Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Claudio Lanconelli | 6111 | 79.15% | 1 | 2.27% |
Andy Shevchenko | 1046 | 13.55% | 10 | 22.73% |
David Brownell | 202 | 2.62% | 4 | 9.09% |
Baruch Siach | 113 | 1.46% | 3 | 6.82% |
Michael Heimpold | 61 | 0.79% | 2 | 4.55% |
Philippe Reynes | 61 | 0.79% | 1 | 2.27% |
Stephen Hemminger | 45 | 0.58% | 2 | 4.55% |
Sergio Valverde | 22 | 0.28% | 1 | 2.27% |
Philipp Rosenberger | 15 | 0.19% | 1 | 2.27% |
Anton Vorontsov | 6 | 0.08% | 1 | 2.27% |
Jiri Pirko | 5 | 0.06% | 2 | 4.55% |
Harvey Harrison | 4 | 0.05% | 1 | 2.27% |
Michael S. Tsirkin | 4 | 0.05% | 1 | 2.27% |
Wilfried Klaebe | 3 | 0.04% | 1 | 2.27% |
Kay Sievers | 3 | 0.04% | 1 | 2.27% |
David Decotigny | 3 | 0.04% | 1 | 2.27% |
Jakub Kiciński | 3 | 0.04% | 2 | 4.55% |
Pradeep A. Dalvi | 3 | 0.04% | 1 | 2.27% |
Wolfram Sang | 3 | 0.04% | 1 | 2.27% |
Jingoo Han | 2 | 0.03% | 1 | 2.27% |
Patrick McHardy | 1 | 0.01% | 1 | 2.27% |
Danny Kukawka | 1 | 0.01% | 1 | 2.27% |
Stefan Weil | 1 | 0.01% | 1 | 2.27% |
Sebastian Andrzej Siewior | 1 | 0.01% | 1 | 2.27% |
Johannes Berg | 1 | 0.01% | 1 | 2.27% |
Uwe Kleine-König | 1 | 0.01% | 1 | 2.27% |
Total | 7721 | 44 |
// SPDX-License-Identifier: GPL-2.0+ /* * Microchip ENC28J60 ethernet driver (MAC + PHY) * * Copyright (C) 2007 Eurek srl * Author: Claudio Lanconelli <lanconelli.claudio@eptar.com> * based on enc28j60.c written by David Anders for 2.4 kernel version * * $Id: enc28j60.c,v 1.22 2007/12/20 10:47:01 claudio Exp $ */ #include <linux/module.h> #include <linux/kernel.h> #include <linux/types.h> #include <linux/fcntl.h> #include <linux/interrupt.h> #include <linux/property.h> #include <linux/string.h> #include <linux/errno.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/ethtool.h> #include <linux/tcp.h> #include <linux/skbuff.h> #include <linux/delay.h> #include <linux/spi/spi.h> #include "enc28j60_hw.h" #define DRV_NAME "enc28j60" #define DRV_VERSION "1.02" #define SPI_OPLEN 1 #define ENC28J60_MSG_DEFAULT \ (NETIF_MSG_PROBE | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN | NETIF_MSG_LINK) /* Buffer size required for the largest SPI transfer (i.e., reading a * frame). */ #define SPI_TRANSFER_BUF_LEN (4 + MAX_FRAMELEN) #define TX_TIMEOUT (4 * HZ) /* Max TX retries in case of collision as suggested by errata datasheet */ #define MAX_TX_RETRYCOUNT 16 enum { RXFILTER_NORMAL, RXFILTER_MULTI, RXFILTER_PROMISC }; /* Driver local data */ struct enc28j60_net { struct net_device *netdev; struct spi_device *spi; struct mutex lock; struct sk_buff *tx_skb; struct work_struct tx_work; struct work_struct setrx_work; struct work_struct restart_work; u8 bank; /* current register bank selected */ u16 next_pk_ptr; /* next packet pointer within FIFO */ u16 max_pk_counter; /* statistics: max packet counter */ u16 tx_retry_count; bool hw_enable; bool full_duplex; int rxfilter; u32 msg_enable; u8 spi_transfer_buf[SPI_TRANSFER_BUF_LEN]; }; /* use ethtool to change the level for any given device */ static struct { u32 msg_enable; } debug = { -1 }; /* * SPI read buffer * Wait for the SPI transfer and copy received data to destination. */ static int spi_read_buf(struct enc28j60_net *priv, int len, u8 *data) { struct device *dev = &priv->spi->dev; u8 *rx_buf = priv->spi_transfer_buf + 4; u8 *tx_buf = priv->spi_transfer_buf; struct spi_transfer tx = { .tx_buf = tx_buf, .len = SPI_OPLEN, }; struct spi_transfer rx = { .rx_buf = rx_buf, .len = len, }; struct spi_message msg; int ret; tx_buf[0] = ENC28J60_READ_BUF_MEM; spi_message_init(&msg); spi_message_add_tail(&tx, &msg); spi_message_add_tail(&rx, &msg); ret = spi_sync(priv->spi, &msg); if (ret == 0) { memcpy(data, rx_buf, len); ret = msg.status; } if (ret && netif_msg_drv(priv)) dev_printk(KERN_DEBUG, dev, "%s() failed: ret = %d\n", __func__, ret); return ret; } /* * SPI write buffer */ static int spi_write_buf(struct enc28j60_net *priv, int len, const u8 *data) { struct device *dev = &priv->spi->dev; int ret; if (len > SPI_TRANSFER_BUF_LEN - 1 || len <= 0) ret = -EINVAL; else { priv->spi_transfer_buf[0] = ENC28J60_WRITE_BUF_MEM; memcpy(&priv->spi_transfer_buf[1], data, len); ret = spi_write(priv->spi, priv->spi_transfer_buf, len + 1); if (ret && netif_msg_drv(priv)) dev_printk(KERN_DEBUG, dev, "%s() failed: ret = %d\n", __func__, ret); } return ret; } /* * basic SPI read operation */ static u8 spi_read_op(struct enc28j60_net *priv, u8 op, u8 addr) { struct device *dev = &priv->spi->dev; u8 tx_buf[2]; u8 rx_buf[4]; u8 val = 0; int ret; int slen = SPI_OPLEN; /* do dummy read if needed */ if (addr & SPRD_MASK) slen++; tx_buf[0] = op | (addr & ADDR_MASK); ret = spi_write_then_read(priv->spi, tx_buf, 1, rx_buf, slen); if (ret) dev_printk(KERN_DEBUG, dev, "%s() failed: ret = %d\n", __func__, ret); else val = rx_buf[slen - 1]; return val; } /* * basic SPI write operation */ static int spi_write_op(struct enc28j60_net *priv, u8 op, u8 addr, u8 val) { struct device *dev = &priv->spi->dev; int ret; priv->spi_transfer_buf[0] = op | (addr & ADDR_MASK); priv->spi_transfer_buf[1] = val; ret = spi_write(priv->spi, priv->spi_transfer_buf, 2); if (ret && netif_msg_drv(priv)) dev_printk(KERN_DEBUG, dev, "%s() failed: ret = %d\n", __func__, ret); return ret; } static void enc28j60_soft_reset(struct enc28j60_net *priv) { spi_write_op(priv, ENC28J60_SOFT_RESET, 0, ENC28J60_SOFT_RESET); /* Errata workaround #1, CLKRDY check is unreliable, * delay at least 1 ms instead */ udelay(2000); } /* * select