_ADRH); mtk_w32(mac->hw, (macaddr[2] << 24) | (macaddr[3] << 16) | (macaddr[4] << 8) | macaddr[5], MT7628_SDM_MAC_ADRL); } else { mtk_w32(mac->hw, (macaddr[0] << 8) | macaddr[1], MTK_GDMA_MAC_ADRH(mac->id)); mtk_w32(mac->hw, (macaddr[2] << 24) | (macaddr[3] << 16) | (macaddr[4] << 8) | macaddr[5], MTK_GDMA_MAC_ADRL(mac->id)); } spin_unlock_bh(&mac->hw->page_lock); return 0; } void mtk_stats_update_mac(struct mtk_mac *mac) { struct mtk_hw_stats *hw_stats = mac->hw_stats; struct mtk_eth *eth = mac->hw; u64_stats_update_begin(&hw_stats->syncp); if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) { hw_stats->tx_packets += mtk_r32(mac->hw, MT7628_SDM_TPCNT); hw_stats->tx_bytes += mtk_r32(mac->hw, MT7628_SDM_TBCNT); hw_stats->rx_packets += mtk_r32(mac->hw, MT7628_SDM_RPCNT); hw_stats->rx_bytes += mtk_r32(mac->hw, MT7628_SDM_RBCNT); hw_stats->rx_checksum_errors += mtk_r32(mac->hw, MT7628_SDM_CS_ERR); } else { const struct mtk_reg_map *reg_map = eth->soc->reg_map; unsigned int offs = hw_stats->reg_offset; u64 stats; hw_stats->rx_bytes += mtk_r32(mac->hw, reg_map->gdm1_cnt + offs); stats = mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x4 + offs); if (stats) hw_stats->rx_bytes += (stats << 32); hw_stats->rx_packets += mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x8 + offs); hw_stats->rx_overflow += mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x10 + offs); hw_stats->rx_fcs_errors += mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x14 + offs); hw_stats->rx_short_errors += mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x18 + offs); hw_stats->rx_long_errors += mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x1c + offs); hw_stats->rx_checksum_errors += mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x20 + offs); hw_stats->rx_flow_control_packets += mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x24 + offs); if (mtk_is_netsys_v3_or_greater(eth)) { hw_stats->tx_skip += mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x50 + offs); hw_stats->tx_collisions += mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x54 + offs); hw_stats->tx_bytes += mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x40 + offs); stats = mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x44 + offs); if (stats) hw_stats->tx_bytes += (stats << 32); hw_stats->tx_packets += mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x48 + offs); } else { hw_stats->tx_skip += mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x28 + offs); hw_stats->tx_collisions += mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x2c + offs); hw_stats->tx_bytes += mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x30 + offs); stats = mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x34 + offs); if (stats) hw_stats->tx_bytes += (stats << 32); hw_stats->tx_packets += mtk_r32(mac->hw, reg_map->gdm1_cnt + 0x38 + offs); } } u64_stats_update_end(&hw_stats->syncp); } static void mtk_stats_update(struct mtk_eth *eth) { int i; for (i = 0; i < MTK_MAX_DEVS; i++) { if (!eth->mac[i] || !eth->mac[i]->hw_stats) continue; if (spin_trylock(ð->mac[i]->hw_stats->stats_lock)) { mtk_stats_update_mac(eth->mac[i]); spin_unlock(ð->mac[i]->hw_stats->stats_lock); } } } static void mtk_get_stats64(struct net_device *dev, struct rtnl_link_stats64 *storage) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_hw_stats *hw_stats = mac->hw_stats; unsigned int start; if (netif_running(dev) && netif_device_present(dev)) { if (spin_trylock_bh(&hw_stats->stats_lock)) { mtk_stats_update_mac(mac); spin_unlock_bh(&hw_stats->stats_lock); } } do { start = u64_stats_fetch_begin(&hw_stats->syncp); storage->rx_packets = hw_stats->rx_packets; storage->tx_packets = hw_stats->tx_packets; storage->rx_bytes = hw_stats->rx_bytes; storage->tx_bytes = hw_stats->tx_bytes; storage->collisions = hw_stats->tx_collisions; storage->rx_length_errors = hw_stats->rx_short_errors + hw_stats->rx_long_errors; storage->rx_over_errors = hw_stats->rx_overflow; storage->rx_crc_errors = hw_stats->rx_fcs_errors; storage->rx_errors = hw_stats->rx_checksum_errors; storage->tx_aborted_errors = hw_stats->tx_skip; } while (u64_stats_fetch_retry(&hw_stats->syncp, start)); storage->tx_errors = dev->stats.tx_errors; storage->rx_dropped = dev->stats.rx_dropped; storage->tx_dropped = dev->stats.tx_dropped; } static inline int mtk_max_frag_size(int mtu) { /* make sure buf_size will be at least MTK_MAX_RX_LENGTH */ if (mtu + MTK_RX_ETH_HLEN < MTK_MAX_RX_LENGTH_2K) mtu = MTK_MAX_RX_LENGTH_2K - MTK_RX_ETH_HLEN; return SKB_DATA_ALIGN(MTK_RX_HLEN + mtu) + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); } static inline int mtk_max_buf_size(int frag_size) { int buf_size = frag_size - NET_SKB_PAD - NET_IP_ALIGN - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)); WARN_ON(buf_size < MTK_MAX_RX_LENGTH_2K); return buf_size; } static bool mtk_rx_get_desc(struct mtk_eth *eth, struct mtk_rx_dma_v2 *rxd, struct mtk_rx_dma_v2 *dma_rxd) { rxd->rxd2 = READ_ONCE(dma_rxd->rxd2); if (!(rxd->rxd2 & RX_DMA_DONE)) return false; rxd->rxd1 = READ_ONCE(dma_rxd->rxd1); rxd->rxd3 = READ_ONCE(dma_rxd->rxd3); rxd->rxd4 = READ_ONCE(dma_rxd->rxd4); if (mtk_is_netsys_v3_or_greater(eth)) { rxd->rxd5 = READ_ONCE(dma_rxd->rxd5); rxd->rxd6 = READ_ONCE(dma_rxd->rxd6); } return true; } static void *mtk_max_lro_buf_alloc(gfp_t gfp_mask) { unsigned int size = mtk_max_frag_size(MTK_MAX_LRO_RX_LENGTH); unsigned long data; data = __get_free_pages(gfp_mask | __GFP_COMP | __GFP_NOWARN, get_order(size)); return (void *)data; } /* the qdma core needs scratch memory to be setup */ static int mtk_init_fq_dma(struct mtk_eth *eth) { const struct mtk_soc_data *soc = eth->soc; dma_addr_t phy_ring_tail; int cnt = soc->tx.fq_dma_size; dma_addr_t dma_addr; int i, j, len; if (MTK_HAS_CAPS(eth->soc->caps, MTK_SRAM)) eth->scratch_ring = eth->sram_base; else eth->scratch_ring = dma_alloc_coherent(eth->dma_dev, cnt * soc->tx.desc_size, ð->phy_scratch_ring, GFP_KERNEL); if (unlikely(!eth->scratch_ring)) return -ENOMEM; phy_ring_tail = eth->phy_scratch_ring + soc->tx.desc_size * (cnt - 1); for (j = 0; j < DIV_ROUND_UP(soc->tx.fq_dma_size, MTK_FQ_DMA_LENGTH); j++) { len = min_t(int, cnt - j * MTK_FQ_DMA_LENGTH, MTK_FQ_DMA_LENGTH); eth->scratch_head[j] = kcalloc(len, MTK_QDMA_PAGE_SIZE, GFP_KERNEL); if (unlikely(!eth->scratch_head[j])) return -ENOMEM; dma_addr = dma_map_single(eth->dma_dev, eth->scratch_head[j], len * MTK_QDMA_PAGE_SIZE, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(eth->dma_dev, dma_addr))) return -ENOMEM; for (i = 0; i < cnt; i++) { struct mtk_tx_dma_v2 *txd; txd = eth->scratch_ring + (j * MTK_FQ_DMA_LENGTH + i) * soc->tx.desc_size; txd->txd1 = dma_addr + i * MTK_QDMA_PAGE_SIZE; if (j * MTK_FQ_DMA_LENGTH + i < cnt) txd->txd2 = eth->phy_scratch_ring + (j * MTK_FQ_DMA_LENGTH + i + 1) * soc->tx.desc_size; txd->txd3 = TX_DMA_PLEN0(MTK_QDMA_PAGE_SIZE); if (MTK_HAS_CAPS(soc->caps, MTK_36BIT_DMA)) txd->txd3 |= TX_DMA_PREP_ADDR64(dma_addr + i * MTK_QDMA_PAGE_SIZE); txd->txd4 = 0; if (mtk_is_netsys_v2_or_greater(eth)) { txd->txd5 = 0; txd->txd6 = 0; txd->txd7 = 0; txd->txd8 = 0; } } } mtk_w32(eth, eth->phy_scratch_ring, soc->reg_map->qdma.fq_head); mtk_w32(eth, phy_ring_tail, soc->reg_map->qdma.fq_tail); mtk_w32(eth, (cnt << 16) | cnt, soc->reg_map->qdma.fq_count); mtk_w32(eth, MTK_QDMA_PAGE_SIZE << 16, soc->reg_map->qdma.fq_blen); return 0; } static void *mtk_qdma_phys_to_virt(struct mtk_tx_ring *ring, u32 desc) { return ring->dma + (desc - ring->phys); } static struct mtk_tx_buf *mtk_desc_to_tx_buf(struct mtk_tx_ring *ring, void *txd, u32 txd_size) { int idx = (txd - ring->dma) / txd_size; return &ring->buf[idx]; } static struct mtk_tx_dma *qdma_to_pdma(struct mtk_tx_ring *ring, struct mtk_tx_dma *dma) { return ring->dma_pdma - (struct mtk_tx_dma *)ring->dma + dma; } static int txd_to_idx(struct mtk_tx_ring *ring, void *dma, u32 txd_size) { return (dma - ring->dma) / txd_size; } static void mtk_tx_unmap(struct mtk_eth *eth, struct mtk_tx_buf *tx_buf, struct xdp_frame_bulk *bq, bool napi) { if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) { if (tx_buf->flags & MTK_TX_FLAGS_SINGLE0) { dma_unmap_single(eth->dma_dev, dma_unmap_addr(tx_buf, dma_addr0), dma_unmap_len(tx_buf, dma_len0), DMA_TO_DEVICE); } else if (tx_buf->flags & MTK_TX_FLAGS_PAGE0) { dma_unmap_page(eth->dma_dev, dma_unmap_addr(tx_buf, dma_addr0), dma_unmap_len(tx_buf, dma_len0), DMA_TO_DEVICE); } } else { if (dma_unmap_len(tx_buf, dma_len0)) { dma_unmap_page(eth->dma_dev, dma_unmap_addr(tx_buf, dma_addr0), dma_unmap_len(tx_buf, dma_len0), DMA_TO_DEVICE); } if (dma_unmap_len(tx_buf, dma_len1)) { dma_unmap_page(eth->dma_dev, dma_unmap_addr(tx_buf, dma_addr1), dma_unmap_len(tx_buf, dma_len1), DMA_TO_DEVICE); } } if (tx_buf->data && tx_buf->data != (void *)MTK_DMA_DUMMY_DESC) { if (tx_buf->type == MTK_TYPE_SKB) { struct sk_buff *skb = tx_buf->data; if (napi) napi_consume_skb(skb, napi); else dev_kfree_skb_any(skb); } else { struct xdp_frame *xdpf = tx_buf->data; if (napi && tx_buf->type == MTK_TYPE_XDP_TX) xdp_return_frame_rx_napi(xdpf); else if (bq) xdp_return_frame_bulk(xdpf, bq); else xdp_return_frame(xdpf); } } tx_buf->flags = 0; tx_buf->data = NULL; } static void setup_tx_buf(struct mtk_eth *eth, struct mtk_tx_buf *tx_buf, struct mtk_tx_dma *txd, dma_addr_t mapped_addr, size_t size, int idx) { if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) { dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr); dma_unmap_len_set(tx_buf, dma_len0, size); } else { if (idx & 1) { txd->txd3 = mapped_addr; txd->txd2 |= TX_DMA_PLEN1(size); dma_unmap_addr_set(tx_buf, dma_addr1, mapped_addr); dma_unmap_len_set(tx_buf, dma_len1, size); } else { tx_buf->data = (void *)MTK_DMA_DUMMY_DESC; txd->txd1 = mapped_addr; txd->txd2 = TX_DMA_PLEN0(size); dma_unmap_addr_set(tx_buf, dma_addr0, mapped_addr); dma_unmap_len_set(tx_buf, dma_len0, size); } } } static void mtk_tx_set_dma_desc_v1(struct net_device *dev, void *txd, struct mtk_tx_dma_desc_info *info) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; struct mtk_tx_dma *desc = txd; u32 data; WRITE_ONCE(desc->txd1, info->addr); data = TX_DMA_SWC | TX_DMA_PLEN0(info->size) | FIELD_PREP(TX_DMA_PQID, info->qid); if (info->last) data |= TX_DMA_LS0; WRITE_ONCE(desc->txd3, data); data = (mac->id + 1) << TX_DMA_FPORT_SHIFT; /* forward port */ if (info->first) { if (info->gso) data |= TX_DMA_TSO; /* tx checksum offload */ if (info->csum) data |= TX_DMA_CHKSUM; /* vlan header offload */ if (info->vlan) data |= TX_DMA_INS_VLAN | info->vlan_tci; } WRITE_ONCE(desc->txd4, data); } static void mtk_tx_set_dma_desc_v2(struct net_device *dev, void *txd, struct mtk_tx_dma_desc_info *info) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_tx_dma_v2 *desc = txd; struct mtk_eth *eth = mac->hw; u32 data; WRITE_ONCE(desc->txd1, info->addr); data = TX_DMA_PLEN0(info->size); if (info->last) data |= TX_DMA_LS0; if (MTK_HAS_CAPS(eth->soc->caps, MTK_36BIT_DMA)) data |= TX_DMA_PREP_ADDR64(info->addr); WRITE_ONCE(desc->txd3, data); /* set forward port */ switch (mac->id) { case MTK_GMAC1_ID: data = PSE_GDM1_PORT << TX_DMA_FPORT_SHIFT_V2; break; case MTK_GMAC2_ID: data = PSE_GDM2_PORT << TX_DMA_FPORT_SHIFT_V2; break; case MTK_GMAC3_ID: data = PSE_GDM3_PORT << TX_DMA_FPORT_SHIFT_V2; break; } data |= TX_DMA_SWC_V2 | QID_BITS_V2(info->qid); WRITE_ONCE(desc->txd4, data); data = 0; if (info->first) { if (info->gso) data |= TX_DMA_TSO_V2; /* tx checksum offload */ if (info->csum) data |= TX_DMA_CHKSUM_V2; if (mtk_is_netsys_v3_or_greater(eth) && netdev_uses_dsa(dev)) data |= TX_DMA_SPTAG_V3; } WRITE_ONCE(desc->txd5, data); data = 0; if (info->first && info->vlan) data |= TX_DMA_INS_VLAN_V2 | info->vlan_tci; WRITE_ONCE(desc->txd6, data); WRITE_ONCE(desc->txd7, 0); WRITE_ONCE(desc->txd8, 0); } static void mtk_tx_set_dma_desc(struct net_device *dev, void *txd, struct mtk_tx_dma_desc_info *info) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; if (mtk_is_netsys_v2_or_greater(eth)) mtk_tx_set_dma_desc_v2(dev, txd, info); else mtk_tx_set_dma_desc_v1(dev, txd, info); } static int mtk_tx_map(struct sk_buff *skb, struct net_device *dev, int tx_num, struct mtk_tx_ring *ring, bool gso) { struct mtk_tx_dma_desc_info txd_info = { .size = skb_headlen(skb), .gso = gso, .csum = skb->ip_summed == CHECKSUM_PARTIAL, .vlan = skb_vlan_tag_present(skb), .qid = skb_get_queue_mapping(skb), .vlan_tci = skb_vlan_tag_get(skb), .first = true, .last = !skb_is_nonlinear(skb), }; struct netdev_queue *txq; struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; const struct mtk_soc_data *soc = eth->soc; struct mtk_tx_dma *itxd, *txd; struct mtk_tx_dma *itxd_pdma, *txd_pdma; struct mtk_tx_buf *itx_buf, *tx_buf; int i, n_desc = 1; int queue = skb_get_queue_mapping(skb); int k = 0; txq = netdev_get_tx_queue(dev, queue); itxd = ring->next_free; itxd_pdma = qdma_to_pdma(ring, itxd); if (itxd == ring->last_free) return -ENOMEM; itx_buf = mtk_desc_to_tx_buf(ring, itxd, soc->tx.desc_size); memset(itx_buf, 0, sizeof(*itx_buf)); txd_info.addr = dma_map_single(eth->dma_dev, skb->data, txd_info.size, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(eth->dma_dev, txd_info.addr))) return -ENOMEM; mtk_tx_set_dma_desc(dev, itxd, &txd_info); itx_buf->flags |= MTK_TX_FLAGS_SINGLE0; itx_buf->mac_id = mac->id; setup_tx_buf(eth, itx_buf, itxd_pdma, txd_info.addr, txd_info.size, k++); /* TX SG offload */ txd = itxd; txd_pdma = qdma_to_pdma(ring, txd); for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; unsigned int offset = 0; int frag_size = skb_frag_size(frag); while (frag_size) { bool new_desc = true; if (MTK_HAS_CAPS(soc->caps, MTK_QDMA) || (i & 0x1)) { txd = mtk_qdma_phys_to_virt(ring, txd->txd2); txd_pdma = qdma_to_pdma(ring, txd); if (txd == ring->last_free) goto err_dma; n_desc++; } else { new_desc = false; } memset(&txd_info, 0, sizeof(struct mtk_tx_dma_desc_info)); txd_info.size = min_t(unsigned int, frag_size, soc->tx.dma_max_len); txd_info.qid = queue; txd_info.last = i == skb_shinfo(skb)->nr_frags - 1 && !