Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Bartosz Golaszewski | 6173 | 83.44% | 5 | 20.00% |
Biao Huang | 1155 | 15.61% | 9 | 36.00% |
Jian Hui Lee | 36 | 0.49% | 1 | 4.00% |
Zhengchao Shao | 16 | 0.22% | 1 | 4.00% |
Lorenzo Bianconi | 5 | 0.07% | 1 | 4.00% |
Zhang Changzhong | 5 | 0.07% | 1 | 4.00% |
Arnd Bergmann | 3 | 0.04% | 2 | 8.00% |
Jakub Kiciński | 3 | 0.04% | 3 | 12.00% |
Wolfram Sang | 1 | 0.01% | 1 | 4.00% |
Vincent Stehlé | 1 | 0.01% | 1 | 4.00% |
Total | 7398 | 25 |
// SPDX-License-Identifier: GPL-2.0-only /* * Copyright (c) 2020 MediaTek Corporation * Copyright (c) 2020 BayLibre SAS * * Author: Bartosz Golaszewski <bgolaszewski@baylibre.com> */ #include <linux/bits.h> #include <linux/clk.h> #include <linux/compiler.h> #include <linux/dma-mapping.h> #include <linux/etherdevice.h> #include <linux/kernel.h> #include <linux/mfd/syscon.h> #include <linux/mii.h> #include <linux/module.h> #include <linux/netdevice.h> #include <linux/of.h> #include <linux/of_mdio.h> #include <linux/of_net.h> #include <linux/platform_device.h> #include <linux/pm.h> #include <linux/regmap.h> #include <linux/skbuff.h> #include <linux/spinlock.h> #define MTK_STAR_DRVNAME "mtk_star_emac" #define MTK_STAR_WAIT_TIMEOUT 300 #define MTK_STAR_MAX_FRAME_SIZE 1514 #define MTK_STAR_SKB_ALIGNMENT 16 #define MTK_STAR_HASHTABLE_MC_LIMIT 256 #define MTK_STAR_HASHTABLE_SIZE_MAX 512 #define MTK_STAR_DESC_NEEDED (MAX_SKB_FRAGS + 4) /* Normally we'd use NET_IP_ALIGN but on arm64 its value is 0 and it doesn't * work for this controller. */ #define MTK_STAR_IP_ALIGN 2 static const char *const mtk_star_clk_names[] = { "core", "reg", "trans" }; #define MTK_STAR_NCLKS ARRAY_SIZE(mtk_star_clk_names) /* PHY Control Register 0 */ #define MTK_STAR_REG_PHY_CTRL0 0x0000 #define MTK_STAR_BIT_PHY_CTRL0_WTCMD BIT(13) #define MTK_STAR_BIT_PHY_CTRL0_RDCMD BIT(14) #define MTK_STAR_BIT_PHY_CTRL0_RWOK BIT(15) #define MTK_STAR_MSK_PHY_CTRL0_PREG GENMASK(12, 8) #define MTK_STAR_OFF_PHY_CTRL0_PREG 8 #define MTK_STAR_MSK_PHY_CTRL0_RWDATA GENMASK(31, 16) #define MTK_STAR_OFF_PHY_CTRL0_RWDATA 16 /* PHY Control Register 1 */ #define MTK_STAR_REG_PHY_CTRL1 0x0004 #define MTK_STAR_BIT_PHY_CTRL1_LINK_ST BIT(0) #define MTK_STAR_BIT_PHY_CTRL1_AN_EN BIT(8) #define MTK_STAR_OFF_PHY_CTRL1_FORCE_SPD 9 #define MTK_STAR_VAL_PHY_CTRL1_FORCE_SPD_10M 0x00 #define MTK_STAR_VAL_PHY_CTRL1_FORCE_SPD_100M 0x01 #define MTK_STAR_VAL_PHY_CTRL1_FORCE_SPD_1000M 0x02 #define MTK_STAR_BIT_PHY_CTRL1_FORCE_DPX BIT(11) #define MTK_STAR_BIT_PHY_CTRL1_FORCE_FC_RX BIT(12) #define MTK_STAR_BIT_PHY_CTRL1_FORCE_FC_TX BIT(13) /* MAC Configuration Register */ #define MTK_STAR_REG_MAC_CFG 0x0008 #define MTK_STAR_OFF_MAC_CFG_IPG 10 #define MTK_STAR_VAL_MAC_CFG_IPG_96BIT GENMASK(4, 0) #define MTK_STAR_BIT_MAC_CFG_MAXLEN_1522 BIT(16) #define MTK_STAR_BIT_MAC_CFG_AUTO_PAD BIT(19) #define MTK_STAR_BIT_MAC_CFG_CRC_STRIP BIT(20) #define MTK_STAR_BIT_MAC_CFG_VLAN_STRIP BIT(22) #define MTK_STAR_BIT_MAC_CFG_NIC_PD BIT(31) /* Flow-Control Configuration Register */ #define MTK_STAR_REG_FC_CFG 0x000c #define MTK_STAR_BIT_FC_CFG_BP_EN BIT(7) #define MTK_STAR_BIT_FC_CFG_UC_PAUSE_DIR BIT(8) #define MTK_STAR_OFF_FC_CFG_SEND_PAUSE_TH 16 #define MTK_STAR_MSK_FC_CFG_SEND_PAUSE_TH GENMASK(27, 16) #define MTK_STAR_VAL_FC_CFG_SEND_PAUSE_TH_2K 0x800 /* ARL Configuration Register */ #define MTK_STAR_REG_ARL_CFG 0x0010 #define MTK_STAR_BIT_ARL_CFG_HASH_ALG BIT(0) #define MTK_STAR_BIT_ARL_CFG_MISC_MODE BIT(4) /* MAC High and Low Bytes Registers */ #define MTK_STAR_REG_MY_MAC_H 0x0014 #define MTK_STAR_REG_MY_MAC_L 0x0018 /* Hash Table Control Register */ #define MTK_STAR_REG_HASH_CTRL 0x001c #define MTK_STAR_MSK_HASH_CTRL_HASH_BIT_ADDR GENMASK(8, 0) #define MTK_STAR_BIT_HASH_CTRL_HASH_BIT_DATA BIT(12) #define MTK_STAR_BIT_HASH_CTRL_ACC_CMD BIT(13) #define MTK_STAR_BIT_HASH_CTRL_CMD_START BIT(14) #define MTK_STAR_BIT_HASH_CTRL_BIST_OK BIT(16) #define MTK_STAR_BIT_HASH_CTRL_BIST_DONE BIT(17) #define MTK_STAR_BIT_HASH_CTRL_BIST_EN BIT(31) /* TX DMA Control Register */ #define MTK_STAR_REG_TX_DMA_CTRL 0x0034 #define MTK_STAR_BIT_TX_DMA_CTRL_START BIT(0) #define MTK_STAR_BIT_TX_DMA_CTRL_STOP BIT(1) #define MTK_STAR_BIT_TX_DMA_CTRL_RESUME BIT(2) /* RX DMA Control Register */ #define MTK_STAR_REG_RX_DMA_CTRL 0x0038 #define MTK_STAR_BIT_RX_DMA_CTRL_START BIT(0) #define MTK_STAR_BIT_RX_DMA_CTRL_STOP BIT(1) #define MTK_STAR_BIT_RX_DMA_CTRL_RESUME BIT(2) /* DMA Address Registers */ #define MTK_STAR_REG_TX_DPTR 0x003c #define MTK_STAR_REG_RX_DPTR 0x0040 #define MTK_STAR_REG_TX_BASE_ADDR 0x0044 #define MTK_STAR_REG_RX_BASE_ADDR 0x0048 /* Interrupt Status Register */ #define MTK_STAR_REG_INT_STS 0x0050 #define MTK_STAR_REG_INT_STS_PORT_STS_CHG BIT(2) #define MTK_STAR_REG_INT_STS_MIB_CNT_TH BIT(3) #define MTK_STAR_BIT_INT_STS_FNRC BIT(6) #define MTK_STAR_BIT_INT_STS_TNTC BIT(8) /* Interrupt Mask Register */ #define MTK_STAR_REG_INT_MASK 0x0054 #define MTK_STAR_BIT_INT_MASK_FNRC BIT(6) /* Delay-Macro Register */ #define MTK_STAR_REG_TEST0 0x0058 #define MTK_STAR_BIT_INV_RX_CLK BIT(30) #define MTK_STAR_BIT_INV_TX_CLK BIT(31) /* Misc. Config Register */ #define MTK_STAR_REG_TEST1 0x005c #define MTK_STAR_BIT_TEST1_RST_HASH_MBIST BIT(31) /* Extended Configuration Register */ #define MTK_STAR_REG_EXT_CFG 0x0060 #define MTK_STAR_OFF_EXT_CFG_SND_PAUSE_RLS 16 #define MTK_STAR_MSK_EXT_CFG_SND_PAUSE_RLS GENMASK(26, 16) #define MTK_STAR_VAL_EXT_CFG_SND_PAUSE_RLS_1K 0x400 /* EthSys Configuration Register */ #define MTK_STAR_REG_SYS_CONF 0x0094 #define MTK_STAR_BIT_MII_PAD_OUT_ENABLE BIT(0) #define MTK_STAR_BIT_EXT_MDC_MODE BIT(1) #define MTK_STAR_BIT_SWC_MII_MODE BIT(2) /* MAC Clock Configuration Register */ #define MTK_STAR_REG_MAC_CLK_CONF 