the current register bank if necessary */ static void enc28j60_set_bank(struct enc28j60_net *priv, u8 addr) { u8 b = (addr & BANK_MASK) >> 5; /* These registers (EIE, EIR, ESTAT, ECON2, ECON1) * are present in all banks, no need to switch bank. */ if (addr >= EIE && addr <= ECON1) return; /* Clear or set each bank selection bit as needed */ if ((b & ECON1_BSEL0) != (priv->bank & ECON1_BSEL0)) { if (b & ECON1_BSEL0) spi_write_op(priv, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_BSEL0); else spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_BSEL0); } if ((b & ECON1_BSEL1) != (priv->bank & ECON1_BSEL1)) { if (b & ECON1_BSEL1) spi_write_op(priv, ENC28J60_BIT_FIELD_SET, ECON1, ECON1_BSEL1); else spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, ECON1, ECON1_BSEL1); } priv->bank = b; } /* * Register access routines through the SPI bus. * Every register access comes in two flavours: * - nolock_xxx: caller needs to invoke mutex_lock, usually to access * atomically more than one register * - locked_xxx: caller doesn't need to invoke mutex_lock, single access * * Some registers can be accessed through the bit field clear and * bit field set to avoid a read modify write cycle. */ /* * Register bit field Set */ static void nolock_reg_bfset(struct enc28j60_net *priv, u8 addr, u8 mask) { enc28j60_set_bank(priv, addr); spi_write_op(priv, ENC28J60_BIT_FIELD_SET, addr, mask); } static void locked_reg_bfset(struct enc28j60_net *priv, u8 addr, u8 mask) { mutex_lock(&priv->lock); nolock_reg_bfset(priv, addr, mask); mutex_unlock(&priv->lock); } /* * Register bit field Clear */ static void nolock_reg_bfclr(struct enc28j60_net *priv, u8 addr, u8 mask) { enc28j60_set_bank(priv, addr); spi_write_op(priv, ENC28J60_BIT_FIELD_CLR, addr, mask); } static void locked_reg_bfclr(struct enc28j60_net *priv, u8 addr, u8 mask) { mutex_lock(&priv->lock); nolock_reg_bfclr(priv, addr, mask); mutex_unlock(&priv->lock); } /* * Register byte read */ static int nolock_regb_read(struct enc28j60_net *priv, u8 address) { enc28j60_set_bank(priv, address); return spi_read_op(priv, ENC28J60_READ_CTRL_REG, address); } static int locked_regb_read(struct enc28j60_net *priv, u8 address) { int ret; mutex_lock(&priv->lock); ret = nolock_regb_read(priv, address); mutex_unlock(&priv->lock); return ret; } /* * Register word read */ static int nolock_regw_read(struct enc28j60_net *priv, u8 address) { int rl, rh; enc28j60_set_bank(priv, address); rl = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address); rh = spi_read_op(priv, ENC28J60_READ_CTRL_REG, address + 1); return (rh << 8) | rl; } static int locked_regw_read(struct enc28j60_net *priv, u8 address) { int ret; mutex_lock(&priv->lock); ret = nolock_regw_read(priv, address); mutex_unlock(&priv->lock); return ret; } /* * Register byte write */ static void nolock_regb_write(struct enc28j60_net *priv, u8 address, u8 data) { enc28j60_set_bank(priv, address); spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, data); } static void locked_regb_write(struct enc28j60_net *priv, u8 address, u8 data) { mutex_lock(&priv->lock); nolock_regb_write(priv, address, data); mutex_unlock(&priv->lock); } /* * Register word write */ static void nolock_regw_write(struct enc28j60_net *priv, u8 address, u16 data) { enc28j60_set_bank(priv, address); spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address, (u8) data); spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, address + 1, (u8) (data >> 8)); } static void locked_regw_write(struct enc28j60_net *priv, u8 address, u16 data) { mutex_lock(&priv->lock); nolock_regw_write(priv, address, data); mutex_unlock(&priv->lock); } /* * Buffer memory read * Select the starting address and execute a SPI buffer read. */ static void enc28j60_mem_read(struct enc28j60_net *priv, u16 addr, int len, u8 *data) { mutex_lock(&priv->lock); nolock_regw_write(priv, ERDPTL, addr); #ifdef CONFIG_ENC28J60_WRITEVERIFY if (netif_msg_drv(priv)) { struct device *dev = &priv->spi->dev; u16 reg; reg = nolock_regw_read(priv, ERDPTL); if (reg != addr) dev_printk(KERN_DEBUG, dev, "%s() error writing ERDPT (0x%04x - 0x%04x)\n", __func__, reg, addr); } #endif spi_read_buf(priv, len, data); mutex_unlock(&priv->lock); } /* * Write packet to enc28j60 TX buffer memory */ static void enc28j60_packet_write(struct enc28j60_net *priv, int len, const u8 *data) { struct device *dev = &priv->spi->dev; mutex_lock(&priv->lock); /* Set the write pointer to start of transmit buffer area */ nolock_regw_write(priv, EWRPTL, TXSTART_INIT); #ifdef CONFIG_ENC28J60_WRITEVERIFY if (netif_msg_drv(priv)) { u16 reg; reg = nolock_regw_read(priv, EWRPTL); if (reg != TXSTART_INIT) dev_printk(KERN_DEBUG, dev, "%s() ERWPT:0x%04x != 0x%04x\n", __func__, reg, TXSTART_INIT); } #endif /* Set the TXND pointer to correspond to the packet size given */ nolock_regw_write(priv, ETXNDL, TXSTART_INIT + len); /* write per-packet control byte */ spi_write_op(priv, ENC28J60_WRITE_BUF_MEM, 0, 0x00); if (netif_msg_hw(priv)) dev_printk(KERN_DEBUG, dev, "%s() after control byte ERWPT:0x%04x\n", __func__, nolock_regw_read(priv, EWRPTL)); /* copy the packet into the transmit buffer */ spi_write_buf(priv, len, data); if (netif_msg_hw(priv)) dev_printk(KERN_DEBUG, dev, "%s() after write packet ERWPT:0x%04x, len=%d\n", __func__, nolock_regw_read(priv, EWRPTL), len); mutex_unlock(&priv->lock); } static int poll_ready(struct enc28j60_net *priv, u8 reg, u8 mask, u8 val) { struct device *dev = &priv->spi->dev; unsigned long timeout = jiffies + msecs_to_jiffies(20); /* 20 msec timeout read */ while ((nolock_regb_read(priv, reg) & mask) != val) { if (time_after(jiffies, timeout)) { if (netif_msg_drv(priv)) dev_dbg(dev, "reg %02x ready timeout!