(frag_size - txd_info.size); txd_info.addr = skb_frag_dma_map(eth->dma_dev, frag, offset, txd_info.size, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(eth->dma_dev, txd_info.addr))) goto err_dma; mtk_tx_set_dma_desc(dev, txd, &txd_info); tx_buf = mtk_desc_to_tx_buf(ring, txd, soc->tx.desc_size); if (new_desc) memset(tx_buf, 0, sizeof(*tx_buf)); tx_buf->data = (void *)MTK_DMA_DUMMY_DESC; tx_buf->flags |= MTK_TX_FLAGS_PAGE0; tx_buf->mac_id = mac->id; setup_tx_buf(eth, tx_buf, txd_pdma, txd_info.addr, txd_info.size, k++); frag_size -= txd_info.size; offset += txd_info.size; } } /* store skb to cleanup */ itx_buf->type = MTK_TYPE_SKB; itx_buf->data = skb; if (!MTK_HAS_CAPS(soc->caps, MTK_QDMA)) { if (k & 0x1) txd_pdma->txd2 |= TX_DMA_LS0; else txd_pdma->txd2 |= TX_DMA_LS1; } netdev_tx_sent_queue(txq, skb->len); skb_tx_timestamp(skb); ring->next_free = mtk_qdma_phys_to_virt(ring, txd->txd2); atomic_sub(n_desc, &ring->free_count); /* make sure that all changes to the dma ring are flushed before we * continue */ wmb(); if (MTK_HAS_CAPS(soc->caps, MTK_QDMA)) { if (netif_xmit_stopped(txq) || !netdev_xmit_more()) mtk_w32(eth, txd->txd2, soc->reg_map->qdma.ctx_ptr); } else { int next_idx; next_idx = NEXT_DESP_IDX(txd_to_idx(ring, txd, soc->tx.desc_size), ring->dma_size); mtk_w32(eth, next_idx, MT7628_TX_CTX_IDX0); } return 0; err_dma: do { tx_buf = mtk_desc_to_tx_buf(ring, itxd, soc->tx.desc_size); /* unmap dma */ mtk_tx_unmap(eth, tx_buf, NULL, false); itxd->txd3 = TX_DMA_LS0 | TX_DMA_OWNER_CPU; if (!MTK_HAS_CAPS(soc->caps, MTK_QDMA)) itxd_pdma->txd2 = TX_DMA_DESP2_DEF; itxd = mtk_qdma_phys_to_virt(ring, itxd->txd2); itxd_pdma = qdma_to_pdma(ring, itxd); } while (itxd != txd); return -ENOMEM; } static int mtk_cal_txd_req(struct mtk_eth *eth, struct sk_buff *skb) { int i, nfrags = 1; skb_frag_t *frag; if (skb_is_gso(skb)) { for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { frag = &skb_shinfo(skb)->frags[i]; nfrags += DIV_ROUND_UP(skb_frag_size(frag), eth->soc->tx.dma_max_len); } } else { nfrags += skb_shinfo(skb)->nr_frags; } return nfrags; } static int mtk_queue_stopped(struct mtk_eth *eth) { int i; for (i = 0; i < MTK_MAX_DEVS; i++) { if (!eth->netdev[i]) continue; if (netif_queue_stopped(eth->netdev[i])) return 1; } return 0; } static void mtk_wake_queue(struct mtk_eth *eth) { int i; for (i = 0; i < MTK_MAX_DEVS; i++) { if (!eth->netdev[i]) continue; netif_tx_wake_all_queues(eth->netdev[i]); } } static netdev_tx_t mtk_start_xmit(struct sk_buff *skb, struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; struct mtk_tx_ring *ring = ð->tx_ring; struct net_device_stats *stats = &dev->stats; bool gso = false; int tx_num; /* normally we can rely on the stack not calling this more than once, * however we have 2 queues running on the same ring so we need to lock * the ring access */ spin_lock(ð->page_lock); if (unlikely(test_bit(MTK_RESETTING, ð->state))) goto drop; tx_num = mtk_cal_txd_req(eth, skb); if (unlikely(atomic_read(&ring->free_count) <= tx_num)) { netif_tx_stop_all_queues(dev); netif_err(eth, tx_queued, dev, "Tx Ring full when queue awake!\n"); spin_unlock(ð->page_lock); return NETDEV_TX_BUSY; } /* TSO: fill MSS info in tcp checksum field */ if (skb_is_gso(skb)) { if (skb_cow_head(skb, 0)) { netif_warn(eth, tx_err, dev, "GSO expand head fail.\n"); goto drop; } if (skb_shinfo(skb)->gso_type & (SKB_GSO_TCPV4 | SKB_GSO_TCPV6)) { gso = true; tcp_hdr(skb)->check = htons(skb_shinfo(skb)->gso_size); } } if (mtk_tx_map(skb, dev, tx_num, ring, gso) < 0) goto drop; if (unlikely(atomic_read(&ring->free_count) <= ring->thresh)) netif_tx_stop_all_queues(dev); spin_unlock(ð->page_lock); return NETDEV_TX_OK; drop: spin_unlock(ð->page_lock); stats->tx_dropped++; dev_kfree_skb_any(skb); return NETDEV_TX_OK; } static struct mtk_rx_ring *mtk_get_rx_ring(struct mtk_eth *eth) { int i; struct mtk_rx_ring *ring; int idx; if (!eth->hwlro) return ð->rx_ring[0]; for (i = 0; i < MTK_MAX_RX_RING_NUM; i++) { struct mtk_rx_dma *rxd; ring = ð->rx_ring[i]; idx = NEXT_DESP_IDX(ring->calc_idx, ring->dma_size); rxd = ring->dma + idx * eth->soc->rx.desc_size; if (rxd->rxd2 & RX_DMA_DONE) { ring->calc_idx_update = true; return ring; } } return NULL; } static void mtk_update_rx_cpu_idx(struct mtk_eth *eth) { struct mtk_rx_ring *ring; int i; if (!eth->hwlro) { ring = ð->rx_ring[0]; mtk_w32(eth, ring->calc_idx, ring->crx_idx_reg); } else { for (i = 0; i < MTK_MAX_RX_RING_NUM; i++) { ring = ð->rx_ring[i]; if (ring->calc_idx_update) { ring->calc_idx_update = false; mtk_w32(eth, ring->calc_idx, ring->crx_idx_reg); } } } } static bool mtk_page_pool_enabled(struct mtk_eth *eth) { return mtk_is_netsys_v2_or_greater(eth); } static struct page_pool *mtk_create_page_pool(struct mtk_eth *eth, struct xdp_rxq_info *xdp_q, int id, int size) { struct page_pool_params pp_params = { .order = 0, .flags = PP_FLAG_DMA_MAP | PP_FLAG_DMA_SYNC_DEV, .pool_size = size, .nid = NUMA_NO_NODE, .dev = eth->dma_dev, .offset = MTK_PP_HEADROOM, .max_len = MTK_PP_MAX_BUF_SIZE, }; struct page_pool *pp; int err; pp_params.dma_dir = rcu_access_pointer(eth->prog) ? DMA_BIDIRECTIONAL : DMA_FROM_DEVICE; pp = page_pool_create(&pp_params); if (IS_ERR(pp)) return pp; err = __xdp_rxq_info_reg(xdp_q, eth->dummy_dev, id, eth->rx_napi.napi_id, PAGE_SIZE); if (err < 0) goto err_free_pp; err = xdp_rxq_info_reg_mem_model(xdp_q, MEM_TYPE_PAGE_POOL, pp); if (err) goto err_unregister_rxq; return pp; err_unregister_rxq: xdp_rxq_info_unreg(xdp_q); err_free_pp: page_pool_destroy(pp); return ERR_PTR(err); } static void *mtk_page_pool_get_buff(struct page_pool *pp, dma_addr_t *dma_addr, gfp_t gfp_mask) { struct page *page; page = page_pool_alloc_pages(pp, gfp_mask | __GFP_NOWARN); if (!page) return NULL; *dma_addr = page_pool_get_dma_addr(page) + MTK_PP_HEADROOM; return page_address(page); } static void mtk_rx_put_buff(struct mtk_rx_ring *ring, void *data, bool napi) { if (ring->page_pool) page_pool_put_full_page(ring->page_pool, virt_to_head_page(data), napi); else skb_free_frag(data); } static int mtk_xdp_frame_map(struct mtk_eth *eth, struct net_device *dev, struct mtk_tx_dma_desc_info *txd_info, struct mtk_tx_dma *txd, struct mtk_tx_buf *tx_buf, void *data, u16 headroom, int index, bool dma_map) { struct mtk_tx_ring *ring = ð->tx_ring; struct mtk_mac *mac = netdev_priv(dev); struct mtk_tx_dma *txd_pdma; if (dma_map) { /* ndo_xdp_xmit */ txd_info->addr = dma_map_single(eth->dma_dev, data, txd_info->size, DMA_TO_DEVICE); if (unlikely(dma_mapping_error(eth->dma_dev, txd_info->addr))) return -ENOMEM; tx_buf->flags |= MTK_TX_FLAGS_SINGLE0; } else { struct page *page = virt_to_head_page(data); txd_info->addr = page_pool_get_dma_addr(page) + sizeof(struct xdp_frame) + headroom; dma_sync_single_for_device(eth->dma_dev, txd_info->addr, txd_info->size, DMA_BIDIRECTIONAL); } mtk_tx_set_dma_desc(dev, txd, txd_info); tx_buf->mac_id = mac->id; tx_buf->type = dma_map ? MTK_TYPE_XDP_NDO : MTK_TYPE_XDP_TX; tx_buf->data = (void *)MTK_DMA_DUMMY_DESC; txd_pdma = qdma_to_pdma(ring, txd); setup_tx_buf(eth, tx_buf, txd_pdma, txd_info->addr, txd_info->size, index); return 0; } static int mtk_xdp_submit_frame(struct mtk_eth *eth, struct xdp_frame *xdpf, struct net_device *dev, bool dma_map) { struct skb_shared_info *sinfo = xdp_get_shared_info_from_frame(xdpf); const struct mtk_soc_data *soc = eth->soc; struct mtk_tx_ring *ring = ð->tx_ring; struct mtk_mac *mac = netdev_priv(dev); struct mtk_tx_dma_desc_info txd_info = { .size = xdpf->len, .first = true, .last = !xdp_frame_has_frags(xdpf), .qid = mac->id, }; int err, index = 0, n_desc = 1, nr_frags; struct mtk_tx_buf *htx_buf, *tx_buf; struct mtk_tx_dma *htxd, *txd; void *data = xdpf->data; if (unlikely(test_bit(MTK_RESETTING, ð->state))) return -EBUSY; nr_frags = unlikely(xdp_frame_has_frags(xdpf)) ? sinfo->nr_frags : 0; if (unlikely(atomic_read(&ring->free_count) <= 1 + nr_frags)) return -EBUSY; spin_lock(ð->page_lock); txd = ring->next_free; if (txd == ring->last_free) { spin_unlock(ð->page_lock); return -ENOMEM; } htxd = txd; tx_buf = mtk_desc_to_tx_buf(ring, txd, soc->tx.desc_size); memset(tx_buf, 0, sizeof(*tx_buf)); htx_buf = tx_buf; for (;;) { err = mtk_xdp_frame_map(eth, dev, &txd_info, txd, tx_buf, data, xdpf->headroom, index, dma_map); if (err < 0) goto unmap; if (txd_info.last) break; if (MTK_HAS_CAPS(soc->caps, MTK_QDMA) || (index & 0x1)) { txd = mtk_qdma_phys_to_virt(ring, txd->txd2); if (txd == ring->last_free) goto unmap; tx_buf = mtk_desc_to_tx_buf(ring, txd, soc->tx.desc_size); memset(tx_buf, 0, sizeof(*tx_buf)); n_desc++; } memset(&txd_info, 0, sizeof(struct mtk_tx_dma_desc_info)); txd_info.size = skb_frag_size(&sinfo->frags[index]); txd_info.last = index + 1 == nr_frags; txd_info.qid = mac->id; data = skb_frag_address(&sinfo->frags[index]); index++; } /* store xdpf for cleanup */ htx_buf->data = xdpf; if (!MTK_HAS_CAPS(soc->caps, MTK_QDMA)) { struct mtk_tx_dma *txd_pdma = qdma_to_pdma(ring, txd); if (index & 1) txd_pdma->txd2 |= TX_DMA_LS0; else txd_pdma->txd2 |= TX_DMA_LS1; } ring->next_free = mtk_qdma_phys_to_virt(ring, txd->txd2); atomic_sub(n_desc, &ring->free_count); /* make sure that all changes to the dma ring are flushed before we * continue */ wmb(); if (MTK_HAS_CAPS(soc->caps, MTK_QDMA)) { mtk_w32(eth, txd->txd2, soc->reg_map->qdma.ctx_ptr); } else { int idx; idx = txd_to_idx(ring, txd, soc->tx.desc_size); mtk_w32(eth, NEXT_DESP_IDX(idx, ring->dma_size), MT7628_TX_CTX_IDX0); } spin_unlock(ð->page_lock); return 0; unmap: while (htxd != txd) { tx_buf = mtk_desc_to_tx_buf(ring, htxd, soc->tx.desc_size); mtk_tx_unmap(eth, tx_buf, NULL, false); htxd->txd3 = TX_DMA_LS0 | TX_DMA_OWNER_CPU; if (!MTK_HAS_CAPS(soc->caps, MTK_QDMA)) { struct mtk_tx_dma *txd_pdma = qdma_to_pdma(ring, htxd); txd_pdma->txd2 = TX_DMA_DESP2_DEF; } htxd = mtk_qdma_phys_to_virt(ring, htxd->txd2); } spin_unlock(ð->page_lock); return err; } static int mtk_xdp_xmit(struct net_device *dev, int num_frame, struct xdp_frame **frames, u32 flags) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_hw_stats *hw_stats = mac->hw_stats; struct mtk_eth *eth = mac->hw; int i, nxmit = 0; if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK)) return -EINVAL; for (i = 0; i < num_frame; i++) { if (mtk_xdp_submit_frame(eth, frames[i], dev, true)) break; nxmit++; } u64_stats_update_begin(&hw_stats->syncp); hw_stats->xdp_stats.tx_xdp_xmit += nxmit; hw_stats->xdp_stats.tx_xdp_xmit_errors += num_frame - nxmit; u64_stats_update_end(&hw_stats->syncp); return nxmit; } static u32 mtk_xdp_run(struct mtk_eth *eth, struct mtk_rx_ring *ring, struct xdp_buff *xdp, struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_hw_stats *hw_stats = mac->hw_stats; u64 *count = &hw_stats->xdp_stats.rx_xdp_drop; struct bpf_prog *prog; u32 act = XDP_PASS; rcu_read_lock(); prog = rcu_dereference(eth->prog); if (!prog) goto out; act = bpf_prog_run_xdp(prog, xdp); switch (act) { case XDP_PASS: count = &hw_stats->xdp_stats.rx_xdp_pass; goto update_stats; case XDP_REDIRECT: if (unlikely(xdp_do_redirect(dev, xdp, prog))) { act = XDP_DROP; break; } count = &hw_stats->xdp_stats.rx_xdp_redirect; goto update_stats; case XDP_TX: { struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp); if (!xdpf || mtk_xdp_submit_frame(eth, xdpf, dev, false)) { count = &hw_stats->xdp_stats.rx_xdp_tx_errors; act = XDP_DROP; break; } count = &hw_stats->xdp_stats.rx_xdp_tx; goto update_stats; } default: bpf_warn_invalid_xdp_action(dev, prog, act); fallthrough; case XDP_ABORTED: trace_xdp_exception(dev, prog, act); fallthrough; case XDP_DROP: break; } page_pool_put_full_page(ring->page_pool, virt_to_head_page(xdp->data), true); update_stats: u64_stats_update_begin(&hw_stats->syncp); *count = *count + 1; u64_stats_update_end(&hw_stats->syncp); out: rcu_read_unlock(); return act; } static int mtk_poll_rx(struct napi_struct *napi, int budget, struct mtk_eth *eth) { struct dim_sample dim_sample = {}; struct mtk_rx_ring *ring; bool xdp_flush = false; int idx; struct sk_buff *skb; u64 addr64 = 0; u8 *data, *new_data; struct mtk_rx_dma_v2 *rxd, trxd; int done = 0, bytes = 0; dma_addr_t dma_addr = DMA_MAPPING_ERROR; int ppe_idx = 0; while (done < budget) { unsigned int pktlen, *rxdcsum; struct net_device *netdev; u32 hash, reason; int mac = 0; ring = mtk_get_rx_ring(eth); if (unlikely(!ring)) goto rx_done; idx = NEXT_DESP_IDX(ring->calc_idx, ring->dma_size); rxd = ring->dma + idx * eth->soc->rx.desc_size; data = ring->data[idx]; if (!mtk_rx_get_desc(eth, &trxd, rxd)) break; /* find out which mac the packet come from. values start at 1 */ if (mtk_is_netsys_v3_or_greater(eth)) { u32 val = RX_DMA_GET_SPORT_V2(trxd.rxd5); switch (val) { case PSE_GDM1_PORT: case PSE_GDM2_PORT: mac = val - 1; break; case PSE_GDM3_PORT: mac = MTK_GMAC3_ID; break; default: break; } } else if (!MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628) && !