0x00ac #define MTK_STAR_MSK_MAC_CLK_CONF GENMASK(7, 0) #define MTK_STAR_BIT_CLK_DIV_10 0x0a #define MTK_STAR_BIT_CLK_DIV_50 0x32 /* Counter registers. */ #define MTK_STAR_REG_C_RXOKPKT 0x0100 #define MTK_STAR_REG_C_RXOKBYTE 0x0104 #define MTK_STAR_REG_C_RXRUNT 0x0108 #define MTK_STAR_REG_C_RXLONG 0x010c #define MTK_STAR_REG_C_RXDROP 0x0110 #define MTK_STAR_REG_C_RXCRC 0x0114 #define MTK_STAR_REG_C_RXARLDROP 0x0118 #define MTK_STAR_REG_C_RXVLANDROP 0x011c #define MTK_STAR_REG_C_RXCSERR 0x0120 #define MTK_STAR_REG_C_RXPAUSE 0x0124 #define MTK_STAR_REG_C_TXOKPKT 0x0128 #define MTK_STAR_REG_C_TXOKBYTE 0x012c #define MTK_STAR_REG_C_TXPAUSECOL 0x0130 #define MTK_STAR_REG_C_TXRTY 0x0134 #define MTK_STAR_REG_C_TXSKIP 0x0138 #define MTK_STAR_REG_C_TX_ARP 0x013c #define MTK_STAR_REG_C_RX_RERR 0x01d8 #define MTK_STAR_REG_C_RX_UNI 0x01dc #define MTK_STAR_REG_C_RX_MULTI 0x01e0 #define MTK_STAR_REG_C_RX_BROAD 0x01e4 #define MTK_STAR_REG_C_RX_ALIGNERR 0x01e8 #define MTK_STAR_REG_C_TX_UNI 0x01ec #define MTK_STAR_REG_C_TX_MULTI 0x01f0 #define MTK_STAR_REG_C_TX_BROAD 0x01f4 #define MTK_STAR_REG_C_TX_TIMEOUT 0x01f8 #define MTK_STAR_REG_C_TX_LATECOL 0x01fc #define MTK_STAR_REG_C_RX_LENGTHERR 0x0214 #define MTK_STAR_REG_C_RX_TWIST 0x0218 /* Ethernet CFG Control */ #define MTK_PERICFG_REG_NIC_CFG0_CON 0x03c4 #define MTK_PERICFG_REG_NIC_CFG1_CON 0x03c8 #define MTK_PERICFG_REG_NIC_CFG_CON_V2 0x0c10 #define MTK_PERICFG_REG_NIC_CFG_CON_CFG_INTF GENMASK(3, 0) #define MTK_PERICFG_BIT_NIC_CFG_CON_MII 0 #define MTK_PERICFG_BIT_NIC_CFG_CON_RMII 1 #define MTK_PERICFG_BIT_NIC_CFG_CON_CLK BIT(0) #define MTK_PERICFG_BIT_NIC_CFG_CON_CLK_V2 BIT(8) /* Represents the actual structure of descriptors used by the MAC. We can * reuse the same structure for both TX and RX - the layout is the same, only * the flags differ slightly. */ struct mtk_star_ring_desc { /* Contains both the status flags as well as packet length. */ u32 status; u32 data_ptr; u32 vtag; u32 reserved; }; #define MTK_STAR_DESC_MSK_LEN GENMASK(15, 0) #define MTK_STAR_DESC_BIT_RX_CRCE BIT(24) #define MTK_STAR_DESC_BIT_RX_OSIZE BIT(25) #define MTK_STAR_DESC_BIT_INT BIT(27) #define MTK_STAR_DESC_BIT_LS BIT(28) #define MTK_STAR_DESC_BIT_FS BIT(29) #define MTK_STAR_DESC_BIT_EOR BIT(30) #define MTK_STAR_DESC_BIT_COWN BIT(31) /* Helper structure for storing data read from/written to descriptors in order * to limit reads from/writes to DMA memory. */ struct mtk_star_ring_desc_data { unsigned int len; unsigned int flags; dma_addr_t dma_addr; struct sk_buff *skb; }; #define MTK_STAR_RING_NUM_DESCS 512 #define MTK_STAR_TX_THRESH (MTK_STAR_RING_NUM_DESCS / 4) #define MTK_STAR_NUM_TX_DESCS MTK_STAR_RING_NUM_DESCS #define MTK_STAR_NUM_RX_DESCS MTK_STAR_RING_NUM_DESCS #define MTK_STAR_NUM_DESCS_TOTAL (MTK_STAR_RING_NUM_DESCS * 2) #define MTK_STAR_DMA_SIZE \ (MTK_STAR_NUM_DESCS_TOTAL * sizeof(struct mtk_star_ring_desc)) struct mtk_star_ring { struct mtk_star_ring_desc *descs; struct sk_buff *skbs[MTK_STAR_RING_NUM_DESCS]; dma_addr_t dma_addrs[MTK_STAR_RING_NUM_DESCS]; unsigned int head; unsigned int tail; }; struct mtk_star_compat { int (*set_interface_mode)(struct net_device *ndev); unsigned char bit_clk_div; }; struct mtk_star_priv { struct net_device *ndev; struct regmap *regs; struct regmap *pericfg; struct clk_bulk_data clks[MTK_STAR_NCLKS]; void *ring_base; struct mtk_star_ring_desc *descs_base; dma_addr_t dma_addr; struct mtk_star_ring tx_ring; struct mtk_star_ring rx_ring; struct mii_bus *mii; struct napi_struct tx_napi; struct napi_struct rx_napi; struct device_node *phy_node; phy_interface_t phy_intf; struct phy_device *phydev; unsigned int link; int speed; int duplex; int pause; bool rmii_rxc; bool rx_inv; bool tx_inv; const struct mtk_star_compat *compat_data; /* Protects against concurrent descriptor access. */ spinlock_t lock; struct rtnl_link_stats64 stats; }; static struct device *mtk_star_get_dev(struct mtk_star_priv *priv) { return priv->ndev->dev.parent; } static const struct regmap_config mtk_star_regmap_config = { .reg_bits = 32, .val_bits = 32, .reg_stride = 4, .disable_locking = true, }; static void mtk_star_ring_init(struct mtk_star_ring *ring, struct mtk_star_ring_desc *descs) { memset(ring, 0, sizeof(*ring)); ring->descs = descs; ring->head = 0; ring->tail = 0; } static int mtk_star_ring_pop_tail(struct mtk_star_ring *ring, struct mtk_star_ring_desc_data *desc_data) { struct mtk_star_ring_desc *desc = &ring->descs[ring->tail]; unsigned int status; status = READ_ONCE(desc->status); dma_rmb(); /* Make sure we read the status bits before checking it. */ if (!(status & MTK_STAR_DESC_BIT_COWN)) return -1; desc_data->len = status & MTK_STAR_DESC_MSK_LEN; desc_data->flags = status & ~MTK_STAR_DESC_MSK_LEN; desc_data->dma_addr = ring->dma_addrs[ring->tail]; desc_data->skb = ring->skbs[ring->tail]; ring->dma_addrs[ring->tail] = 0; ring->skbs[ring->tail] = NULL; status &= MTK_STAR_DESC_BIT_COWN | MTK_STAR_DESC_BIT_EOR; WRITE_ONCE(desc->data_ptr, 0); WRITE_ONCE(desc->status, status); ring->tail = (ring->tail + 1) % MTK_STAR_RING_NUM_DESCS; return 0; } static void mtk_star_ring_push_head(struct mtk_star_ring *ring, struct mtk_star_ring_desc_data *desc_data, unsigned int flags) { struct mtk_star_ring_desc *desc = &ring->descs[ring->head]; unsigned int status; status = READ_ONCE(desc->status); ring->skbs[ring->head] = desc_data->skb; ring->dma_addrs[ring->head] = desc_data->dma_addr; status |= desc_data->len; if (flags) status |= flags; WRITE_ONCE(desc->data_ptr, desc_data->dma_addr); WRITE_ONCE(desc->status, status); status &= ~MTK_STAR_DESC_BIT_COWN; /* Flush previous modifications before ownership change. */ dma_wmb(); WRITE_ONCE(desc->status, status); ring->head = (ring->head + 1) % MTK_STAR_RING_NUM_DESCS; } static void mtk_star_ring_push_head_rx(struct mtk_star_ring *ring, struct mtk_star_ring_desc_data *desc_data) { mtk_star_ring_push_head(ring, desc_data, 0); } static void mtk_star_ring_push_head_tx(struct mtk_star_ring *ring, struct mtk_star_ring_desc_data *desc_data) { static const unsigned int flags = MTK_STAR_DESC_BIT_FS | MTK_STAR_DESC_BIT_LS | MTK_STAR_DESC_BIT_INT; mtk_star_ring_push_head(ring, desc_data, flags); } static unsigned int mtk_star_tx_ring_avail(struct mtk_star_ring *ring) { u32 avail; if (ring->tail > ring->head) avail = ring->tail - ring->head - 1; else avail = MTK_STAR_RING_NUM_DESCS - ring->head + ring->tail - 1; return avail; } static dma_addr_t mtk_star_dma_map_rx(struct mtk_star_priv *priv, struct sk_buff *skb) { struct device *dev = mtk_star_get_dev(priv); /* Data pointer for the RX DMA descriptor must be aligned to 4N + 2. */ return dma_map_single(dev, skb_tail_pointer(skb) - 2, skb_tailroom(skb), DMA_FROM_DEVICE); } static void mtk_star_dma_unmap_rx(struct mtk_star_priv *priv, struct mtk_star_ring_desc_data *desc_data) { struct device *dev = mtk_star_get_dev(priv); dma_unmap_single(dev, desc_data->dma_addr, skb_tailroom(desc_data->skb), DMA_FROM_DEVICE); } static dma_addr_t mtk_star_dma_map_tx(struct mtk_star_priv *priv, struct sk_buff *skb) { struct device *dev = mtk_star_get_dev(priv); return dma_map_single(dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); } static void mtk_star_dma_unmap_tx(struct mtk_star_priv *priv, struct mtk_star_ring_desc_data *desc_data) { struct device *dev = mtk_star_get_dev(priv); return dma_unmap_single(dev, desc_data->dma_addr, skb_headlen(desc_data->skb), DMA_TO_DEVICE); } static void mtk_star_nic_disable_pd(struct mtk_star_priv *priv) { regmap_clear_bits(priv->regs, MTK_STAR_REG_MAC_CFG, MTK_STAR_BIT_MAC_CFG_NIC_PD); } static void mtk_star_enable_dma_irq(struct mtk_star_priv *priv, bool rx, bool tx) { u32 value; regmap_read(priv->regs, MTK_STAR_REG_INT_MASK, &value); if (tx) value &= ~MTK_STAR_BIT_INT_STS_TNTC; if (rx) value &= ~MTK_STAR_BIT_INT_STS_FNRC; regmap_write(priv->regs, MTK_STAR_REG_INT_MASK, value); } static void mtk_star_disable_dma_irq(struct mtk_star_priv *priv, bool rx, bool tx) { u32 value; regmap_read(priv->regs, MTK_STAR_REG_INT_MASK, &value); if (tx) value |= MTK_STAR_BIT_INT_STS_TNTC; if (rx) value |= MTK_STAR_BIT_INT_STS_FNRC; regmap_write(priv->regs, MTK_STAR_REG_INT_MASK, value); } /* Unmask the three interrupts we care about, mask all others. */ static void mtk_star_intr_enable(struct mtk_star_priv *priv) { unsigned int val = MTK_STAR_BIT_INT_STS_TNTC | MTK_STAR_BIT_INT_STS_FNRC | MTK_STAR_REG_INT_STS_MIB_CNT_TH; regmap_write(priv->regs, MTK_STAR_REG_INT_MASK, ~val); } static void mtk_star_intr_disable(struct mtk_star_priv *priv) { regmap_write(priv->regs, MTK_STAR_REG_INT_MASK, ~0); } static unsigned int mtk_star_intr_ack_all(struct mtk_star_priv *priv) { unsigned int val; regmap_read(priv->regs, MTK_STAR_REG_INT_STS, &val); regmap_write(priv->regs, MTK_STAR_REG_INT_STS, val); return val; } static void mtk_star_dma_init(struct mtk_star_priv *priv) { struct mtk_star_ring_desc *desc; unsigned int val; int i; priv->descs_base = (struct mtk_star_ring_desc *)priv->ring_base; for (i = 0; i < MTK_STAR_NUM_DESCS_TOTAL; i++) { desc = &priv->descs_base[i]; memset(desc, 0, sizeof(*desc)); desc->status = MTK_STAR_DESC_BIT_COWN; if ((i == MTK_STAR_NUM_TX_DESCS - 1) || (i == MTK_STAR_NUM_DESCS_TOTAL - 1)) desc->status |= MTK_STAR_DESC_BIT_EOR; } mtk_star_ring_init(&priv->tx_ring, priv->descs_base); mtk_star_ring_init(&priv->rx_ring, priv->descs_base + MTK_STAR_NUM_TX_DESCS); /* Set DMA pointers. */ val = (unsigned int)priv->dma_addr; regmap_write(priv->regs, MTK_STAR_REG_TX_BASE_ADDR, val); regmap_write(priv->regs, MTK_STAR_REG_TX_DPTR, val); val += sizeof(struct mtk_star_ring_desc) * MTK_STAR_NUM_TX_DESCS; regmap_write(priv->regs, MTK_STAR_REG_RX_BASE_ADDR, val); regmap_write(priv->regs, MTK_STAR_REG_RX_DPTR, val); } static void mtk_star_dma_start(struct mtk_star_priv *priv) { regmap_set_bits(priv->regs, MTK_STAR_REG_TX_DMA_CTRL, MTK_STAR_BIT_TX_DMA_CTRL_START); regmap_set_bits(priv->regs, MTK_STAR_REG_RX_DMA_CTRL, MTK_STAR_BIT_RX_DMA_CTRL_START); } static void mtk_star_dma_stop(struct mtk_star_priv *priv) { regmap_write(priv->regs, MTK_STAR_REG_TX_DMA_CTRL, MTK_STAR_BIT_TX_DMA_CTRL_STOP); regmap_write(priv->regs, MTK_STAR_REG_RX_DMA_CTRL, MTK_STAR_BIT_RX_DMA_CTRL_STOP); } static void mtk_star_dma_disable(struct mtk_star_priv *priv) { int i; mtk_star_dma_stop(priv); /* Take back all descriptors. */ for (i = 0; i < MTK_STAR_NUM_DESCS_TOTAL; i++) priv->descs_base[i].status |= MTK_STAR_DESC_BIT_COWN; } static void mtk_star_dma_resume_rx(struct mtk_star_priv *priv) { regmap_set_bits(priv->regs, MTK_STAR_REG_RX_DMA_CTRL, MTK_STAR_BIT_RX_DMA_CTRL_RESUME); } static void mtk_star_dma_resume_tx(struct mtk_star_priv *priv) { regmap_set_bits(priv->regs, MTK_STAR_REG_TX_DMA_CTRL, MTK_STAR_BIT_TX_DMA_CTRL_RESUME); } static void mtk_star_set_mac_addr(struct net_device *ndev) { struct mtk_star_priv *priv = netdev_priv(ndev); const u8 *mac_addr = ndev->dev_addr; unsigned int high, low; high = mac_addr[0] << 8 | mac_addr[1] << 0; low = mac_addr[2] << 24 | mac_addr[3] << 16 | mac_addr[4] << 8 | mac_addr[5]; regmap_write(priv->regs, MTK_STAR_REG_MY_MAC_H, high); regmap_write(priv->regs, MTK_STAR_REG_MY_MAC_L, low); } static void mtk_star_reset_counters(struct mtk_star_priv *priv) { static const unsigned int