\n", reg); return -ETIMEDOUT; } cpu_relax(); } return 0; } /* * Wait until the PHY operation is complete. */ static int wait_phy_ready(struct enc28j60_net *priv) { return poll_ready(priv, MISTAT, MISTAT_BUSY, 0) ? 0 : 1; } /* * PHY register read * PHY registers are not accessed directly, but through the MII. */ static u16 enc28j60_phy_read(struct enc28j60_net *priv, u8 address) { u16 ret; mutex_lock(&priv->lock); /* set the PHY register address */ nolock_regb_write(priv, MIREGADR, address); /* start the register read operation */ nolock_regb_write(priv, MICMD, MICMD_MIIRD); /* wait until the PHY read completes */ wait_phy_ready(priv); /* quit reading */ nolock_regb_write(priv, MICMD, 0x00); /* return the data */ ret = nolock_regw_read(priv, MIRDL); mutex_unlock(&priv->lock); return ret; } static int enc28j60_phy_write(struct enc28j60_net *priv, u8 address, u16 data) { int ret; mutex_lock(&priv->lock); /* set the PHY register address */ nolock_regb_write(priv, MIREGADR, address); /* write the PHY data */ nolock_regw_write(priv, MIWRL, data); /* wait until the PHY write completes and return */ ret = wait_phy_ready(priv); mutex_unlock(&priv->lock); return ret; } /* * Program the hardware MAC address from dev->dev_addr. */ static int enc28j60_set_hw_macaddr(struct net_device *ndev) { int ret; struct enc28j60_net *priv = netdev_priv(ndev); struct device *dev = &priv->spi->dev; mutex_lock(&priv->lock); if (!priv->hw_enable) { if (netif_msg_drv(priv)) dev_info(dev, "%s: Setting MAC address to %pM\n", ndev->name, ndev->dev_addr); /* NOTE: MAC address in ENC28J60 is byte-backward */ nolock_regb_write(priv, MAADR5, ndev->dev_addr[0]); nolock_regb_write(priv, MAADR4, ndev->dev_addr[1]); nolock_regb_write(priv, MAADR3, ndev->dev_addr[2]); nolock_regb_write(priv, MAADR2, ndev->dev_addr[3]); nolock_regb_write(priv, MAADR1, ndev->dev_addr[4]); nolock_regb_write(priv, MAADR0, ndev->dev_addr[5]); ret = 0; } else { if (netif_msg_drv(priv)) dev_printk(KERN_DEBUG, dev, "%s() Hardware must be disabled to set Mac address\n", __func__); ret = -EBUSY; } mutex_unlock(&priv->lock); return ret; } /* * Store the new hardware address in dev->dev_addr, and update the MAC. */ static int enc28j60_set_mac_address(struct net_device *dev, void *addr) { struct sockaddr *address = addr; if (netif_running(dev)) return -EBUSY; if (!is_valid_ether_addr(address->sa_data)) return -EADDRNOTAVAIL; eth_hw_addr_set(dev, address->sa_data); return enc28j60_set_hw_macaddr(dev); } /* * Debug routine to dump useful register contents */ static void enc28j60_dump_regs(struct enc28j60_net *priv, const char *msg) { struct device *dev = &priv->spi->dev; mutex_lock(&priv->lock); dev_printk(KERN_DEBUG, dev, " %s\n" "HwRevID: 0x%02x\n" "Cntrl: ECON1 ECON2 ESTAT EIR EIE\n" " 0x%02x 0x%02x 0x%02x 0x%02x 0x%02x\n" "MAC : MACON1 MACON3 MACON4\n" " 0x%02x 0x%02x 0x%02x\n" "Rx : ERXST ERXND ERXWRPT ERXRDPT ERXFCON EPKTCNT MAMXFL\n" " 0x%04x 0x%04x 0x%04x 0x%04x " "0x%02x 0x%02x 0x%04x\n" "Tx : ETXST ETXND MACLCON1 MACLCON2 MAPHSUP\n" " 0x%04x 0x%04x 0x%02x 0x%02x 0x%02x\n", msg, nolock_regb_read(priv, EREVID), nolock_regb_read(priv, ECON1), nolock_regb_read(priv, ECON2), nolock_regb_read(priv, ESTAT), nolock_regb_read(priv, EIR), nolock_regb_read(priv, EIE), nolock_regb_read(priv, MACON1), nolock_regb_read(priv, MACON3), nolock_regb_read(priv, MACON4), nolock_regw_read(priv, ERXSTL), nolock_regw_read(priv, ERXNDL), nolock_regw_read(priv, ERXWRPTL), nolock_regw_read(priv, ERXRDPTL), nolock_regb_read(priv, ERXFCON), nolock_regb_read(priv, EPKTCNT), nolock_regw_read(priv, MAMXFLL), nolock_regw_read(priv, ETXSTL), nolock_regw_read(priv, ETXNDL), nolock_regb_read(priv, MACLCON1), nolock_regb_read(priv, MACLCON2), nolock_regb_read(priv, MAPHSUP)); mutex_unlock(&priv->lock); } /* * ERXRDPT need to be set always at odd addresses, refer to errata datasheet */ static u16 erxrdpt_workaround(u16 next_packet_ptr, u16 start, u16 end) { u16 erxrdpt; if ((next_packet_ptr - 1 < start) || (next_packet_ptr - 1 > end)) erxrdpt = end; else erxrdpt = next_packet_ptr - 1; return erxrdpt; } /* * Calculate wrap around when reading beyond the end of the RX buffer */ static u16 rx_packet_start(u16 ptr) { if (ptr + RSV_SIZE > RXEND_INIT) return (ptr + RSV_SIZE) - (RXEND_INIT - RXSTART_INIT + 1); else return ptr + RSV_SIZE; } static void nolock_rxfifo_init(struct enc28j60_net *priv, u16 start, u16 end) { struct device *dev = &priv->spi->dev; u16 erxrdpt; if (start > 0x1FFF || end > 0x1FFF || start > end) { if (netif_msg_drv(priv)) dev_err(dev, "%s(%d, %d) RXFIFO bad parameters!\n", __func__, start, end); return; } /* set receive buffer start + end */ priv->next_pk_ptr = start; nolock_regw_write(priv, ERXSTL, start); erxrdpt = erxrdpt_workaround(priv->next_pk_ptr, start, end); nolock_regw_write(priv, ERXRDPTL, erxrdpt); nolock_regw_write(priv, ERXNDL, end); } static void nolock_txfifo_init(struct enc28j60_net *priv, u16 start, u16 end) { struct device *dev = &priv->spi->dev; if (start > 0x1FFF || end > 0x1FFF || start > end) { if (netif_msg_drv(priv)) dev_err(dev, "%s(%d, %d) TXFIFO bad parameters!