Author | Tokens | Token Proportion | Commits | Commit Proportion |
---|---|---|---|---|
Louis Peens | 7510 | 68.83% | 22 | 31.88% |
Yinjun Zhang | 1073 | 9.83% | 4 | 5.80% |
Hui Zhou | 946 | 8.67% | 4 | 5.80% |
Wentao Jia | 801 | 7.34% | 6 | 8.70% |
Pieter Jansen van Vuuren | 146 | 1.34% | 11 | 15.94% |
John Hurley | 100 | 0.92% | 7 | 10.14% |
Vlad Buslov | 67 | 0.61% | 1 | 1.45% |
Etienne van der Linde | 64 | 0.59% | 1 | 1.45% |
Yanguo Li | 51 | 0.47% | 1 | 1.45% |
Pablo Neira Ayuso | 47 | 0.43% | 2 | 2.90% |
Jakub Kiciński | 33 | 0.30% | 3 | 4.35% |
Ratheesh Kannoth | 29 | 0.27% | 1 | 1.45% |
Simon Horman | 15 | 0.14% | 2 | 2.90% |
Yang Yingliang | 14 | 0.13% | 1 | 1.45% |
Walter Heymans | 7 | 0.06% | 1 | 1.45% |
Paul Blakey | 6 | 0.05% | 1 | 1.45% |
Gustavo A. R. Silva | 2 | 0.02% | 1 | 1.45% |
Total | 10911 | 69 |
// SPDX-License-Identifier: (GPL-2.0-only OR BSD-2-Clause) /* Copyright (C) 2021 Corigine, Inc. */ #include <net/tc_act/tc_csum.h> #include <net/tc_act/tc_ct.h> #include "conntrack.h" #include "../nfp_port.h" const struct rhashtable_params nfp_tc_ct_merge_params = { .head_offset = offsetof(struct nfp_fl_ct_tc_merge, hash_node), .key_len = sizeof(unsigned long) * 2, .key_offset = offsetof(struct nfp_fl_ct_tc_merge, cookie), .automatic_shrinking = true, }; const struct rhashtable_params nfp_nft_ct_merge_params = { .head_offset = offsetof(struct nfp_fl_nft_tc_merge, hash_node), .key_len = sizeof(unsigned long) * 3, .key_offset = offsetof(struct nfp_fl_nft_tc_merge, cookie), .automatic_shrinking = true, }; static struct flow_action_entry *get_flow_act(struct flow_rule *rule, enum flow_action_id act_id); /** * get_hashentry() - Wrapper around hashtable lookup. * @ht: hashtable where entry could be found * @key: key to lookup * @params: hashtable params * @size: size of entry to allocate if not in table * * Returns an entry from a hashtable. If entry does not exist * yet allocate the memory for it and return the new entry. */ static void *get_hashentry(struct rhashtable *ht, void *key, const struct rhashtable_params params, size_t size) { void *result; result = rhashtable_lookup_fast(ht, key, params); if (result) return result; result = kzalloc(size, GFP_KERNEL); if (!result) return ERR_PTR(-ENOMEM); return result; } bool is_pre_ct_flow(struct flow_cls_offload *flow) { struct flow_rule *rule = flow_cls_offload_flow_rule(flow); struct flow_dissector *dissector = rule->match.dissector; struct flow_action_entry *act; struct flow_match_ct ct; int i; if (dissector->used_keys & BIT_ULL(FLOW_DISSECTOR_KEY_CT)) { flow_rule_match_ct(rule, &ct); if (ct.key->ct_state) return false; } if (flow->common.chain_index) return false; flow_action_for_each(i, act, &flow->rule->action) { if (act->id == FLOW_ACTION_CT) { /* The pre_ct rule only have the ct or ct nat action, cannot * contains other ct action e.g ct commit and so on. */ if ((!act->ct.action || act->ct.action == TCA_CT_ACT_NAT)) return true; else return false; } } return false; } bool is_post_ct_flow(struct flow_cls_offload *flow) { struct flow_rule *rule = flow_cls_offload_flow_rule(flow); struct flow_dissector *dissector = rule->match.dissector; struct flow_action_entry *act; bool exist_ct_clear = false; struct flow_match_ct ct; int i; if (dissector->used_keys & BIT_ULL(FLOW_DISSECTOR_KEY_CT)) { flow_rule_match_ct(rule, &ct); if (ct.key->ct_state & TCA_FLOWER_KEY_CT_FLAGS_ESTABLISHED) return true; } else { /* post ct entry cannot contains any ct action except ct_clear. */ flow_action_for_each(i, act, &flow->rule->action) { if (act->id == FLOW_ACTION_CT) { /* ignore ct clear action. */ if (act->ct.action == TCA_CT_ACT_CLEAR) { exist_ct_clear = true; continue; } return false; } } /* when do nat with ct, the post ct entry ignore the ct status, * will match the nat field(sip/dip) instead. In this situation, * the flow chain index is not zero and contains ct clear action. */ if (flow->common.chain_index && exist_ct_clear) return true; } return false; } /** * get_mangled_key() - Mangle the key if mangle act exists * @rule: rule that carries the actions * @buf: pointer to key to be mangled * @offset: used to adjust mangled offset in L2/L3/L4 header * @key_sz: key size * @htype: mangling type * * Returns buf where the mangled key stores. */ static void *get_mangled_key(struct flow_rule *rule, void *buf, u32 offset, size_t key_sz, enum flow_action_mangle_base htype) { struct flow_action_entry *act; u32 *val = (u32 *)buf; u32 off, msk, key; int i; flow_action_for_each(i, act, &rule->action) { if (act->id == FLOW_ACTION_MANGLE && act->mangle.htype == htype) { off = act->mangle.offset - offset; msk = act->mangle.mask; key = act->mangle.val; /* Mangling is supposed to be u32 aligned */ if (off % 4 || off >= key_sz) continue; val[off >> 2] &= msk; val[off >> 2] |= key; } } return buf; } /* Only tos and ttl are involved in flow_match_ip structure, which * doesn't conform to the layout of ip/ipv6 header definition. So * they need particular process here: fill them into the ip/ipv6 * header, so that mangling actions can work directly. */ #define NFP_IPV4_TOS_MASK GENMASK(23, 16) #define NFP_IPV4_TTL_MASK GENMASK(31, 24) #define NFP_IPV6_TCLASS_MASK GENMASK(27, 20) #define NFP_IPV6_HLIMIT_MASK GENMASK(7, 0) static void *get_mangled_tos_ttl(struct flow_rule *rule, void *buf, bool is_v6) { struct flow_match_ip match; /* IPv4's ttl field is in third dword. */ __be32 ip_hdr[3]; u32 tmp, hdr_len; flow_rule_match_ip(rule, &match); if (is_v6) { tmp = FIELD_PREP(NFP_IPV6_TCLASS_MASK, match.key->tos); ip_hdr[0] = cpu_to_be32(tmp); tmp = FIELD_PREP(NFP_IPV6_HLIMIT_MASK, match.key->ttl); ip_hdr[1] = cpu_to_be32(tmp); hdr_len = 2 * sizeof(__be32); } else { tmp = FIELD_PREP(NFP_IPV4_TOS_MASK, match.key->tos); ip_hdr[0] = cpu_to_be32(tmp); tmp = FIELD_PREP(NFP_IPV4_TTL_MASK, match.key->ttl); ip_hdr[2] = cpu_to_be32(tmp); hdr_len = 3 * sizeof(__be32); } get_mangled_key(rule, ip_hdr, 0, hdr_len, is_v6 ? FLOW_ACT_MANGLE_HDR_TYPE_IP6 : FLOW_ACT_MANGLE_HDR_TYPE_IP4); match.key = buf; if (is_v6) { tmp = be32_to_cpu(ip_hdr[0]); match.key->tos = FIELD_GET(NFP_IPV6_TCLASS_MASK, tmp); tmp = be32_to_cpu(ip_hdr[1]); match.key->ttl = FIELD_GET(NFP_IPV6_HLIMIT_MASK, tmp); } else { tmp = be32_to_cpu(ip_hdr[0]); match.key->tos = FIELD_GET(NFP_IPV4_TOS_MASK, tmp); tmp = be32_to_cpu(ip_hdr[2]); match.key->ttl = FIELD_GET(NFP_IPV4_TTL_MASK, tmp); } return buf; } /* Note entry1 and entry2 are not swappable. only skip ip and * tport merge check for pre_ct and post_ct when pre_ct do nat. */ static bool nfp_ct_merge_check_cannot_skip(struct nfp_fl_ct_flow_entry *entry1, struct nfp_fl_ct_flow_entry *entry2) { /* only pre_ct have NFP_FL_ACTION_DO_NAT flag. */ if ((entry1->flags & NFP_FL_ACTION_DO_NAT) && entry2->type == CT_TYPE_POST_CT) return false; return true; } /* Note entry1 and entry2 are not swappable, entry1 should be * the former flow whose mangle action need be taken into account * if existed, and entry2 should be the latter flow whose action * we don't care. */ static int nfp_ct_merge_check(struct nfp_fl_ct_flow_entry *entry1, struct nfp_fl_ct_flow_entry *entry2) { unsigned long long ovlp_keys; bool out, is_v6 = false; u8 ip_proto = 0; ovlp_keys = entry1->rule->match.dissector->used_keys & entry2->rule->match.dissector->used_keys; /* Temporary buffer for mangling keys, 64 is enough to cover max * struct size of key in various fields that may be mangled. * Supported fields to mangle: * mac_src/mac_dst(struct flow_match_eth_addrs, 12B) * nw_tos/nw_ttl(struct flow_match_ip, 2B) * nw_src/nw_dst(struct flow_match_ipv4/6_addrs, 32B) * tp_src/tp_dst(struct flow_match_ports, 4B) */ char buf[64]; if (entry1->netdev && entry2->netdev && entry1->netdev != entry2->netdev) return -EINVAL; /* Check the overlapped fields one by one, the unmasked part * should not conflict with each other. */ if (ovlp_keys & BIT_ULL(FLOW_DISSECTOR_KEY_CONTROL)) { struct flow_match_control match1, match2; flow_rule_match_control(entry1->rule, &match1); flow_rule_match_control(entry2->rule, &match2); COMPARE_UNMASKED_FIELDS(match1, match2, &out); if (out) goto check_failed; } if (ovlp_keys & BIT_ULL(FLOW_DISSECTOR_KEY_BASIC)) { struct flow_match_basic match1, match2; flow_rule_match_basic(entry1->rule, &match1); flow_rule_match_basic(entry2->rule, &match2); /* n_proto field is a must in ct-related flows, * it should be either ipv4 or ipv6. */ is_v6 = match1.key->n_proto == htons(ETH_P_IPV6); /* ip_proto field is a must when port field is cared */ ip_proto = match1.key->ip_proto; COMPARE_UNMASKED_FIELDS(match1, match2, &out); if (out) goto check_failed; } /* if pre ct entry do nat, the nat ip exists in nft entry, * will be do merge check when do nft and post ct merge, * so skip this ip merge check here. */ if ((ovlp_keys & BIT_ULL(FLOW_DISSECTOR_KEY_IPV4_ADDRS)) && nfp_ct_merge_check_cannot_skip(entry1, entry2)) { struct flow_match_ipv4_addrs match1, match2; flow_rule_match_ipv4_addrs(entry1->rule, &match1); flow_rule_match_ipv4_addrs(entry2->rule, &match2); memcpy(buf, match1.key, sizeof(*match1.key)); match1.key = get_mangled_key(entry1->rule, buf, offsetof(struct iphdr, saddr), sizeof(*match1.key), FLOW_ACT_MANGLE_HDR_TYPE_IP4); COMPARE_UNMASKED_FIELDS(match1, match2, &out); if (out) goto check_failed; } /* if pre ct entry do nat, the nat ip exists in nft entry, * will be do merge check when do nft and post ct merge, * so skip this ip merge check here. */ if ((ovlp_keys & BIT_ULL(FLOW_DISSECTOR_KEY_IPV6_ADDRS)) && nfp_ct_merge_check_cannot_skip(entry1, entry2)) { struct flow_match_ipv6_addrs match1, match2; flow_rule_match_ipv6_addrs(entry1->rule, &match1); flow_rule_match_ipv6_addrs(entry2->rule, &match2); memcpy(buf, match1.key, sizeof(*match1.key)); match1.key = get_mangled_key(entry1->rule, buf, offsetof(struct ipv6hdr, saddr), sizeof(*match1.key), FLOW_ACT_MANGLE_HDR_TYPE_IP6); COMPARE_UNMASKED_FIELDS(match1, match2, &out); if (out) goto check_failed; } /* if pre ct entry do nat, the nat tport exists in nft entry, * will be do merge check when do nft and post ct merge, * so skip this tport merge check here. */ if ((ovlp_keys & BIT_ULL(FLOW_DISSECTOR_KEY_PORTS)) && nfp_ct_merge_check_cannot_skip(entry1, entry2)) { enum flow_action_mangle_base htype = FLOW_ACT_MANGLE_UNSPEC; struct flow_match_ports match1, match2; flow_rule_match_ports(entry1->rule, &match1); flow_rule_match_ports(entry2->rule, &match2); if (ip_proto == IPPROTO_UDP) htype = FLOW_ACT_MANGLE_HDR_TYPE_UDP; else if (ip_proto == IPPROTO_TCP) htype = FLOW_ACT_MANGLE_HDR_TYPE_TCP; memcpy(buf, match1.key, sizeof(*match1.key)); match1.key = get_mangled_key(entry1->rule, buf, 0, sizeof(*match1.key), htype); COMPARE_UNMASKED_FIELDS(match1, match2, &out); if (out) goto check_failed; } if (ovlp_keys & BIT_ULL(FLOW_DISSECTOR_KEY_ETH_ADDRS)) { struct flow_match_eth_addrs match1, match2; flow_rule_match_eth_addrs(entry1->rule, &match1); flow_rule_match_eth_addrs(entry2->rule, &match2); memcpy(buf, match1.key, sizeof(*match1.key)); match1.key = get_mangled_key(entry1->rule, buf, 0, sizeof(*match1.key), FLOW_ACT_MANGLE_HDR_TYPE_ETH); COMPARE_UNMASKED_FIELDS(match1, match2, &out); if (out) goto check_failed; } if (ovlp_keys & BIT_ULL(FLOW_DISSECTOR_KEY_VLAN)) { struct flow_match_vlan match1, match2; flow_rule_match_vlan(entry1->rule, &match1); flow_rule_match_vlan(entry2->rule, &match2); COMPARE_UNMASKED_FIELDS(match1, match2, &out); if (out) goto check_failed; } if (ovlp_keys & BIT_ULL(FLOW_DISSECTOR_KEY_MPLS)) { struct flow_match_mpls match1, match2; flow_rule_match_mpls(entry1->rule, &match1); flow_rule_match_mpls(entry2->rule, &match2); COMPARE_UNMASKED_FIELDS(match1, match2, &out); if (out) goto check_failed; } if (ovlp_keys & BIT_ULL(FLOW_DISSECTOR_KEY_TCP)) { struct flow_match_tcp match1, match2; flow_rule_match_tcp(entry1->rule, &match1); flow_rule_match_tcp(entry2->rule, &match2); COMPARE_UNMASKED_FIELDS(match1, match2, &out); if (out) goto check_failed; } if (ovlp_keys & BIT_ULL(FLOW_DISSECTOR_KEY_IP)) { struct flow_match_ip match1, match2; flow_rule_match_ip(entry1->rule, &match1); flow_rule_match_ip(entry2->rule, &match2); match1.key = get_mangled_tos_ttl(entry1->rule, buf, is_v6); COMPARE_UNMASKED_FIELDS(match1, match2, &out); if (out) goto check_failed; } if (ovlp_keys & BIT_ULL(FLOW_DISSECTOR_KEY_ENC_KEYID)) { struct flow_match_enc_keyid match1, match2; flow_rule_match_enc_keyid(entry1->rule, &match1); flow_rule_match_enc_keyid(entry2->rule, &match2); COMPARE_UNMASKED_FIELDS(match1, match2, &out); if (out) goto check_failed; } if (ovlp_keys & BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IPV4_ADDRS)) { struct flow_match_ipv4_addrs match1, match2; flow_rule_match_enc_ipv4_addrs(entry1->rule, &match1); flow_rule_match_enc_ipv4_addrs(entry2->rule, &match2); COMPARE_UNMASKED_FIELDS(match1, match2, &out); if (out) goto check_failed; } if (ovlp_keys & BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IPV6_ADDRS)) { struct flow_match_ipv6_addrs match1, match2; flow_rule_match_enc_ipv6_addrs(entry1->rule, &match1); flow_rule_match_enc_ipv6_addrs(entry2->rule, &match2); COMPARE_UNMASKED_FIELDS(match1, match2, &out); if (out) goto check_failed; } if (ovlp_keys & BIT_ULL(FLOW_DISSECTOR_KEY_ENC_CONTROL)) { struct flow_match_control match1, match2; flow_rule_match_enc_control(entry1->rule, &match1); flow_rule_match_enc_control(entry2->rule, &match2); COMPARE_UNMASKED_FIELDS(match1, match2, &out); if (out) goto check_failed; } if (ovlp_keys & BIT_ULL(FLOW_DISSECTOR_KEY_ENC_IP)) { struct flow_match_ip match1, match2; flow_rule_match_enc_ip(entry1->rule, &match1); flow_rule_match_enc_ip(entry2->rule, &match2); COMPARE_UNMASKED_FIELDS(match1, match2, &out); if (out) goto check_failed; } if (ovlp_keys & BIT_ULL(FLOW_DISSECTOR_KEY_ENC_OPTS)) { struct flow_match_enc_opts match1, match2; flow_rule_match_enc_opts(entry1->rule, &match1); flow_rule_match_enc_opts(entry2->rule, &match2); COMPARE_UNMASKED_FIELDS(match1, match2, &out); if (out) goto check_failed; } return 0; check_failed: return -EINVAL; } static int nfp_ct_check_vlan_merge(struct flow_action_entry *a_in, struct flow_rule *rule) { struct flow_match_vlan match; if (unlikely(flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_CVLAN))) return -EOPNOTSUPP; /* post_ct does not match VLAN KEY, can be merged. */ if (likely(!flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_VLAN))) return 0; switch (a_in->id) { /* pre_ct has pop vlan, post_ct cannot match VLAN KEY, cannot be merged. */ case FLOW_ACTION_VLAN_POP: return -EOPNOTSUPP; case FLOW_ACTION_VLAN_PUSH: case FLOW_ACTION_VLAN_MANGLE: flow_rule_match_vlan(rule, &match); /* different vlan id, cannot be merged. */ if ((match.key->vlan_id & match.mask->vlan_id) ^ (a_in->vlan.vid & match.mask->vlan_id)) return -EOPNOTSUPP; /* different tpid, cannot be merged. */ if ((match.key->vlan_tpid & match.mask->vlan_tpid) ^ (a_in->vlan.proto & match.mask->vlan_tpid)) return -EOPNOTSUPP; /* different priority, cannot be merged. */ if ((match.key->vlan_priority & match.mask->vlan_priority) ^ (a_in->vlan.prio & match.mask->vlan_priority)) return -EOPNOTSUPP; break; default: return -EOPNOTSUPP; } return 0; } /* Extra check for multiple ct-zones merge * currently surpport nft entries merge check in different zones */ static int nfp_ct_merge_extra_check(struct nfp_fl_ct_flow_entry *nft_entry, struct nfp_fl_ct_tc_merge *tc_m_entry) { struct nfp_fl_nft_tc_merge *prev_nft_m_entry; struct nfp_fl_ct_flow_entry *pre_ct_entry; pre_ct_entry = tc_m_entry->pre_ct_parent; prev_nft_m_entry = pre_ct_entry->prev_m_entries[pre_ct_entry->num_prev_m_entries - 1]; return nfp_ct_merge_check(prev_nft_m_entry->nft_parent, nft_entry); } static int