counter_regs[] = { MTK_STAR_REG_C_RXOKPKT, MTK_STAR_REG_C_RXOKBYTE, MTK_STAR_REG_C_RXRUNT, MTK_STAR_REG_C_RXLONG, MTK_STAR_REG_C_RXDROP, MTK_STAR_REG_C_RXCRC, MTK_STAR_REG_C_RXARLDROP, MTK_STAR_REG_C_RXVLANDROP, MTK_STAR_REG_C_RXCSERR, MTK_STAR_REG_C_RXPAUSE, MTK_STAR_REG_C_TXOKPKT, MTK_STAR_REG_C_TXOKBYTE, MTK_STAR_REG_C_TXPAUSECOL, MTK_STAR_REG_C_TXRTY, MTK_STAR_REG_C_TXSKIP, MTK_STAR_REG_C_TX_ARP, MTK_STAR_REG_C_RX_RERR, MTK_STAR_REG_C_RX_UNI, MTK_STAR_REG_C_RX_MULTI, MTK_STAR_REG_C_RX_BROAD, MTK_STAR_REG_C_RX_ALIGNERR, MTK_STAR_REG_C_TX_UNI, MTK_STAR_REG_C_TX_MULTI, MTK_STAR_REG_C_TX_BROAD, MTK_STAR_REG_C_TX_TIMEOUT, MTK_STAR_REG_C_TX_LATECOL, MTK_STAR_REG_C_RX_LENGTHERR, MTK_STAR_REG_C_RX_TWIST, }; unsigned int i, val; for (i = 0; i < ARRAY_SIZE(counter_regs); i++) regmap_read(priv->regs, counter_regs[i], &val); } static void mtk_star_update_stat(struct mtk_star_priv *priv, unsigned int reg, u64 *stat) { unsigned int val; regmap_read(priv->regs, reg, &val); *stat += val; } /* Try to get as many stats as possible from the internal registers instead * of tracking them ourselves. */ static void mtk_star_update_stats(struct mtk_star_priv *priv) { struct rtnl_link_stats64 *stats = &priv->stats; /* OK packets and bytes. */ mtk_star_update_stat(priv, MTK_STAR_REG_C_RXOKPKT, &stats->rx_packets); mtk_star_update_stat(priv, MTK_STAR_REG_C_TXOKPKT, &stats->tx_packets); mtk_star_update_stat(priv, MTK_STAR_REG_C_RXOKBYTE, &stats->rx_bytes); mtk_star_update_stat(priv, MTK_STAR_REG_C_TXOKBYTE, &stats->tx_bytes); /* RX & TX multicast. */ mtk_star_update_stat(priv, MTK_STAR_REG_C_RX_MULTI, &stats->multicast); mtk_star_update_stat(priv, MTK_STAR_REG_C_TX_MULTI, &stats->multicast); /* Collisions. */ mtk_star_update_stat(priv, MTK_STAR_REG_C_TXPAUSECOL, &stats->collisions); mtk_star_update_stat(priv, MTK_STAR_REG_C_TX_LATECOL, &stats->collisions); mtk_star_update_stat(priv, MTK_STAR_REG_C_RXRUNT, &stats->collisions); /* RX Errors. */ mtk_star_update_stat(priv, MTK_STAR_REG_C_RX_LENGTHERR, &stats->rx_length_errors); mtk_star_update_stat(priv, MTK_STAR_REG_C_RXLONG, &stats->rx_over_errors); mtk_star_update_stat(priv, MTK_STAR_REG_C_RXCRC, &stats->rx_crc_errors); mtk_star_update_stat(priv, MTK_STAR_REG_C_RX_ALIGNERR, &stats->rx_frame_errors); mtk_star_update_stat(priv, MTK_STAR_REG_C_RXDROP, &stats->rx_fifo_errors); /* Sum of the general RX error counter + all of the above. */ mtk_star_update_stat(priv, MTK_STAR_REG_C_RX_RERR, &stats->rx_errors); stats->rx_errors += stats->rx_length_errors; stats->rx_errors += stats->rx_over_errors; stats->rx_errors += stats->rx_crc_errors; stats->rx_errors += stats->rx_frame_errors; stats->rx_errors += stats->rx_fifo_errors; } static struct sk_buff *mtk_star_alloc_skb(struct net_device *ndev) { uintptr_t tail, offset; struct sk_buff *skb; skb = dev_alloc_skb(MTK_STAR_MAX_FRAME_SIZE); if (!skb) return NULL; /* Align to 16 bytes. */ tail = (uintptr_t)skb_tail_pointer(skb); if (tail & (MTK_STAR_SKB_ALIGNMENT - 1)) { offset = tail & (MTK_STAR_SKB_ALIGNMENT - 1); skb_reserve(skb, MTK_STAR_SKB_ALIGNMENT - offset); } /* Ensure 16-byte alignment of the skb pointer: eth_type_trans() will * extract the Ethernet header (14 bytes) so we need two more bytes. */ skb_reserve(skb, MTK_STAR_IP_ALIGN); return skb; } static int mtk_star_prepare_rx_skbs(struct net_device *ndev) { struct mtk_star_priv *priv = netdev_priv(ndev); struct mtk_star_ring *ring = &priv->rx_ring; struct device *dev = mtk_star_get_dev(priv); struct mtk_star_ring_desc *desc; struct sk_buff *skb; dma_addr_t dma_addr; int i; for (i = 0; i < MTK_STAR_NUM_RX_DESCS; i++) { skb = mtk_star_alloc_skb(ndev); if (!skb) return -ENOMEM; dma_addr = mtk_star_dma_map_rx(priv, skb); if (dma_mapping_error(dev, dma_addr)) { dev_kfree_skb(skb); return -ENOMEM; } desc = &ring->descs[i]; desc->data_ptr = dma_addr; desc->status |= skb_tailroom(skb) & MTK_STAR_DESC_MSK_LEN; desc->status &= ~MTK_STAR_DESC_BIT_COWN; ring->skbs[i] = skb; ring->dma_addrs[i] = dma_addr; } return 0; } static void mtk_star_ring_free_skbs(struct mtk_star_priv *priv, struct mtk_star_ring *ring, void (*unmap_func)(struct mtk_star_priv *, struct mtk_star_ring_desc_data *)) { struct mtk_star_ring_desc_data desc_data; int i; for (i = 0; i < MTK_STAR_RING_NUM_DESCS; i++) { if (!ring->dma_addrs[i]) continue; desc_data.dma_addr = ring->dma_addrs[i]; desc_data.skb = ring->skbs[i]; unmap_func(priv, &desc_data); dev_kfree_skb(desc_data.skb); } } static void mtk_star_free_rx_skbs(struct mtk_star_priv *priv) { struct mtk_star_ring *ring = &priv->rx_ring; mtk_star_ring_free_skbs(priv, ring, mtk_star_dma_unmap_rx); } static void mtk_star_free_tx_skbs(struct mtk_star_priv *priv) { struct mtk_star_ring *ring = &priv->tx_ring; mtk_star_ring_free_skbs(priv, ring, mtk_star_dma_unmap_tx); } /** * mtk_star_handle_irq - Interrupt Handler. * @irq: interrupt number. * @data: pointer to a network interface device structure. * Description : this is the driver interrupt service routine. * it mainly handles: * 1. tx complete interrupt for frame transmission. * 2. rx complete interrupt for frame reception. * 3. MAC Management Counter interrupt to avoid counter overflow. **/ static irqreturn_t mtk_star_handle_irq(int irq, void *data) { struct net_device *ndev = data; struct mtk_star_priv *priv = netdev_priv(ndev); unsigned int intr_status = mtk_star_intr_ack_all(priv); bool rx, tx; rx = (intr_status & MTK_STAR_BIT_INT_STS_FNRC) && napi_schedule_prep(&priv->rx_napi); tx = (intr_status & MTK_STAR_BIT_INT_STS_TNTC) && napi_schedule_prep(&priv->tx_napi); if (rx || tx) { spin_lock(&priv->lock); /* mask Rx and TX Complete interrupt */ mtk_star_disable_dma_irq(priv, rx, tx); spin_unlock(&priv->lock); if (rx) __napi_schedule(&priv->rx_napi); if (tx) __napi_schedule(&priv->tx_napi); } /* interrupt is triggered once any counters reach 0x8000000 */ if (intr_status & MTK_STAR_REG_INT_STS_MIB_CNT_TH) { mtk_star_update_stats(priv); mtk_star_reset_counters(priv); } return IRQ_HANDLED; } /* Wait for the completion of any previous command - CMD_START bit must be * cleared by hardware. */ static int mtk_star_hash_wait_cmd_start(struct mtk_star_priv *priv) { unsigned int val; return regmap_read_poll_timeout_atomic(priv->regs, MTK_STAR_REG_HASH_CTRL, val, !