\n", __func__, start, end); return; } /* set transmit buffer start + end */ nolock_regw_write(priv, ETXSTL, start); nolock_regw_write(priv, ETXNDL, end); } /* * Low power mode shrinks power consumption about 100x, so we'd like * the chip to be in that mode whenever it's inactive. (However, we * can't stay in low power mode during suspend with WOL active.) */ static void enc28j60_lowpower(struct enc28j60_net *priv, bool is_low) { struct device *dev = &priv->spi->dev; if (netif_msg_drv(priv)) dev_dbg(dev, "%s power...\n", is_low ? "low" : "high"); mutex_lock(&priv->lock); if (is_low) { nolock_reg_bfclr(priv, ECON1, ECON1_RXEN); poll_ready(priv, ESTAT, ESTAT_RXBUSY, 0); poll_ready(priv, ECON1, ECON1_TXRTS, 0); /* ECON2_VRPS was set during initialization */ nolock_reg_bfset(priv, ECON2, ECON2_PWRSV); } else { nolock_reg_bfclr(priv, ECON2, ECON2_PWRSV); poll_ready(priv, ESTAT, ESTAT_CLKRDY, ESTAT_CLKRDY); /* caller sets ECON1_RXEN */ } mutex_unlock(&priv->lock); } static int enc28j60_hw_init(struct enc28j60_net *priv) { struct device *dev = &priv->spi->dev; u8 reg; if (netif_msg_drv(priv)) dev_printk(KERN_DEBUG, dev, "%s() - %s\n", __func__, priv->full_duplex ? "FullDuplex" : "HalfDuplex"); mutex_lock(&priv->lock); /* first reset the chip */ enc28j60_soft_reset(priv); /* Clear ECON1 */ spi_write_op(priv, ENC28J60_WRITE_CTRL_REG, ECON1, 0x00); priv->bank = 0; priv->hw_enable = false; priv->tx_retry_count = 0; priv->max_pk_counter = 0; priv->rxfilter = RXFILTER_NORMAL; /* enable address auto increment and voltage regulator powersave */ nolock_regb_write(priv, ECON2, ECON2_AUTOINC | ECON2_VRPS); nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT); nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT); mutex_unlock(&priv->lock); /* * Check the RevID. * If it's 0x00 or 0xFF probably the enc28j60 is not mounted or * damaged. */ reg = locked_regb_read(priv, EREVID); if (netif_msg_drv(priv)) dev_info(dev, "chip RevID: 0x%02x\n", reg); if (reg == 0x00 || reg == 0xff) { if (netif_msg_drv(priv)) dev_printk(KERN_DEBUG, dev, "%s() Invalid RevId %d\n", __func__, reg); return 0; } /* default filter mode: (unicast OR broadcast) AND crc valid */ locked_regb_write(priv, ERXFCON, ERXFCON_UCEN | ERXFCON_CRCEN | ERXFCON_BCEN); /* enable MAC receive */ locked_regb_write(priv, MACON1, MACON1_MARXEN | MACON1_TXPAUS | MACON1_RXPAUS); /* enable automatic padding and CRC operations */ if (priv->full_duplex) { locked_regb_write(priv, MACON3, MACON3_PADCFG0 | MACON3_TXCRCEN | MACON3_FRMLNEN | MACON3_FULDPX); /* set inter-frame gap (non-back-to-back) */ locked_regb_write(priv, MAIPGL, 0x12); /* set inter-frame gap (back-to-back) */ locked_regb_write(priv, MABBIPG, 0x15); } else { locked_regb_write(priv, MACON3, MACON3_PADCFG0 | MACON3_TXCRCEN | MACON3_FRMLNEN); locked_regb_write(priv, MACON4, 1 << 6); /* DEFER bit */ /* set inter-frame gap (non-back-to-back) */ locked_regw_write(priv, MAIPGL, 0x0C12); /* set inter-frame gap (back-to-back) */ locked_regb_write(priv, MABBIPG, 0x12); } /* * MACLCON1 (default) * MACLCON2 (default) * Set the maximum packet size which the controller will accept. */ locked_regw_write(priv, MAMXFLL, MAX_FRAMELEN); /* Configure LEDs */ if (!enc28j60_phy_write(priv, PHLCON, ENC28J60_LAMPS_MODE)) return 0; if (priv->full_duplex) { if (!enc28j60_phy_write(priv, PHCON1, PHCON1_PDPXMD)) return 0; if (!enc28j60_phy_write(priv, PHCON2, 0x00)) return 0; } else { if (!enc28j60_phy_write(priv, PHCON1, 0x00)) return 0; if (!enc28j60_phy_write(priv, PHCON2, PHCON2_HDLDIS)) return 0; } if (netif_msg_hw(priv)) enc28j60_dump_regs(priv, "Hw initialized."); return 1; } static void enc28j60_hw_enable(struct enc28j60_net *priv) { struct device *dev = &priv->spi->dev; /* enable interrupts */ if (netif_msg_hw(priv)) dev_printk(KERN_DEBUG, dev, "%s() enabling interrupts.\n", __func__); enc28j60_phy_write(priv, PHIE, PHIE_PGEIE | PHIE_PLNKIE); mutex_lock(&priv->lock); nolock_reg_bfclr(priv, EIR, EIR_DMAIF | EIR_LINKIF | EIR_TXIF | EIR_TXERIF | EIR_RXERIF | EIR_PKTIF); nolock_regb_write(priv, EIE, EIE_INTIE | EIE_PKTIE | EIE_LINKIE | EIE_TXIE | EIE_TXERIE | EIE_RXERIE); /* enable receive logic */ nolock_reg_bfset(priv, ECON1, ECON1_RXEN); priv->hw_enable = true; mutex_unlock(&priv->lock); } static void enc28j60_hw_disable(struct enc28j60_net *priv) { mutex_lock(&priv->lock); /* disable interrupts and packet reception */ nolock_regb_write(priv, EIE, 0x00); nolock_reg_bfclr(priv, ECON1, ECON1_RXEN); priv->hw_enable = false; mutex_unlock(&priv->lock); } static int enc28j60_setlink(struct net_device *ndev, u8 autoneg, u16 speed, u8 duplex) { struct enc28j60_net *priv = netdev_priv(ndev); int ret = 0; if (!priv->hw_enable) { /* link is in low power mode now; duplex setting * will take effect on next enc28j60_hw_init(). */ if (autoneg == AUTONEG_DISABLE && speed == SPEED_10) priv->full_duplex = (duplex == DUPLEX_FULL); else { if (netif_msg_link(priv)) netdev_warn(ndev, "unsupported link setting\n"); ret = -EOPNOTSUPP; } } else { if (netif_msg_link(priv)) netdev_warn(ndev, "Warning: hw must be disabled to set link mode\n"); ret = -EBUSY; } return ret; } /* * Read the Transmit Status Vector */ static void enc28j60_read_tsv(struct enc28j60_net *priv, u8 tsv[TSV_SIZE]) { struct device *dev = &priv->spi->dev; int endptr; endptr = locked_regw_read(priv, ETXNDL); if (netif_msg_hw(priv)) dev_printk(KERN_DEBUG, dev, "reading TSV at addr:0x%04x\n", endptr + 1); enc28j60_mem_read(priv, endptr + 1, TSV_SIZE, tsv); } static void enc28j60_dump_tsv(struct enc28j60_net *priv, const char *msg, u8 tsv[TSV_SIZE]) { struct