nfp_ct_merge_act_check(struct nfp_fl_ct_flow_entry *pre_ct_entry, struct nfp_fl_ct_flow_entry *post_ct_entry, struct nfp_fl_ct_flow_entry *nft_entry) { struct flow_action_entry *act; int i, err; /* Check for pre_ct->action conflicts */ flow_action_for_each(i, act, &pre_ct_entry->rule->action) { switch (act->id) { case FLOW_ACTION_VLAN_PUSH: case FLOW_ACTION_VLAN_POP: case FLOW_ACTION_VLAN_MANGLE: err = nfp_ct_check_vlan_merge(act, post_ct_entry->rule); if (err) return err; break; case FLOW_ACTION_MPLS_PUSH: case FLOW_ACTION_MPLS_POP: case FLOW_ACTION_MPLS_MANGLE: return -EOPNOTSUPP; default: break; } } /* Check for nft->action conflicts */ flow_action_for_each(i, act, &nft_entry->rule->action) { switch (act->id) { case FLOW_ACTION_VLAN_PUSH: case FLOW_ACTION_VLAN_POP: case FLOW_ACTION_VLAN_MANGLE: case FLOW_ACTION_MPLS_PUSH: case FLOW_ACTION_MPLS_POP: case FLOW_ACTION_MPLS_MANGLE: return -EOPNOTSUPP; default: break; } } return 0; } static int nfp_ct_check_meta(struct nfp_fl_ct_flow_entry *post_ct_entry, struct nfp_fl_ct_flow_entry *nft_entry) { struct flow_dissector *dissector = post_ct_entry->rule->match.dissector; struct flow_action_entry *ct_met; struct flow_match_ct ct; int i; ct_met = get_flow_act(nft_entry->rule, FLOW_ACTION_CT_METADATA); if (ct_met && (dissector->used_keys & BIT_ULL(FLOW_DISSECTOR_KEY_CT))) { u32 *act_lbl; act_lbl = ct_met->ct_metadata.labels; flow_rule_match_ct(post_ct_entry->rule, &ct); for (i = 0; i < 4; i++) { if ((ct.key->ct_labels[i] & ct.mask->ct_labels[i]) ^ (act_lbl[i] & ct.mask->ct_labels[i])) return -EINVAL; } if ((ct.key->ct_mark & ct.mask->ct_mark) ^ (ct_met->ct_metadata.mark & ct.mask->ct_mark)) return -EINVAL; return 0; } else { /* post_ct with ct clear action will not match the * ct status when nft is nat entry. */ if (nft_entry->flags & NFP_FL_ACTION_DO_MANGLE) return 0; } return -EINVAL; } static int nfp_fl_calc_key_layers_sz(struct nfp_fl_key_ls in_key_ls, uint16_t *map) { int key_size; /* This field must always be present */ key_size = sizeof(struct nfp_flower_meta_tci); map[FLOW_PAY_META_TCI] = 0; if (in_key_ls.key_layer & NFP_FLOWER_LAYER_EXT_META) { map[FLOW_PAY_EXT_META] = key_size; key_size += sizeof(struct nfp_flower_ext_meta); } if (in_key_ls.key_layer & NFP_FLOWER_LAYER_PORT) { map[FLOW_PAY_INPORT] = key_size; key_size += sizeof(struct nfp_flower_in_port); } if (in_key_ls.key_layer & NFP_FLOWER_LAYER_MAC) { map[FLOW_PAY_MAC_MPLS] = key_size; key_size += sizeof(struct nfp_flower_mac_mpls); } if (in_key_ls.key_layer & NFP_FLOWER_LAYER_TP) { map[FLOW_PAY_L4] = key_size; key_size += sizeof(struct nfp_flower_tp_ports); } if (in_key_ls.key_layer & NFP_FLOWER_LAYER_IPV4) { map[FLOW_PAY_IPV4] = key_size; key_size += sizeof(struct nfp_flower_ipv4); } if (in_key_ls.key_layer & NFP_FLOWER_LAYER_IPV6) { map[FLOW_PAY_IPV6] = key_size; key_size += sizeof(struct nfp_flower_ipv6); } if (in_key_ls.key_layer_two & NFP_FLOWER_LAYER2_QINQ) { map[FLOW_PAY_QINQ] = key_size; key_size += sizeof(struct nfp_flower_vlan); } if (in_key_ls.key_layer_two & NFP_FLOWER_LAYER2_GRE) { map[FLOW_PAY_GRE] = key_size; if (in_key_ls.key_layer_two & NFP_FLOWER_LAYER2_TUN_IPV6) key_size += sizeof(struct nfp_flower_ipv6_gre_tun); else key_size += sizeof(struct nfp_flower_ipv4_gre_tun); } if ((in_key_ls.key_layer & NFP_FLOWER_LAYER_VXLAN) || (in_key_ls.key_layer_two & NFP_FLOWER_LAYER2_GENEVE)) { map[FLOW_PAY_UDP_TUN] = key_size; if (in_key_ls.key_layer_two & NFP_FLOWER_LAYER2_TUN_IPV6) key_size += sizeof(struct nfp_flower_ipv6_udp_tun); else key_size += sizeof(struct nfp_flower_ipv4_udp_tun); } if (in_key_ls.key_layer_two & NFP_FLOWER_LAYER2_GENEVE_OP) { map[FLOW_PAY_GENEVE_OPT] = key_size; key_size += sizeof(struct nfp_flower_geneve_options); } return key_size; } /* get the csum flag according the ip proto and mangle action. */ static void nfp_fl_get_csum_flag(struct flow_action_entry *a_in, u8 ip_proto, u32 *csum) { if (a_in->id != FLOW_ACTION_MANGLE) return; switch (a_in->mangle.htype) { case FLOW_ACT_MANGLE_HDR_TYPE_IP4: *csum |= TCA_CSUM_UPDATE_FLAG_IPV4HDR; if (ip_proto == IPPROTO_TCP) *csum |= TCA_CSUM_UPDATE_FLAG_TCP; else if (ip_proto == IPPROTO_UDP) *csum |= TCA_CSUM_UPDATE_FLAG_UDP; break; case FLOW_ACT_MANGLE_HDR_TYPE_TCP: *csum |= TCA_CSUM_UPDATE_FLAG_TCP; break; case FLOW_ACT_MANGLE_HDR_TYPE_UDP: *csum |= TCA_CSUM_UPDATE_FLAG_UDP; break; default: break; } } static int nfp_fl_merge_actions_offload(struct flow_rule **rules, struct nfp_flower_priv *priv, struct net_device *netdev, struct nfp_fl_payload *flow_pay, int num_rules) { enum flow_action_hw_stats tmp_stats = FLOW_ACTION_HW_STATS_DONT_CARE; struct flow_action_entry *a_in; int i, j, id, num_actions = 0; struct flow_rule *a_rule; int err = 0, offset = 0; for (i = 0; i < num_rules; i++) num_actions += rules[i]->action.num_entries; /* Add one action to make sure there is enough room to add an checksum action * when do nat. */ a_rule = flow_rule_alloc(num_actions + (num_rules / 2)); if (!a_rule) return -ENOMEM; /* post_ct entry have one action at least. */ if (rules[num_rules - 1]->action.num_entries != 0) tmp_stats = rules[num_rules - 1]->action.entries[0].hw_stats; /* Actions need a BASIC dissector. */ a_rule->match = rules[0]->match; /* Copy actions */ for (j = 0; j < num_rules; j++) { u32 csum_updated = 0; u8 ip_proto = 0; if (flow_rule_match_key(rules[j], FLOW_DISSECTOR_KEY_BASIC)) { struct flow_match_basic match; /* ip_proto is the only field that is needed in later compile_action, * needed to set the correct checksum flags. It doesn't really matter * which input rule's ip_proto field we take as the earlier merge checks * would have made sure that they don't conflict. We do not know which * of the subflows would have the ip_proto filled in, so we need to iterate * through the subflows and assign the proper subflow to a_rule */ flow_rule_match_basic(rules[j], &match); if (match.mask->ip_proto) { a_rule->match = rules[j]->match; ip_proto = match.key->ip_proto; } } for (i = 0; i < rules[j]->action.num_entries; i++) { a_in = &rules[j]->action.entries[i]; id = a_in->id; /* Ignore CT related actions as these would already have * been taken care of by previous checks, and we do not send * any CT actions to the firmware. */ switch (id) { case FLOW_ACTION_CT: case FLOW_ACTION_GOTO: case FLOW_ACTION_CT_METADATA: continue; default: /* nft entry is generated by tc ct, which mangle action do not care * the stats, inherit the post entry stats to meet the * flow_action_hw_stats_check. * nft entry flow rules are at odd array index. */ if (j & 0x01) { if (a_in->hw_stats == FLOW_ACTION_HW_STATS_DONT_CARE) a_in->hw_stats = tmp_stats; nfp_fl_get_csum_flag(a_in, ip_proto, &csum_updated); } memcpy(&a_rule->action.entries[offset++], a_in, sizeof(struct flow_action_entry)); break; } } /* nft entry have mangle action, but do not have checksum action when do NAT, * hardware will automatically fix IPv4 and TCP/UDP checksum. so add an csum action * to meet csum action check. */ if (csum_updated) { struct flow_action_entry *csum_action; csum_action = &a_rule->action.entries[offset++]; csum_action->id = FLOW_ACTION_CSUM; csum_action->csum_flags = csum_updated; csum_action->hw_stats = tmp_stats; } } /* Some actions would have been ignored, so update the num_entries field */ a_rule->action.num_entries = offset; err = nfp_flower_compile_action(priv->app, a_rule, netdev, flow_pay, NULL); kfree(a_rule); return err; } static int nfp_fl_ct_add_offload(struct nfp_fl_nft_tc_merge *m_entry) { enum nfp_flower_tun_type tun_type = NFP_FL_TUNNEL_NONE; struct nfp_fl_ct_zone_entry *zt = m_entry->zt; struct flow_rule *rules[NFP_MAX_ENTRY_RULES]; struct nfp_fl_ct_flow_entry *pre_ct_entry; struct nfp_fl_key_ls key_layer, tmp_layer; struct nfp_flower_priv *priv = zt->priv; u16 key_map[_FLOW_PAY_LAYERS_MAX]; struct nfp_fl_payload *flow_pay; u8 *key, *msk, *kdata, *mdata; struct nfp_port *port = NULL; int num_rules, err, i, j = 0; struct net_device *netdev; bool qinq_sup; u32 port_id; u16 offset; netdev = m_entry->netdev; qinq_sup = !!