(trxd.rxd4 & RX_DMA_SPECIAL_TAG)) { mac = RX_DMA_GET_SPORT(trxd.rxd4) - 1; } if (unlikely(mac < 0 || mac >= MTK_MAX_DEVS || !eth->netdev[mac])) goto release_desc; netdev = eth->netdev[mac]; ppe_idx = eth->mac[mac]->ppe_idx; if (unlikely(test_bit(MTK_RESETTING, ð->state))) goto release_desc; pktlen = RX_DMA_GET_PLEN0(trxd.rxd2); /* alloc new buffer */ if (ring->page_pool) { struct page *page = virt_to_head_page(data); struct xdp_buff xdp; u32 ret; new_data = mtk_page_pool_get_buff(ring->page_pool, &dma_addr, GFP_ATOMIC); if (unlikely(!new_data)) { netdev->stats.rx_dropped++; goto release_desc; } dma_sync_single_for_cpu(eth->dma_dev, page_pool_get_dma_addr(page) + MTK_PP_HEADROOM, pktlen, page_pool_get_dma_dir(ring->page_pool)); xdp_init_buff(&xdp, PAGE_SIZE, &ring->xdp_q); xdp_prepare_buff(&xdp, data, MTK_PP_HEADROOM, pktlen, false); xdp_buff_clear_frags_flag(&xdp); ret = mtk_xdp_run(eth, ring, &xdp, netdev); if (ret == XDP_REDIRECT) xdp_flush = true; if (ret != XDP_PASS) goto skip_rx; skb = build_skb(data, PAGE_SIZE); if (unlikely(!skb)) { page_pool_put_full_page(ring->page_pool, page, true); netdev->stats.rx_dropped++; goto skip_rx; } skb_reserve(skb, xdp.data - xdp.data_hard_start); skb_put(skb, xdp.data_end - xdp.data); skb_mark_for_recycle(skb); } else { if (ring->frag_size <= PAGE_SIZE) new_data = napi_alloc_frag(ring->frag_size); else new_data = mtk_max_lro_buf_alloc(GFP_ATOMIC); if (unlikely(!new_data)) { netdev->stats.rx_dropped++; goto release_desc; } dma_addr = dma_map_single(eth->dma_dev, new_data + NET_SKB_PAD + eth->ip_align, ring->buf_size, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(eth->dma_dev, dma_addr))) { skb_free_frag(new_data); netdev->stats.rx_dropped++; goto release_desc; } if (MTK_HAS_CAPS(eth->soc->caps, MTK_36BIT_DMA)) addr64 = RX_DMA_GET_ADDR64(trxd.rxd2); dma_unmap_single(eth->dma_dev, ((u64)trxd.rxd1 | addr64), ring->buf_size, DMA_FROM_DEVICE); skb = build_skb(data, ring->frag_size); if (unlikely(!skb)) { netdev->stats.rx_dropped++; skb_free_frag(data); goto skip_rx; } skb_reserve(skb, NET_SKB_PAD + NET_IP_ALIGN); skb_put(skb, pktlen); } skb->dev = netdev; bytes += skb->len; if (mtk_is_netsys_v3_or_greater(eth)) { reason = FIELD_GET(MTK_RXD5_PPE_CPU_REASON, trxd.rxd5); hash = trxd.rxd5 & MTK_RXD5_FOE_ENTRY; if (hash != MTK_RXD5_FOE_ENTRY) skb_set_hash(skb, jhash_1word(hash, 0), PKT_HASH_TYPE_L4); rxdcsum = &trxd.rxd3; } else { reason = FIELD_GET(MTK_RXD4_PPE_CPU_REASON, trxd.rxd4); hash = trxd.rxd4 & MTK_RXD4_FOE_ENTRY; if (hash != MTK_RXD4_FOE_ENTRY) skb_set_hash(skb, jhash_1word(hash, 0), PKT_HASH_TYPE_L4); rxdcsum = &trxd.rxd4; } if (*rxdcsum & eth->soc->rx.dma_l4_valid) skb->ip_summed = CHECKSUM_UNNECESSARY; else skb_checksum_none_assert(skb); skb->protocol = eth_type_trans(skb, netdev); /* When using VLAN untagging in combination with DSA, the * hardware treats the MTK special tag as a VLAN and untags it. */ if (mtk_is_netsys_v1(eth) && (trxd.rxd2 & RX_DMA_VTAG) && netdev_uses_dsa(netdev)) { unsigned int port = RX_DMA_VPID(trxd.rxd3) & GENMASK(2, 0); if (port < ARRAY_SIZE(eth->dsa_meta) && eth->dsa_meta[port]) skb_dst_set_noref(skb, ð->dsa_meta[port]->dst); } if (reason == MTK_PPE_CPU_REASON_HIT_UNBIND_RATE_REACHED) mtk_ppe_check_skb(eth->ppe[ppe_idx], skb, hash); skb_record_rx_queue(skb, 0); napi_gro_receive(napi, skb); skip_rx: ring->data[idx] = new_data; rxd->rxd1 = (unsigned int)dma_addr; release_desc: if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) rxd->rxd2 = RX_DMA_LSO; else rxd->rxd2 = RX_DMA_PREP_PLEN0(ring->buf_size); if (MTK_HAS_CAPS(eth->soc->caps, MTK_36BIT_DMA) && likely(dma_addr != DMA_MAPPING_ERROR)) rxd->rxd2 |= RX_DMA_PREP_ADDR64(dma_addr); ring->calc_idx = idx; done++; } rx_done: if (done) { /* make sure that all changes to the dma ring are flushed before * we continue */ wmb(); mtk_update_rx_cpu_idx(eth); } eth->rx_packets += done; eth->rx_bytes += bytes; dim_update_sample(eth->rx_events, eth->rx_packets, eth->rx_bytes, &dim_sample); net_dim(ð->rx_dim, dim_sample); if (xdp_flush) xdp_do_flush(); return done; } struct mtk_poll_state { struct netdev_queue *txq; unsigned int total; unsigned int done; unsigned int bytes; }; static void mtk_poll_tx_done(struct mtk_eth *eth, struct mtk_poll_state *state, u8 mac, struct sk_buff *skb) { struct netdev_queue *txq; struct net_device *dev; unsigned int bytes = skb->len; state->total++; eth->tx_packets++; eth->tx_bytes += bytes; dev = eth->netdev[mac]; if (!dev) return; txq = netdev_get_tx_queue(dev, skb_get_queue_mapping(skb)); if (state->txq == txq) { state->done++; state->bytes += bytes; return; } if (state->txq) netdev_tx_completed_queue(state->txq, state->done, state->bytes); state->txq = txq; state->done = 1; state->bytes = bytes; } static int mtk_poll_tx_qdma(struct mtk_eth *eth, int budget, struct mtk_poll_state *state) { const struct mtk_reg_map *reg_map = eth->soc->reg_map; struct mtk_tx_ring *ring = ð->tx_ring; struct mtk_tx_buf *tx_buf; struct xdp_frame_bulk bq; struct mtk_tx_dma *desc; u32 cpu, dma; cpu = ring->last_free_ptr; dma = mtk_r32(eth, reg_map->qdma.drx_ptr); desc = mtk_qdma_phys_to_virt(ring, cpu); xdp_frame_bulk_init(&bq); while ((cpu != dma) && budget) { u32 next_cpu = desc->txd2; desc = mtk_qdma_phys_to_virt(ring, desc->txd2); if ((desc->txd3 & TX_DMA_OWNER_CPU) == 0) break; tx_buf = mtk_desc_to_tx_buf(ring, desc, eth->soc->tx.desc_size); if (!tx_buf->data) break; if (tx_buf->data != (void *)MTK_DMA_DUMMY_DESC) { if (tx_buf->type == MTK_TYPE_SKB) mtk_poll_tx_done(eth, state, tx_buf->mac_id, tx_buf->data); budget--; } mtk_tx_unmap(eth, tx_buf, &bq, true); ring->last_free = desc; atomic_inc(&ring->free_count); cpu = next_cpu; } xdp_flush_frame_bulk(&bq); ring->last_free_ptr = cpu; mtk_w32(eth, cpu, reg_map->qdma.crx_ptr); return budget; } static int mtk_poll_tx_pdma(struct mtk_eth *eth, int budget, struct mtk_poll_state *state) { struct mtk_tx_ring *ring = ð->tx_ring; struct mtk_tx_buf *tx_buf; struct xdp_frame_bulk bq; struct mtk_tx_dma *desc; u32 cpu, dma; cpu = ring->cpu_idx; dma = mtk_r32(eth, MT7628_TX_DTX_IDX0); xdp_frame_bulk_init(&bq); while ((cpu != dma) && budget) { tx_buf = &ring->buf[cpu]; if (!tx_buf->data) break; if (tx_buf->data != (void *)MTK_DMA_DUMMY_DESC) { if (tx_buf->type == MTK_TYPE_SKB) mtk_poll_tx_done(eth, state, 0, tx_buf->data); budget--; } mtk_tx_unmap(eth, tx_buf, &bq, true); desc = ring->dma + cpu * eth->soc->tx.desc_size; ring->last_free = desc; atomic_inc(&ring->free_count); cpu = NEXT_DESP_IDX(cpu, ring->dma_size); } xdp_flush_frame_bulk(&bq); ring->cpu_idx = cpu; return budget; } static int mtk_poll_tx(struct mtk_eth *eth, int budget) { struct mtk_tx_ring *ring = ð->tx_ring; struct dim_sample dim_sample = {}; struct mtk_poll_state state = {}; if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) budget = mtk_poll_tx_qdma(eth, budget, &state); else budget = mtk_poll_tx_pdma(eth, budget, &state); if (state.txq) netdev_tx_completed_queue(state.txq, state.done, state.bytes); dim_update_sample(eth->tx_events, eth->tx_packets, eth->tx_bytes, &dim_sample); net_dim(ð->tx_dim, dim_sample); if (mtk_queue_stopped(eth) && (atomic_read(&ring->free_count) > ring->thresh)) mtk_wake_queue(eth); return state.total; } static void mtk_handle_status_irq(struct mtk_eth *eth) { u32 status2 = mtk_r32(eth, MTK_INT_STATUS2); if (unlikely(status2 & (MTK_GDM1_AF | MTK_GDM2_AF))) { mtk_stats_update(eth); mtk_w32(eth, (MTK_GDM1_AF | MTK_GDM2_AF), MTK_INT_STATUS2); } } static int mtk_napi_tx(struct napi_struct *napi, int budget) { struct mtk_eth *eth = container_of(napi, struct mtk_eth, tx_napi); const struct mtk_reg_map *reg_map = eth->soc->reg_map; int tx_done = 0; if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) mtk_handle_status_irq(eth); mtk_w32(eth, MTK_TX_DONE_INT, reg_map->tx_irq_status); tx_done = mtk_poll_tx(eth, budget); if (unlikely(netif_msg_intr(eth))) { dev_info(eth->dev, "done tx %d, intr 0x%08x/0x%x\n", tx_done, mtk_r32(eth, reg_map->tx_irq_status), mtk_r32(eth, reg_map->tx_irq_mask)); } if (tx_done == budget) return budget; if (mtk_r32(eth, reg_map->tx_irq_status) & MTK_TX_DONE_INT) return budget; if (napi_complete_done(napi, tx_done)) mtk_tx_irq_enable(eth, MTK_TX_DONE_INT); return tx_done; } static int mtk_napi_rx(struct napi_struct *napi, int budget) { struct mtk_eth *eth = container_of(napi, struct mtk_eth, rx_napi); const struct mtk_reg_map *reg_map = eth->soc->reg_map; int rx_done_total = 0; mtk_handle_status_irq(eth); do { int rx_done; mtk_w32(eth, eth->soc->rx.irq_done_mask, reg_map->pdma.irq_status); rx_done = mtk_poll_rx(napi, budget - rx_done_total, eth); rx_done_total += rx_done; if (unlikely(netif_msg_intr(eth))) { dev_info(eth->dev, "done rx %d, intr 0x%08x/0x%x\n", rx_done, mtk_r32(eth, reg_map->pdma.irq_status), mtk_r32(eth, reg_map->pdma.irq_mask)); } if (rx_done_total == budget) return budget; } while (mtk_r32(eth, reg_map->pdma.irq_status) & eth->soc->rx.irq_done_mask); if (napi_complete_done(napi, rx_done_total)) mtk_rx_irq_enable(eth, eth->soc->rx.irq_done_mask); return rx_done_total; } static int mtk_tx_alloc(struct mtk_eth *eth) { const struct mtk_soc_data *soc = eth->soc; struct mtk_tx_ring *ring = ð->tx_ring; int i, sz = soc->tx.desc_size; struct mtk_tx_dma_v2 *txd; int ring_size; u32 ofs, val; if (MTK_HAS_CAPS(soc->caps, MTK_QDMA)) ring_size = MTK_QDMA_RING_SIZE; else ring_size = soc->tx.dma_size; ring->buf = kcalloc(ring_size, sizeof(*ring->buf), GFP_KERNEL); if (!ring->buf) goto no_tx_mem; if (MTK_HAS_CAPS(soc->caps, MTK_SRAM)) { ring->dma = eth->sram_base + soc->tx.fq_dma_size * sz; ring->phys = eth->phy_scratch_ring + soc->tx.fq_dma_size * (dma_addr_t)sz; } else { ring->dma = dma_alloc_coherent(eth->dma_dev, ring_size * sz, &ring->phys, GFP_KERNEL); } if (!ring->dma) goto no_tx_mem; for (i = 0; i < ring_size; i++) { int next = (i + 1) % ring_size; u32 next_ptr = ring->phys + next * sz; txd = ring->dma + i * sz; txd->txd2 = next_ptr; txd->txd3 = TX_DMA_LS0 | TX_DMA_OWNER_CPU; txd->txd4 = 0; if (mtk_is_netsys_v2_or_greater(eth)) { txd->txd5 = 0; txd->txd6 = 0; txd->txd7 = 0; txd->txd8 = 0; } } /* On MT7688 (PDMA only) this driver uses the ring->dma structs * only as the framework. The real HW descriptors are the PDMA * descriptors in ring->dma_pdma. */ if (!MTK_HAS_CAPS(soc->caps, MTK_QDMA)) { ring->dma_pdma = dma_alloc_coherent(eth->dma_dev, ring_size * sz, &ring->phys_pdma, GFP_KERNEL); if (!ring->dma_pdma) goto no_tx_mem; for (i = 0; i < ring_size; i++) { ring->dma_pdma[i].txd2 = TX_DMA_DESP2_DEF; ring->dma_pdma[i].txd4 = 0; } } ring->dma_size = ring_size; atomic_set(&ring->free_count, ring_size - 2); ring->next_free = ring->dma; ring->last_free = (void *)txd; ring->last_free_ptr = (u32)(ring->phys + ((ring_size - 1) * sz)); ring->thresh = MAX_SKB_FRAGS; /* make sure that all changes to the dma ring are flushed before we * continue */ wmb(); if (MTK_HAS_CAPS(soc->caps, MTK_QDMA)) { mtk_w32(eth, ring->phys, soc->reg_map->qdma.ctx_ptr); mtk_w32(eth, ring->phys, soc->reg_map->qdma.dtx_ptr); mtk_w32(eth, ring->phys + ((ring_size - 1) * sz), soc->reg_map->qdma.crx_ptr); mtk_w32(eth, ring->last_free_ptr, soc->reg_map->qdma.drx_ptr); for (i = 0, ofs = 0; i < MTK_QDMA_NUM_QUEUES; i++) { val = (QDMA_RES_THRES << 8) | QDMA_RES_THRES; mtk_w32(eth, val, soc->reg_map->qdma.qtx_cfg + ofs); val = MTK_QTX_SCH_MIN_RATE_EN | /* minimum: 10 Mbps */ FIELD_PREP(MTK_QTX_SCH_MIN_RATE_MAN, 1) | FIELD_PREP(MTK_QTX_SCH_MIN_RATE_EXP, 4) | MTK_QTX_SCH_LEAKY_BUCKET_SIZE; if (mtk_is_netsys_v1(eth)) val |= MTK_QTX_SCH_LEAKY_BUCKET_EN; mtk_w32(eth, val, soc->reg_map->qdma.qtx_sch + ofs); ofs += MTK_QTX_OFFSET; } val = MTK_QDMA_TX_SCH_MAX_WFQ | (MTK_QDMA_TX_SCH_MAX_WFQ << 16); mtk_w32(eth, val, soc->reg_map->qdma.tx_sch_rate); if (mtk_is_netsys_v2_or_greater(eth)) mtk_w32(eth, val, soc->reg_map->qdma.tx_sch_rate + 4); } else { mtk_w32(eth, ring->phys_pdma, MT7628_TX_BASE_PTR0); mtk_w32(eth, ring_size, MT7628_TX_MAX_CNT0); mtk_w32(eth, 0, MT7628_TX_CTX_IDX0); mtk_w32(eth, MT7628_PST_DTX_IDX0, soc->reg_map->pdma.rst_idx); } return 0; no_tx_mem: return -ENOMEM; } static void mtk_tx_clean(struct mtk_eth *eth) { const struct mtk_soc_data *soc = eth->soc; struct mtk_tx_ring *ring = ð->tx_ring; int i; if (ring->buf) { for (i = 0; i < ring->dma_size; i++) mtk_tx_unmap(eth, &ring->buf[i], NULL, false); kfree(ring->buf); ring->buf = NULL; } if (!MTK_HAS_CAPS(soc->caps, MTK_SRAM) && ring->dma) { dma_free_coherent(eth->dma_dev, ring->dma_size * soc->tx.desc_size, ring->dma, ring->phys); ring->dma = NULL; } if (ring->dma_pdma) { dma_free_coherent(eth->dma_dev, ring->dma_size * soc->tx.desc_size, ring->dma_pdma, ring->phys_pdma); ring->dma_pdma = NULL; } } static int mtk_rx_alloc(struct mtk_eth *eth, int ring_no, int rx_flag) { const struct mtk_reg_map *reg_map = eth->soc->reg_map; const struct mtk_soc_data *soc = eth->soc; struct mtk_rx_ring *ring; int rx_data_len, rx_dma_size, tx_ring_size; int i; if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) tx_ring_size = MTK_QDMA_RING_SIZE; else tx_ring_size = soc->tx.dma_size; if (rx_flag == MTK_RX_FLAGS_QDMA) { if (ring_no) return -EINVAL; ring = ð->rx_ring_qdma; } else { ring = ð->rx_ring[ring_no]; } if (rx_flag == MTK_RX_FLAGS_HWLRO) { rx_data_len = MTK_MAX_LRO_RX_LENGTH; rx_dma_size = MTK_HW_LRO_DMA_SIZE; } else { rx_data_len = ETH_DATA_LEN; rx_dma_size = soc->rx.dma_size; } ring->frag_size = mtk_max_frag_size(rx_data_len); ring->buf_size = mtk_max_buf_size(ring->frag_size); ring->data = kcalloc(rx_dma_size, sizeof(*ring->data), GFP_KERNEL); if (!ring->data) return -ENOMEM; if (mtk_page_pool_enabled(eth)) { struct page_pool *pp; pp = mtk_create_page_pool(eth, &ring->xdp_q, ring_no, rx_dma_size); if (IS_ERR(pp)) return PTR_ERR(pp); ring->page_pool = pp; } if (!MTK_HAS_CAPS(eth->soc->caps, MTK_SRAM) || rx_flag != MTK_RX_FLAGS_NORMAL) { ring->dma = dma_alloc_coherent(eth->dma_dev, rx_dma_size * eth->soc->rx.desc_size, &ring->phys, GFP_KERNEL); } else { struct mtk_tx_ring *tx_ring = ð->tx_ring; ring->dma = tx_ring->dma + tx_ring_size * eth->soc->tx.desc_size * (ring_no + 1); ring->phys = tx_ring->phys + tx_ring_size * eth->soc->tx.desc_size * (ring_no + 1); } if (!ring->dma) return -ENOMEM; for (i = 0; i < rx_dma_size; i++) { struct mtk_rx_dma_v2 *rxd; dma_addr_t dma_addr; void *data; rxd = ring->dma + i * eth->soc->rx.desc_size; if (ring->page_pool) { data = mtk_page_pool_get_buff(ring->page_pool, &dma_addr, GFP_KERNEL); if (!data) return -ENOMEM; } else { if (ring->frag_size <= PAGE_SIZE) data = netdev_alloc_frag(ring->frag_size); else data = mtk_max_lro_buf_alloc(GFP_KERNEL); if (!data) return -ENOMEM; dma_addr = dma_map_single(eth->dma_dev, data + NET_SKB_PAD + eth->ip_align, ring->buf_size, DMA_FROM_DEVICE); if (unlikely(dma_mapping_error(eth->dma_dev, dma_addr))) { skb_free_frag(data); return -ENOMEM; } } rxd->rxd1 = (unsigned int)dma_addr; ring->data[i] = data; if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) rxd->rxd2 = RX_DMA_LSO; else rxd->rxd2 = RX_DMA_PREP_PLEN0(ring->buf_size); if (MTK_HAS_CAPS(eth->soc->caps, MTK_36BIT_DMA)) rxd->rxd2 |= RX_DMA_PREP_ADDR64(dma_addr); rxd->rxd3 = 0; rxd->rxd4 = 0; if (mtk_is_netsys_v3_or_greater(eth)) { rxd->rxd5 = 0; rxd->rxd6 = 0; rxd->rxd7 = 0; rxd->rxd8 = 0; } } ring->dma_size = rx_dma_size; ring->calc_idx_update = false; ring->calc_idx = rx_dma_size - 1; if (rx_flag == MTK_RX_FLAGS_QDMA) ring->crx_idx_reg = reg_map->qdma.qcrx_ptr + ring_no * MTK_QRX_OFFSET; else ring->crx_idx_reg = reg_map->pdma.pcrx_ptr + ring_no * MTK_QRX_OFFSET; /* make sure that all changes to the dma ring are flushed before we * continue */ wmb(); if (rx_flag == MTK_RX_FLAGS_QDMA) { mtk_w32(eth, ring->phys, reg_map->qdma.rx_ptr + ring_no * MTK_QRX_OFFSET); mtk_w32(eth, rx_dma_size, reg_map->qdma.rx_cnt_cfg + ring_no * MTK_QRX_OFFSET); mtk_w32(eth, MTK_PST_DRX_IDX_CFG(ring_no), reg_map->qdma.rst_idx); } else { mtk_w32(eth, ring->phys, reg_map->pdma.rx_ptr + ring_no * MTK_QRX_OFFSET); mtk_w32(eth, rx_dma_size, reg_map->pdma.rx_cnt_cfg + ring_no * MTK_QRX_OFFSET); mtk_w32(eth, MTK_PST_DRX_IDX_CFG(ring_no), reg_map->pdma.rst_idx); } mtk_w32(eth, ring->calc_idx, ring->crx_idx_reg); return 0; } static void mtk_rx_clean(struct mtk_eth *eth, struct mtk_rx_ring *ring, bool in_sram) { u64 addr64 = 0; int i; if (ring->data && ring->dma) { for (i = 0; i < ring->dma_size; i++) { struct mtk_rx_dma *rxd; if (!ring->data[i]) continue; rxd = ring->dma + i * eth->soc->rx.desc_size; if (!rxd->rxd1) continue; if (MTK_HAS_CAPS(eth->soc->caps, MTK_36BIT_DMA)) addr64 = RX_DMA_GET_ADDR64(rxd->rxd2); dma_unmap_single(eth->dma_dev, ((u64)rxd->rxd1 | addr64), ring->buf_size, DMA_FROM_DEVICE); mtk_rx_put_buff(ring, ring->data[i], false); } kfree(ring->data); ring->data = NULL; } if (!in_sram && ring->dma) { dma_free_coherent(eth->dma_dev, ring->dma_size * eth->soc->rx.desc_size, ring->dma, ring->phys); ring->dma = NULL; } if (ring->page_pool) { if (xdp_rxq_info_is_reg(&ring->xdp_q)) xdp_rxq_info_unreg(&ring->xdp_q); page_pool_destroy(ring->page_pool); ring->page_pool = NULL; } } static int mtk_hwlro_rx_init(struct mtk_eth *eth) { int i; u32 ring_ctrl_dw1 = 0, ring_ctrl_dw2 = 0, ring_ctrl_dw3 = 0; u32 lro_ctrl_dw0 = 0, lro_ctrl_dw3 = 0; /* set LRO rings to auto-learn modes */ ring_ctrl_dw2 |= MTK_RING_AUTO_LERAN_MODE; /* validate LRO ring */ ring_ctrl_dw2 |= MTK_RING_VLD; /* set AGE timer (unit: 20us) */ ring_ctrl_dw2 |= MTK_RING_AGE_TIME_H; ring_ctrl_dw1 |= MTK_RING_AGE_TIME_L; /* set max AGG timer (unit: 20us) */ ring_ctrl_dw2 |= MTK_RING_MAX_AGG_TIME; /* set max LRO AGG count */ ring_ctrl_dw2 |= MTK_RING_MAX_AGG_CNT_L; ring_ctrl_dw3 |= MTK_RING_MAX_AGG_CNT_H; for (i = 1; i < MTK_MAX_RX_RING_NUM; i++) { mtk_w32(eth, ring_ctrl_dw1, MTK_LRO_CTRL_DW1_CFG(i)); mtk_w32(eth, ring_ctrl_dw2, MTK_LRO_CTRL_DW2_CFG(i)); mtk_w32(eth, ring_ctrl_dw3, MTK_LRO_CTRL_DW3_CFG(i)); } /* IPv4 checksum update enable */ lro_ctrl_dw0 |= MTK_L3_CKS_UPD_EN; /* switch priority comparison to packet count mode */ lro_ctrl_dw0 |= MTK_LRO_ALT_PKT_CNT_MODE; /* bandwidth threshold setting */ mtk_w32(eth, MTK_HW_LRO_BW_THRE, MTK_PDMA_LRO_CTRL_DW2); /* auto-learn score delta setting */ mtk_w32(eth, MTK_HW_LRO_REPLACE_DELTA, MTK_PDMA_LRO_ALT_SCORE_DELTA); /* set refresh timer for altering flows to 1 sec. (unit: 20us) */ mtk_w32(eth, (MTK_HW_LRO_TIMER_UNIT << 16) | MTK_HW_LRO_REFRESH_TIME, MTK_PDMA_LRO_ALT_REFRESH_TIMER); /* set HW LRO mode & the max aggregation count for rx packets */ lro_ctrl_dw3 |= MTK_ADMA_MODE | (MTK_HW_LRO_MAX_AGG_CNT & 0xff); /* the minimal remaining room of SDL0 in RXD for lro aggregation */ lro_ctrl_dw3 |= MTK_LRO_MIN_RXD_SDL; /* enable HW LRO */ lro_ctrl_dw0 |= MTK_LRO_EN; mtk_w32(eth, lro_ctrl_dw3, MTK_PDMA_LRO_CTRL_DW3); mtk_w32(eth, lro_ctrl_dw0, MTK_PDMA_LRO_CTRL_DW0); return 0; } static void mtk_hwlro_rx_uninit(struct mtk_eth *eth) { int i; u32 val; /* relinquish lro rings, flush aggregated packets */ mtk_w32(eth, MTK_LRO_RING_RELINQUISH_REQ, MTK_PDMA_LRO_CTRL_DW0); /* wait for relinquishments done */ for (i = 0; i < 10; i++) { val = mtk_r32(eth, MTK_PDMA_LRO_CTRL_DW0); if (val & MTK_LRO_RING_RELINQUISH_DONE) { msleep(20); continue; } break; } /* invalidate lro rings */ for (i = 1; i < MTK_MAX_RX_RING_NUM; i++) mtk_w32(eth, 0, MTK_LRO_CTRL_DW2_CFG(i)); /* disable HW LRO */ mtk_w32(eth, 0, MTK_PDMA_LRO_CTRL_DW0); } static void mtk_hwlro_val_ipaddr(struct mtk_eth *eth, int idx, __be32 ip) { u32 reg_val; reg_val = mtk_r32(eth, MTK_LRO_CTRL_DW2_CFG(idx)); /* invalidate the IP setting */ mtk_w32(eth, (reg_val & ~MTK_RING_MYIP_VLD), MTK_LRO_CTRL_DW2_CFG(idx)); mtk_w32(eth, ip, MTK_LRO_DIP_DW0_CFG(idx)); /* validate the IP setting */ mtk_w32(eth, (reg_val | MTK_RING_MYIP_VLD), MTK_LRO_CTRL_DW2_CFG(idx)); } static void mtk_hwlro_inval_ipaddr(struct mtk_eth *eth, int idx) { u32 reg_val; reg_val = mtk_r32(eth, MTK_LRO_CTRL_DW2_CFG(idx)); /* invalidate the IP setting */ mtk_w32(eth, (reg_val & ~MTK_RING_MYIP_VLD), MTK_LRO_CTRL_DW2_CFG(idx)); mtk_w32(eth, 0, MTK_LRO_DIP_DW0_CFG(idx)); } static int mtk_hwlro_get_ip_cnt(struct mtk_mac *mac) { int cnt = 0; int i; for (i = 0; i < MTK_MAX_LRO_IP_CNT; i++) { if (mac->hwlro_ip[i]) cnt++; } return cnt; } static int mtk_hwlro_add_ipaddr(struct net_device *dev, struct ethtool_rxnfc *cmd) { struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs; struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; int hwlro_idx; if ((fsp->flow_type != TCP_V4_FLOW) || (!fsp->h_u.tcp_ip4_spec.ip4dst) || (fsp->location > 1)) return -EINVAL; mac->hwlro_ip[fsp->location] = htonl(fsp->h_u.tcp_ip4_spec.ip4dst); hwlro_idx = (mac->id * MTK_MAX_LRO_IP_CNT) + fsp->location; mac->hwlro_ip_cnt = mtk_hwlro_get_ip_cnt(mac); mtk_hwlro_val_ipaddr(eth, hwlro_idx, mac->hwlro_ip[fsp->location]); return 0; } static int mtk_hwlro_del_ipaddr(struct net_device *dev, struct ethtool_rxnfc *cmd) { struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs; struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; int hwlro_idx; if (fsp->location > 1) return -EINVAL; mac->hwlro_ip[fsp->location] = 0; hwlro_idx = (mac->id * MTK_MAX_LRO_IP_CNT) + fsp->location; mac->hwlro_ip_cnt = mtk_hwlro_get_ip_cnt(mac); mtk_hwlro_inval_ipaddr(eth, hwlro_idx); return 0; } static void mtk_hwlro_netdev_disable(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; int i, hwlro_idx; for (i = 0; i < MTK_MAX_LRO_IP_CNT; i++) { mac->hwlro_ip[i] = 0; hwlro_idx = (mac->id * MTK_MAX_LRO_IP_CNT) + i; mtk_hwlro_inval_ipaddr(eth, hwlro_idx); } mac->hwlro_ip_cnt = 0; } static int mtk_hwlro_get_fdir_entry(struct net_device *dev, struct ethtool_rxnfc *cmd) { struct mtk_mac *mac = netdev_priv(dev); struct ethtool_rx_flow_spec *fsp = (struct ethtool_rx_flow_spec *)&cmd->fs; if (fsp->location >= ARRAY_SIZE(mac->hwlro_ip)) return -EINVAL; /* only tcp dst ipv4 is meaningful, others are meaningless */ fsp->flow_type = TCP_V4_FLOW; fsp->h_u.tcp_ip4_spec.ip4dst = ntohl(mac->hwlro_ip[fsp->location]); fsp->m_u.tcp_ip4_spec.ip4dst = 0; fsp->h_u.tcp_ip4_spec.ip4src = 0; fsp->m_u.tcp_ip4_spec.ip4src = 0xffffffff; fsp->h_u.tcp_ip4_spec.psrc = 0; fsp->m_u.tcp_ip4_spec.psrc = 0xffff; fsp->h_u.tcp_ip4_spec.pdst = 0; fsp->m_u.tcp_ip4_spec.pdst = 0xffff; fsp->h_u.tcp_ip4_spec.tos = 0; fsp->m_u.tcp_ip4_spec.tos = 0xff; return 0; } static int mtk_hwlro_get_fdir_all(struct net_device *dev, struct ethtool_rxnfc *cmd, u32 *rule_locs) { struct mtk_mac *mac = netdev_priv(dev); int cnt = 0; int i; for (i = 0; i < MTK_MAX_LRO_IP_CNT; i++) { if (cnt == cmd->rule_cnt) return -EMSGSIZE; if (mac->hwlro_ip[i]) { rule_locs[cnt] = i; cnt++; } } cmd->rule_cnt = cnt; return 0; } static netdev_features_t mtk_fix_features(struct net_device *dev, netdev_features_t features) { if (!(features & NETIF_F_LRO)) { struct mtk_mac *mac = netdev_priv(dev); int ip_cnt = mtk_hwlro_get_ip_cnt(mac); if (ip_cnt) { netdev_info(dev, "RX flow is programmed, LRO should keep on\n"); features |= NETIF_F_LRO; } } return features; } static int mtk_set_features(struct net_device *dev, netdev_features_t features) { netdev_features_t diff = dev->features ^ features; if ((diff & NETIF_F_LRO) && !(features & NETIF_F_LRO)) mtk_hwlro_netdev_disable(dev); return 0; } /* wait for DMA to finish whatever it is doing before we start using it again */ static int mtk_dma_busy_wait(struct mtk_eth *eth) { unsigned int reg; int ret; u32 val; if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) reg = eth->soc->reg_map->qdma.glo_cfg; else reg = eth->soc->reg_map->pdma.glo_cfg; ret = readx_poll_timeout_atomic(__raw_readl, eth->base + reg, val, !(val & (MTK_RX_DMA_BUSY | MTK_TX_DMA_BUSY)), 5, MTK_DMA_BUSY_TIMEOUT_US); if (ret) dev_err(eth->dev, "DMA init timeout\n"); return ret; } static int mtk_dma_init(struct mtk_eth *eth) { int err; u32 i; if (mtk_dma_busy_wait(eth)) return -EBUSY; if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) { /* QDMA needs scratch memory for internal reordering of the * descriptors */ err = mtk_init_fq_dma(eth); if (err) return err; } err = mtk_tx_alloc(eth); if (err) return err; if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) { err = mtk_rx_alloc(eth, 0, MTK_RX_FLAGS_QDMA); if (err) return err; } err = mtk_rx_alloc(eth, 0, MTK_RX_FLAGS_NORMAL); if (err) return err; if (eth->hwlro) { for (i = 1; i < MTK_MAX_RX_RING_NUM; i++) { err = mtk_rx_alloc(eth, i, MTK_RX_FLAGS_HWLRO); if (err) return err; } err = mtk_hwlro_rx_init(eth); if (err) return err; } if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) { /* Enable random early drop and set drop threshold * automatically */ mtk_w32(eth, FC_THRES_DROP_MODE | FC_THRES_DROP_EN | FC_THRES_MIN, eth->soc->reg_map->qdma.fc_th); mtk_w32(eth, 0x0, eth->soc->reg_map->qdma.hred); } return 0; } static void mtk_dma_free(struct mtk_eth *eth) { const struct mtk_soc_data *soc = eth->soc; int i; for (i = 0; i < MTK_MAX_DEVS; i++) if (eth->netdev[i]) netdev_reset_queue(eth->netdev[i]); if (!MTK_HAS_CAPS(soc->caps, MTK_SRAM) && eth->scratch_ring) { dma_free_coherent(eth->dma_dev, MTK_QDMA_RING_SIZE * soc->tx.desc_size, eth->scratch_ring, eth->phy_scratch_ring); eth->scratch_ring = NULL; eth->phy_scratch_ring = 0; } mtk_tx_clean(eth); mtk_rx_clean(eth, ð->rx_ring[0], MTK_HAS_CAPS(soc->caps, MTK_SRAM)); mtk_rx_clean(eth, ð->rx_ring_qdma, false); if (eth->hwlro) { mtk_hwlro_rx_uninit(eth); for (i = 1; i < MTK_MAX_RX_RING_NUM; i++) mtk_rx_clean(eth, ð->rx_ring[i], false); } for (i = 0; i < DIV_ROUND_UP(soc->tx.fq_dma_size, MTK_FQ_DMA_LENGTH); i++) { kfree(eth->scratch_head[i]); eth->scratch_head[i] = NULL; } } static bool mtk_hw_reset_check(struct mtk_eth *eth) { u32 val = mtk_r32(eth, MTK_INT_STATUS2); return (val & MTK_FE_INT_FQ_EMPTY) || (val & MTK_FE_INT_RFIFO_UF) || (val & MTK_FE_INT_RFIFO_OV) || (val & MTK_FE_INT_TSO_FAIL) || (val & MTK_FE_INT_TSO_ALIGN) || (val & MTK_FE_INT_TSO_ILLEGAL); } static void mtk_tx_timeout(struct net_device *dev, unsigned int txqueue) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; if (test_bit(MTK_RESETTING, ð->state)) return; if (!mtk_hw_reset_check(eth)) return; eth->netdev[mac->id]->stats.tx_errors++; netif_err(eth, tx_err, dev, "transmit timed out\n"); schedule_work(ð->pending_work); } static irqreturn_t mtk_handle_irq_rx(int irq, void *_eth) { struct mtk_eth *eth = _eth; eth->rx_events++; if (likely(napi_schedule_prep(ð->rx_napi))) { mtk_rx_irq_disable(eth, eth->soc->rx.irq_done_mask); __napi_schedule(ð->rx_napi); } return IRQ_HANDLED; } static irqreturn_t mtk_handle_irq_tx(int irq, void *_eth) { struct mtk_eth *eth = _eth; eth->tx_events++; if (likely(napi_schedule_prep(ð->tx_napi))) { mtk_tx_irq_disable(eth, MTK_TX_DONE_INT); __napi_schedule(ð->tx_napi); } return IRQ_HANDLED; } static irqreturn_t mtk_handle_irq(int irq, void *_eth) { struct mtk_eth *eth = _eth; const struct mtk_reg_map *reg_map = eth->soc->reg_map; if (mtk_r32(eth, reg_map->pdma.irq_mask) & eth->soc->rx.irq_done_mask) { if (mtk_r32(eth, reg_map->pdma.irq_status) & eth->soc->rx.irq_done_mask) mtk_handle_irq_rx(irq, _eth); } if (mtk_r32(eth, reg_map->tx_irq_mask) & MTK_TX_DONE_INT) { if (mtk_r32(eth, reg_map->tx_irq_status) & MTK_TX_DONE_INT) mtk_handle_irq_tx(irq, _eth); } return IRQ_HANDLED; } #ifdef CONFIG_NET_POLL_CONTROLLER static void mtk_poll_controller(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; mtk_tx_irq_disable(eth, MTK_TX_DONE_INT); mtk_rx_irq_disable(eth, eth->soc->rx.irq_done_mask); mtk_handle_irq_rx(eth->irq[2], dev); mtk_tx_irq_enable(eth, MTK_TX_DONE_INT); mtk_rx_irq_enable(eth, eth->soc->rx.irq_done_mask); } #endif static int mtk_start_dma(struct mtk_eth *eth) { u32 val, rx_2b_offset = (NET_IP_ALIGN == 2) ? MTK_RX_2B_OFFSET : 0; const struct mtk_reg_map *reg_map = eth->soc->reg_map; int err; err = mtk_dma_init(eth); if (err) { mtk_dma_free(eth); return err; } if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) { val = mtk_r32(eth, reg_map->qdma.glo_cfg); val |= MTK_TX_DMA_EN | MTK_RX_DMA_EN | MTK_TX_BT_32DWORDS | MTK_NDP_CO_PRO | MTK_RX_2B_OFFSET | MTK_TX_WB_DDONE; if (mtk_is_netsys_v2_or_greater(eth)) val |= MTK_MUTLI_CNT | MTK_RESV_BUF | MTK_WCOMP_EN | MTK_DMAD_WR_WDONE | MTK_CHK_DDONE_EN | MTK_LEAKY_BUCKET_EN; else val |= MTK_RX_BT_32DWORDS; mtk_w32(eth, val, reg_map->qdma.glo_cfg); mtk_w32(eth, MTK_RX_DMA_EN | rx_2b_offset | MTK_RX_BT_32DWORDS | MTK_MULTI_EN, reg_map->pdma.glo_cfg); } else { mtk_w32(eth, MTK_TX_WB_DDONE | MTK_TX_DMA_EN | MTK_RX_DMA_EN | MTK_MULTI_EN | MTK_PDMA_SIZE_8DWORDS, reg_map->pdma.glo_cfg); } return 0; } static void mtk_gdm_config(struct mtk_eth *eth, u32 id, u32 config) { u32 val; if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) return; val = mtk_r32(eth, MTK_GDMA_FWD_CFG(id)); /* default setup the forward port to send frame to PDMA */ val &= ~0xffff; /* Enable RX checksum */ val |= MTK_GDMA_ICS_EN | MTK_GDMA_TCS_EN | MTK_GDMA_UCS_EN; val |= config; if (eth->netdev[id] && netdev_uses_dsa(eth->netdev[id])) val |= MTK_GDMA_SPECIAL_TAG; mtk_w32(eth, val, MTK_GDMA_FWD_CFG(id)); } static bool mtk_uses_dsa(struct net_device *dev) { #if IS_ENABLED(CONFIG_NET_DSA) return netdev_uses_dsa(dev) && dev->dsa_ptr->tag_ops->proto == DSA_TAG_PROTO_MTK; #else return false; #endif } static int mtk_device_event(struct notifier_block *n, unsigned long event, void *ptr) { struct mtk_mac *mac = container_of(n, struct mtk_mac, device_notifier); struct mtk_eth *eth = mac->hw; struct net_device *dev = netdev_notifier_info_to_dev(ptr); struct ethtool_link_ksettings s; struct net_device *ldev; struct list_head *iter; struct dsa_port *dp; if (event != NETDEV_CHANGE) return NOTIFY_DONE; netdev_for_each_lower_dev(dev, ldev, iter) { if (netdev_priv(ldev) == mac) goto found; } return NOTIFY_DONE; found: if (!dsa_user_dev_check(dev)) return NOTIFY_DONE; if (__ethtool_get_link_ksettings(dev, &s)) return NOTIFY_DONE; if (s.base.speed == 0 || s.base.speed == ((__u32)-1)) return NOTIFY_DONE; dp = dsa_port_from_netdev(dev); if (dp->index >= MTK_QDMA_NUM_QUEUES) return NOTIFY_DONE; if (mac->speed > 0 && mac->speed <= s.base.speed) s.base.speed = 0; mtk_set_queue_speed(eth, dp->index + 3, s.base.speed); return NOTIFY_DONE; } static int mtk_open(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; struct mtk_mac *target_mac; int i, err, ppe_num; ppe_num = eth->soc->ppe_num; err = phylink_of_phy_connect(mac->phylink, mac->of_node, 0); if (err) { netdev_err(dev, "%s: could not attach PHY: %d\n", __func__, err); return err; } /* we run 2 netdevs on the same dma ring so we only bring it up once */ if (!refcount_read(ð->dma_refcnt)) { const struct mtk_soc_data *soc = eth->soc; u32 gdm_config; int i; err = mtk_start_dma(eth); if (err) { phylink_disconnect_phy(mac->phylink); return err; } for (i = 0; i < ARRAY_SIZE(eth->ppe); i++) mtk_ppe_start(eth->ppe[i]); for (i = 0; i < MTK_MAX_DEVS; i++) { if (!eth->netdev[i]) continue; target_mac = netdev_priv(eth->netdev[i]); if (!soc->offload_version) { target_mac->ppe_idx = 0; gdm_config = MTK_GDMA_TO_PDMA; } else if (ppe_num >= 3 && target_mac->id == 2) { target_mac->ppe_idx = 2; gdm_config = soc->reg_map->gdma_to_ppe[2]; } else if (ppe_num >= 2 && target_mac->id == 1) { target_mac->ppe_idx = 1; gdm_config = soc->reg_map->gdma_to_ppe[1]; } else { target_mac->ppe_idx = 0; gdm_config = soc->reg_map->gdma_to_ppe[0]; } mtk_gdm_config(eth, target_mac->id, gdm_config); } /* Reset and enable PSE */ mtk_w32(eth, RST_GL_PSE, MTK_RST_GL); mtk_w32(eth, 0, MTK_RST_GL); napi_enable(ð->tx_napi); napi_enable(ð->rx_napi); mtk_tx_irq_enable(eth, MTK_TX_DONE_INT); mtk_rx_irq_enable(eth, soc->rx.irq_done_mask); refcount_set(ð->dma_refcnt, 1); } else { refcount_inc(ð->dma_refcnt); } phylink_start(mac->phylink); netif_tx_start_all_queues(dev); if (mtk_is_netsys_v2_or_greater(eth)) return 0; if (mtk_uses_dsa(dev) && !eth->prog) { for (i = 0; i < ARRAY_SIZE(eth->dsa_meta); i++) { struct metadata_dst *md_dst = eth->dsa_meta[i]; if (md_dst) continue; md_dst = metadata_dst_alloc(0, METADATA_HW_PORT_MUX, GFP_KERNEL); if (!md_dst) return -ENOMEM; md_dst->u.port_info.port_id = i; eth->dsa_meta[i] = md_dst; } } else { /* Hardware DSA untagging and VLAN RX offloading need to be * disabled if at least one MAC does not use DSA. */ u32 val = mtk_r32(eth, MTK_CDMP_IG_CTRL); val &= ~MTK_CDMP_STAG_EN; mtk_w32(eth, val, MTK_CDMP_IG_CTRL); mtk_w32(eth, 0, MTK_CDMP_EG_CTRL); } return 0; } static void mtk_stop_dma(struct mtk_eth *eth, u32 glo_cfg) { u32 val; int i; /* stop the dma engine */ spin_lock_bh(ð->page_lock); val = mtk_r32(eth, glo_cfg); mtk_w32(eth, val & ~(MTK_TX_WB_DDONE | MTK_RX_DMA_EN | MTK_TX_DMA_EN), glo_cfg); spin_unlock_bh(ð->page_lock); /* wait for dma stop */ for (i = 0; i < 10; i++) { val = mtk_r32(eth, glo_cfg); if (val & (MTK_TX_DMA_BUSY | MTK_RX_DMA_BUSY)) { msleep(20); continue; } break; } } static int mtk_stop(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; int i; phylink_stop(mac->phylink); netif_tx_disable(dev); phylink_disconnect_phy(mac->phylink); /* only shutdown DMA if this is the last user */ if (!refcount_dec_and_test(ð->dma_refcnt)) return 0; for (i = 0; i < MTK_MAX_DEVS; i++) mtk_gdm_config(eth, i, MTK_GDMA_DROP_ALL); mtk_tx_irq_disable(eth, MTK_TX_DONE_INT); mtk_rx_irq_disable(eth, eth->soc->rx.irq_done_mask); napi_disable(ð->tx_napi); napi_disable(ð->rx_napi); cancel_work_sync(ð->rx_dim.work); cancel_work_sync(ð->tx_dim.work); if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) mtk_stop_dma(eth, eth->soc->reg_map->qdma.glo_cfg); mtk_stop_dma(eth, eth->soc->reg_map->pdma.glo_cfg); mtk_dma_free(eth); for (i = 0; i < ARRAY_SIZE(eth->ppe); i++) mtk_ppe_stop(eth->ppe[i]); return 0; } static int mtk_xdp_setup(struct net_device *dev, struct bpf_prog *prog, struct netlink_ext_ack *extack) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; struct bpf_prog *old_prog; bool need_update; if (eth->hwlro) { NL_SET_ERR_MSG_MOD(extack, "XDP not supported with HWLRO"); return -EOPNOTSUPP; } if (dev->mtu > MTK_PP_MAX_BUF_SIZE) { NL_SET_ERR_MSG_MOD(extack, "MTU too large for XDP"); return -EOPNOTSUPP; } need_update = !!eth->prog != !!prog; if (netif_running(dev) && need_update) mtk_stop(dev); old_prog = rcu_replace_pointer(eth->prog, prog, lockdep_rtnl_is_held()); if (old_prog) bpf_prog_put(old_prog); if (netif_running(dev) && need_update) return mtk_open(dev); return 0; } static int mtk_xdp(struct net_device *dev, struct netdev_bpf *xdp) { switch (xdp->command) { case XDP_SETUP_PROG: return mtk_xdp_setup(dev, xdp->prog, xdp->extack); default: return -EINVAL; } } static void ethsys_reset(struct mtk_eth *eth, u32 reset_bits) { regmap_update_bits(eth->ethsys, ETHSYS_RSTCTRL, reset_bits, reset_bits); usleep_range(1000, 1100); regmap_update_bits(eth->ethsys, ETHSYS_RSTCTRL, reset_bits, ~reset_bits); mdelay(10); } static void mtk_clk_disable(struct mtk_eth *eth) { int clk; for (clk = MTK_CLK_MAX - 1; clk >= 0; clk--) clk_disable_unprepare(eth->clks[clk]); } static int mtk_clk_enable(struct mtk_eth *eth) { int clk, ret; for (clk = 0; clk < MTK_CLK_MAX ; clk++) { ret = clk_prepare_enable(eth->clks[clk]); if (ret) goto err_disable_clks; } return 0; err_disable_clks: while (--clk >= 0) clk_disable_unprepare(eth->clks[clk]); return ret; } static void mtk_dim_rx(struct work_struct *work) { struct dim *dim = container_of(work, struct dim, work); struct mtk_eth *eth = container_of(dim, struct mtk_eth, rx_dim); const struct mtk_reg_map *reg_map = eth->soc->reg_map; struct dim_cq_moder cur_profile; u32 val, cur; cur_profile = net_dim_get_rx_moderation(eth->rx_dim.mode, dim->profile_ix); spin_lock_bh(ð->dim_lock); val = mtk_r32(eth, reg_map->pdma.delay_irq); val &= MTK_PDMA_DELAY_TX_MASK; val |= MTK_PDMA_DELAY_RX_EN; cur = min_t(u32, DIV_ROUND_UP(cur_profile.usec, 20), MTK_PDMA_DELAY_PTIME_MASK); val |= cur << MTK_PDMA_DELAY_RX_PTIME_SHIFT; cur = min_t(u32, cur_profile.pkts, MTK_PDMA_DELAY_PINT_MASK); val |= cur << MTK_PDMA_DELAY_RX_PINT_SHIFT; mtk_w32(eth, val, reg_map->pdma.delay_irq); if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) mtk_w32(eth, val, reg_map->qdma.delay_irq); spin_unlock_bh(ð->dim_lock); dim->state = DIM_START_MEASURE; } static void mtk_dim_tx(struct work_struct *work) { struct dim *dim = container_of(work, struct dim, work); struct mtk_eth *eth = container_of(dim, struct mtk_eth, tx_dim); const struct mtk_reg_map *reg_map = eth->soc->reg_map; struct dim_cq_moder cur_profile; u32 val, cur; cur_profile = net_dim_get_tx_moderation(eth->tx_dim.mode, dim->profile_ix); spin_lock_bh(ð->dim_lock); val = mtk_r32(eth, reg_map->pdma.delay_irq); val &= MTK_PDMA_DELAY_RX_MASK; val |= MTK_PDMA_DELAY_TX_EN; cur = min_t(u32, DIV_ROUND_UP(cur_profile.usec, 20), MTK_PDMA_DELAY_PTIME_MASK); val |= cur << MTK_PDMA_DELAY_TX_PTIME_SHIFT; cur = min_t(u32, cur_profile.pkts, MTK_PDMA_DELAY_PINT_MASK); val |= cur << MTK_PDMA_DELAY_TX_PINT_SHIFT; mtk_w32(eth, val, reg_map->pdma.delay_irq); if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) mtk_w32(eth, val, reg_map->qdma.delay_irq); spin_unlock_bh(ð->dim_lock); dim->state = DIM_START_MEASURE; } static void mtk_set_mcr_max_rx(struct mtk_mac *mac, u32 val) { struct mtk_eth *eth = mac->hw; u32 mcr_cur, mcr_new; if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) return; mcr_cur = mtk_r32(mac->hw, MTK_MAC_MCR(mac->id)); mcr_new = mcr_cur & ~MAC_MCR_MAX_RX_MASK; if (val <= 1518) mcr_new |= MAC_MCR_MAX_RX(MAC_MCR_MAX_RX_1518); else if (val <= 1536) mcr_new |= MAC_MCR_MAX_RX(MAC_MCR_MAX_RX_1536); else if (val <= 1552) mcr_new |= MAC_MCR_MAX_RX(MAC_MCR_MAX_RX_1552); else mcr_new |= MAC_MCR_MAX_RX(MAC_MCR_MAX_RX_2048); if (mcr_new != mcr_cur) mtk_w32(mac->hw, mcr_new, MTK_MAC_MCR(mac->id)); } static void mtk_hw_reset(struct mtk_eth *eth) { u32 val; if (mtk_is_netsys_v2_or_greater(eth)) regmap_write(eth->ethsys, ETHSYS_FE_RST_CHK_IDLE_EN, 0); if (mtk_is_netsys_v3_or_greater(eth)) { val = RSTCTRL_PPE0_V3; if (MTK_HAS_CAPS(eth->soc->caps, MTK_RSTCTRL_PPE1)) val |= RSTCTRL_PPE1_V3; if (MTK_HAS_CAPS(eth->soc->caps, MTK_RSTCTRL_PPE2)) val |= RSTCTRL_PPE2; val |= RSTCTRL_WDMA0 | RSTCTRL_WDMA1 | RSTCTRL_WDMA2; } else if (mtk_is_netsys_v2_or_greater(eth)) { val = RSTCTRL_PPE0_V2; if (MTK_HAS_CAPS(eth->soc->caps, MTK_RSTCTRL_PPE1)) val |= RSTCTRL_PPE1; } else { val = RSTCTRL_PPE0; } ethsys_reset(eth, RSTCTRL_ETH | RSTCTRL_FE | val); if (mtk_is_netsys_v3_or_greater(eth)) regmap_write(eth->ethsys, ETHSYS_FE_RST_CHK_IDLE_EN, 0x6f8ff); else if (mtk_is_netsys_v2_or_greater(eth)) regmap_write(eth->ethsys, ETHSYS_FE_RST_CHK_IDLE_EN, 0x3ffffff); } static u32 mtk_hw_reset_read(struct mtk_eth *eth) { u32 val; regmap_read(eth->ethsys, ETHSYS_RSTCTRL, &val); return val; } static void mtk_hw_warm_reset(struct mtk_eth *eth) { u32 rst_mask, val; regmap_update_bits(eth->ethsys, ETHSYS_RSTCTRL, RSTCTRL_FE, RSTCTRL_FE); if (readx_poll_timeout_atomic(mtk_hw_reset_read, eth, val, val & RSTCTRL_FE, 1, 1000)) { dev_err(eth->dev, "warm reset failed\n"); mtk_hw_reset(eth); return; } if (mtk_is_netsys_v3_or_greater(eth)) { rst_mask = RSTCTRL_ETH | RSTCTRL_PPE0_V3; if (MTK_HAS_CAPS(eth->soc->caps, MTK_RSTCTRL_PPE1)) rst_mask |= RSTCTRL_PPE1_V3; if (MTK_HAS_CAPS(eth->soc->caps, MTK_RSTCTRL_PPE2)) rst_mask |= RSTCTRL_PPE2; rst_mask |= RSTCTRL_WDMA0 | RSTCTRL_WDMA1 | RSTCTRL_WDMA2; } else if (mtk_is_netsys_v2_or_greater(eth)) { rst_mask = RSTCTRL_ETH | RSTCTRL_PPE0_V2; if (MTK_HAS_CAPS(eth->soc->caps, MTK_RSTCTRL_PPE1)) rst_mask |= RSTCTRL_PPE1; } else { rst_mask = RSTCTRL_ETH | RSTCTRL_PPE0; } regmap_update_bits(eth->ethsys, ETHSYS_RSTCTRL, rst_mask, rst_mask); udelay(1); val = mtk_hw_reset_read(eth); if (!