device *dev = &priv->spi->dev; u16 tmp1, tmp2; dev_printk(KERN_DEBUG, dev, "%s - TSV:\n", msg); tmp1 = tsv[1]; tmp1 <<= 8; tmp1 |= tsv[0]; tmp2 = tsv[5]; tmp2 <<= 8; tmp2 |= tsv[4]; dev_printk(KERN_DEBUG, dev, "ByteCount: %d, CollisionCount: %d, TotByteOnWire: %d\n", tmp1, tsv[2] & 0x0f, tmp2); dev_printk(KERN_DEBUG, dev, "TxDone: %d, CRCErr:%d, LenChkErr: %d, LenOutOfRange: %d\n", TSV_GETBIT(tsv, TSV_TXDONE), TSV_GETBIT(tsv, TSV_TXCRCERROR), TSV_GETBIT(tsv, TSV_TXLENCHKERROR), TSV_GETBIT(tsv, TSV_TXLENOUTOFRANGE)); dev_printk(KERN_DEBUG, dev, "Multicast: %d, Broadcast: %d, PacketDefer: %d, ExDefer: %d\n", TSV_GETBIT(tsv, TSV_TXMULTICAST), TSV_GETBIT(tsv, TSV_TXBROADCAST), TSV_GETBIT(tsv, TSV_TXPACKETDEFER), TSV_GETBIT(tsv, TSV_TXEXDEFER)); dev_printk(KERN_DEBUG, dev, "ExCollision: %d, LateCollision: %d, Giant: %d, Underrun: %d\n", TSV_GETBIT(tsv, TSV_TXEXCOLLISION), TSV_GETBIT(tsv, TSV_TXLATECOLLISION), TSV_GETBIT(tsv, TSV_TXGIANT), TSV_GETBIT(tsv, TSV_TXUNDERRUN)); dev_printk(KERN_DEBUG, dev, "ControlFrame: %d, PauseFrame: %d, BackPressApp: %d, VLanTagFrame: %d\n", TSV_GETBIT(tsv, TSV_TXCONTROLFRAME), TSV_GETBIT(tsv, TSV_TXPAUSEFRAME), TSV_GETBIT(tsv, TSV_BACKPRESSUREAPP), TSV_GETBIT(tsv, TSV_TXVLANTAGFRAME)); } /* * Receive Status vector */ static void enc28j60_dump_rsv(struct enc28j60_net *priv, const char *msg, u16 pk_ptr, int len, u16 sts) { struct device *dev = &priv->spi->dev; dev_printk(KERN_DEBUG, dev, "%s - NextPk: 0x%04x - RSV:\n", msg, pk_ptr); dev_printk(KERN_DEBUG, dev, "ByteCount: %d, DribbleNibble: %d\n", len, RSV_GETBIT(sts, RSV_DRIBBLENIBBLE)); dev_printk(KERN_DEBUG, dev, "RxOK: %d, CRCErr:%d, LenChkErr: %d, LenOutOfRange: %d\n", RSV_GETBIT(sts, RSV_RXOK), RSV_GETBIT(sts, RSV_CRCERROR), RSV_GETBIT(sts, RSV_LENCHECKERR), RSV_GETBIT(sts, RSV_LENOUTOFRANGE)); dev_printk(KERN_DEBUG, dev, "Multicast: %d, Broadcast: %d, LongDropEvent: %d, CarrierEvent: %d\n", RSV_GETBIT(sts, RSV_RXMULTICAST), RSV_GETBIT(sts, RSV_RXBROADCAST), RSV_GETBIT(sts, RSV_RXLONGEVDROPEV), RSV_GETBIT(sts, RSV_CARRIEREV)); dev_printk(KERN_DEBUG, dev, "ControlFrame: %d, PauseFrame: %d, UnknownOp: %d, VLanTagFrame: %d\n", RSV_GETBIT(sts, RSV_RXCONTROLFRAME), RSV_GETBIT(sts, RSV_RXPAUSEFRAME), RSV_GETBIT(sts, RSV_RXUNKNOWNOPCODE), RSV_GETBIT(sts, RSV_RXTYPEVLAN)); } static void dump_packet(const char *msg, int len, const char *data) { printk(KERN_DEBUG DRV_NAME ": %s - packet len:%d\n", msg, len); print_hex_dump(KERN_DEBUG, "pk data: ", DUMP_PREFIX_OFFSET, 16, 1, data, len, true); } /* * Hardware receive function. * Read the buffer memory, update the FIFO pointer to free the buffer, * check the status vector and decrement the packet counter. */ static void enc28j60_hw_rx(struct net_device *ndev) { struct enc28j60_net *priv = netdev_priv(ndev); struct device *dev = &priv->spi->dev; struct sk_buff *skb = NULL; u16 erxrdpt, next_packet, rxstat; u8 rsv[RSV_SIZE]; int len; if (netif_msg_rx_status(priv)) netdev_printk(KERN_DEBUG, ndev, "RX pk_addr:0x%04x\n", priv->next_pk_ptr); if (unlikely(priv->next_pk_ptr > RXEND_INIT)) { if (netif_msg_rx_err(priv)) netdev_err(ndev, "%s() Invalid packet address!! 0x%04x\n", __func__, priv->next_pk_ptr); /* packet address corrupted: reset RX logic */ mutex_lock(&priv->lock); nolock_reg_bfclr(priv, ECON1, ECON1_RXEN); nolock_reg_bfset(priv, ECON1, ECON1_RXRST); nolock_reg_bfclr(priv, ECON1, ECON1_RXRST); nolock_rxfifo_init(priv, RXSTART_INIT, RXEND_INIT); nolock_reg_bfclr(priv, EIR, EIR_RXERIF); nolock_reg_bfset(priv, ECON1, ECON1_RXEN); mutex_unlock(&priv->lock); ndev->stats.rx_errors++; return; } /* Read next packet pointer and rx status vector */ enc28j60_mem_read(priv, priv->next_pk_ptr, sizeof(rsv), rsv); next_packet = rsv[1]; next_packet <<= 8; next_packet |= rsv[0]; len = rsv[3]; len <<= 8; len |= rsv[2]; rxstat = rsv[5]; rxstat <<= 8; rxstat |= rsv[4]; if (netif_msg_rx_status(priv)) enc28j60_dump_rsv(priv, __func__, next_packet, len, rxstat); if (!RSV_GETBIT(rxstat, RSV_RXOK) || len > MAX_FRAMELEN) { if (netif_msg_rx_err(priv)) netdev_err(ndev, "Rx Error (%04x)\n", rxstat); ndev->stats.rx_errors++; if (RSV_GETBIT(rxstat, RSV_CRCERROR)) ndev->stats.rx_crc_errors++; if (RSV_GETBIT(rxstat, RSV_LENCHECKERR)) ndev->stats.rx_frame_errors++; if (len > MAX_FRAMELEN) ndev->stats.rx_over_errors++; } else { skb = netdev_alloc_skb(ndev, len + NET_IP_ALIGN); if (!skb) { if (netif_msg_rx_err(priv)) netdev_err(ndev, "out of memory for Rx'd frame\n"); ndev->stats.rx_dropped++; } else { skb_reserve(skb, NET_IP_ALIGN); /* copy the packet from the receive buffer */ enc28j60_mem_read(priv, rx_packet_start(priv->next_pk_ptr), len, skb_put(skb, len)); if (netif_msg_pktdata(priv)) dump_packet(__func__, skb->len, skb->data); skb->protocol = eth_type_trans(skb, ndev); /* update statistics */ ndev->stats.rx_packets++; ndev->stats.rx_bytes += len; netif_rx(skb); } } /* * Move the RX read pointer to the start of the next * received packet. * This frees the memory we just read out. */ erxrdpt = erxrdpt_workaround(next_packet, RXSTART_INIT, RXEND_INIT); if (netif_msg_hw(priv)) dev_printk(KERN_DEBUG, dev, "%s() ERXRDPT:0x%04x\n", __func__, erxrdpt); mutex_lock(&priv->lock); nolock_regw_write(priv, ERXRDPTL, erxrdpt); #ifdef CONFIG_ENC28J60_WRITEVERIFY if (netif_msg_drv(priv)) { u16 reg; reg = nolock_regw_read(priv, ERXRDPTL); if (reg != erxrdpt) dev_printk(KERN_DEBUG, dev, "%s() ERXRDPT verify error (0x%04x - 0x%04x)\n", __func__, reg, erxrdpt); } #endif priv->next_pk_ptr = next_packet; /* we are done with this packet, decrement the packet counter */ nolock_reg_bfset(priv, ECON2, ECON2_PKTDEC); mutex_unlock(&priv->lock); } /* * Calculate free space in RxFIFO */ static int enc28j60_get_free_rxfifo(struct enc28j60_net *priv) { struct net_device *ndev = priv->netdev; int epkcnt, erxst, erxnd, erxwr, erxrd; int free_space; mutex_lock(&priv->lock); epkcnt = nolock_regb_read(priv, EPKTCNT); if (epkcnt >= 255) free_space = -1; else { erxst = nolock_regw_read(priv, ERXSTL); erxnd = nolock_regw_read(priv, ERXNDL); erxwr = nolock_regw_read(priv, ERXWRPTL); erxrd = nolock_regw_read(priv, ERXRDPTL); if (erxwr > erxrd) free_space = (erxnd - erxst) - (erxwr - erxrd); else if (erxwr == erxrd) free_space = (erxnd - erxst); else free_space = erxrd - erxwr - 1; } mutex_unlock(&priv->lock); if (netif_msg_rx_status(priv)) netdev_printk(KERN_DEBUG, ndev, "%s() free_space = %d\n", __func__, free_space); return free_space; } /* * Access the PHY to determine link status */ static void enc28j60_check_link_status(struct net_device *ndev) { struct enc28j60_net *priv = netdev_priv(ndev); struct device *dev = &priv->spi->dev; u16 reg; int duplex; reg = enc28j60_phy_read(priv, PHSTAT2); if (netif_msg_hw(priv)) dev_printk(KERN_DEBUG, dev, "%s() PHSTAT1: %04x, PHSTAT2: %04x\n", __func__, enc28j60_phy_read(priv, PHSTAT1), reg); duplex = reg & PHSTAT2_DPXSTAT; if (reg & PHSTAT2_LSTAT) { netif_carrier_on(ndev); if (netif_msg_ifup(priv)) netdev_info(ndev, "link up - %s\n", duplex ? "Full duplex" : "Half duplex"); } else { if (netif_msg_ifdown(priv)) netdev_info(ndev, "link down\n"); netif_carrier_off(ndev); } } static void enc28j60_tx_clear(struct net_device *ndev, bool err) { struct enc28j60_net *priv = netdev_priv(ndev); if (err) ndev->stats.tx_errors++; else ndev->stats.tx_packets++; if (priv->tx_skb) { if (!err) ndev->stats.tx_bytes += priv->tx_skb->len; dev_kfree_skb(priv->tx_skb); priv->tx_skb = NULL; } locked_reg_bfclr(priv, ECON1, ECON1_TXRTS); netif_wake_queue(ndev); } /* * RX handler * Ignore PKTIF because is unreliable! (Look at the errata datasheet) * Check EPKTCNT is the suggested workaround. * We don't need to clear interrupt flag, automatically done when * enc28j60_hw_rx() decrements the packet counter. * Returns how many packet processed. */ static int enc28j60_rx_interrupt(struct net_device *ndev) { struct enc28j60_net *priv = netdev_priv(ndev); int pk_counter, ret; pk_counter = locked_regb_read(priv, EPKTCNT); if (pk_counter && netif_msg_intr(priv)) netdev_printk(KERN_DEBUG, ndev, "intRX, pk_cnt: %d\n", pk_counter); if (pk_counter > priv->max_pk_counter) { /* update statistics */ priv->max_pk_counter = pk_counter; if (netif_msg_rx_status(priv) && priv->max_pk_counter > 1) netdev_printk(KERN_DEBUG, ndev, "RX max_pk_cnt: %d\n", priv->max_pk_counter); } ret = pk_counter; while (pk_counter-- > 0) enc28j60_hw_rx(ndev); return ret; } static irqreturn_t enc28j60_irq(int irq, void *dev_id) { struct enc28j60_net *priv = dev_id; struct net_device *ndev = priv->netdev; int intflags, loop; /* disable further interrupts */ locked_reg_bfclr(priv, EIE, EIE_INTIE); do { loop = 0; intflags = locked_regb_read(priv, EIR); /* DMA interrupt handler (not currently used) */ if ((intflags & EIR_DMAIF) != 0) { loop++; if (netif_msg_intr(priv)) netdev_printk(KERN_DEBUG, ndev, "intDMA(%d)\n", loop); locked_reg_bfclr(priv, EIR, EIR_DMAIF); } /* LINK changed handler */ if ((intflags & EIR_LINKIF) != 0) { loop++; if (netif_msg_intr(priv)) netdev_printk(KERN_DEBUG, ndev, "intLINK(%d)\n", loop); enc28j60_check_link_status(ndev); /* read PHIR to clear the flag */ enc28j60_phy_read(priv, PHIR); } /* TX complete handler */ if (((intflags & EIR_TXIF) != 0) && ((intflags & EIR_TXERIF) == 0)) { bool err = false; loop++; if (netif_msg_intr(priv)) netdev_printk(KERN_DEBUG, ndev, "intTX(%d)\n", loop); priv->tx_retry_count = 0; if (locked_regb_read(priv, ESTAT) & ESTAT_TXABRT) { if (netif_msg_tx_err(priv)) netdev_err(ndev, "Tx Error (aborted)\n"); err = true; } if (netif_msg_tx_done(priv)) { u8 tsv[TSV_SIZE]; enc28j60_read_tsv(priv, tsv); enc28j60_dump_tsv(priv, "Tx Done", tsv); } enc28j60_tx_clear(ndev, err); locked_reg_bfclr(priv, EIR, EIR_TXIF); } /* TX Error handler */ if ((intflags & EIR_TXERIF) != 0) { u8 tsv[TSV_SIZE]; loop++; if (netif_msg_intr(priv)) netdev_printk(KERN_DEBUG, ndev, "intTXErr(%d)\n", loop); locked_reg_bfclr(priv, ECON1, ECON1_TXRTS); enc28j60_read_tsv(priv, tsv); if (netif_msg_tx_err(priv)) enc28j60_dump_tsv(priv, "Tx Error", tsv); /* Reset TX logic */ mutex_lock(&priv->lock); nolock_reg_bfset(priv, ECON1, ECON1_TXRST); nolock_reg_bfclr(priv, ECON1, ECON1_TXRST); nolock_txfifo_init(priv, TXSTART_INIT, TXEND_INIT); mutex_unlock(&priv->lock); /* Transmit Late collision check for retransmit */ if (TSV_GETBIT(tsv, TSV_TXLATECOLLISION)) { if (netif_msg_tx_err(priv)) netdev_printk(KERN_DEBUG, ndev, "LateCollision TXErr (%d)\n", priv->tx_retry_count); if (priv->tx_retry_count++ < MAX_TX_RETRYCOUNT) locked_reg_bfset(priv, ECON1, ECON1_TXRTS); else enc28j60_tx_clear(ndev, true); } else enc28j60_tx_clear(ndev, true); locked_reg_bfclr(priv, EIR, EIR_TXERIF | EIR_TXIF); } /* RX Error handler */ if ((intflags & EIR_RXERIF) != 0) { loop++; if (netif_msg_intr(priv)) netdev_printk(KERN_DEBUG, ndev, "intRXErr(%d)\n", loop); /* Check free FIFO space to flag RX overrun */ if (enc28j60_get_free_rxfifo(priv) <= 0) { if (netif_msg_rx_err(priv)) netdev_printk(KERN_DEBUG, ndev, "RX