(priv->flower_ext_feats & NFP_FL_FEATS_VLAN_QINQ); pre_ct_entry = m_entry->tc_m_parent->pre_ct_parent; num_rules = pre_ct_entry->num_prev_m_entries * 2 + _CT_TYPE_MAX; for (i = 0; i < pre_ct_entry->num_prev_m_entries; i++) { rules[j++] = pre_ct_entry->prev_m_entries[i]->tc_m_parent->pre_ct_parent->rule; rules[j++] = pre_ct_entry->prev_m_entries[i]->nft_parent->rule; } rules[j++] = m_entry->tc_m_parent->pre_ct_parent->rule; rules[j++] = m_entry->nft_parent->rule; rules[j++] = m_entry->tc_m_parent->post_ct_parent->rule; memset(&key_layer, 0, sizeof(struct nfp_fl_key_ls)); memset(&key_map, 0, sizeof(key_map)); /* Calculate the resultant key layer and size for offload */ for (i = 0; i < num_rules; i++) { err = nfp_flower_calculate_key_layers(priv->app, m_entry->netdev, &tmp_layer, rules[i], &tun_type, NULL); if (err) return err; key_layer.key_layer |= tmp_layer.key_layer; key_layer.key_layer_two |= tmp_layer.key_layer_two; } key_layer.key_size = nfp_fl_calc_key_layers_sz(key_layer, key_map); flow_pay = nfp_flower_allocate_new(&key_layer); if (!flow_pay) return -ENOMEM; memset(flow_pay->unmasked_data, 0, key_layer.key_size); memset(flow_pay->mask_data, 0, key_layer.key_size); kdata = flow_pay->unmasked_data; mdata = flow_pay->mask_data; offset = key_map[FLOW_PAY_META_TCI]; key = kdata + offset; msk = mdata + offset; nfp_flower_compile_meta((struct nfp_flower_meta_tci *)key, (struct nfp_flower_meta_tci *)msk, key_layer.key_layer); if (NFP_FLOWER_LAYER_EXT_META & key_layer.key_layer) { offset = key_map[FLOW_PAY_EXT_META]; key = kdata + offset; msk = mdata + offset; nfp_flower_compile_ext_meta((struct nfp_flower_ext_meta *)key, key_layer.key_layer_two); nfp_flower_compile_ext_meta((struct nfp_flower_ext_meta *)msk, key_layer.key_layer_two); } /* Using in_port from the -trk rule. The tc merge checks should already * be checking that the ingress netdevs are the same */ port_id = nfp_flower_get_port_id_from_netdev(priv->app, netdev); offset = key_map[FLOW_PAY_INPORT]; key = kdata + offset; msk = mdata + offset; err = nfp_flower_compile_port((struct nfp_flower_in_port *)key, port_id, false, tun_type, NULL); if (err) goto ct_offload_err; err = nfp_flower_compile_port((struct nfp_flower_in_port *)msk, port_id, true, tun_type, NULL); if (err) goto ct_offload_err; /* This following part works on the assumption that previous checks has * already filtered out flows that has different values for the different * layers. Here we iterate through all three rules and merge their respective * masked value(cared bits), basic method is: * final_key = (r1_key & r1_mask) | (r2_key & r2_mask) | (r3_key & r3_mask) * final_mask = r1_mask | r2_mask | r3_mask * If none of the rules contains a match that is also fine, that simply means * that the layer is not present. */ if (!qinq_sup) { for (i = 0; i < num_rules; i++) { offset = key_map[FLOW_PAY_META_TCI]; key = kdata + offset; msk = mdata + offset; nfp_flower_compile_tci((struct nfp_flower_meta_tci *)key, (struct nfp_flower_meta_tci *)msk, rules[i]); } } if (NFP_FLOWER_LAYER_MAC & key_layer.key_layer) { offset = key_map[FLOW_PAY_MAC_MPLS]; key = kdata + offset; msk = mdata + offset; for (i = 0; i < num_rules; i++) { nfp_flower_compile_mac((struct nfp_flower_mac_mpls *)key, (struct nfp_flower_mac_mpls *)msk, rules[i]); err = nfp_flower_compile_mpls((struct nfp_flower_mac_mpls *)key, (struct nfp_flower_mac_mpls *)msk, rules[i], NULL); if (err) goto ct_offload_err; } } if (NFP_FLOWER_LAYER_IPV4 & key_layer.key_layer) { offset = key_map[FLOW_PAY_IPV4]; key = kdata + offset; msk = mdata + offset; for (i = 0; i < num_rules; i++) { nfp_flower_compile_ipv4((struct nfp_flower_ipv4 *)key, (struct nfp_flower_ipv4 *)msk, rules[i]); } } if (NFP_FLOWER_LAYER_IPV6 & key_layer.key_layer) { offset = key_map[FLOW_PAY_IPV6]; key = kdata + offset; msk = mdata + offset; for (i = 0; i < num_rules; i++) { nfp_flower_compile_ipv6((struct nfp_flower_ipv6 *)key, (struct nfp_flower_ipv6 *)msk, rules[i]); } } if (NFP_FLOWER_LAYER_TP & key_layer.key_layer) { offset = key_map[FLOW_PAY_L4]; key = kdata + offset; msk = mdata + offset; for (i = 0; i < num_rules; i++) { nfp_flower_compile_tport((struct nfp_flower_tp_ports *)key, (struct nfp_flower_tp_ports *)msk, rules[i]); } } if (NFP_FLOWER_LAYER2_QINQ & key_layer.key_layer_two) { offset = key_map[FLOW_PAY_QINQ]; key = kdata + offset; msk = mdata + offset; for (i = 0; i < num_rules; i++) { nfp_flower_compile_vlan((struct nfp_flower_vlan *)key, (struct nfp_flower_vlan *)msk, rules[i]); } } if (key_layer.key_layer_two & NFP_FLOWER_LAYER2_GRE) { offset = key_map[FLOW_PAY_GRE]; key = kdata + offset; msk = mdata + offset; if (key_layer.key_layer_two & NFP_FLOWER_LAYER2_TUN_IPV6) { struct nfp_flower_ipv6_gre_tun *gre_match; struct nfp_ipv6_addr_entry *entry; struct in6_addr *dst; for (i = 0; i < num_rules; i++) { nfp_flower_compile_ipv6_gre_tun((void *)key, (void *)msk, rules[i]); } gre_match = (struct nfp_flower_ipv6_gre_tun *)key; dst = &gre_match->ipv6.dst; entry = nfp_tunnel_add_ipv6_off(priv->app, dst); if (!entry) { err = -ENOMEM; goto ct_offload_err; } flow_pay->nfp_tun_ipv6 = entry; } else { __be32 dst; for (i = 0; i < num_rules; i++) { nfp_flower_compile_ipv4_gre_tun((void *)key, (void *)msk, rules[i]); } dst = ((struct nfp_flower_ipv4_gre_tun *)key)->ipv4.dst; /* Store the tunnel destination in the rule data. * This must be present and be an exact match. */ flow_pay->nfp_tun_ipv4_addr = dst; nfp_tunnel_add_ipv4_off(priv->app, dst); } } if (key_layer.key_layer & NFP_FLOWER_LAYER_VXLAN || key_layer.key_layer_two & NFP_FLOWER_LAYER2_GENEVE) { offset = key_map[FLOW_PAY_UDP_TUN]; key = kdata + offset; msk = mdata + offset; if (key_layer.key_layer_two & NFP_FLOWER_LAYER2_TUN_IPV6) { struct nfp_flower_ipv6_udp_tun *udp_match; struct nfp_ipv6_addr_entry *entry; struct in6_addr *dst; for (i = 0; i < num_rules; i++) { nfp_flower_compile_ipv6_udp_tun((void *)key, (void *)msk, rules[i]); } udp_match = (struct nfp_flower_ipv6_udp_tun *)key; dst = &udp_match->ipv6.dst; entry = nfp_tunnel_add_ipv6_off(priv->app, dst); if (!entry) { err = -ENOMEM; goto ct_offload_err; } flow_pay->nfp_tun_ipv6 = entry; } else { __be32 dst; for (i = 0; i < num_rules; i++) { nfp_flower_compile_ipv4_udp_tun((void *)key, (void *)msk, rules[i]); } dst = ((struct nfp_flower_ipv4_udp_tun *)key)->ipv4.dst; /* Store the tunnel destination in the rule data. * This must be present and be an exact match. */ flow_pay->nfp_tun_ipv4_addr = dst; nfp_tunnel_add_ipv4_off(priv->app, dst); } if (key_layer.key_layer_two & NFP_FLOWER_LAYER2_GENEVE_OP) { offset = key_map[FLOW_PAY_GENEVE_OPT]; key = kdata + offset; msk = mdata + offset; for (i = 0; i < num_rules; i++) nfp_flower_compile_geneve_opt(key, msk, rules[i]); } } /* Merge actions into flow_pay */ err = nfp_fl_merge_actions_offload(rules, priv, netdev, flow_pay, num_rules); if (err) goto ct_offload_err; /* Use the pointer address as the cookie, but set the last bit to 1. * This is to avoid the 'is_merge_flow' check from detecting this as * an already merged flow. This works since address alignment means * that the last bit for pointer addresses will be 0. */ flow_pay->tc_flower_cookie = ((unsigned long)flow_pay) | 0x1; err = nfp_compile_flow_metadata(priv->app, flow_pay->tc_flower_cookie, flow_pay, netdev, NULL); if (err) goto ct_offload_err; if (nfp_netdev_is_nfp_repr(netdev)) port = nfp_port_from_netdev(netdev); err = rhashtable_insert_fast(&priv->flow_table, &flow_pay->fl_node, nfp_flower_table_params); if (err) goto ct_release_offload_meta_err; err = nfp_flower_xmit_flow(priv->app, flow_pay, NFP_FLOWER_CMSG_TYPE_FLOW_ADD); if (err) goto