(val & MTK_STAR_BIT_HASH_CTRL_CMD_START), 10, MTK_STAR_WAIT_TIMEOUT); } static int mtk_star_hash_wait_ok(struct mtk_star_priv *priv) { unsigned int val; int ret; /* Wait for BIST_DONE bit. */ ret = regmap_read_poll_timeout_atomic(priv->regs, MTK_STAR_REG_HASH_CTRL, val, val & MTK_STAR_BIT_HASH_CTRL_BIST_DONE, 10, MTK_STAR_WAIT_TIMEOUT); if (ret) return ret; /* Check the BIST_OK bit. */ if (!regmap_test_bits(priv->regs, MTK_STAR_REG_HASH_CTRL, MTK_STAR_BIT_HASH_CTRL_BIST_OK)) return -EIO; return 0; } static int mtk_star_set_hashbit(struct mtk_star_priv *priv, unsigned int hash_addr) { unsigned int val; int ret; ret = mtk_star_hash_wait_cmd_start(priv); if (ret) return ret; val = hash_addr & MTK_STAR_MSK_HASH_CTRL_HASH_BIT_ADDR; val |= MTK_STAR_BIT_HASH_CTRL_ACC_CMD; val |= MTK_STAR_BIT_HASH_CTRL_CMD_START; val |= MTK_STAR_BIT_HASH_CTRL_BIST_EN; val |= MTK_STAR_BIT_HASH_CTRL_HASH_BIT_DATA; regmap_write(priv->regs, MTK_STAR_REG_HASH_CTRL, val); return mtk_star_hash_wait_ok(priv); } static int mtk_star_reset_hash_table(struct mtk_star_priv *priv) { int ret; ret = mtk_star_hash_wait_cmd_start(priv); if (ret) return ret; regmap_set_bits(priv->regs, MTK_STAR_REG_HASH_CTRL, MTK_STAR_BIT_HASH_CTRL_BIST_EN); regmap_set_bits(priv->regs, MTK_STAR_REG_TEST1, MTK_STAR_BIT_TEST1_RST_HASH_MBIST); return mtk_star_hash_wait_ok(priv); } static void mtk_star_phy_config(struct mtk_star_priv *priv) { unsigned int val; if (priv->speed == SPEED_1000) val = MTK_STAR_VAL_PHY_CTRL1_FORCE_SPD_1000M; else if (priv->speed == SPEED_100) val = MTK_STAR_VAL_PHY_CTRL1_FORCE_SPD_100M; else val = MTK_STAR_VAL_PHY_CTRL1_FORCE_SPD_10M; val <<= MTK_STAR_OFF_PHY_CTRL1_FORCE_SPD; val |= MTK_STAR_BIT_PHY_CTRL1_AN_EN; if (priv->pause) { val |= MTK_STAR_BIT_PHY_CTRL1_FORCE_FC_RX; val |= MTK_STAR_BIT_PHY_CTRL1_FORCE_FC_TX; val |= MTK_STAR_BIT_PHY_CTRL1_FORCE_DPX; } else { val &= ~MTK_STAR_BIT_PHY_CTRL1_FORCE_FC_RX; val &= ~MTK_STAR_BIT_PHY_CTRL1_FORCE_FC_TX; val &= ~MTK_STAR_BIT_PHY_CTRL1_FORCE_DPX; } regmap_write(priv->regs, MTK_STAR_REG_PHY_CTRL1, val); val = MTK_STAR_VAL_FC_CFG_SEND_PAUSE_TH_2K; val <<= MTK_STAR_OFF_FC_CFG_SEND_PAUSE_TH; val |= MTK_STAR_BIT_FC_CFG_UC_PAUSE_DIR; regmap_update_bits(priv->regs, MTK_STAR_REG_FC_CFG, MTK_STAR_MSK_FC_CFG_SEND_PAUSE_TH | MTK_STAR_BIT_FC_CFG_UC_PAUSE_DIR, val); val = MTK_STAR_VAL_EXT_CFG_SND_PAUSE_RLS_1K; val <<= MTK_STAR_OFF_EXT_CFG_SND_PAUSE_RLS; regmap_update_bits(priv->regs, MTK_STAR_REG_EXT_CFG, MTK_STAR_MSK_EXT_CFG_SND_PAUSE_RLS, val); } static void mtk_star_adjust_link(struct net_device *ndev) { struct mtk_star_priv *priv = netdev_priv(ndev); struct phy_device *phydev = priv->phydev; bool new_state = false; if (phydev->link) { if (!priv->link) { priv->link = phydev->link; new_state = true; } if (priv->speed != phydev->speed) { priv->speed = phydev->speed; new_state = true; } if (priv->pause != phydev->pause) { priv->pause = phydev->pause; new_state = true; } } else { if (priv->link) { priv->link = phydev->link; new_state = true; } } if (new_state) { if (phydev->link) mtk_star_phy_config(priv); phy_print_status(ndev->phydev); } } static void mtk_star_init_config(struct mtk_star_priv *priv) { unsigned int val; val = (MTK_STAR_BIT_MII_PAD_OUT_ENABLE | MTK_STAR_BIT_EXT_MDC_MODE | MTK_STAR_BIT_SWC_MII_MODE); regmap_write(priv->regs, MTK_STAR_REG_SYS_CONF, val); regmap_update_bits(priv->regs, MTK_STAR_REG_MAC_CLK_CONF, MTK_STAR_MSK_MAC_CLK_CONF, priv->compat_data->bit_clk_div); } static int mtk_star_enable(struct net_device *ndev) { struct mtk_star_priv *priv = netdev_priv(ndev); unsigned int val; int ret; mtk_star_nic_disable_pd(priv); mtk_star_intr_disable(priv); mtk_star_dma_stop(priv); mtk_star_set_mac_addr(ndev); /* Configure the MAC */ val = MTK_STAR_VAL_MAC_CFG_IPG_96BIT; val <<= MTK_STAR_OFF_MAC_CFG_IPG; val |= MTK_STAR_BIT_MAC_CFG_MAXLEN_1522; val |= MTK_STAR_BIT_MAC_CFG_AUTO_PAD; val |= MTK_STAR_BIT_MAC_CFG_CRC_STRIP; regmap_write(priv->regs, MTK_STAR_REG_MAC_CFG, val); /* Enable Hash Table BIST and reset it */ ret = mtk_star_reset_hash_table(priv); if (ret) return ret; /* Setup the hashing algorithm */ regmap_clear_bits(priv->regs, MTK_STAR_REG_ARL_CFG, MTK_STAR_BIT_ARL_CFG_HASH_ALG | MTK_STAR_BIT_ARL_CFG_MISC_MODE); /* Don't strip VLAN tags */ regmap_clear_bits(priv->regs, MTK_STAR_REG_MAC_CFG, MTK_STAR_BIT_MAC_CFG_VLAN_STRIP); /* Setup DMA */ mtk_star_dma_init(priv); ret = mtk_star_prepare_rx_skbs(ndev); if (ret) goto err_out; /* Request the interrupt */ ret = request_irq(ndev->irq, mtk_star_handle_irq, IRQF_TRIGGER_NONE, ndev->name, ndev); if (ret) goto err_free_skbs; napi_enable(&priv->tx_napi); napi_enable(&priv->rx_napi); mtk_star_intr_ack_all(priv); mtk_star_intr_enable(priv); /* Connect to and start PHY */ priv->phydev = of_phy_connect(ndev, priv->phy_node, mtk_star_adjust_link, 0, priv->phy_intf); if (!priv->phydev) { netdev_err(ndev, "failed to connect to PHY\n"); ret = -ENODEV; goto err_free_irq; } mtk_star_dma_start(priv); phy_start(priv->phydev); netif_start_queue(ndev); return 0; err_free_irq: napi_disable(&priv->rx_napi); napi_disable(&priv->tx_napi); free_irq(ndev->irq, ndev); err_free_skbs: mtk_star_free_rx_skbs(priv); err_out: return ret; } static void mtk_star_disable(struct net_device *ndev) { struct mtk_star_priv *priv = netdev_priv(ndev); netif_stop_queue(ndev); napi_disable(&priv->tx_napi); napi_disable(&priv->rx_napi); mtk_star_intr_disable(priv); mtk_star_dma_disable(priv); mtk_star_intr_ack_all(priv); phy_stop(priv->phydev); phy_disconnect(priv->phydev); free_irq(ndev->irq, ndev); mtk_star_free_rx_skbs(priv); mtk_star_free_tx_skbs(priv); } static int mtk_star_netdev_open(struct net_device *ndev) { return mtk_star_enable(ndev); } static int mtk_star_netdev_stop(struct net_device *ndev) { mtk_star_disable(ndev); return 0; } static int mtk_star_netdev_ioctl(struct net_device *ndev, struct ifreq *req, int cmd) { if (!netif_running(ndev)) return -EINVAL; return phy_mii_ioctl(ndev->phydev, req, cmd); } static int __mtk_star_maybe_stop_tx(struct mtk_star_priv *priv, u16 size) { netif_stop_queue(priv->ndev); /* Might race with mtk_star_tx_poll, check again */ smp_mb(); if (likely(mtk_star_tx_ring_avail(&priv->tx_ring) < size)) return -EBUSY; netif_start_queue(priv->ndev); return 0; } static inline int mtk_star_maybe_stop_tx(struct mtk_star_priv *priv, u16 size) { if (likely(mtk_star_tx_ring_avail(&priv->tx_ring) >= size)) return 0; return __mtk_star_maybe_stop_tx(priv, size); } static netdev_tx_t mtk_star_netdev_start_xmit(struct sk_buff *skb, struct net_device *ndev) { struct mtk_star_priv *priv = netdev_priv(ndev); struct mtk_star_ring *ring = &priv->tx_ring; struct device *dev = mtk_star_get_dev(priv); struct mtk_star_ring_desc_data desc_data; int nfrags = skb_shinfo(skb)->nr_frags; if (unlikely(mtk_star_tx_ring_avail(ring) < nfrags + 1)) { if (!netif_queue_stopped(ndev)) { netif_stop_queue(ndev); /* This is a hard error, log it. */ pr_err_ratelimited("Tx ring full when queue awake\n"); } return NETDEV_TX_BUSY; } desc_data.dma_addr = mtk_star_dma_map_tx(priv, skb); if (dma_mapping_error(dev, desc_data.dma_addr)) goto err_drop_packet; desc_data.skb = skb; desc_data.len = skb->len; mtk_star_ring_push_head_tx(ring, &desc_data); netdev_sent_queue(ndev, skb->len); mtk_star_maybe_stop_tx(priv, MTK_STAR_DESC_NEEDED); mtk_star_dma_resume_tx(priv); return NETDEV_TX_OK; err_drop_packet: dev_kfree_skb(skb); ndev->stats.tx_dropped++; return NETDEV_TX_OK; } /* Returns the number of bytes sent or a negative number on the first * descriptor owned by DMA. */ static int mtk_star_tx_complete_one(struct mtk_star_priv *priv) { struct mtk_star_ring *ring = &priv->tx_ring; struct mtk_star_ring_desc_data desc_data; int ret; ret = mtk_star_ring_pop_tail(ring, &desc_data); if (ret) return ret; mtk_star_dma_unmap_tx(priv, &desc_data); ret = desc_data.skb->len; dev_kfree_skb_irq(desc_data.skb); return ret; } static int mtk_star_tx_poll(struct napi_struct *napi, int budget) { struct mtk_star_priv *priv = container_of(napi, struct mtk_star_priv, tx_napi); int ret = 0, pkts_compl = 0, bytes_compl = 0, count = 0; struct mtk_star_ring *ring = &priv->tx_ring; struct net_device *ndev = priv->ndev; unsigned int head = ring->head; unsigned int entry = ring->tail; while (entry != head && count < (MTK_STAR_RING_NUM_DESCS - 1)) { ret = mtk_star_tx_complete_one(priv); if (ret < 0) break; count++; pkts_compl++; bytes_compl += ret; entry = ring->tail; } netdev_completed_queue(ndev, pkts_compl, bytes_compl); if (unlikely(netif_queue_stopped(ndev)) && (mtk_star_tx_ring_avail(ring) > MTK_STAR_TX_THRESH)) netif_wake_queue(ndev); if (napi_complete(napi)) { spin_lock(&priv->lock); mtk_star_enable_dma_irq(priv, false, true); spin_unlock(&priv->lock); } return 0; } static void mtk_star_netdev_get_stats64(struct net_device *ndev, struct rtnl_link_stats64 *stats) { struct mtk_star_priv *priv = netdev_priv(ndev); mtk_star_update_stats(priv); memcpy(stats, &priv->stats, sizeof(*stats)); } static void mtk_star_set_rx_mode(struct net_device *ndev) { struct mtk_star_priv *priv = netdev_priv(ndev); struct netdev_hw_addr *hw_addr; unsigned int hash_addr, i; int ret; if (ndev->flags & IFF_PROMISC) { regmap_set_bits(priv->regs, MTK_STAR_REG_ARL_CFG, MTK_STAR_BIT_ARL_CFG_MISC_MODE); } else if (netdev_mc_count(ndev) > MTK_STAR_HASHTABLE_MC_LIMIT || ndev->flags & IFF_ALLMULTI) { for (i = 0; i < MTK_STAR_HASHTABLE_SIZE_MAX; i++) { ret = mtk_star_set_hashbit(priv, i); if (ret) goto hash_fail; } } else { /* Clear previous settings. */ ret = mtk_star_reset_hash_table(priv); if (ret) goto hash_fail; netdev_for_each_mc_addr(hw_addr, ndev) { hash_addr = (hw_addr->addr[0] & 0x01) << 8; hash_addr += hw_addr->addr[5]; ret = mtk_star_set_hashbit(priv, hash_addr); if (ret) goto hash_fail; } } return; hash_fail: if (ret == -ETIMEDOUT) netdev_err(ndev, "setting hash bit timed out\n"); else /* Should be -EIO */ netdev_err(ndev, "unable to set hash bit"); } static const struct net_device_ops mtk_star_netdev_ops = { .ndo_open = mtk_star_netdev_open, .ndo_stop = mtk_star_netdev_stop, .ndo_start_xmit = mtk_star_netdev_start_xmit, .ndo_get_stats64 = mtk_star_netdev_get_stats64, .ndo_set_rx_mode = mtk_star_set_rx_mode, .ndo_eth_ioctl = mtk_star_netdev_ioctl, .ndo_set_mac_address = eth_mac_addr, .ndo_validate_addr = eth_validate_addr, }; static void mtk_star_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strscpy(info->driver, MTK_STAR_DRVNAME, sizeof(info->driver)); } /* TODO Add ethtool stats. */ static const struct ethtool_ops mtk_star_ethtool_ops = { .get_drvinfo = mtk_star_get_drvinfo, .get_link = ethtool_op_get_link, .get_link_ksettings = phy_ethtool_get_link_ksettings, .set_link_ksettings = phy_ethtool_set_link_ksettings, }; static int mtk_star_rx(struct mtk_star_priv *priv, int budget) { struct mtk_star_ring *ring = &priv->rx_ring; struct device *dev = mtk_star_get_dev(priv); struct mtk_star_ring_desc_data desc_data; struct net_device *ndev = priv->ndev; struct sk_buff *curr_skb, *new_skb; dma_addr_t new_dma_addr; int ret, count = 0; while (count < budget) { ret = mtk_star_ring_pop_tail(ring, &desc_data); if (ret) return -1; curr_skb = desc_data.skb; if ((desc_data.flags & MTK_STAR_DESC_BIT_RX_CRCE) || (desc_data.flags & MTK_STAR_DESC_BIT_RX_OSIZE)) { /* Error packet -> drop and reuse skb. */ new_skb = curr_skb; goto push_new_skb; } /* Prepare new skb before receiving the current one. * Reuse the current skb if we fail at any point. */ new_skb = mtk_star_alloc_skb(ndev); if (!new_skb) { ndev->stats.rx_dropped++; new_skb = curr_skb; goto push_new_skb; } new_dma_addr = mtk_star_dma_map_rx(priv, new_skb); if (dma_mapping_error(dev, new_dma_addr)) { ndev->stats.rx_dropped++; dev_kfree_skb(new_skb); new_skb = curr_skb; netdev_err(ndev, "DMA mapping error of RX descriptor\n"); goto push_new_skb; } /* We can't fail anymore at this point: * it's safe to unmap the skb. */ mtk_star_dma_unmap_rx(priv, &desc_data); skb_put(desc_data.skb, desc_data.len); desc_data.skb->ip_summed = CHECKSUM_NONE; desc_data.skb->protocol = eth_type_trans(desc_data.skb, ndev); desc_data.skb->dev = ndev; netif_receive_skb(desc_data.skb); /* update dma_addr for new skb */ desc_data.dma_addr = new_dma_addr; push_new_skb: count++; desc_data.len = skb_tailroom(new_skb); desc_data.skb = new_skb; mtk_star_ring_push_head_rx(ring, &desc_data); } mtk_star_dma_resume_rx(priv); return count; } static int mtk_star_rx_poll(struct napi_struct *napi, int budget) { struct mtk_star_priv *priv; int work_done = 0; priv = container_of(napi, struct mtk_star_priv, rx_napi); work_done = mtk_star_rx(priv, budget); if (work_done < budget) { napi_complete_done(napi, work_done); spin_lock(&priv->lock); mtk_star_enable_dma_irq(priv, true, false); spin_unlock(&priv->lock); } return work_done; } static void mtk_star_mdio_rwok_clear(struct mtk_star_priv *priv) { regmap_write(priv->regs, MTK_STAR_REG_PHY_CTRL0, MTK_STAR_BIT_PHY_CTRL0_RWOK); } static int mtk_star_mdio_rwok_wait(struct mtk_star_priv *priv) { unsigned int val; return regmap_read_poll_timeout(priv->regs, MTK_STAR_REG_PHY_CTRL0, val, val & MTK_STAR_BIT_PHY_CTRL0_RWOK, 10, MTK_STAR_WAIT_TIMEOUT); } static int mtk_star_mdio_read(struct mii_bus *mii, int phy_id, int regnum) { struct mtk_star_priv *priv = mii->priv; unsigned int val, data; int ret; mtk_star_mdio_rwok_clear(priv); val = (regnum << MTK_STAR_OFF_PHY_CTRL0_PREG); val &= MTK_STAR_MSK_PHY_CTRL0_PREG; val |= MTK_STAR_BIT_PHY_CTRL0_RDCMD; regmap_write(priv->regs, MTK_STAR_REG_PHY_CTRL0, val); ret = mtk_star_mdio_rwok_wait(priv); if (ret) return ret; regmap_read(priv->regs, MTK_STAR_REG_PHY_CTRL0, &data); data &= MTK_STAR_MSK_PHY_CTRL0_RWDATA; data >>= MTK_STAR_OFF_PHY_CTRL0_RWDATA; return data; } static int mtk_star_mdio_write(struct mii_bus *mii, int phy_id, int regnum, u16 data) { struct mtk_star_priv *priv = mii->priv; unsigned int val; mtk_star_mdio_rwok_clear(priv); val = data; val <<= MTK_STAR_OFF_PHY_CTRL0_RWDATA; val &= MTK_STAR_MSK_PHY_CTRL0_RWDATA; regnum <<= MTK_STAR_OFF_PHY_CTRL0_PREG; regnum &= MTK_STAR_MSK_PHY_CTRL0_PREG; val |= regnum; val |= MTK_STAR_BIT_PHY_CTRL0_WTCMD; regmap_write(priv->regs, MTK_STAR_REG_PHY_CTRL0, val); return mtk_star_mdio_rwok_wait(priv); } static int mtk_star_mdio_init(struct net_device *ndev) { struct mtk_star_priv *priv = netdev_priv(ndev); struct device *dev = mtk_star_get_dev(priv); struct device_node *of_node, *mdio_node; int ret; of_node = dev->of_node; mdio_node = of_get_child_by_name(of_node, "mdio"); if (!mdio_node) return -ENODEV; if (!of_device_is_available(mdio_node)) { ret = -ENODEV; goto out_put_node; } priv->mii = devm_mdiobus_alloc(dev); if (!priv->mii) { ret = -ENOMEM; goto out_put_node; } snprintf(priv->mii->id, MII_BUS_ID_SIZE, "%s", dev_name(dev)); priv->mii->name = "mtk-mac-mdio"; priv->mii->parent = dev; priv->mii->read = mtk_star_mdio_read; priv->mii->write = mtk_star_mdio_write; priv->mii->priv = priv; ret = devm_of_mdiobus_register(dev, priv->mii, mdio_node); out_put_node: of_node_put(mdio_node); return ret; } static __maybe_unused int mtk_star_suspend(struct device *dev) { struct mtk_star_priv *priv; struct net_device *ndev; ndev = dev_get_drvdata(dev); priv = netdev_priv(ndev); if (netif_running(ndev)) mtk_star_disable(ndev); clk_bulk_disable_unprepare(MTK_STAR_NCLKS, priv->clks); return 0; } static __maybe_unused int mtk_star_resume(struct device *dev) { struct mtk_star_priv *priv; struct net_device *ndev; int ret; ndev = dev_get_drvdata(dev); priv = netdev_priv(ndev); ret = clk_bulk_prepare_enable(MTK_STAR_NCLKS, priv->clks); if (ret) return ret; if (netif_running(ndev)) { ret = mtk_star_enable(ndev); if (ret) clk_bulk_disable_unprepare(MTK_STAR_NCLKS, priv->clks); } return ret; } static void mtk_star_clk_disable_unprepare(void *data) { struct mtk_star_priv *priv = data; clk_bulk_disable_unprepare(MTK_STAR_NCLKS, priv->clks); } static int mtk_star_set_timing(struct mtk_star_priv *priv) { struct device *dev = mtk_star_get_dev(priv); unsigned int delay_val = 0; switch (priv->phy_intf) { case PHY_INTERFACE_MODE_MII: case PHY_INTERFACE_MODE_RMII: delay_val |= FIELD_PREP(MTK_STAR_BIT_INV_RX_CLK, priv->rx_inv); delay_val |= FIELD_PREP(MTK_STAR_BIT_INV_TX_CLK, priv->tx_inv); break; default: dev_err(dev, "This interface not supported\n"); return -EINVAL; } return regmap_write(priv->regs, MTK_STAR_REG_TEST0, delay_val); } static int mtk_star_probe(struct platform_device *pdev) { struct device_node *of_node; struct mtk_star_priv *priv; struct phy_device *phydev; struct net_device *ndev; struct device *dev; void __iomem *base; int ret, i; dev = &pdev->dev; of_node = dev->of_node; ndev = devm_alloc_etherdev(dev, sizeof(*priv)); if (!ndev) return -ENOMEM; priv = netdev_priv(ndev); priv->ndev = ndev; priv->compat_data = of_device_get_match_data(&pdev->dev); SET_NETDEV_DEV(ndev, dev); platform_set_drvdata(pdev, ndev); ndev->min_mtu = ETH_ZLEN; ndev->max_mtu = MTK_STAR_MAX_FRAME_SIZE; spin_lock_init(&priv->lock); base = devm_platform_ioremap_resource(pdev, 0); if (IS_ERR(base)) return PTR_ERR(base); /* We won't be checking the return values of regmap read & write * functions. They can only fail for mmio if there's a clock attached * to regmap which is not the case here. */ priv->regs = devm_regmap_init_mmio(dev, base, &mtk_star_regmap_config); if (IS_ERR(priv->regs)) return PTR_ERR(priv->regs); priv->pericfg = syscon_regmap_lookup_by_phandle(of_node, "mediatek,pericfg"); if (IS_ERR(priv->pericfg)) { dev_err(dev, "Failed to lookup the PERICFG syscon\n"); return PTR_ERR(priv->pericfg); } ndev->irq = platform_get_irq(pdev, 0); if (ndev->irq < 0) return ndev->irq; for (i = 0; i < MTK_STAR_NCLKS; i++) priv->clks[i].id = mtk_star_clk_names[i]; ret = devm_clk_bulk_get(dev, MTK_STAR_NCLKS, priv->clks); if (ret) return ret; ret = clk_bulk_prepare_enable(MTK_STAR_NCLKS, priv->clks); if (ret) return ret; ret = devm_add_action_or_reset(dev, mtk_star_clk_disable_unprepare, priv); if (ret) return ret; ret = of_get_phy_mode(of_node, &priv->phy_intf); if (ret) { return ret; } else if (priv->phy_intf != PHY_INTERFACE_MODE_RMII && priv->phy_intf != PHY_INTERFACE_MODE_MII) { dev_err(dev, "unsupported phy mode: %s\n", phy_modes(priv->phy_intf)); return -EINVAL; } priv->phy_node = of_parse_phandle(of_node, "phy-handle", 0); if (!priv->phy_node) { dev_err(dev, "failed to retrieve the phy handle from device tree\n"); return -ENODEV; } priv->rmii_rxc = of_property_read_bool(of_node, "mediatek,rmii-rxc"); priv->rx_inv = of_property_read_bool(of_node, "mediatek,rxc-inverse"); priv->tx_inv = of_property_read_bool(of_node, "mediatek,txc-inverse"); if (priv->compat_data->set_interface_mode) { ret = priv->compat_data->set_interface_mode(ndev); if (ret) { dev_err(dev, "Failed to set phy interface, err = %d\n", ret); return -EINVAL; } } ret = mtk_star_set_timing(priv); if (ret) { dev_err(dev, "Failed to set timing, err = %d\n", ret); return -EINVAL; } ret = dma_set_mask_and_coherent(dev, DMA_BIT_MASK(32)); if (ret) { dev_err(dev, "unsupported DMA mask\n"); return ret; } priv->ring_base = dmam_alloc_coherent(dev, MTK_STAR_DMA_SIZE, &priv->dma_addr, GFP_KERNEL | GFP_DMA); if (!priv->ring_base) return -ENOMEM; mtk_star_nic_disable_pd(priv); mtk_star_init_config(priv); ret = mtk_star_mdio_init(ndev); if (ret) return ret; ret = platform_get_ethdev_address(dev, ndev); if (ret || !is_valid_ether_addr(ndev->dev_addr)) eth_hw_addr_random(ndev); ndev->netdev_ops = &mtk_star_netdev_ops; ndev->ethtool_ops = &mtk_star_ethtool_ops; netif_napi_add(ndev, &priv->rx_napi, mtk_star_rx_poll); netif_napi_add_tx(ndev, &priv->tx_napi, mtk_star_tx_poll); phydev = of_phy_find_device(priv->phy_node); if (phydev) { phydev->mac_managed_pm = true; put_device(&phydev->mdio.dev); } return devm_register_netdev(dev, ndev); } #ifdef CONFIG_OF static int mt8516_set_interface_mode(struct net_device *ndev) { struct mtk_star_priv *priv = netdev_priv(ndev); struct device *dev = mtk_star_get_dev(priv); unsigned int intf_val, ret, rmii_rxc; switch (priv->phy_intf) { case PHY_INTERFACE_MODE_MII: intf_val = MTK_PERICFG_BIT_NIC_CFG_CON_MII; rmii_rxc = 0; break; case PHY_INTERFACE_MODE_RMII: intf_val = MTK_PERICFG_BIT_NIC_CFG_CON_RMII; rmii_rxc = priv->rmii_rxc ? 0 : MTK_PERICFG_BIT_NIC_CFG_CON_CLK; break; default: dev_err(dev, "This interface not supported\n"); return -EINVAL; } ret = regmap_update_bits(priv->pericfg, MTK_PERICFG_REG_NIC_CFG1_CON, MTK_PERICFG_BIT_NIC_CFG_CON_CLK, rmii_rxc); if (ret) return ret; return regmap_update_bits(priv->pericfg, MTK_PERICFG_REG_NIC_CFG0_CON, MTK_PERICFG_REG_NIC_CFG_CON_CFG_INTF, intf_val); } static int mt8365_set_interface_mode(struct net_device *ndev) { struct mtk_star_priv *priv = netdev_priv(ndev); struct device *dev = mtk_star_get_dev(priv); unsigned int intf_val; switch (priv->phy_intf) { case PHY_INTERFACE_MODE_MII: intf_val = MTK_PERICFG_BIT_NIC_CFG_CON_MII; break; case PHY_INTERFACE_MODE_RMII: intf_val = MTK_PERICFG_BIT_NIC_CFG_CON_RMII; intf_val |= priv->rmii_rxc ? 0 : MTK_PERICFG_BIT_NIC_CFG_CON_CLK_V2; break; default: dev_err(dev, "This interface not supported\n"); return -EINVAL; } return regmap_update_bits(priv->pericfg, MTK_PERICFG_REG_NIC_CFG_CON_V2, MTK_PERICFG_REG_NIC_CFG_CON_CFG_INTF | MTK_PERICFG_BIT_NIC_CFG_CON_CLK_V2, intf_val); } static const struct mtk_star_compat mtk_star_mt8516_compat = { .set_interface_mode = mt8516_set_interface_mode, .bit_clk_div = MTK_STAR_BIT_CLK_DIV_10, }; static const struct mtk_star_compat mtk_star_mt8365_compat = { .set_interface_mode = mt8365_set_interface_mode, .bit_clk_div = MTK_STAR_BIT_CLK_DIV_50, }; static const struct of_device_id mtk_star_of_match[] = { { .compatible = "mediatek,mt8516-eth", .data = &mtk_star_mt8516_compat }, { .compatible = "mediatek,mt8518-eth", .data = &mtk_star_mt8516_compat }, { .compatible = "mediatek,mt8175-eth", .data = &mtk_star_mt8516_compat }, { .compatible = "mediatek,mt8365-eth", .data = &mtk_star_mt8365_compat }, { } }; MODULE_DEVICE_TABLE(of, mtk_star_of_match); #endif static SIMPLE_DEV_PM_OPS(mtk_star_pm_ops, mtk_star_suspend, mtk_star_resume); static struct platform_driver mtk_star_driver = { .driver = { .name = MTK_STAR_DRVNAME, .pm = &mtk_star_pm_ops, .of_match_table = of_match_ptr(mtk_star_of_match), }, .probe = mtk_star_probe, }; module_platform_driver(mtk_star_driver); MODULE_AUTHOR("Bartosz Golaszewski <bgolaszewski@baylibre.com>"); MODULE_DESCRIPTION("Mediatek STAR Ethernet MAC Driver"); MODULE_LICENSE("GPL");
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1