Overrun\n"); ndev->stats.rx_dropped++; } locked_reg_bfclr(priv, EIR, EIR_RXERIF); } /* RX handler */ if (enc28j60_rx_interrupt(ndev)) loop++; } while (loop); /* re-enable interrupts */ locked_reg_bfset(priv, EIE, EIE_INTIE); return IRQ_HANDLED; } /* * Hardware transmit function. * Fill the buffer memory and send the contents of the transmit buffer * onto the network */ static void enc28j60_hw_tx(struct enc28j60_net *priv) { struct net_device *ndev = priv->netdev; BUG_ON(!priv->tx_skb); if (netif_msg_tx_queued(priv)) netdev_printk(KERN_DEBUG, ndev, "Tx Packet Len:%d\n", priv->tx_skb->len); if (netif_msg_pktdata(priv)) dump_packet(__func__, priv->tx_skb->len, priv->tx_skb->data); enc28j60_packet_write(priv, priv->tx_skb->len, priv->tx_skb->data); #ifdef CONFIG_ENC28J60_WRITEVERIFY /* readback and verify written data */ if (netif_msg_drv(priv)) { struct device *dev = &priv->spi->dev; int test_len, k; u8 test_buf[64]; /* limit the test to the first 64 bytes */ int okflag; test_len = priv->tx_skb->len; if (test_len > sizeof(test_buf)) test_len = sizeof(test_buf); /* + 1 to skip control byte */ enc28j60_mem_read(priv, TXSTART_INIT + 1, test_len, test_buf); okflag = 1; for (k = 0; k < test_len; k++) { if (priv->tx_skb->data[k] != test_buf[k]) { dev_printk(KERN_DEBUG, dev, "Error, %d location differ: 0x%02x-0x%02x\n", k, priv->tx_skb->data[k], test_buf[k]); okflag = 0; } } if (!okflag) dev_printk(KERN_DEBUG, dev, "Tx write buffer, verify ERROR!\n"); } #endif /* set TX request flag */ locked_reg_bfset(priv, ECON1, ECON1_TXRTS); } static netdev_tx_t enc28j60_send_packet(struct sk_buff *skb, struct net_device *dev) { struct enc28j60_net *priv = netdev_priv(dev); /* If some error occurs while trying to transmit this * packet, you should return '1' from this function. * In such a case you _may not_ do anything to the * SKB, it is still owned by the network queueing * layer when an error is returned. This means you * may not modify any SKB fields, you may not free * the SKB, etc. */ netif_stop_queue(dev); /* Remember the skb for deferred processing */ priv->tx_skb = skb; schedule_work(&priv->tx_work); return NETDEV_TX_OK; } static void enc28j60_tx_work_handler(struct work_struct *work) { struct enc28j60_net *priv = container_of(work, struct enc28j60_net, tx_work); /* actual delivery of data */ enc28j60_hw_tx(priv); } static void enc28j60_tx_timeout(struct net_device *ndev, unsigned int txqueue) { struct enc28j60_net *priv = netdev_priv(ndev); if (netif_msg_timer(priv)) netdev_err(ndev, "tx timeout\n"); ndev->stats.tx_errors++; /* can't restart safely under softirq */ schedule_work(&priv->restart_work); } /* * Open/initialize the board. This is called (in the current kernel) * sometime after booting when the 'ifconfig' program is run. * * This routine should set everything up anew at each open, even * registers that "should" only need to be set once at boot, so that * there is non-reboot way to recover if something goes wrong. */ static int enc28j60_net_open(struct net_device *dev) { struct enc28j60_net *priv = netdev_priv(dev); if (!is_valid_ether_addr(dev->dev_addr)) { if (netif_msg_ifup(priv)) netdev_err(dev, "invalid MAC address %pM\n", dev->dev_addr); return -EADDRNOTAVAIL; } /* Reset the hardware here (and take it out of low power mode) */ enc28j60_lowpower(priv, false); enc28j60_hw_disable(priv); if (!enc28j60_hw_init(priv)) { if (netif_msg_ifup(priv)) netdev_err(dev, "hw_reset() failed\n"); return -EINVAL; } /* Update the MAC address (in case user has changed it) */ enc28j60_set_hw_macaddr(dev); /* Enable interrupts */ enc28j60_hw_enable(priv); /* check link status */ enc28j60_check_link_status(dev); /* We are now ready to accept transmit requests from * the queueing layer of the networking. */ netif_start_queue(dev); return 0; } /* The inverse routine to net_open(). */ static int enc28j60_net_close(struct net_device *dev) { struct enc28j60_net *priv = netdev_priv(dev); enc28j60_hw_disable(priv); enc28j60_lowpower(priv, true); netif_stop_queue(dev); return 0; } /* * Set or clear the multicast filter for this adapter * num_addrs == -1 Promiscuous mode, receive all packets * num_addrs == 0 Normal mode, filter out multicast packets * num_addrs > 0 Multicast mode, receive normal and MC packets */ static void enc28j60_set_multicast_list(struct net_device *dev) { struct enc28j60_net *priv = netdev_priv(dev); int oldfilter = priv->rxfilter; if (dev->flags & IFF_PROMISC) { if (netif_msg_link(priv)) netdev_info(dev, "promiscuous mode\n"); priv->rxfilter = RXFILTER_PROMISC; } else if ((dev->flags & IFF_ALLMULTI) || !netdev_mc_empty(dev)) { if (netif_msg_link(priv)) netdev_info(dev, "%smulticast mode\n", (dev->flags & IFF_ALLMULTI) ? "all-" : ""); priv->rxfilter = RXFILTER_MULTI; } else { if (netif_msg_link(priv)) netdev_info(dev, "normal mode\n"); priv->rxfilter = RXFILTER_NORMAL; } if (oldfilter != priv->rxfilter) schedule_work(&priv->setrx_work); } static void enc28j60_setrx_work_handler(struct work_struct *work) { struct enc28j60_net *priv = container_of(work, struct enc28j60_net, setrx_work); struct device *dev = &priv->spi->dev; if (priv->rxfilter == RXFILTER_PROMISC) { if (netif_msg_drv(priv)) dev_printk(KERN_DEBUG, dev, "promiscuous mode\n"); locked_regb_write(priv, ERXFCON, 0x00); } else if (priv->rxfilter == RXFILTER_MULTI) { if (netif_msg_drv(priv)) dev_printk(KERN_DEBUG, dev, "multicast mode\n"); locked_regb_write(priv, ERXFCON, ERXFCON_UCEN | ERXFCON_CRCEN | ERXFCON_BCEN | ERXFCON_MCEN); } else { if (netif_msg_drv(priv)) dev_printk(KERN_DEBUG, dev, "normal mode\n"); locked_regb_write(priv, ERXFCON, ERXFCON_UCEN | ERXFCON_CRCEN | ERXFCON_BCEN); } } static void enc28j60_restart_work_handler(struct work_struct *work) { struct enc28j60_net *priv = container_of(work, struct enc28j60_net, restart_work); struct net_device *ndev = priv->netdev; int ret; rtnl_lock(); if (netif_running(ndev)) { enc28j60_net_close(ndev); ret = enc28j60_net_open(ndev); if (unlikely(ret)) { netdev_info(ndev, "could not restart %d\n", ret); dev_close(ndev); } } rtnl_unlock(); } /* ......................... ETHTOOL SUPPORT ........................... */ static void enc28j60_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) { strscpy(info->driver, DRV_NAME, sizeof(info->driver)); strscpy(info->version, DRV_VERSION, sizeof(info->version)); strscpy(info->bus_info, dev_name(dev->dev.parent), sizeof(info->bus_info)); } static int enc28j60_get_link_ksettings(struct net_device *dev, struct ethtool_link_ksettings *cmd) { struct enc28j60_net *priv = netdev_priv(dev); ethtool_link_ksettings_zero_link_mode(cmd, supported); ethtool_link_ksettings_add_link_mode(cmd, supported, 10baseT_Half); ethtool_link_ksettings_add_link_mode(cmd, supported, 10baseT_Full); ethtool_link_ksettings_add_link_mode(cmd, supported, TP); cmd->base.speed = SPEED_10; cmd->base.duplex = priv->full_duplex ? DUPLEX_FULL : DUPLEX_HALF; cmd->base.port = PORT_TP; cmd->base.autoneg = AUTONEG_DISABLE; return 0; } static int enc28j60_set_link_ksettings(struct net_device *dev, const struct ethtool_link_ksettings *cmd) { return enc28j60_setlink(dev, cmd->base.autoneg, cmd->base.speed, cmd->base.duplex); } static u32 enc28j60_get_msglevel(struct net_device *dev) { struct enc28j60_net *priv = netdev_priv(dev); return priv->msg_enable; } static void enc28j60_set_msglevel(struct net_device *dev, u32 val) { struct enc28j60_net *priv = netdev_priv(dev); priv->msg_enable = val; } static const struct ethtool_ops enc28j60_ethtool_ops = { .get_drvinfo = enc28j60_get_drvinfo, .get_msglevel = enc28j60_get_msglevel, .set_msglevel = enc28j60_set_msglevel, .get_link_ksettings = enc28j60_get_link_ksettings, .set_link_ksettings = enc28j60_set_link_ksettings, }; static int enc28j60_chipset_init(struct net_device *dev) { struct enc28j60_net *priv = netdev_priv(dev); return enc28j60_hw_init(priv); } static const struct net_device_ops enc28j60_netdev_ops = { .ndo_open = enc28j60_net_open, .ndo_stop = enc28j60_net_close, .ndo_start_xmit = enc28j60_send_packet, .ndo_set_rx_mode = enc28j60_set_multicast_list, .ndo_set_mac_address = enc28j60_set_mac_address, .ndo_tx_timeout = enc28j60_tx_timeout, .ndo_validate_addr = eth_validate_addr, }; static int enc28j60_probe(struct spi_device *spi) { struct net_device *dev; struct enc28j60_net *priv; int ret = 0; if (netif_msg_drv(&debug)) dev_info(&spi->dev, "Ethernet driver %s loaded\n", DRV_VERSION); dev = alloc_etherdev(sizeof(struct enc28j60_net)); if (!dev) { ret = -ENOMEM; goto error_alloc; } priv = netdev_priv(dev); priv->netdev = dev; /* priv to netdev reference */ priv->spi = spi; /* priv to spi reference */ priv->msg_enable = netif_msg_init(debug.msg_enable, ENC28J60_MSG_DEFAULT); mutex_init(&priv->lock); INIT_WORK(&priv->tx_work, enc28j60_tx_work_handler); INIT_WORK(&priv->setrx_work, enc28j60_setrx_work_handler); INIT_WORK(&priv->restart_work, enc28j60_restart_work_handler); spi_set_drvdata(spi, priv); /* spi to priv reference */ SET_NETDEV_DEV(dev, &spi->dev); if (!enc28j60_chipset_init(dev)) { if (netif_msg_probe(priv)) dev_info(&spi->dev, "chip not found\n"); ret = -EIO; goto error_irq; } if (device_get_ethdev_address(&spi->dev, dev)) eth_hw_addr_random(dev); enc28j60_set_hw_macaddr(dev); /* Board setup must set the relevant edge trigger type; * level triggers won't currently work. */ ret = request_threaded_irq(spi->irq, NULL, enc28j60_irq, IRQF_ONESHOT, DRV_NAME, priv); if (ret < 0) { if (netif_msg_probe(priv)) dev_err(&spi->dev, "request irq %d failed (ret = %d)\n", spi->irq, ret); goto error_irq; } dev->if_port = IF_PORT_10BASET; dev->irq = spi->irq; dev->netdev_ops = &enc28j60_netdev_ops; dev->watchdog_timeo = TX_TIMEOUT; dev->ethtool_ops = &enc28j60_ethtool_ops; enc28j60_lowpower(priv, true); ret = register_netdev(dev); if (ret) { if (netif_msg_probe(priv)) dev_err(&spi->dev, "register netdev failed (ret = %d)\n", ret); goto error_register; } return 0; error_register: free_irq(spi->irq, priv); error_irq: free_netdev(dev); error_alloc: return ret; } static void enc28j60_remove(struct spi_device *spi) { struct enc28j60_net *priv = spi_get_drvdata(spi); unregister_netdev(priv->netdev); free_irq(spi->irq, priv); free_netdev(priv->netdev); } static const struct of_device_id enc28j60_dt_ids[] = { { .compatible = "microchip,enc28j60" }, { /* sentinel */ } }; MODULE_DEVICE_TABLE(of, enc28j60_dt_ids); static struct spi_driver enc28j60_driver = { .driver = { .name = DRV_NAME, .of_match_table = enc28j60_dt_ids, }, .probe = enc28j60_probe, .remove = enc28j60_remove, }; module_spi_driver(enc28j60_driver); MODULE_DESCRIPTION(DRV_NAME " ethernet driver"); MODULE_AUTHOR("Claudio Lanconelli <lanconelli.claudio@eptar.com>"); MODULE_LICENSE("GPL"); module_param_named(debug, debug.msg_enable, int, 0); MODULE_PARM_DESC(debug, "Debug verbosity level in amount of bits set (0=none, ..., 31=all)"); MODULE_ALIAS("spi:" DRV_NAME);
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1