ct_remove_rhash_err; m_entry->tc_flower_cookie = flow_pay->tc_flower_cookie; m_entry->flow_pay = flow_pay; if (port) port->tc_offload_cnt++; return err; ct_remove_rhash_err: WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table, &flow_pay->fl_node, nfp_flower_table_params)); ct_release_offload_meta_err: nfp_modify_flow_metadata(priv->app, flow_pay); ct_offload_err: if (flow_pay->nfp_tun_ipv4_addr) nfp_tunnel_del_ipv4_off(priv->app, flow_pay->nfp_tun_ipv4_addr); if (flow_pay->nfp_tun_ipv6) nfp_tunnel_put_ipv6_off(priv->app, flow_pay->nfp_tun_ipv6); kfree(flow_pay->action_data); kfree(flow_pay->mask_data); kfree(flow_pay->unmasked_data); kfree(flow_pay); return err; } static int nfp_fl_ct_del_offload(struct nfp_app *app, unsigned long cookie, struct net_device *netdev) { struct nfp_flower_priv *priv = app->priv; struct nfp_fl_payload *flow_pay; struct nfp_port *port = NULL; int err = 0; if (nfp_netdev_is_nfp_repr(netdev)) port = nfp_port_from_netdev(netdev); flow_pay = nfp_flower_search_fl_table(app, cookie, netdev); if (!flow_pay) return -ENOENT; err = nfp_modify_flow_metadata(app, flow_pay); if (err) goto err_free_merge_flow; if (flow_pay->nfp_tun_ipv4_addr) nfp_tunnel_del_ipv4_off(app, flow_pay->nfp_tun_ipv4_addr); if (flow_pay->nfp_tun_ipv6) nfp_tunnel_put_ipv6_off(app, flow_pay->nfp_tun_ipv6); if (!flow_pay->in_hw) { err = 0; goto err_free_merge_flow; } err = nfp_flower_xmit_flow(app, flow_pay, NFP_FLOWER_CMSG_TYPE_FLOW_DEL); err_free_merge_flow: nfp_flower_del_linked_merge_flows(app, flow_pay); if (port) port->tc_offload_cnt--; kfree(flow_pay->action_data); kfree(flow_pay->mask_data); kfree(flow_pay->unmasked_data); WARN_ON_ONCE(rhashtable_remove_fast(&priv->flow_table, &flow_pay->fl_node, nfp_flower_table_params)); kfree_rcu(flow_pay, rcu); return err; } static int nfp_ct_do_nft_merge(struct nfp_fl_ct_zone_entry *zt, struct nfp_fl_ct_flow_entry *nft_entry, struct nfp_fl_ct_tc_merge *tc_m_entry) { struct nfp_fl_ct_flow_entry *post_ct_entry, *pre_ct_entry; struct nfp_fl_nft_tc_merge *nft_m_entry; unsigned long new_cookie[3]; int err; pre_ct_entry = tc_m_entry->pre_ct_parent; post_ct_entry = tc_m_entry->post_ct_parent; err = nfp_ct_merge_act_check(pre_ct_entry, post_ct_entry, nft_entry); if (err) return err; /* Check that the two tc flows are also compatible with * the nft entry. No need to check the pre_ct and post_ct * entries as that was already done during pre_merge. * The nft entry does not have a chain populated, so * skip this check. */ err = nfp_ct_merge_check(pre_ct_entry, nft_entry); if (err) return err; err = nfp_ct_merge_check(nft_entry, post_ct_entry); if (err) return err; err = nfp_ct_check_meta(post_ct_entry, nft_entry); if (err) return err; if (pre_ct_entry->num_prev_m_entries > 0) { err = nfp_ct_merge_extra_check(nft_entry, tc_m_entry); if (err) return err; } /* Combine tc_merge and nft cookies for this cookie. */ new_cookie[0] = tc_m_entry->cookie[0]; new_cookie[1] = tc_m_entry->cookie[1]; new_cookie[2] = nft_entry->cookie; nft_m_entry = get_hashentry(&zt->nft_merge_tb, &new_cookie, nfp_nft_ct_merge_params, sizeof(*nft_m_entry)); if (IS_ERR(nft_m_entry)) return PTR_ERR(nft_m_entry); /* nft_m_entry already present, not merging again */ if (!memcmp(&new_cookie, nft_m_entry->cookie, sizeof(new_cookie))) return 0; memcpy(&nft_m_entry->cookie, &new_cookie, sizeof(new_cookie)); nft_m_entry->zt = zt; nft_m_entry->tc_m_parent = tc_m_entry; nft_m_entry->nft_parent = nft_entry; nft_m_entry->tc_flower_cookie = 0; /* Copy the netdev from the pre_ct entry. When the tc_m_entry was created * it only combined them if the netdevs were the same, so can use any of them. */ nft_m_entry->netdev = pre_ct_entry->netdev; /* Add this entry to the tc_m_list and nft_flow lists */ list_add(&nft_m_entry->tc_merge_list, &tc_m_entry->children); list_add(&nft_m_entry->nft_flow_list, &nft_entry->children); err = rhashtable_insert_fast(&zt->nft_merge_tb, &nft_m_entry->hash_node, nfp_nft_ct_merge_params); if (err) goto err_nft_ct_merge_insert; zt->nft_merge_count++; if (post_ct_entry->goto_chain_index > 0) return nfp_fl_create_new_pre_ct(nft_m_entry); /* Generate offload structure and send to nfp */ err = nfp_fl_ct_add_offload(nft_m_entry); if (err) goto err_nft_ct_offload; return err; err_nft_ct_offload: nfp_fl_ct_del_offload(zt->priv->app, nft_m_entry->tc_flower_cookie, nft_m_entry->netdev); err_nft_ct_merge_insert: list_del(&nft_m_entry->tc_merge_list); list_del(&nft_m_entry->nft_flow_list); kfree(nft_m_entry); return err; } static int nfp_ct_do_tc_merge(struct nfp_fl_ct_zone_entry *zt, struct nfp_fl_ct_flow_entry *ct_entry1, struct nfp_fl_ct_flow_entry *ct_entry2) { struct nfp_fl_ct_flow_entry *post_ct_entry, *pre_ct_entry; struct nfp_fl_ct_flow_entry *nft_entry, *nft_tmp; struct nfp_fl_ct_tc_merge *m_entry; unsigned long new_cookie[2]; int err; if (ct_entry1->type == CT_TYPE_PRE_CT) { pre_ct_entry = ct_entry1; post_ct_entry = ct_entry2; } else { post_ct_entry = ct_entry1; pre_ct_entry = ct_entry2; } /* Checks that the chain_index of the filter matches the * chain_index of the GOTO action. */ if (post_ct_entry->chain_index != pre_ct_entry->goto_chain_index) return -EINVAL; err = nfp_ct_merge_check(pre_ct_entry, post_ct_entry); if (err) return err; new_cookie[0] = pre_ct_entry->cookie; new_cookie[1] = post_ct_entry->cookie; m_entry = get_hashentry(&zt->tc_merge_tb, &new_cookie, nfp_tc_ct_merge_params, sizeof(*m_entry)); if (IS_ERR(m_entry)) return PTR_ERR(m_entry); /* m_entry already present, not merging again */ if (!memcmp(&new_cookie, m_entry->cookie, sizeof(new_cookie))) return 0; memcpy(&m_entry->cookie, &new_cookie, sizeof(new_cookie)); m_entry->zt = zt; m_entry->post_ct_parent = post_ct_entry; m_entry->pre_ct_parent = pre_ct_entry; /* Add this entry to the pre_ct and post_ct lists */ list_add(&m_entry->post_ct_list, &post_ct_entry->children); list_add(&m_entry->pre_ct_list, &pre_ct_entry->children); INIT_LIST_HEAD(&m_entry->children); err = rhashtable_insert_fast(&zt->tc_merge_tb, &m_entry->hash_node, nfp_tc_ct_merge_params); if (err) goto err_ct_tc_merge_insert; zt->tc_merge_count++; /* Merge with existing nft flows */ list_for_each_entry_safe(nft_entry, nft_tmp, &zt->nft_flows_list, list_node) { nfp_ct_do_nft_merge(zt, nft_entry, m_entry); } return 0; err_ct_tc_merge_insert: list_del(&m_entry->post_ct_list); list_del(&m_entry->pre_ct_list); kfree(m_entry); return err; } static struct nfp_fl_ct_zone_entry *get_nfp_zone_entry(struct nfp_flower_priv *priv, u16 zone, bool wildcarded) { struct nfp_fl_ct_zone_entry *zt; int err; if (wildcarded && priv->ct_zone_wc) return priv->ct_zone_wc; if (!wildcarded) { zt = get_hashentry(&priv->ct_zone_table, &zone, nfp_zone_table_params, sizeof(*zt)); /* If priv is set this is an existing entry, just return it */ if (IS_ERR(zt) || zt->priv) return zt; } else { zt = kzalloc(sizeof(*zt), GFP_KERNEL); if (!zt) return ERR_PTR(-ENOMEM); } zt->zone = zone; zt->priv = priv; zt->nft = NULL; /* init the various hash tables and lists */ INIT_LIST_HEAD(&zt->pre_ct_list); INIT_LIST_HEAD(&zt->post_ct_list); INIT_LIST_HEAD(&zt->nft_flows_list); err = rhashtable_init(&zt->tc_merge_tb, &nfp_tc_ct_merge_params); if (err) goto err_tc_merge_tb_init; err = rhashtable_init(&zt->nft_merge_tb, &nfp_nft_ct_merge_params); if (err) goto err_nft_merge_tb_init; if (wildcarded) { priv->ct_zone_wc = zt; } else { err = rhashtable_insert_fast(&priv->ct_zone_table, &zt->hash_node, nfp_zone_table_params); if (err) goto err_zone_insert; } return zt; err_zone_insert: rhashtable_destroy(&zt->nft_merge_tb); err_nft_merge_tb_init: rhashtable_destroy(&zt->tc_merge_tb); err_tc_merge_tb_init: kfree(zt); return ERR_PTR(err); } static struct net_device *get_netdev_from_rule(struct flow_rule *rule) { if (flow_rule_match_key(rule, FLOW_DISSECTOR_KEY_META)) { struct flow_match_meta match; flow_rule_match_meta(rule, &match); if (match.key->ingress_ifindex & match.mask->ingress_ifindex) return __dev_get_by_index(&init_net, match.key->ingress_ifindex); } return NULL; } static void nfp_nft_ct_translate_mangle_action(struct flow_action_entry *mangle_action) { if (mangle_action->id != FLOW_ACTION_MANGLE) return; switch (mangle_action->mangle.htype) { case FLOW_ACT_MANGLE_HDR_TYPE_IP4: case FLOW_ACT_MANGLE_HDR_TYPE_IP6: mangle_action->mangle.val = (__force u32)cpu_to_be32(mangle_action->mangle.val); mangle_action->mangle.mask = (__force u32)cpu_to_be32(mangle_action->mangle.mask); return; /* Both struct tcphdr and struct udphdr start with * __be16 source; * __be16 dest; * so we can use the same code for both. */ case FLOW_ACT_MANGLE_HDR_TYPE_TCP: case FLOW_ACT_MANGLE_HDR_TYPE_UDP: if (mangle_action->mangle.offset == offsetof(struct tcphdr, source)) { mangle_action->mangle.val = (__force u32)cpu_to_be32(mangle_action->mangle.val << 16); /* The mask of mangle action is inverse mask, * so clear the dest tp port with 0xFFFF to * instead of rotate-left operation. */ mangle_action->mangle.mask = (__force u32)cpu_to_be32(mangle_action->mangle.mask << 16 | 0xFFFF); } if (mangle_action->mangle.offset == offsetof(struct tcphdr, dest)) { mangle_action->mangle.offset = 0; mangle_action->mangle.val = (__force u32)cpu_to_be32(mangle_action->mangle.val); mangle_action->mangle.mask = (__force u32)cpu_to_be32(mangle_action->mangle.mask); } return; default: return; } } static int nfp_nft_ct_set_flow_flag(struct flow_action_entry *act, struct nfp_fl_ct_flow_entry *entry) { switch (act->id) { case FLOW_ACTION_CT: if (act->ct.action == TCA_CT_ACT_NAT) entry->flags |= NFP_FL_ACTION_DO_NAT; break; case FLOW_ACTION_MANGLE: entry->flags |= NFP_FL_ACTION_DO_MANGLE; break; default: break; } return 0; } static struct nfp_fl_ct_flow_entry *nfp_fl_ct_add_flow(struct nfp_fl_ct_zone_entry *zt, struct net_device *netdev, struct flow_cls_offload *flow, bool is_nft, struct netlink_ext_ack *extack) { struct nf_flow_match *nft_match = NULL; struct nfp_fl_ct_flow_entry *entry; struct nfp_fl_ct_map_entry *map; struct flow_action_entry *act; int err, i; entry = kzalloc(sizeof(*entry), GFP_KERNEL); if (!entry) return ERR_PTR(-ENOMEM); entry->rule = flow_rule_alloc(flow->rule->action.num_entries); if (!entry->rule) { err = -ENOMEM; goto err_pre_ct_rule; } /* nft flows gets destroyed after callback return, so need * to do a full copy instead of just a reference. */ if (is_nft) { nft_match = kzalloc(sizeof(*nft_match), GFP_KERNEL); if (!nft_match) { err = -ENOMEM; goto err_pre_ct_act; } memcpy(&nft_match->dissector, flow->rule->match.dissector, sizeof(nft_match->dissector)); memcpy(&nft_match->mask, flow->rule->match.mask, sizeof(nft_match->mask)); memcpy(&nft_match->key, flow->rule->match.key, sizeof(nft_match->key)); entry->rule->match.dissector = &nft_match->dissector; entry->rule->match.mask = &nft_match->mask; entry->rule->match.key = &nft_match->key; if (!netdev) netdev = get_netdev_from_rule(entry->rule); } else { entry->rule->match.dissector = flow->rule->match.dissector; entry->rule->match.mask = flow->rule->match.mask; entry->rule->match.key = flow->rule->match.key; } entry->zt = zt; entry->netdev = netdev; entry->cookie = flow->cookie > 0 ? flow->cookie : (unsigned long)entry; entry->chain_index = flow->common.chain_index; entry->tun_offset = NFP_FL_CT_NO_TUN; /* Copy over action data. Unfortunately we do not get a handle to the * original tcf_action data, and the flow objects gets destroyed, so we * cannot just save a pointer to this either, so need to copy over the * data unfortunately. */ entry->rule->action.num_entries = flow->rule->action.num_entries; flow_action_for_each(i, act, &flow->rule->action) { struct flow_action_entry *new_act; new_act = &entry->rule->action.entries[i]; memcpy(new_act, act, sizeof(struct flow_action_entry)); /* nft entry mangle field is host byte order, need translate to * network byte order. */ if (is_nft) nfp_nft_ct_translate_mangle_action(new_act); nfp_nft_ct_set_flow_flag(new_act, entry); /* Entunnel is a special case, need to allocate and copy * tunnel info. */ if (act->id == FLOW_ACTION_TUNNEL_ENCAP) { struct ip_tunnel_info *tun = act->tunnel; size_t tun_size = sizeof(*tun) + tun->options_len; new_act->tunnel = kmemdup(tun, tun_size, GFP_ATOMIC); if (!new_act->tunnel) { err = -ENOMEM; goto err_pre_ct_tun_cp; } entry->tun_offset = i; } } INIT_LIST_HEAD(&entry->children); if (flow->cookie == 0) return entry; /* Now add a ct map entry to flower-priv */ map = get_hashentry(&zt->priv->ct_map_table, &flow->cookie, nfp_ct_map_params, sizeof(*map)); if (IS_ERR(map)) { NL_SET_ERR_MSG_MOD(extack, "offload error: ct map entry creation failed"); err = -ENOMEM; goto err_ct_flow_insert; } map->cookie = flow->cookie; map->ct_entry = entry; err = rhashtable_insert_fast(&zt->priv->ct_map_table, &map->hash_node, nfp_ct_map_params); if (err) { NL_SET_ERR_MSG_MOD(extack, "offload error: ct map entry table add failed"); goto err_map_insert; } return entry; err_map_insert: kfree(map); err_ct_flow_insert: if (entry->tun_offset != NFP_FL_CT_NO_TUN) kfree(entry->rule->action.entries[entry->tun_offset].tunnel); err_pre_ct_tun_cp: kfree(nft_match); err_pre_ct_act: kfree(entry->rule); err_pre_ct_rule: kfree(entry); return ERR_PTR(err); } static void cleanup_nft_merge_entry(struct nfp_fl_nft_tc_merge *m_entry) { struct nfp_fl_ct_zone_entry *zt; int err; zt = m_entry->zt; /* Flow is in HW, need to delete */ if (m_entry->tc_flower_cookie) { err = nfp_fl_ct_del_offload(zt->priv->app, m_entry->tc_flower_cookie, m_entry->netdev); if (err) return; } WARN_ON_ONCE(rhashtable_remove_fast(&zt->nft_merge_tb, &m_entry->hash_node, nfp_nft_ct_merge_params)); zt->nft_merge_count--; list_del(&m_entry->tc_merge_list); list_del(&m_entry->nft_flow_list); if (m_entry->next_pre_ct_entry) { struct nfp_fl_ct_map_entry pre_ct_map_ent; pre_ct_map_ent.ct_entry = m_entry->next_pre_ct_entry; pre_ct_map_ent.cookie = 0; nfp_fl_ct_del_flow(&pre_ct_map_ent); } kfree(m_entry); } static void nfp_free_nft_merge_children(void *entry, bool is_nft_flow) { struct nfp_fl_nft_tc_merge *m_entry, *tmp; /* These post entries are parts of two lists, one is a list of nft_entries * and the other is of from a list of tc_merge structures. Iterate * through the relevant list and cleanup the entries. */ if (is_nft_flow) { /* Need to iterate through list of nft_flow entries */ struct nfp_fl_ct_flow_entry *ct_entry = entry; list_for_each_entry_safe(m_entry, tmp, &ct_entry->children, nft_flow_list) { cleanup_nft_merge_entry(m_entry); } } else { /* Need to iterate through list of tc_merged_flow entries */ struct nfp_fl_ct_tc_merge *ct_entry = entry; list_for_each_entry_safe(m_entry, tmp, &ct_entry->children, tc_merge_list) { cleanup_nft_merge_entry(m_entry); } } } static void nfp_del_tc_merge_entry(struct nfp_fl_ct_tc_merge *m_ent) { struct nfp_fl_ct_zone_entry *zt; int err; zt = m_ent->zt; err = rhashtable_remove_fast(&zt->tc_merge_tb, &m_ent->hash_node, nfp_tc_ct_merge_params); if (err) pr_warn("WARNING: could not remove merge_entry from hashtable\n"); zt->tc_merge_count--; list_del(&m_ent->post_ct_list); list_del(&m_ent->pre_ct_list); if (!list_empty(&m_ent->children)) nfp_free_nft_merge_children(m_ent, false); kfree(m_ent); } static void nfp_free_tc_merge_children(struct nfp_fl_ct_flow_entry *entry) { struct nfp_fl_ct_tc_merge *m_ent, *tmp; switch (entry->type) { case CT_TYPE_PRE_CT: list_for_each_entry_safe(m_ent, tmp, &entry->children, pre_ct_list) { nfp_del_tc_merge_entry(m_ent); } break; case CT_TYPE_POST_CT: list_for_each_entry_safe(m_ent, tmp, &entry->children, post_ct_list) { nfp_del_tc_merge_entry(m_ent); } break; default: break; } } void nfp_fl_ct_clean_flow_entry(struct nfp_fl_ct_flow_entry *entry) { list_del(&entry->list_node); if (!list_empty(&entry->children)) { if (entry->type == CT_TYPE_NFT) nfp_free_nft_merge_children(entry, true); else nfp_free_tc_merge_children(entry); } if (entry->tun_offset != NFP_FL_CT_NO_TUN) kfree(entry->rule->action.entries[entry->tun_offset].tunnel); if (entry->type == CT_TYPE_NFT) { struct nf_flow_match *nft_match; nft_match = container_of(entry->rule->match.dissector, struct nf_flow_match, dissector); kfree(nft_match); } kfree(entry->rule); kfree(entry); } static struct flow_action_entry *get_flow_act_ct(struct flow_rule *rule) { struct flow_action_entry *act; int i; /* More than one ct action may be present in a flow rule, * Return the first one that is not a CT clear action */ flow_action_for_each(i, act, &rule->action) { if (act->id == FLOW_ACTION_CT && act->ct.action != TCA_CT_ACT_CLEAR) return act; } return NULL; } static struct flow_action_entry *get_flow_act(struct flow_rule *rule, enum flow_action_id act_id) { struct flow_action_entry *act = NULL; int i; flow_action_for_each(i, act, &rule->action) { if (act->id == act_id) return act; } return NULL; } static void nfp_ct_merge_tc_entries(struct nfp_fl_ct_flow_entry *ct_entry1, struct nfp_fl_ct_zone_entry *zt_src, struct nfp_fl_ct_zone_entry *zt_dst) { struct nfp_fl_ct_flow_entry *ct_entry2, *ct_tmp; struct list_head *ct_list; if (ct_entry1->type == CT_TYPE_PRE_CT) ct_list = &zt_src->post_ct_list; else if (ct_entry1->type == CT_TYPE_POST_CT) ct_list = &zt_src->pre_ct_list; else return; list_for_each_entry_safe(ct_entry2, ct_tmp, ct_list, list_node) { nfp_ct_do_tc_merge(zt_dst, ct_entry2, ct_entry1); } } static void nfp_ct_merge_nft_with_tc(struct nfp_fl_ct_flow_entry *nft_entry, struct nfp_fl_ct_zone_entry *zt) { struct nfp_fl_ct_tc_merge *tc_merge_entry; struct rhashtable_iter iter; rhashtable_walk_enter(&zt->tc_merge_tb, &iter); rhashtable_walk_start(&iter); while ((tc_merge_entry = rhashtable_walk_next(&iter)) != NULL) { if (IS_ERR(tc_merge_entry)) continue; rhashtable_walk_stop(&iter); nfp_ct_do_nft_merge(zt, nft_entry, tc_merge_entry); rhashtable_walk_start(&iter); } rhashtable_walk_stop(&iter); rhashtable_walk_exit(&iter); } int nfp_fl_ct_handle_pre_ct(struct nfp_flower_priv *priv, struct net_device *netdev, struct flow_cls_offload *flow, struct netlink_ext_ack *extack, struct nfp_fl_nft_tc_merge *m_entry) { struct flow_action_entry *ct_act, *ct_goto; struct nfp_fl_ct_flow_entry *ct_entry; struct nfp_fl_ct_zone_entry *zt; int err; ct_act = get_flow_act_ct(flow->rule); if (!ct_act) { NL_SET_ERR_MSG_MOD(extack, "unsupported offload: Conntrack action empty in conntrack offload"); return -EOPNOTSUPP; } ct_goto = get_flow_act(flow->rule, FLOW_ACTION_GOTO); if (!ct_goto) { NL_SET_ERR_MSG_MOD(extack, "unsupported offload: Conntrack requires ACTION_GOTO"); return -EOPNOTSUPP; } zt = get_nfp_zone_entry(priv, ct_act->ct.zone, false); if (IS_ERR(zt)) { NL_SET_ERR_MSG_MOD(extack, "offload error: Could not create zone table entry"); return PTR_ERR(zt); } if (!zt->nft) { zt->nft = ct_act->ct.flow_table; err = nf_flow_table_offload_add_cb(zt->nft, nfp_fl_ct_handle_nft_flow, zt); if (err) { NL_SET_ERR_MSG_MOD(extack, "offload error: Could not register nft_callback"); return err; } } /* Add entry to pre_ct_list */ ct_entry = nfp_fl_ct_add_flow(zt, netdev, flow, false, extack); if (IS_ERR(ct_entry)) return PTR_ERR(ct_entry); ct_entry->type = CT_TYPE_PRE_CT; ct_entry->chain_index = flow->common.chain_index; ct_entry->goto_chain_index = ct_goto->chain_index; if (m_entry) { struct nfp_fl_ct_flow_entry *pre_ct_entry; int i; pre_ct_entry = m_entry->tc_m_parent->pre_ct_parent; for (i = 0; i < pre_ct_entry->num_prev_m_entries; i++) ct_entry->prev_m_entries[i] = pre_ct_entry->prev_m_entries[i]; ct_entry->prev_m_entries[i++] = m_entry; ct_entry->num_prev_m_entries = i; m_entry->next_pre_ct_entry = ct_entry; } list_add(&ct_entry->list_node, &zt->pre_ct_list); zt->pre_ct_count++; nfp_ct_merge_tc_entries(ct_entry, zt, zt); /* Need to check and merge with tables in the wc_zone as well */ if (priv->ct_zone_wc) nfp_ct_merge_tc_entries(ct_entry, priv->ct_zone_wc, zt); return 0; } int nfp_fl_ct_handle_post_ct(struct nfp_flower_priv *priv, struct net_device *netdev, struct flow_cls_offload *flow, struct netlink_ext_ack *extack) { struct flow_rule *rule = flow_cls_offload_flow_rule(flow); struct nfp_fl_ct_flow_entry *ct_entry; struct flow_action_entry *ct_goto; struct nfp_fl_ct_zone_entry *zt; struct flow_action_entry *act; bool wildcarded = false; struct flow_match_ct ct; int i; flow_action_for_each(i, act, &rule->action) { switch (act->id) { case FLOW_ACTION_REDIRECT: case FLOW_ACTION_REDIRECT_INGRESS: case FLOW_ACTION_MIRRED: case FLOW_ACTION_MIRRED_INGRESS: if (act->dev->rtnl_link_ops && !strcmp(act->dev->rtnl_link_ops->kind, "openvswitch")) { NL_SET_ERR_MSG_MOD(extack, "unsupported offload: out port is openvswitch internal port"); return -EOPNOTSUPP; } break; default: break; } } flow_rule_match_ct(rule, &ct); if (!ct.mask->ct_zone) { wildcarded = true; } else if (ct.mask->ct_zone != U16_MAX) { NL_SET_ERR_MSG_MOD(extack, "unsupported offload: partially wildcarded ct_zone is not supported"); return -EOPNOTSUPP; } zt = get_nfp_zone_entry(priv, ct.key->ct_zone, wildcarded); if (IS_ERR(zt)) { NL_SET_ERR_MSG_MOD(extack, "offload error: Could not create zone table entry"); return PTR_ERR(zt); } /* Add entry to post_ct_list */ ct_entry = nfp_fl_ct_add_flow(zt, netdev, flow, false, extack); if (IS_ERR(ct_entry)) return PTR_ERR(ct_entry); ct_entry->type = CT_TYPE_POST_CT; ct_entry->chain_index = flow->common.chain_index; ct_goto = get_flow_act(flow->rule, FLOW_ACTION_GOTO); ct_entry->goto_chain_index = ct_goto ? ct_goto->chain_index : 0; list_add(&ct_entry->list_node, &zt->post_ct_list); zt->post_ct_count++; if (wildcarded) { /* Iterate through all zone tables if not empty, look for merges with * pre_ct entries and merge them. */ struct rhashtable_iter iter; struct nfp_fl_ct_zone_entry *zone_table; rhashtable_walk_enter(&priv->ct_zone_table, &iter); rhashtable_walk_start(&iter); while ((zone_table = rhashtable_walk_next(&iter)) != NULL) { if (IS_ERR(zone_table)) continue; rhashtable_walk_stop(&iter); nfp_ct_merge_tc_entries(ct_entry, zone_table, zone_table); rhashtable_walk_start(&iter); } rhashtable_walk_stop(&iter); rhashtable_walk_exit(&iter); } else { nfp_ct_merge_tc_entries(ct_entry, zt, zt); } return 0; } int nfp_fl_create_new_pre_ct(struct nfp_fl_nft_tc_merge *m_entry) { struct nfp_fl_ct_flow_entry *pre_ct_entry, *post_ct_entry; struct flow_cls_offload new_pre_ct_flow; int err; pre_ct_entry = m_entry->tc_m_parent->pre_ct_parent; if (pre_ct_entry->num_prev_m_entries >= NFP_MAX_RECIRC_CT_ZONES - 1) return -1; post_ct_entry = m_entry->tc_m_parent->post_ct_parent; memset(&new_pre_ct_flow, 0, sizeof(struct flow_cls_offload)); new_pre_ct_flow.rule = post_ct_entry->rule; new_pre_ct_flow.common.chain_index = post_ct_entry->chain_index; err = nfp_fl_ct_handle_pre_ct(pre_ct_entry->zt->priv, pre_ct_entry->netdev, &new_pre_ct_flow, NULL, m_entry); return err; } static void nfp_fl_ct_sub_stats(struct nfp_fl_nft_tc_merge *nft_merge, enum ct_entry_type type, u64 *m_pkts, u64 *m_bytes, u64 *m_used) { struct nfp_flower_priv *priv = nft_merge->zt->priv; struct nfp_fl_payload *nfp_flow; u32 ctx_id; nfp_flow = nft_merge->flow_pay; if (!nfp_flow) return; ctx_id = be32_to_cpu(nfp_flow->meta.host_ctx_id); *m_pkts += priv->stats[ctx_id].pkts; *m_bytes += priv->stats[ctx_id].bytes; *m_used = max_t(u64, *m_used, priv->stats[ctx_id].used); /* If request is for a sub_flow which is part of a tunnel merged * flow then update stats from tunnel merged flows first. */ if (!list_empty(&nfp_flow->linked_flows)) nfp_flower_update_merge_stats(priv->app, nfp_flow); if (type != CT_TYPE_NFT) { /* Update nft cached stats */ flow_stats_update(&nft_merge->nft_parent->stats, priv->stats[ctx_id].bytes, priv->stats[ctx_id].pkts, 