(val & rst_mask)) dev_err(eth->dev, "warm reset stage0 failed %08x (%08x)\n", val, rst_mask); rst_mask |= RSTCTRL_FE; regmap_update_bits(eth->ethsys, ETHSYS_RSTCTRL, rst_mask, ~rst_mask); udelay(1); val = mtk_hw_reset_read(eth); if (val & rst_mask) dev_err(eth->dev, "warm reset stage1 failed %08x (%08x)\n", val, rst_mask); } static bool mtk_hw_check_dma_hang(struct mtk_eth *eth) { const struct mtk_reg_map *reg_map = eth->soc->reg_map; bool gmac1_tx, gmac2_tx, gdm1_tx, gdm2_tx; bool oq_hang, cdm1_busy, adma_busy; bool wtx_busy, cdm_full, oq_free; u32 wdidx, val, gdm1_fc, gdm2_fc; bool qfsm_hang, qfwd_hang; bool ret = false; if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) return false; /* WDMA sanity checks */ wdidx = mtk_r32(eth, reg_map->wdma_base[0] + 0xc); val = mtk_r32(eth, reg_map->wdma_base[0] + 0x204); wtx_busy = FIELD_GET(MTK_TX_DMA_BUSY, val); val = mtk_r32(eth, reg_map->wdma_base[0] + 0x230); cdm_full = !FIELD_GET(MTK_CDM_TXFIFO_RDY, val); oq_free = (!(mtk_r32(eth, reg_map->pse_oq_sta) & GENMASK(24, 16)) && !(mtk_r32(eth, reg_map->pse_oq_sta + 0x4) & GENMASK(8, 0)) && !(mtk_r32(eth, reg_map->pse_oq_sta + 0x10) & GENMASK(24, 16))); if (wdidx == eth->reset.wdidx && wtx_busy && cdm_full && oq_free) { if (++eth->reset.wdma_hang_count > 2) { eth->reset.wdma_hang_count = 0; ret = true; } goto out; } /* QDMA sanity checks */ qfsm_hang = !!mtk_r32(eth, reg_map->qdma.qtx_cfg + 0x234); qfwd_hang = !mtk_r32(eth, reg_map->qdma.qtx_cfg + 0x308); gdm1_tx = FIELD_GET(GENMASK(31, 16), mtk_r32(eth, MTK_FE_GDM1_FSM)) > 0; gdm2_tx = FIELD_GET(GENMASK(31, 16), mtk_r32(eth, MTK_FE_GDM2_FSM)) > 0; gmac1_tx = FIELD_GET(GENMASK(31, 24), mtk_r32(eth, MTK_MAC_FSM(0))) != 1; gmac2_tx = FIELD_GET(GENMASK(31, 24), mtk_r32(eth, MTK_MAC_FSM(1))) != 1; gdm1_fc = mtk_r32(eth, reg_map->gdm1_cnt + 0x24); gdm2_fc = mtk_r32(eth, reg_map->gdm1_cnt + 0x64); if (qfsm_hang && qfwd_hang && ((gdm1_tx && gmac1_tx && gdm1_fc < 1) || (gdm2_tx && gmac2_tx && gdm2_fc < 1))) { if (++eth->reset.qdma_hang_count > 2) { eth->reset.qdma_hang_count = 0; ret = true; } goto out; } /* ADMA sanity checks */ oq_hang = !!(mtk_r32(eth, reg_map->pse_oq_sta) & GENMASK(8, 0)); cdm1_busy = !!(mtk_r32(eth, MTK_FE_CDM1_FSM) & GENMASK(31, 16)); adma_busy = !(mtk_r32(eth, reg_map->pdma.adma_rx_dbg0) & GENMASK(4, 0)) && !(mtk_r32(eth, reg_map->pdma.adma_rx_dbg0) & BIT(6)); if (oq_hang && cdm1_busy && adma_busy) { if (++eth->reset.adma_hang_count > 2) { eth->reset.adma_hang_count = 0; ret = true; } goto out; } eth->reset.wdma_hang_count = 0; eth->reset.qdma_hang_count = 0; eth->reset.adma_hang_count = 0; out: eth->reset.wdidx = wdidx; return ret; } static void mtk_hw_reset_monitor_work(struct work_struct *work) { struct delayed_work *del_work = to_delayed_work(work); struct mtk_eth *eth = container_of(del_work, struct mtk_eth, reset.monitor_work); if (test_bit(MTK_RESETTING, ð->state)) goto out; /* DMA stuck checks */ if (mtk_hw_check_dma_hang(eth)) schedule_work(ð->pending_work); out: schedule_delayed_work(ð->reset.monitor_work, MTK_DMA_MONITOR_TIMEOUT); } static int mtk_hw_init(struct mtk_eth *eth, bool reset) { u32 dma_mask = ETHSYS_DMA_AG_MAP_PDMA | ETHSYS_DMA_AG_MAP_QDMA | ETHSYS_DMA_AG_MAP_PPE; const struct mtk_reg_map *reg_map = eth->soc->reg_map; int i, val, ret; if (!reset && test_and_set_bit(MTK_HW_INIT, ð->state)) return 0; if (!reset) { pm_runtime_enable(eth->dev); pm_runtime_get_sync(eth->dev); ret = mtk_clk_enable(eth); if (ret) goto err_disable_pm; } if (eth->ethsys) regmap_update_bits(eth->ethsys, ETHSYS_DMA_AG_MAP, dma_mask, of_dma_is_coherent(eth->dma_dev->of_node) * dma_mask); if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) { ret = device_reset(eth->dev); if (ret) { dev_err(eth->dev, "MAC reset failed!\n"); goto err_disable_pm; } /* set interrupt delays based on current Net DIM sample */ mtk_dim_rx(ð->rx_dim.work); mtk_dim_tx(ð->tx_dim.work); /* disable delay and normal interrupt */ mtk_tx_irq_disable(eth, ~0); mtk_rx_irq_disable(eth, ~0); return 0; } msleep(100); if (reset) mtk_hw_warm_reset(eth); else mtk_hw_reset(eth); if (mtk_is_netsys_v3_or_greater(eth)) { /* Set FE to PDMAv2 if necessary */ val = mtk_r32(eth, MTK_FE_GLO_MISC); mtk_w32(eth, val | BIT(4), MTK_FE_GLO_MISC); } if (eth->pctl) { /* Set GE2 driving and slew rate */ regmap_write(eth->pctl, GPIO_DRV_SEL10, 0xa00); /* set GE2 TDSEL */ regmap_write(eth->pctl, GPIO_OD33_CTRL8, 0x5); /* set GE2 TUNE */ regmap_write(eth->pctl, GPIO_BIAS_CTRL, 0x0); } /* Set linkdown as the default for each GMAC. Its own MCR would be set * up with the more appropriate value when mtk_mac_config call is being * invoked. */ for (i = 0; i < MTK_MAX_DEVS; i++) { struct net_device *dev = eth->netdev[i]; if (!dev) continue; mtk_w32(eth, MAC_MCR_FORCE_LINK_DOWN, MTK_MAC_MCR(i)); mtk_set_mcr_max_rx(netdev_priv(dev), dev->mtu + MTK_RX_ETH_HLEN); } /* Indicates CDM to parse the MTK special tag from CPU * which also is working out for untag packets. */ val = mtk_r32(eth, MTK_CDMQ_IG_CTRL); mtk_w32(eth, val | MTK_CDMQ_STAG_EN, MTK_CDMQ_IG_CTRL); if (mtk_is_netsys_v1(eth)) { val = mtk_r32(eth, MTK_CDMP_IG_CTRL); mtk_w32(eth, val | MTK_CDMP_STAG_EN, MTK_CDMP_IG_CTRL); mtk_w32(eth, 1, MTK_CDMP_EG_CTRL); } /* set interrupt delays based on current Net DIM sample */ mtk_dim_rx(ð->rx_dim.work); mtk_dim_tx(ð->tx_dim.work); /* disable delay and normal interrupt */ mtk_tx_irq_disable(eth, ~0); mtk_rx_irq_disable(eth, ~0); /* FE int grouping */ mtk_w32(eth, MTK_TX_DONE_INT, reg_map->pdma.int_grp); mtk_w32(eth, eth->soc->rx.irq_done_mask, reg_map->pdma.int_grp + 4); mtk_w32(eth, MTK_TX_DONE_INT, reg_map->qdma.int_grp); mtk_w32(eth, eth->soc->rx.irq_done_mask, reg_map->qdma.int_grp + 4); mtk_w32(eth, 0x21021000, MTK_FE_INT_GRP); if (mtk_is_netsys_v3_or_greater(eth)) { /* PSE should not drop port1, port8 and port9 packets */ mtk_w32(eth, 0x00000302, PSE_DROP_CFG); /* GDM and CDM Threshold */ mtk_w32(eth, 0x00000707, MTK_CDMW0_THRES); mtk_w32(eth, 0x00000077, MTK_CDMW1_THRES); /* Disable GDM1 RX CRC stripping */ mtk_m32(eth, MTK_GDMA_STRP_CRC, 0, MTK_GDMA_FWD_CFG(0)); /* PSE GDM3 MIB counter has incorrect hw default values, * so the driver ought to read clear the values beforehand * in case ethtool retrieve wrong mib values. */ for (i = 0; i < 0x80; i += 0x4) mtk_r32(eth, reg_map->gdm1_cnt + 0x100 + i); } else if (!mtk_is_netsys_v1(eth)) { /* PSE should not drop port8 and port9 packets from WDMA Tx */ mtk_w32(eth, 0x00000300, PSE_DROP_CFG); /* PSE should drop packets to port 8/9 on WDMA Rx ring full */ mtk_w32(eth, 0x00000300, PSE_PPE0_DROP); /* PSE Free Queue Flow Control */ mtk_w32(eth, 0x01fa01f4, PSE_FQFC_CFG2); /* PSE config input queue threshold */ mtk_w32(eth, 0x001a000e, PSE_IQ_REV(1)); mtk_w32(eth, 0x01ff001a, PSE_IQ_REV(2)); mtk_w32(eth, 0x000e01ff, PSE_IQ_REV(3)); mtk_w32(eth, 0x000e000e, PSE_IQ_REV(4)); mtk_w32(eth, 0x000e000e, PSE_IQ_REV(5)); mtk_w32(eth, 0x000e000e, PSE_IQ_REV(6)); mtk_w32(eth, 0x000e000e, PSE_IQ_REV(7)); mtk_w32(eth, 0x000e000e, PSE_IQ_REV(8)); /* PSE config output queue threshold */ mtk_w32(eth, 0x000f000a, PSE_OQ_TH(1)); mtk_w32(eth, 0x001a000f, PSE_OQ_TH(2)); mtk_w32(eth, 0x000f001a, PSE_OQ_TH(3)); mtk_w32(eth, 0x01ff000f, PSE_OQ_TH(4)); mtk_w32(eth, 0x000f000f, PSE_OQ_TH(5)); mtk_w32(eth, 0x0006000f, PSE_OQ_TH(6)); mtk_w32(eth, 0x00060006, PSE_OQ_TH(7)); mtk_w32(eth, 0x00060006, PSE_OQ_TH(8)); /* GDM and CDM Threshold */ mtk_w32(eth, 0x00000004, MTK_GDM2_THRES); mtk_w32(eth, 0x00000004, MTK_CDMW0_THRES); mtk_w32(eth, 0x00000004, MTK_CDMW1_THRES); mtk_w32(eth, 0x00000004, MTK_CDME0_THRES); mtk_w32(eth, 0x00000004, MTK_CDME1_THRES); mtk_w32(eth, 0x00000004, MTK_CDMM_THRES); } return 0; err_disable_pm: if (!reset) { pm_runtime_put_sync(eth->dev); pm_runtime_disable(eth->dev); } return ret; } static int mtk_hw_deinit(struct mtk_eth *eth) { if (!test_and_clear_bit(MTK_HW_INIT, ð->state)) return 0; mtk_clk_disable(eth); pm_runtime_put_sync(eth->dev); pm_runtime_disable(eth->dev); return 0; } static void mtk_uninit(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; phylink_disconnect_phy(mac->phylink); mtk_tx_irq_disable(eth, ~0); mtk_rx_irq_disable(eth, ~0); } static int mtk_change_mtu(struct net_device *dev, int new_mtu) { int length = new_mtu + MTK_RX_ETH_HLEN; struct mtk_mac *mac = netdev_priv(dev); struct mtk_eth *eth = mac->hw; if (rcu_access_pointer(eth->prog) && length > MTK_PP_MAX_BUF_SIZE) { netdev_err(dev, "Invalid MTU for XDP mode\n"); return -EINVAL; } mtk_set_mcr_max_rx(mac, length); WRITE_ONCE(dev->mtu, new_mtu); return 0; } static int mtk_do_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd) { struct mtk_mac *mac = netdev_priv(dev); switch (cmd) { case SIOCGMIIPHY: case SIOCGMIIREG: case SIOCSMIIREG: return phylink_mii_ioctl(mac->phylink, ifr, cmd); default: break; } return -EOPNOTSUPP; } static void mtk_prepare_for_reset(struct mtk_eth *eth) { u32 val; int i; /* set FE PPE ports link down */ for (i = MTK_GMAC1_ID; i <= (mtk_is_netsys_v3_or_greater(eth) ? MTK_GMAC3_ID : MTK_GMAC2_ID); i += 2) { val = mtk_r32(eth, MTK_FE_GLO_CFG(i)) | MTK_FE_LINK_DOWN_P(PSE_PPE0_PORT); if (MTK_HAS_CAPS(eth->soc->caps, MTK_RSTCTRL_PPE1)) val |= MTK_FE_LINK_DOWN_P(PSE_PPE1_PORT); if (MTK_HAS_CAPS(eth->soc->caps, MTK_RSTCTRL_PPE2)) val |= MTK_FE_LINK_DOWN_P(PSE_PPE2_PORT); mtk_w32(eth, val, MTK_FE_GLO_CFG(i)); } /* adjust PPE configurations to prepare for reset */ for (i = 0; i < ARRAY_SIZE(eth->ppe); i++) mtk_ppe_prepare_reset(eth->ppe[i]); /* disable NETSYS interrupts */ mtk_w32(eth, 0, MTK_FE_INT_ENABLE); /* force link down GMAC */ for (i = 0; i < 2; i++) { val = mtk_r32(eth, MTK_MAC_MCR(i)) & ~MAC_MCR_FORCE_LINK; mtk_w32(eth, val, MTK_MAC_MCR(i)); } } static void mtk_pending_work(struct work_struct *work) { struct mtk_eth *eth = container_of(work, struct mtk_eth, pending_work); unsigned long restart = 0; u32 val; int i; rtnl_lock(); set_bit(MTK_RESETTING, ð->state); mtk_prepare_for_reset(eth); mtk_wed_fe_reset(); /* Run again reset preliminary configuration in order to avoid any * possible race during FE reset since it can run releasing RTNL lock. */ mtk_prepare_for_reset(eth); /* stop all devices to make sure that dma is properly shut down */ for (i = 0; i < MTK_MAX_DEVS; i++) { if (!eth->netdev[i] || !netif_running(eth->netdev[i])) continue; mtk_stop(eth->netdev[i]); __set_bit(i, &restart); } usleep_range(15000, 16000); if (eth->dev->pins) pinctrl_select_state(eth->dev->pins->p, eth->dev->pins->default_state); mtk_hw_init(eth, true); /* restart DMA and enable IRQs */ for (i = 0; i < MTK_MAX_DEVS; i++) { if (!eth->netdev[i] || !test_bit(i, &restart)) continue; if (mtk_open(eth->netdev[i])) { netif_alert(eth, ifup, eth->netdev[i], "Driver up/down cycle failed\n"); dev_close(eth->netdev[i]); } } /* set FE PPE ports link up */ for (i = MTK_GMAC1_ID; i <= (mtk_is_netsys_v3_or_greater(eth) ? MTK_GMAC3_ID : MTK_GMAC2_ID); i += 2) { val = mtk_r32(eth, MTK_FE_GLO_CFG(i)) & ~MTK_FE_LINK_DOWN_P(PSE_PPE0_PORT); if (MTK_HAS_CAPS(eth->soc->caps, MTK_RSTCTRL_PPE1)) val &= ~MTK_FE_LINK_DOWN_P(PSE_PPE1_PORT); if (MTK_HAS_CAPS(eth->soc->caps, MTK_RSTCTRL_PPE2)) val &= ~MTK_FE_LINK_DOWN_P(PSE_PPE2_PORT); mtk_w32(eth, val, MTK_FE_GLO_CFG(i)); } clear_bit(MTK_RESETTING, ð->state); mtk_wed_fe_reset_complete(); rtnl_unlock(); } static int mtk_free_dev(struct mtk_eth *eth) { int i; for (i = 0; i < MTK_MAX_DEVS; i++) { if (!eth->netdev[i]) continue; free_netdev(eth->netdev[i]); } for (i = 0; i < ARRAY_SIZE(eth->dsa_meta); i++) { if (!eth->dsa_meta[i]) break; metadata_dst_free(eth->dsa_meta[i]); } return 0; } static int mtk_unreg_dev(struct mtk_eth *eth) { int i; for (i = 0; i < MTK_MAX_DEVS; i++) { struct mtk_mac *mac; if (!eth->netdev[i]) continue; mac = netdev_priv(eth->netdev[i]); if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) unregister_netdevice_notifier(&mac->device_notifier); unregister_netdev(eth->netdev[i]); } return 0; } static void mtk_sgmii_destroy(struct mtk_eth *eth) { int i; for (i = 0; i < MTK_MAX_DEVS; i++) mtk_pcs_lynxi_destroy(eth->sgmii_pcs[i]); } static int mtk_cleanup(struct mtk_eth *eth) { mtk_sgmii_destroy(eth); mtk_unreg_dev(eth); mtk_free_dev(eth); cancel_work_sync(ð->pending_work); cancel_delayed_work_sync(ð->reset.monitor_work); return 0; } static int mtk_get_link_ksettings(struct net_device *ndev, struct ethtool_link_ksettings *cmd) { struct mtk_mac *mac = netdev_priv(ndev); if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state))) return -EBUSY; return phylink_ethtool_ksettings_get(mac->phylink, cmd); } static int mtk_set_link_ksettings(struct net_device *ndev, const struct ethtool_link_ksettings *cmd) { struct mtk_mac *mac = netdev_priv(ndev); if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state))) return -EBUSY; return phylink_ethtool_ksettings_set(mac->phylink, cmd); } static void mtk_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { struct mtk_mac *mac = netdev_priv(dev); strscpy(info->driver, mac->hw->dev->driver->name, sizeof(info->driver)); strscpy(info->bus_info, dev_name(mac->hw->dev), sizeof(info->bus_info)); info->n_stats = ARRAY_SIZE(mtk_ethtool_stats); } static u32 mtk_get_msglevel(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); return mac->hw->msg_enable; } static void mtk_set_msglevel(struct net_device *dev, u32 value) { struct mtk_mac *mac = netdev_priv(dev); mac->hw->msg_enable = value; } static int mtk_nway_reset(struct net_device *dev) { struct mtk_mac *mac = netdev_priv(dev); if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state))) return -EBUSY; if (!mac->phylink) return -ENOTSUPP; return phylink_ethtool_nway_reset(mac->phylink); } static void mtk_get_strings(struct net_device *dev, u32 stringset, u8 *data) { int i; switch (stringset) { case ETH_SS_STATS: { struct mtk_mac *mac = netdev_priv(dev); for (i = 0; i < ARRAY_SIZE(mtk_ethtool_stats); i++) { memcpy(data, mtk_ethtool_stats[i].str, ETH_GSTRING_LEN); data += ETH_GSTRING_LEN; } if (mtk_page_pool_enabled(mac->hw)) page_pool_ethtool_stats_get_strings(data); break; } default: break; } } static int mtk_get_sset_count(struct net_device *dev, int sset) { switch (sset) { case ETH_SS_STATS: { int count = ARRAY_SIZE(mtk_ethtool_stats); struct mtk_mac *mac = netdev_priv(dev); if (mtk_page_pool_enabled(mac->hw)) count += page_pool_ethtool_stats_get_count(); return count; } default: return -EOPNOTSUPP; } } static void mtk_ethtool_pp_stats(struct mtk_eth *eth, u64 *data) { struct page_pool_stats stats = {}; int i; for (i = 0; i < ARRAY_SIZE(eth->rx_ring); i++) { struct mtk_rx_ring *ring = ð->rx_ring[i]; if (!ring->page_pool) continue; page_pool_get_stats(ring->page_pool, &stats); } page_pool_ethtool_stats_get(data, &stats); } static void mtk_get_ethtool_stats(struct net_device *dev, struct ethtool_stats *stats, u64 *data) { struct mtk_mac *mac = netdev_priv(dev); struct mtk_hw_stats *hwstats = mac->hw_stats; u64 *data_src, *data_dst; unsigned int start; int i; if (unlikely(test_bit(MTK_RESETTING, &mac->hw->state))) return; if (netif_running(dev) && netif_device_present(dev)) { if (spin_trylock_bh(&hwstats->stats_lock)) { mtk_stats_update_mac(mac); spin_unlock_bh(&hwstats->stats_lock); } } data_src = (u64 *)hwstats; do { data_dst = data; start = u64_stats_fetch_begin(&hwstats->syncp); for (i = 0; i < ARRAY_SIZE(mtk_ethtool_stats); i++) *data_dst++ = *(data_src + mtk_ethtool_stats[i].offset); if (mtk_page_pool_enabled(mac->hw)) mtk_ethtool_pp_stats(mac->hw, data_dst); } while (u64_stats_fetch_retry(&hwstats->syncp, start)); } static int mtk_get_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd, u32 *rule_locs) { int ret = -EOPNOTSUPP; switch (cmd->cmd) { case ETHTOOL_GRXRINGS: if (dev->hw_features & NETIF_F_LRO) { cmd->data = MTK_MAX_RX_RING_NUM; ret = 0; } break; case ETHTOOL_GRXCLSRLCNT: if (dev->hw_features & NETIF_F_LRO) { struct mtk_mac *mac = netdev_priv(dev); cmd->rule_cnt = mac->hwlro_ip_cnt; ret = 0; } break; case ETHTOOL_GRXCLSRULE: if (dev->hw_features & NETIF_F_LRO) ret = mtk_hwlro_get_fdir_entry(dev, cmd); break; case ETHTOOL_GRXCLSRLALL: if (dev->hw_features & NETIF_F_LRO) ret = mtk_hwlro_get_fdir_all(dev, cmd, rule_locs); break; default: break; } return ret; } static int mtk_set_rxnfc(struct net_device *dev, struct ethtool_rxnfc *cmd) { int ret = -EOPNOTSUPP; switch (cmd->cmd) { case ETHTOOL_SRXCLSRLINS: if (dev->hw_features & NETIF_F_LRO) ret = mtk_hwlro_add_ipaddr(dev, cmd); break; case ETHTOOL_SRXCLSRLDEL: if (dev->hw_features & NETIF_F_LRO) ret = mtk_hwlro_del_ipaddr(dev, cmd); break; default: break; } return ret; } static void mtk_get_pauseparam(struct net_device *dev, struct ethtool_pauseparam *pause) { struct mtk_mac *mac = netdev_priv(dev); phylink_ethtool_get_pauseparam(mac->phylink, pause); } static int mtk_set_pauseparam(struct net_device *dev, struct ethtool_pauseparam *pause) { struct mtk_mac *mac = netdev_priv(dev); return phylink_ethtool_set_pauseparam(mac->phylink, pause); } static u16 mtk_select_queue(struct net_device *dev, struct sk_buff *skb, struct net_device *sb_dev) { struct mtk_mac *mac = netdev_priv(dev); unsigned int queue = 0; if (netdev_uses_dsa(dev)) queue = skb_get_queue_mapping(skb) + 3; else queue = mac->id; if (queue >= dev->num_tx_queues) queue = 0; return queue; } static const struct ethtool_ops mtk_ethtool_ops = { .get_link_ksettings = mtk_get_link_ksettings, .set_link_ksettings = mtk_set_link_ksettings, .get_drvinfo = mtk_get_drvinfo, .get_msglevel = mtk_get_msglevel, .set_msglevel = mtk_set_msglevel, .nway_reset = mtk_nway_reset, .get_link = ethtool_op_get_link, .get_strings = mtk_get_strings, .get_sset_count = mtk_get_sset_count, .get_ethtool_stats = mtk_get_ethtool_stats, .get_pauseparam = mtk_get_pauseparam, .set_pauseparam = mtk_set_pauseparam, .get_rxnfc = mtk_get_rxnfc, .set_rxnfc = mtk_set_rxnfc, }; static const struct net_device_ops mtk_netdev_ops = { .ndo_uninit = mtk_uninit, .ndo_open = mtk_open, .ndo_stop = mtk_stop, .ndo_start_xmit = mtk_start_xmit, .ndo_set_mac_address = mtk_set_mac_address, .ndo_validate_addr = eth_validate_addr, .ndo_eth_ioctl = mtk_do_ioctl, .ndo_change_mtu = mtk_change_mtu, .ndo_tx_timeout = mtk_tx_timeout, .ndo_get_stats64 = mtk_get_stats64, .ndo_fix_features = mtk_fix_features, .ndo_set_features = mtk_set_features, #ifdef CONFIG_NET_POLL_CONTROLLER .ndo_poll_controller = mtk_poll_controller, #endif .ndo_setup_tc = mtk_eth_setup_tc, .ndo_bpf = mtk_xdp, .ndo_xdp_xmit = mtk_xdp_xmit, .ndo_select_queue = mtk_select_queue, }; static int mtk_add_mac(struct mtk_eth *eth, struct device_node *np) { const __be32 *_id = of_get_property(np, "reg", NULL); phy_interface_t phy_mode; struct phylink *phylink; struct mtk_mac *mac; int id, err; int txqs = 1; u32 val; if (!_id) { dev_err(eth->dev, "missing mac id\n"); return -EINVAL; } id = be32_to_cpup(_id); if (id >= MTK_MAX_DEVS) { dev_err(eth->dev, "%d is not a valid mac id\n", id); return -EINVAL; } if (eth->netdev[id]) { dev_err(eth->dev, "duplicate mac id found: %d\n", id); return -EINVAL; } if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) txqs = MTK_QDMA_NUM_QUEUES; eth->netdev[id] = alloc_etherdev_mqs(sizeof(*mac), txqs, 1); if (!eth->netdev[id]) { dev_err(eth->dev, "alloc_etherdev failed\n"); return -ENOMEM; } mac = netdev_priv(eth->netdev[id]); eth->mac[id] = mac; mac->id = id; mac->hw = eth; mac->of_node = np; err = of_get_ethdev_address(mac->of_node, eth->netdev[id]); if (err == -EPROBE_DEFER) return err; if (err) { /* If the mac address is invalid, use random mac address */ eth_hw_addr_random(eth->netdev[id]); dev_err(eth->dev, "generated random MAC address %pM\n", eth->netdev[id]->dev_addr); } memset(mac->hwlro_ip, 0, sizeof(mac->hwlro_ip)); mac->hwlro_ip_cnt = 0; mac->hw_stats = devm_kzalloc(eth->dev, sizeof(*mac->hw_stats), GFP_KERNEL); if (!mac->hw_stats) { dev_err(eth->dev, "failed to allocate counter memory\n"); err = -ENOMEM; goto free_netdev; } spin_lock_init(&mac->hw_stats->stats_lock); u64_stats_init(&mac->hw_stats->syncp); if (mtk_is_netsys_v3_or_greater(eth)) mac->hw_stats->reg_offset = id * 0x80; else mac->hw_stats->reg_offset = id * 0x40; /* phylink create */ err = of_get_phy_mode(np, &phy_mode); if (err) { dev_err(eth->dev, "incorrect phy-mode\n"); goto free_netdev; } /* mac config is not set */ mac->interface = PHY_INTERFACE_MODE_NA; mac->speed = SPEED_UNKNOWN; mac->phylink_config.dev = ð->netdev[id]->dev; mac->phylink_config.type = PHYLINK_NETDEV; mac->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE | MAC_10 | MAC_100 | MAC_1000 | MAC_2500FD; /* MT7623 gmac0 is now missing its speed-specific PLL configuration * in its .mac_config method (since state->speed is not valid there. * Disable support for MII, GMII and RGMII. */ if (!mac->hw->soc->disable_pll_modes || mac->id != 0) { __set_bit(PHY_INTERFACE_MODE_MII, mac->phylink_config.supported_interfaces); __set_bit(PHY_INTERFACE_MODE_GMII, mac->phylink_config.supported_interfaces); if (MTK_HAS_CAPS(mac->hw->soc->caps, MTK_RGMII)) phy_interface_set_rgmii(mac->phylink_config.supported_interfaces); } if (MTK_HAS_CAPS(mac->hw->soc->caps, MTK_TRGMII) && !mac->id) __set_bit(PHY_INTERFACE_MODE_TRGMII, mac->phylink_config.supported_interfaces); /* TRGMII is not permitted on MT7621 if using DDR2 */ if (MTK_HAS_CAPS(mac->hw->soc->caps, MTK_GMAC1_TRGMII) && MTK_HAS_CAPS(mac->hw->soc->caps, MTK_TRGMII_MT7621_CLK)) { regmap_read(eth->ethsys, ETHSYS_SYSCFG, &val); if (val & SYSCFG_DRAM_TYPE_DDR2) __clear_bit(PHY_INTERFACE_MODE_TRGMII, mac->phylink_config.supported_interfaces); } if (MTK_HAS_CAPS(mac->hw->soc->caps, MTK_SGMII)) { __set_bit(PHY_INTERFACE_MODE_SGMII, mac->phylink_config.supported_interfaces); __set_bit(PHY_INTERFACE_MODE_1000BASEX, mac->phylink_config.supported_interfaces); __set_bit(PHY_INTERFACE_MODE_2500BASEX, mac->phylink_config.supported_interfaces); } if (mtk_is_netsys_v3_or_greater(mac->hw) && MTK_HAS_CAPS(mac->hw->soc->caps, MTK_ESW_BIT) && id == MTK_GMAC1_ID) { mac->phylink_config.mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE | MAC_10000FD; phy_interface_zero(mac->phylink_config.supported_interfaces); __set_bit(PHY_INTERFACE_MODE_INTERNAL, mac->phylink_config.supported_interfaces); } phylink = phylink_create(&mac->phylink_config, of_fwnode_handle(mac->of_node), phy_mode, &mtk_phylink_ops); if (IS_ERR(phylink)) { err = PTR_ERR(phylink); goto free_netdev; } mac->phylink = phylink; SET_NETDEV_DEV(eth->netdev[id], eth->dev); eth->netdev[id]->watchdog_timeo = 5 * HZ; eth->netdev[id]->netdev_ops = &mtk_netdev_ops; eth->netdev[id]->base_addr = (unsigned long)eth->base; eth->netdev[id]->hw_features = eth->soc->hw_features; if (eth->hwlro) eth->netdev[id]->hw_features |= NETIF_F_LRO; eth->netdev[id]->vlan_features = eth->soc->hw_features & ~NETIF_F_HW_VLAN_CTAG_TX; eth->netdev[id]->features |= eth->soc->hw_features; eth->netdev[id]->ethtool_ops = &mtk_ethtool_ops; eth->netdev[id]->irq = eth->irq[0]; eth->netdev[id]->dev.of_node = np; if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) eth->netdev[id]->max_mtu = MTK_MAX_RX_LENGTH - MTK_RX_ETH_HLEN; else eth->netdev[id]->max_mtu = MTK_MAX_RX_LENGTH_2K - MTK_RX_ETH_HLEN; if (MTK_HAS_CAPS(eth->soc->caps, MTK_QDMA)) { mac->device_notifier.notifier_call = mtk_device_event; register_netdevice_notifier(&mac->device_notifier); } if (mtk_page_pool_enabled(eth)) eth->netdev[id]->xdp_features = NETDEV_XDP_ACT_BASIC | NETDEV_XDP_ACT_REDIRECT | NETDEV_XDP_ACT_NDO_XMIT | NETDEV_XDP_ACT_NDO_XMIT_SG; return 0; free_netdev: free_netdev(eth->netdev[id]); return err; } void mtk_eth_set_dma_device(struct mtk_eth *eth, struct device *dma_dev) { struct net_device *dev, *tmp; LIST_HEAD(dev_list); int i; rtnl_lock(); for (i = 0; i < MTK_MAX_DEVS; i++) { dev = eth->netdev[i]; if (!dev || !(dev->flags & IFF_UP)) continue; list_add_tail(&dev->close_list, &dev_list); } dev_close_many(&dev_list, false); eth->dma_dev = dma_dev; list_for_each_entry_safe(dev, tmp, &dev_list, close_list) { list_del_init(&dev->close_list); dev_open(dev, NULL); } rtnl_unlock(); } static int mtk_sgmii_init(struct mtk_eth *eth) { struct device_node *np; struct regmap *regmap; u32 flags; int i; for (i = 0; i < MTK_MAX_DEVS; i++) { np = of_parse_phandle(eth->dev->of_node, "mediatek,sgmiisys", i); if (!np) break; regmap = syscon_node_to_regmap(np); flags = 0; if (of_property_read_bool(np, "mediatek,pnswap")) flags |= MTK_SGMII_FLAG_PN_SWAP; of_node_put(np); if (IS_ERR(regmap)) return PTR_ERR(regmap); eth->sgmii_pcs[i] = mtk_pcs_lynxi_create(eth->dev, regmap, eth->soc->ana_rgc3, flags); } return 0; } static int mtk_probe(struct platform_device *pdev) { struct resource *res = NULL, *res_sram; struct device_node *mac_np; struct mtk_eth *eth; int err, i; eth = devm_kzalloc(&pdev->dev, sizeof(*eth), GFP_KERNEL); if (!eth) return -ENOMEM; eth->soc = of_device_get_match_data(&pdev->dev); eth->dev = &pdev->dev; eth->dma_dev = &pdev->dev; eth->base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(eth->base)) return PTR_ERR(eth->base); if (MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) eth->ip_align = NET_IP_ALIGN; if (MTK_HAS_CAPS(eth->soc->caps, MTK_SRAM)) { /* SRAM is actual memory and supports transparent access just like DRAM. * Hence we don't require __iomem being set and don't need to use accessor * functions to read from or write to SRAM. */ if (mtk_is_netsys_v3_or_greater(eth)) { eth->sram_base = (void __force *)devm_platform_ioremap_resource(pdev, 1); if (IS_ERR(eth->sram_base)) return PTR_ERR(eth->sram_base); } else { eth->sram_base = (void __force *)eth->base + MTK_ETH_SRAM_OFFSET; } } if (MTK_HAS_CAPS(eth->soc->caps, MTK_36BIT_DMA)) { err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(36)); if (!err) err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32)); if (err) { dev_err(&pdev->dev, "Wrong DMA config\n"); return -EINVAL; } } spin_lock_init(ð->page_lock); spin_lock_init(ð->tx_irq_lock); spin_lock_init(ð->rx_irq_lock); spin_lock_init(ð->dim_lock); eth->rx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; INIT_WORK(ð->rx_dim.work, mtk_dim_rx); INIT_DELAYED_WORK(ð->reset.monitor_work, mtk_hw_reset_monitor_work); eth->tx_dim.mode = DIM_CQ_PERIOD_MODE_START_FROM_EQE; INIT_WORK(ð->tx_dim.work, mtk_dim_tx); if (!MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) { eth->ethsys = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "mediatek,ethsys"); if (IS_ERR(eth->ethsys)) { dev_err(&pdev->dev, "no ethsys regmap found\n"); return PTR_ERR(eth->ethsys); } } if (MTK_HAS_CAPS(eth->soc->caps, MTK_INFRA)) { eth->infra = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "mediatek,infracfg"); if (IS_ERR(eth->infra)) { dev_err(&pdev->dev, "no infracfg regmap found\n"); return PTR_ERR(eth->infra); } } if (of_dma_is_coherent(pdev->dev.of_node)) { struct regmap *cci; cci = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "cci-control-port"); /* enable CPU/bus coherency */ if (!IS_ERR(cci)) regmap_write(cci, 0, 3); } if (MTK_HAS_CAPS(eth->soc->caps, MTK_SGMII)) { err = mtk_sgmii_init(eth); if (err) return err; } if (eth->soc->required_pctl) { eth->pctl = syscon_regmap_lookup_by_phandle(pdev->dev.of_node, "mediatek,pctl"); if (IS_ERR(eth->pctl)) { dev_err(&pdev->dev, "no pctl regmap found\n"); err = PTR_ERR(eth->pctl); goto err_destroy_sgmii; } } if (mtk_is_netsys_v2_or_greater(eth)) { res = platform_get_resource(pdev, IORESOURCE_MEM, 0); if (!res) { err = -EINVAL; goto err_destroy_sgmii; } if (MTK_HAS_CAPS(eth->soc->caps, MTK_SRAM)) { if (mtk_is_netsys_v3_or_greater(eth)) { res_sram = platform_get_resource(pdev, IORESOURCE_MEM, 1); if (!res_sram) { err = -EINVAL; goto err_destroy_sgmii; } eth->phy_scratch_ring = res_sram->start; } else { eth->phy_scratch_ring = res->start + MTK_ETH_SRAM_OFFSET; } } } if (eth->soc->offload_version) { for (i = 0;; i++) { struct device_node *np; phys_addr_t wdma_phy; u32 wdma_base; if (i >= ARRAY_SIZE(eth->soc->reg_map->wdma_base)) break; np = of_parse_phandle(pdev->dev.of_node, "mediatek,wed", i); if (!np) break; wdma_base = eth->soc->reg_map->wdma_base[i]; wdma_phy = res ? res->start + wdma_base : 0; mtk_wed_add_hw(np, eth, eth->base + wdma_base, wdma_phy, i); } } for (i = 0; i < 3; i++) { if (MTK_HAS_CAPS(eth->soc->caps, MTK_SHARED_INT) && i > 0) eth->irq[i] = eth->irq[0]; else eth->irq[i] = platform_get_irq(pdev, i); if (eth->irq[i] < 0) { dev_err(&pdev->dev, "no IRQ%d resource found\n", i); err = -ENXIO; goto err_wed_exit; } } for (i = 0; i < ARRAY_SIZE(eth->clks); i++) { eth->clks[i] = devm_clk_get(eth->dev, mtk_clks_source_name[i]); if (IS_ERR(eth->clks[i])) { if (PTR_ERR(eth->clks[i]) == -EPROBE_DEFER) { err = -EPROBE_DEFER; goto err_wed_exit; } if (eth->soc->required_clks & BIT(i)) { dev_err(&pdev->dev, "clock %s not found\n", mtk_clks_source_name[i]); err = -EINVAL; goto err_wed_exit; } eth->clks[i] = NULL; } } eth->msg_enable = netif_msg_init(mtk_msg_level, MTK_DEFAULT_MSG_ENABLE); INIT_WORK(ð->pending_work, mtk_pending_work); err = mtk_hw_init(eth, false); if (err) goto err_wed_exit; eth->hwlro = MTK_HAS_CAPS(eth->soc->caps, MTK_HWLRO); for_each_child_of_node(pdev->dev.of_node, mac_np) { if (!of_device_is_compatible(mac_np, "mediatek,eth-mac")) continue; if (!of_device_is_available(mac_np)) continue; err = mtk_add_mac(eth, mac_np); if (err) { of_node_put(mac_np); goto err_deinit_hw; } } if (MTK_HAS_CAPS(eth->soc->caps, MTK_SHARED_INT)) { err = devm_request_irq(eth->dev, eth->irq[0], mtk_handle_irq, 0, dev_name(eth->dev), eth); } else { err = devm_request_irq(eth->dev, eth->irq[1], mtk_handle_irq_tx, 0, dev_name(eth->dev), eth); if (err) goto err_free_dev; err = devm_request_irq(eth->dev, eth->irq[2], mtk_handle_irq_rx, 0, dev_name(eth->dev), eth); } if (err) goto err_free_dev; /* No MT7628/88 support yet */ if (!MTK_HAS_CAPS(eth->soc->caps, MTK_SOC_MT7628)) { err = mtk_mdio_init(eth); if (err) goto err_free_dev; } if (eth->soc->offload_version) { u8 ppe_num = eth->soc->ppe_num; ppe_num = min_t(u8, ARRAY_SIZE(eth->ppe), ppe_num); for (i = 0; i < ppe_num; i++) { u32 ppe_addr = eth->soc->reg_map->ppe_base; ppe_addr += (i == 2 ? 0xc00 : i * 0x400); eth->ppe[i] = mtk_ppe_init(eth, eth->base + ppe_addr, i); if (!eth->ppe[i]) { err = -ENOMEM; goto err_deinit_ppe; } err = mtk_eth_offload_init(eth, i); if (err) goto err_deinit_ppe; } } for (i = 0; i < MTK_MAX_DEVS; i++) { if (!eth->netdev[i]) continue; err = register_netdev(eth->netdev[i]); if (err) { dev_err(eth->dev, "error bringing up device\n"); goto err_deinit_ppe; } else netif_info(eth, probe, eth->netdev[i], "mediatek frame engine at 0x%08lx, irq %d\n", eth->netdev[i]->base_addr, eth->irq[0]); } /* we run 2 devices on the same DMA ring so we need a dummy device * for NAPI to work */ eth->dummy_dev = alloc_netdev_dummy(0); if (!eth->dummy_dev) { err = -ENOMEM; dev_err(eth->dev, "failed to allocated dummy device\n"); goto err_unreg_netdev; } netif_napi_add(eth->dummy_dev, ð->tx_napi, mtk_napi_tx); netif_napi_add(eth->dummy_dev, ð->rx_napi, mtk_napi_rx); platform_set_drvdata(pdev, eth); schedule_delayed_work(ð->reset.monitor_work, MTK_DMA_MONITOR_TIMEOUT); return 0; err_unreg_netdev: mtk_unreg_dev(eth); err_deinit_ppe: mtk_ppe_deinit(eth); mtk_mdio_cleanup(eth); err_free_dev: mtk_free_dev(eth); err_deinit_hw: mtk_hw_deinit(eth); err_wed_exit: mtk_wed_exit(); err_destroy_sgmii: mtk_sgmii_destroy(eth); return err; } static void mtk_remove(struct platform_device *pdev) { struct mtk_eth *eth = platform_get_drvdata(pdev); struct mtk_mac *mac; int i; /* stop all devices to make sure that dma is properly shut down */ for (i = 0; i < MTK_MAX_DEVS; i++) { if (!eth->netdev[i]) continue; mtk_stop(eth->netdev[i]); mac = netdev_priv(eth->netdev[i]); phylink_disconnect_phy(mac->phylink); } mtk_wed_exit(); mtk_hw_deinit(eth); netif_napi_del(ð->tx_napi); netif_napi_del(ð->rx_napi); mtk_cleanup(eth); free_netdev(eth->dummy_dev); mtk_mdio_cleanup(eth); } static const struct mtk_soc_data mt2701_data = { .reg_map = &mtk_reg_map, .caps = MT7623_CAPS | MTK_HWLRO, .hw_features = MTK_HW_FEATURES, .required_clks = MT7623_CLKS_BITMAP, .required_pctl = true, .version = 1, .tx = { .desc_size = sizeof(struct mtk_tx_dma), .dma_max_len = MTK_TX_DMA_BUF_LEN, .dma_len_offset = 16, .dma_size = MTK_DMA_SIZE(2K), .fq_dma_size = MTK_DMA_SIZE(2K), }, .rx = { .desc_size = sizeof(struct mtk_rx_dma), .irq_done_mask = MTK_RX_DONE_INT, .dma_l4_valid = RX_DMA_L4_VALID, .dma_size = MTK_DMA_SIZE(2K), .dma_max_len = MTK_TX_DMA_BUF_LEN, .dma_len_offset = 16, }, }; static const struct mtk_soc_data mt7621_data = { .reg_map = &mtk_reg_map, .caps = MT7621_CAPS, .hw_features = MTK_HW_FEATURES, .required_clks = MT7621_CLKS_BITMAP, .required_pctl = false, .version = 1, .offload_version = 1, .ppe_num = 1, .hash_offset = 2, .foe_entry_size = MTK_FOE_ENTRY_V1_SIZE, .tx = { .desc_size = sizeof(struct mtk_tx_dma), .dma_max_len = MTK_TX_DMA_BUF_LEN, .dma_len_offset = 16, .dma_size = MTK_DMA_SIZE(2K), .fq_dma_size = MTK_DMA_SIZE(2K), }, .rx = { .desc_size = sizeof(struct mtk_rx_dma), .irq_done_mask = MTK_RX_DONE_INT, .dma_l4_valid = RX_DMA_L4_VALID, .dma_size = MTK_DMA_SIZE(2K), .dma_max_len = MTK_TX_DMA_BUF_LEN, .dma_len_offset = 16, }, }; static const struct mtk_soc_data mt7622_data = { .reg_map = &mtk_reg_map, .ana_rgc3 = 0x2028, .caps = MT7622_CAPS | MTK_HWLRO, .hw_features = MTK_HW_FEATURES, .required_clks = MT7622_CLKS_BITMAP, .required_pctl = false, .version = 1, .offload_version = 2, .ppe_num = 1, .hash_offset = 2, .has_accounting = true, .foe_entry_size = MTK_FOE_ENTRY_V1_SIZE, .tx = { .desc_size = sizeof(struct mtk_tx_dma), .dma_max_len = MTK_TX_DMA_BUF_LEN, .dma_len_offset = 16, .dma_size = MTK_DMA_SIZE(2K), .fq_dma_size = MTK_DMA_SIZE(2K), }, .rx = { .desc_size = sizeof(struct mtk_rx_dma), .irq_done_mask = MTK_RX_DONE_INT, .dma_l4_valid = RX_DMA_L4_VALID, .dma_size = MTK_DMA_SIZE(2K), .dma_max_len = MTK_TX_DMA_BUF_LEN, .dma_len_offset = 16, }, }; static const struct mtk_soc_data mt7623_data = { .reg_map = &mtk_reg_map, .caps = MT7623_CAPS | MTK_HWLRO, .hw_features = MTK_HW_FEATURES, .required_clks = MT7623_CLKS_BITMAP, .required_pctl = true, .version = 1, .offload_version = 1, .ppe_num = 1, .hash_offset = 2, .foe_entry_size = MTK_FOE_ENTRY_V1_SIZE, .disable_pll_modes = true, .tx = { .desc_size = sizeof(struct mtk_tx_dma), .dma_max_len = MTK_TX_DMA_BUF_LEN, .dma_len_offset = 16, .dma_size = MTK_DMA_SIZE(2K), .fq_dma_size = MTK_DMA_SIZE(2K), }, .rx = { .desc_size = sizeof(struct mtk_rx_dma), .irq_done_mask = MTK_RX_DONE_INT, .dma_l4_valid = RX_DMA_L4_VALID, .dma_size = MTK_DMA_SIZE(2K), .dma_max_len = MTK_TX_DMA_BUF_LEN, .dma_len_offset = 16, }, }; static const struct mtk_soc_data mt7629_data = { .reg_map = &mtk_reg_map, .ana_rgc3 = 0x128, .caps = MT7629_CAPS | MTK_HWLRO, .hw_features = MTK_HW_FEATURES, .required_clks = MT7629_CLKS_BITMAP, .required_pctl = false, .has_accounting = true, .version = 1, .tx = { .desc_size = sizeof(struct mtk_tx_dma), .dma_max_len = MTK_TX_DMA_BUF_LEN, .dma_len_offset = 16, .dma_size = MTK_DMA_SIZE(2K), .fq_dma_size = MTK_DMA_SIZE(2K), }, .rx = { .desc_size = sizeof(struct mtk_rx_dma), .irq_done_mask = MTK_RX_DONE_INT, .dma_l4_valid = RX_DMA_L4_VALID, .dma_size = MTK_DMA_SIZE(2K), .dma_max_len = MTK_TX_DMA_BUF_LEN, .dma_len_offset = 16, }, }; static const struct mtk_soc_data mt7981_data = { .reg_map = &mt7986_reg_map, .ana_rgc3 = 0x128, .caps = MT7981_CAPS, .hw_features = MTK_HW_FEATURES, .required_clks = MT7981_CLKS_BITMAP, .required_pctl = false, .version = 2, .offload_version = 2, .ppe_num = 2, .hash_offset = 4, .has_accounting = true, .foe_entry_size = MTK_FOE_ENTRY_V2_SIZE, .tx = { .desc_size = sizeof(struct mtk_tx_dma_v2), .dma_max_len = MTK_TX_DMA_BUF_LEN_V2, .dma_len_offset = 8, .dma_size = MTK_DMA_SIZE(2K), .fq_dma_size = MTK_DMA_SIZE(2K), }, .rx = { .desc_size = sizeof(struct mtk_rx_dma), .irq_done_mask = MTK_RX_DONE_INT, .dma_l4_valid = RX_DMA_L4_VALID_V2, .dma_max_len = MTK_TX_DMA_BUF_LEN, .dma_len_offset = 16, .dma_size = MTK_DMA_SIZE(2K), }, }; static const struct mtk_soc_data mt7986_data = { .reg_map = &mt7986_reg_map, .ana_rgc3 = 0x128, .caps = MT7986_CAPS, .hw_features = MTK_HW_FEATURES, .required_clks = MT7986_CLKS_BITMAP, .required_pctl = false, .version = 2, .offload_version = 2, .ppe_num = 2, .hash_offset = 4, .has_accounting = true, .foe_entry_size = MTK_FOE_ENTRY_V2_SIZE, .tx = { .desc_size = sizeof(struct mtk_tx_dma_v2), .dma_max_len = MTK_TX_DMA_BUF_LEN_V2, .dma_len_offset = 8, .dma_size = MTK_DMA_SIZE(2K), .fq_dma_size = MTK_DMA_SIZE(2K), }, .rx = { .desc_size = sizeof(struct mtk_rx_dma), .irq_done_mask = MTK_RX_DONE_INT, .dma_l4_valid = RX_DMA_L4_VALID_V2, .dma_max_len = MTK_TX_DMA_BUF_LEN, .dma_len_offset = 16, .dma_size = MTK_DMA_SIZE(2K), }, }; static const struct mtk_soc_data mt7988_data = { .reg_map = &mt7988_reg_map, .ana_rgc3 = 0x128, .caps = MT7988_CAPS, .hw_features = MTK_HW_FEATURES, .required_clks = MT7988_CLKS_BITMAP, .required_pctl = false, .version = 3, .offload_version = 2, .ppe_num = 3, .hash_offset = 4, .has_accounting = true, .foe_entry_size = MTK_FOE_ENTRY_V3_SIZE, .tx = { .desc_size = sizeof(struct mtk_tx_dma_v2), .dma_max_len = MTK_TX_DMA_BUF_LEN_V2, .dma_len_offset = 8, .dma_size = MTK_DMA_SIZE(2K), .fq_dma_size = MTK_DMA_SIZE(4K), }, .rx = { .desc_size = sizeof(struct mtk_rx_dma_v2), .irq_done_mask = MTK_RX_DONE_INT_V2, .dma_l4_valid = RX_DMA_L4_VALID_V2, .dma_max_len = MTK_TX_DMA_BUF_LEN_V2, .dma_len_offset = 8, .dma_size = MTK_DMA_SIZE(2K), }, }; static const struct mtk_soc_data rt5350_data = { .reg_map = &mt7628_reg_map, .caps = MT7628_CAPS, .hw_features = MTK_HW_FEATURES_MT7628, .required_clks = MT7628_CLKS_BITMAP, .required_pctl = false, .version = 1, .tx = { .desc_size = sizeof(struct mtk_tx_dma), .dma_max_len = MTK_TX_DMA_BUF_LEN, .dma_len_offset = 16, .dma_size = MTK_DMA_SIZE(2K), }, .rx = { .desc_size = sizeof(struct mtk_rx_dma), .irq_done_mask = MTK_RX_DONE_INT, .dma_l4_valid = RX_DMA_L4_VALID_PDMA, .dma_max_len = MTK_TX_DMA_BUF_LEN, .dma_len_offset = 16, .dma_size = MTK_DMA_SIZE(2K), }, }; const struct of_device_id of_mtk_match[] = { { .compatible = "mediatek,mt2701-eth", .data = &mt2701_data }, { .compatible = "mediatek,mt7621-eth", .data = &mt7621_data }, { .compatible = "mediatek,mt7622-eth", .data = &mt7622_data }, { .compatible = "mediatek,mt7623-eth", .data = &mt7623_data }, { .compatible = "mediatek,mt7629-eth", .data = &mt7629_data }, { .compatible = "mediatek,mt7981-eth", .data = &mt7981_data }, { .compatible = "mediatek,mt7986-eth", .data = &mt7986_data }, { .compatible = "mediatek,mt7988-eth", .data = &mt7988_data }, { .compatible = "ralink,rt5350-eth", .data = &rt5350_data }, {}, }; MODULE_DEVICE_TABLE(of, of_mtk_match); static struct platform_driver mtk_driver = { .probe = mtk_probe, .remove_new = mtk_remove, .driver = { .name = "mtk_soc_eth", .of_match_table = of_mtk_match, }, }; module_platform_driver(mtk_driver); MODULE_LICENSE("GPL"); MODULE_AUTHOR("John Crispin <blogic@openwrt.org>"); MODULE_DESCRIPTION("Ethernet driver for MediaTek SoC");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1