0, priv->stats[ctx_id].used, FLOW_ACTION_HW_STATS_DELAYED); } else { /* Update pre_ct cached stats */ flow_stats_update(&nft_merge->tc_m_parent->pre_ct_parent->stats, priv->stats[ctx_id].bytes, priv->stats[ctx_id].pkts, 0, priv->stats[ctx_id].used, FLOW_ACTION_HW_STATS_DELAYED); /* Update post_ct cached stats */ flow_stats_update(&nft_merge->tc_m_parent->post_ct_parent->stats, priv->stats[ctx_id].bytes, priv->stats[ctx_id].pkts, 0, priv->stats[ctx_id].used, FLOW_ACTION_HW_STATS_DELAYED); } /* Update previous pre_ct/post_ct/nft flow stats */ if (nft_merge->tc_m_parent->pre_ct_parent->num_prev_m_entries > 0) { struct nfp_fl_nft_tc_merge *tmp_nft_merge; int i; for (i = 0; i < nft_merge->tc_m_parent->pre_ct_parent->num_prev_m_entries; i++) { tmp_nft_merge = nft_merge->tc_m_parent->pre_ct_parent->prev_m_entries[i]; flow_stats_update(&tmp_nft_merge->tc_m_parent->pre_ct_parent->stats, priv->stats[ctx_id].bytes, priv->stats[ctx_id].pkts, 0, priv->stats[ctx_id].used, FLOW_ACTION_HW_STATS_DELAYED); flow_stats_update(&tmp_nft_merge->tc_m_parent->post_ct_parent->stats, priv->stats[ctx_id].bytes, priv->stats[ctx_id].pkts, 0, priv->stats[ctx_id].used, FLOW_ACTION_HW_STATS_DELAYED); flow_stats_update(&tmp_nft_merge->nft_parent->stats, priv->stats[ctx_id].bytes, priv->stats[ctx_id].pkts, 0, priv->stats[ctx_id].used, FLOW_ACTION_HW_STATS_DELAYED); } } /* Reset stats from the nfp */ priv->stats[ctx_id].pkts = 0; priv->stats[ctx_id].bytes = 0; } int nfp_fl_ct_stats(struct flow_cls_offload *flow, struct nfp_fl_ct_map_entry *ct_map_ent) { struct nfp_fl_ct_flow_entry *ct_entry = ct_map_ent->ct_entry; struct nfp_fl_nft_tc_merge *nft_merge, *nft_m_tmp; struct nfp_fl_ct_tc_merge *tc_merge, *tc_m_tmp; u64 pkts = 0, bytes = 0, used = 0; u64 m_pkts, m_bytes, m_used; spin_lock_bh(&ct_entry->zt->priv->stats_lock); if (ct_entry->type == CT_TYPE_PRE_CT) { /* Iterate tc_merge entries associated with this flow */ list_for_each_entry_safe(tc_merge, tc_m_tmp, &ct_entry->children, pre_ct_list) { m_pkts = 0; m_bytes = 0; m_used = 0; /* Iterate nft_merge entries associated with this tc_merge flow */ list_for_each_entry_safe(nft_merge, nft_m_tmp, &tc_merge->children, tc_merge_list) { nfp_fl_ct_sub_stats(nft_merge, CT_TYPE_PRE_CT, &m_pkts, &m_bytes, &m_used); } pkts += m_pkts; bytes += m_bytes; used = max_t(u64, used, m_used); /* Update post_ct partner */ flow_stats_update(&tc_merge->post_ct_parent->stats, m_bytes, m_pkts, 0, m_used, FLOW_ACTION_HW_STATS_DELAYED); } } else if (ct_entry->type == CT_TYPE_POST_CT) { /* Iterate tc_merge entries associated with this flow */ list_for_each_entry_safe(tc_merge, tc_m_tmp, &ct_entry->children, post_ct_list) { m_pkts = 0; m_bytes = 0; m_used = 0; /* Iterate nft_merge entries associated with this tc_merge flow */ list_for_each_entry_safe(nft_merge, nft_m_tmp, &tc_merge->children, tc_merge_list) { nfp_fl_ct_sub_stats(nft_merge, CT_TYPE_POST_CT, &m_pkts, &m_bytes, &m_used); } pkts += m_pkts; bytes += m_bytes; used = max_t(u64, used, m_used); /* Update pre_ct partner */ flow_stats_update(&tc_merge->pre_ct_parent->stats, m_bytes, m_pkts, 0, m_used, FLOW_ACTION_HW_STATS_DELAYED); } } else { /* Iterate nft_merge entries associated with this nft flow */ list_for_each_entry_safe(nft_merge, nft_m_tmp, &ct_entry->children, nft_flow_list) { nfp_fl_ct_sub_stats(nft_merge, CT_TYPE_NFT, &pkts, &bytes, &used); } } /* Add stats from this request to stats potentially cached by * previous requests. */ flow_stats_update(&ct_entry->stats, bytes, pkts, 0, used, FLOW_ACTION_HW_STATS_DELAYED); /* Finally update the flow stats from the original stats request */ flow_stats_update(&flow->stats, ct_entry->stats.bytes, ct_entry->stats.pkts, 0, ct_entry->stats.lastused, FLOW_ACTION_HW_STATS_DELAYED); /* Stats has been synced to original flow, can now clear * the cache. */ ct_entry->stats.pkts = 0; ct_entry->stats.bytes = 0; spin_unlock_bh(&ct_entry->zt->priv->stats_lock); return 0; } static bool nfp_fl_ct_offload_nft_supported(struct flow_cls_offload *flow) { struct flow_rule *flow_rule = flow->rule; struct flow_action *flow_action = &flow_rule->action; struct flow_action_entry *act; int i; flow_action_for_each(i, act, flow_action) { if (act->id == FLOW_ACTION_CT_METADATA) { enum ip_conntrack_info ctinfo = act->ct_metadata.cookie & NFCT_INFOMASK; return ctinfo != IP_CT_NEW; } } return false; } static int nfp_fl_ct_offload_nft_flow(struct nfp_fl_ct_zone_entry *zt, struct flow_cls_offload *flow) { struct nfp_fl_ct_map_entry *ct_map_ent; struct nfp_fl_ct_flow_entry *ct_entry; struct netlink_ext_ack *extack = NULL; extack = flow->common.extack; switch (flow->command) { case FLOW_CLS_REPLACE: if (!nfp_fl_ct_offload_nft_supported(flow)) return -EOPNOTSUPP; /* Netfilter can request offload multiple times for the same * flow - protect against adding duplicates. */ ct_map_ent = rhashtable_lookup_fast(&zt->priv->ct_map_table, &flow->cookie, nfp_ct_map_params); if (!ct_map_ent) { ct_entry = nfp_fl_ct_add_flow(zt, NULL, flow, true, extack); if (IS_ERR(ct_entry)) return PTR_ERR(ct_entry); ct_entry->type = CT_TYPE_NFT; list_add(&ct_entry->list_node, &zt->nft_flows_list); zt->nft_flows_count++; nfp_ct_merge_nft_with_tc(ct_entry, zt); } return 0; case FLOW_CLS_DESTROY: ct_map_ent = rhashtable_lookup_fast(&zt->priv->ct_map_table, &flow->cookie, nfp_ct_map_params); return nfp_fl_ct_del_flow(ct_map_ent); case FLOW_CLS_STATS: ct_map_ent = rhashtable_lookup_fast(&zt->priv->ct_map_table, &flow->cookie, nfp_ct_map_params); if (ct_map_ent) return nfp_fl_ct_stats(flow, ct_map_ent); break; default: break; } return -EINVAL; } int nfp_fl_ct_handle_nft_flow(enum tc_setup_type type, void *type_data, void *cb_priv) { struct flow_cls_offload *flow = type_data; struct nfp_fl_ct_zone_entry *zt = cb_priv; int err = -EOPNOTSUPP; switch (type) { case TC_SETUP_CLSFLOWER: while (!mutex_trylock(&zt->priv->nfp_fl_lock)) { if (!zt->nft) /* avoid deadlock */ return err; msleep(20); } err = nfp_fl_ct_offload_nft_flow(zt, flow); mutex_unlock(&zt->priv->nfp_fl_lock); break; default: return -EOPNOTSUPP; } return err; } static void nfp_fl_ct_clean_nft_entries(struct nfp_fl_ct_zone_entry *zt) { struct nfp_fl_ct_flow_entry *nft_entry, *ct_tmp; struct nfp_fl_ct_map_entry *ct_map_ent; list_for_each_entry_safe(nft_entry, ct_tmp, &zt->nft_flows_list, list_node) { ct_map_ent = rhashtable_lookup_fast(&zt->priv->ct_map_table, &nft_entry->cookie, nfp_ct_map_params); nfp_fl_ct_del_flow(ct_map_ent); } } int nfp_fl_ct_del_flow(struct nfp_fl_ct_map_entry *ct_map_ent) { struct nfp_fl_ct_flow_entry *ct_entry; struct nfp_fl_ct_zone_entry *zt; struct rhashtable *m_table; struct nf_flowtable *nft; if (!ct_map_ent) return -ENOENT; zt = ct_map_ent->ct_entry->zt; ct_entry = ct_map_ent->ct_entry; m_table = &zt->priv->ct_map_table; switch (ct_entry->type) { case CT_TYPE_PRE_CT: zt->pre_ct_count--; if (ct_map_ent->cookie > 0) rhashtable_remove_fast(m_table, &ct_map_ent->hash_node, nfp_ct_map_params); nfp_fl_ct_clean_flow_entry(ct_entry); if (ct_map_ent->cookie > 0) kfree(ct_map_ent); if (!zt->pre_ct_count && zt->nft) { nft = zt->nft; zt->nft = NULL; /* avoid deadlock */ nf_flow_table_offload_del_cb(nft, nfp_fl_ct_handle_nft_flow, zt); nfp_fl_ct_clean_nft_entries(zt); } break; case CT_TYPE_POST_CT: zt->post_ct_count--; rhashtable_remove_fast(m_table, &ct_map_ent->hash_node, nfp_ct_map_params); nfp_fl_ct_clean_flow_entry(ct_entry); kfree(ct_map_ent); break; case CT_TYPE_NFT: zt->nft_flows_count--; rhashtable_remove_fast(m_table, &ct_map_ent->hash_node, nfp_ct_map_params); nfp_fl_ct_clean_flow_entry(ct_map_ent->ct_entry); kfree(ct_map_ent); break; default: break; } return 0; }
Information contained on this website is for historical information purposes only and does not indicate or represent copyright ownership.
Created with Cregit http://github.com/cregit/cregit
Version 2.0-RC1